Quantitative aspects of ODT in verification of program correctness

Weng Kin, Ho
Mathematics and Mathematics Education
National Institute of Education, Singapore
wengkin.ho@nie.edu.sg

22 Jan 2010

Outline

Motivation

- Motivation
- ② Operational/algorithmic topology

- Motivation
- ② Operational/algorithmic topology
- Separation axioms

- Motivation
- ② Operational/algorithmic topology
- Separation axioms
- 4 Compactness

5 Continuity principles

- Motivation
- ② Operational/algorithmic topology
- Separation axioms
- 4 Compactness

- Motivation
- ② Operational/algorithmic topology
- Separation axioms
- 4 Compactness

- Continuity principles
- 6 Applications based on quantitative approach

- Motivation
- ② Operational/algorithmic topology
- Separation axioms
- 4 Compactness

- 6 Continuity principles
- 6 Applications based on quantitative approach
- Conclusion

- Motivation
- ② Operational/algorithmic topology
- Separation axioms
- 4 Compactness

- 6 Continuity principles
- 6 Applications based on quantitative approach
- Conclusion
- 8 References

Subtopics to be covered

Subtopics to be covered

Compactness and its computational content

Subtopics to be covered

- Ompactness and its computational content
- Quantitative domain theory of types

Subtopics to be covered

- Compactness and its computational content
- Quantitative domain theory of types
- Sample applications: contextual equivalence and program correctness

Highlights

In today's talk, we encounter

1 the notion of operational compactness

Highlights

In today's talk, we encounter

- the notion of operational compactness
- the computational intuition of searchability

Highlights

In today's talk, we encounter

- the notion of operational compactness
- the computational intuition of searchability
- quantitative domain theory of types

Highlights

In today's talk, we encounter

- the notion of operational compactness
- the computational intuition of searchability
- quantitative domain theory of types
- how ODT can be applied to prove contextual equivalence and program correctness

Domain theory can in fact be seen as topology of partial orders. So,

Maxim

no topology = no domain theory.

Domain theory

Domain theory

Many preceding works have pointed towards the use of 'topology' in computation:

 M. Smyth: open set to express 'an observable/affirmative predicate'.

- M. Smyth: open set to express 'an observable/affirmative predicate'.
- S. Vickers: locales to express geometric logic.

- M. Smyth: open set to express 'an observable/affirmative predicate'.
- S. Vickers: locales to express geometric logic.
- S. Abramsky: Stone-duality to express program logic.

- M. Smyth: open set to express 'an observable/affirmative predicate'.
- S. Vickers: locales to express geometric logic.
- S. Abramsky: Stone-duality to express program logic.
- Yu. Ershov: continuous maps to express computability.

Some photos

Figure: Some famous people in domains and semantics

Continuity and open sets

Central theme in Operational Topology More properties of opens Specialization (pre-)order Data types as d-spaces Data types as algebraic domains

Continuous maps

Following Ershov's ideas, one can start with a very natural definition:

Definition |

A function $f: \sigma \to \tau$ is continuous if it is definable in the language.

Continuity and open sets

Central theme in Operational Topology More properties of opens Specialization (pre-)order Data types as *d*-spaces Data types as algebraic domains

Continuous maps

The definability of functions dictates the nature of the hierarchy of 'topologies' on types!

Continuity and open sets

Central theme in Operational Topology More properties of opens Specialization (pre-)order Data types as *d-*spaces Data types as algebraic domains

Continuous maps

The definability of functions dictates the nature of the hierarchy of 'topologies' on types!

Maxim

Functions are first-class citizens in functional programming paradigm.

Continuity and open sets

Central theme in Operational Topology More properties of opens Specialization (pre-)order Data types as *d-*spaces Data types as algebraic domains

Opens

Next question: What are then the open sets?

Continuity and open sets

Central theme in Operational Topology More properties of opens Specialization (pre-)order Data types as *d-*spaces Data types as algebraic domains

Opens

Next question: What are then the open sets?

Definition ((Operational) opens)

A subset $U \subseteq \sigma$ is (operationally) open in type σ if its characteristic function $\chi_U : \sigma \to \Sigma$ is continuous.

Note that

$$\chi_U(x) = \top \iff x \in U.$$

Continuity and open sets

Central theme in Operational Topology More properties of opens Specialization (pre-)order Data types as *d-*spaces Data types as algebraic domains

Opens as semi-decidable sets

Open subsets of a data type is precisely the *semi-decidable* (with respect to the language) subsets of that data type.

Continuity and open sets

Central theme in Operational Topology More properties of opens Specialization (pre-)order Data types as *d-*spaces Data types as algebraic domains

Opens as semi-decidable sets

Open subsets of a data type is precisely the *semi-decidable* (with respect to the language) subsets of that data type. Clearly, conjunction of two semi-decisions is still a semi-decision.

Continuity and open sets
Central theme in Operational Topology
More properties of opens
Specialization (pre-)order
Data types as d-spaces
Data types as algebraic domains

Operational topology

Because open sets are characterized by definability of extensional functions, we have:

Main spirit of OT

Writing topological proofs become writing programs.

Continuity and open sets
Central theme in Operational Topolog
More properties of opens
Specialization (pre-)order
Data types as d-spaces
Data types as algebraic domains

Opens aren't really opens

Proposition

The opens of a data type do not form a topology!

Continuity and open sets
Central theme in Operational Topology
More properties of opens
Specialization (pre-)order
Data types as d-spaces
Data types as algebraic domains

Opens aren't really opens

Proof.

Suppose not, then in particular any two opens U and V creates a new open $U \cup V$.

Continuity and open sets
Central theme in Operational Topolog
More properties of opens
Specialization (pre-)order
Data types as d-spaces
Data types as algebraic domains

Opens aren't really opens

Proof.

Suppose not, then in particular any two opens U and V creates a new open $U \cup V$.

Then we have the (extensional) characteristic function of $U \cup V$ can be realized by an (intensional) program given by

$$p: \sigma \to \Sigma$$
.

Continuity and open sets
Central theme in Operational Topology
More properties of opens
Specialization (pre-)order
Data types as d-spaces
Data types as algebraic domains

Opens aren't really opens

Proof.

Suppose not, then in particular any two opens U and V creates a new open $U \cup V$.

Then we have the (extensional) characteristic function of $U \cup V$ can be realized by an (intensional) program given by

$$p:\sigma\to\Sigma$$
.

But notice that p gives the algorithmic weak parallel-or \vee . (Contradiction!)

Opens aren't really opens

Here a weak parallel-or ∨ means

$$p \lor q = \top \iff p = \top \text{ or } q = \top.$$

Continuity and open sets
Central theme in Operational Topolog
More properties of opens
Specialization (pre-)order
Data types as d-spaces
Data types as algebraic domains

Opens aren't really opens

So operational topology isn't a topology!

Continuity and open sets
Central theme in Operational Topology
More properties of opens
Specialization (pre-)order
Data types as d-spaces
Data types as algebraic domains

Opens aren't really opens

So operational topology isn't a topology! But it behaves very much like one.

Specialization (pre-)order

Proposition

For any $x, y : \sigma$,

$$x \sqsubseteq_{\sigma} y \iff \forall open \ U.x \in U \implies y \in U.$$

The contextual pre-order coincides with the specialization order induced by operational opens.

Continuity and open sets
Central theme in Operational Topology
More properties of opens
Specialization (pre-)order
Data types as d-spaces
Data types as algebraic domains

Specialization (pre-)order

Proposition

All opens are upper with respect to the contextual pre-order.

Continuity and open sets
Central theme in Operational Topology
More properties of opens
Specialization (pre-)order
Data types as d-spaces
Data types as algebraic domains

Specialization (pre-)order

Proposition

All opens are upper with respect to the contextual pre-order.

Proof.

By definition!

Specialization (pre-)order

Proposition

Every continuous function is monotone w.r.t. the specialization (pre-)orders.

Corollary (Halting problem)

There is no continuous function $f: \Sigma \to \Sigma$ such that

$$f(\bot) = \top$$
 and $f(\top) = \bot$.

Continuity and open sets
Central theme in Operational Topology
More properties of opens
Specialization (pre-)order
Data types as d-spaces
Data types as algebraic domains

Data types as *d*-spaces

Operational opens are not just 'opens'. They are somewhat intrinsic to the operational semantics of the language!

Data types as d-spaces

Because the intrinsic topology on types is the Scott topology, we expect the operational opens to behave like Scott-open sets.

Analogy directed complete \leadsto rational-chain complete Scott open \leadsto ?

Continuity and open sets
Central theme in Operational Topology
More properties of opens
Specialization (pre-)order
Data types as d-spaces
Data types as algebraic domains

Data types as *d*-spaces

Proposition

Opens are operationally Scott open in the sense that they are

Data types as d-spaces

Proposition

Opens are operationally Scott open in the sense that they are

- upper with respect to \sqsubseteq , and
- 2 inaccessible by joins of rational chains.

Data types as d-spaces

Proof.

For the second property, suppose that there is a rational chain x_n whose join is in an open U.

Data types as d-spaces

Proof.

For the second property, suppose that there is a rational chain x_n whose join is in an open U. Then we have

$$\chi_U(\bigsqcup_n x_n) = \chi_U(I(\infty)) = \top$$

where $l: \overline{\omega} \to \sigma$ is the realizer of the rational chain x_n .

Data types as d-spaces

Proof.

For the second property, suppose that there is a rational chain x_n whose join is in an open U. Then we have

$$\chi_U(\bigsqcup_n x_n) = \chi_U(I(\infty)) = \top$$

where $I: \overline{\omega} \to \sigma$ is the realizer of the rational chain x_n . Thus by rational continuity, $\chi_U(I(\bigsqcup_n n)) = \bigsqcup_n \chi_U(I(n))$.

Data types as *d*-spaces

Proof.

For the second property, suppose that there is a rational chain x_n whose join is in an open U. Then we have

$$\chi_U(\bigsqcup_n x_n) = \chi_U(I(\infty)) = \top$$

where $I: \overline{\omega} \to \sigma$ is the realizer of the rational chain x_n . Thus by rational continuity, $\chi_U(I(\bigsqcup_n n)) = \bigsqcup_n \chi_U(I(n))$. Since \top is finite, it follows that $\chi(I(n)) = \top$ for some $n < \infty$, i.e.,

Data types as *d*-spaces

Proof.

For the second property, suppose that there is a rational chain x_n whose join is in an open U. Then we have

$$\chi_U(\bigsqcup_n x_n) = \chi_U(I(\infty)) = \top$$

where $I: \overline{\omega} \to \sigma$ is the realizer of the rational chain x_n . Thus by rational continuity, $\chi_U(I(\bigsqcup_n n)) = \bigsqcup_n \chi_U(I(n))$. Since \top is finite, it follows that $\chi(I(n)) = \top$ for some $n < \infty$, i.e., there is $n \in \mathbb{N}$ such that already $x_n \in U$.

Data types as *d*-spaces

Recall that a *d-space* is a topological space in which every open set is Scott-open. These are also known as *monotone convergence* spaces.

Data types as d-spaces

Recall that a *d-space* is a topological space in which every open set is Scott-open. These are also known as *monotone convergence spaces*.

So from the above result, we have shown that every data type is an operational d-space.

Continuity and open sets Central theme in Operational Topology More properties of opens Specialization (pre-)order Data types as *d*-spaces Data types as algebraic domains

Data types as algebraic domains

Theorem

The following are equivalent:

Continuity and open sets Central theme in Operational Topology More properties of opens Specialization (pre-)order Data types as *d*-spaces Data types as algebraic domains

Data types as algebraic domains

Theorem

The following are equivalent:

1 b is finite.

Continuity and open sets Central theme in Operational Topology More properties of opens Specialization (pre-)order Data types as *d*-spaces Data types as algebraic domains

Data types as algebraic domains

Theorem

The following are equivalent:

- b is finite.
- ② ↑ b is open.

Continuity and open sets
Central theme in Operational Topology
More properties of opens
Specialization (pre-)order
Data types as d-spaces
Data types as algebraic domains

Data types as algebraic domains

Corollary

Every open set is the union of open sets of the form $\uparrow b$ with b finite.

In other words, the sets $\uparrow b$ with b finite forms a basis for the operational topology.

T_0 -space

For any type σ , the following are equivalent:

T_0 -space

For any type σ , the following are equivalent:

T_0 -space

For any type σ , the following are equivalent:

Proof.

Trivial by definition!

T_0 -space

Proposition

Every type as an operational topological space is automatically T_0 .

Subspace

Definition (Subspace)

Any subset X of a type σ is called a subspace of Y. Given any subspaces X of σ and Y of τ , a function

$$f: X \to Y$$

is relatively continuous if there is at least one continuous function

$$g:\sigma \to Y$$

such that g(x) = f(x) for all $x \in X$.

Subspace

Definition

A subset of a space is relatively open if its Σ -valued characteristic map is relatively continuous.

Subspace

Proposition

For a subspace X of a data type σ , a subset U of X is relatively open in X iff there is an open U' of σ such that $X \cap U' = U$.

If opens are observables, then the ability to separate distinct programs amounts to different degrees of separation.

We take this as an example:

Definition (Hausdorff space)

X is a Hausdorff subspace of σ if the ability to tell any given pair of inequivalent programs in X apart is a semidecision, i.e., $(\neq): \sigma \times \sigma \to \Sigma$ such that

$$\forall x, \ y : \sigma.(\neq)(x,y) = \top \iff x \neq_{\sigma} y$$

is continuous (i.e., definable in the language).

We take this as an example:

Definition (Hausdorff space)

X is a Hausdorff subspace of σ if the ability to tell any given pair of inequivalent programs in X apart is a semidecision, i.e., $(\neq): \sigma \times \sigma \to \Sigma$ such that

$$\forall x, \ y : \sigma.(\neq)(x,y) = \top \iff x \neq_{\sigma} y$$

is continuous (i.e., definable in the language).

Can you see why this is a good definition?

Separation axioms

Non-examples

Every non-trivial data type is **NOT** Hausdorff. (Why?)

Example

Following are examples of Hausdroff subspaces:

Example

Following are examples of Hausdroff subspaces:

■ The subspace N of Nat of (non-divergent) natural numbers

Example

Following are examples of Hausdroff subspaces:

- The subspace N of Nat of (non-divergent) natural numbers
- ② The subspace B (called the Baire space) consisting of all strict total functions of $Baire := Nat \rightarrow Nat$ type

Separation axioms

Example

Following are examples of Hausdroff subspaces:

- The subspace N of Nat of (non-divergent) natural numbers
- ② The subspace B (called the Baire space) consisting of all strict total functions of $Baire := Nat \rightarrow Nat$ type
- 3 The subspace *C* (called the *Cantor* space) consisting of all strict total sequences of 0's and 1's of *Baire*-type.

Break (5 mins)

Let us have a short break.

Operational compactness Properties of compact set

Operational compactness

Compactness is a crucial topological property. But what is the computational parallel of this notion?

Operational compactness

Definition ((Operational) Compactness)

A set Q of elements of a data type σ is compact if there is a program $\forall_Q : (\sigma \to \Sigma) \to \Sigma$ such that

$$\forall_{Q}(p) = \top \iff \forall x \in Q.p(x) = \top.$$

Proposition

For any set Q of σ -elements, the following are equivalent:

Proposition

For any set Q of σ -elements, the following are equivalent:

1
$$\{U \text{ open } | Q \subseteq U\} \text{ is open in } (\sigma \to \Sigma)$$

Proposition

For any set Q of σ -elements, the following are equivalent:

- **1** $\{U \text{ open } | Q \subseteq U\} \text{ is open in } (\sigma \to \Sigma)$
- **2** There is a program $\forall_Q : ((\sigma \to \Sigma) \to \Sigma)$ such that

$$\forall_Q(p) = \top \iff \forall x \in Q.p(x) = \top.$$

Proposition

For any set Q of σ -elements, the following are equivalent:

- **1** $\{U \text{ open } | Q \subseteq U\} \text{ is open in } (\sigma \to \Sigma)$
- ② There is a program $\forall_Q : ((\sigma \to \Sigma) \to \Sigma)$ such that

$$\forall_{Q}(p) = \top \iff \forall x \in Q.p(x) = \top.$$

Proof.

$$\forall_Q = \chi_U$$
 where $\mathcal{U} := \{\chi_U \mid Q \subseteq U\}$, because if $p = \chi_U$ then $Q \subseteq U \iff \forall x \in Q. p(x) = T$.

Notice that the first condition that

$$\{U \text{ open } | Q \subseteq U\} \text{ is open in } (\sigma \to \Sigma)$$

is parallel to the domain-theoretic statement:

$$\{U \in \mathcal{O}X \mid Q \subseteq U\}$$
 is Scott open in $\mathcal{O}X$.

Do you now recognize the characterizing property on Q for which:

$$\{U \in \mathcal{O}X \mid Q \subseteq U\}$$
 is Scott open in $\mathcal{O}X$?

Do you now recognize the characterizing property on Q for which:

$$\{U \in \mathcal{O}X \mid Q \subseteq U\}$$
 is Scott open in $\mathcal{O}X$?

Answer

Q is a *compact* subspace of X.

Computational content of compactness

The existence of a program $\forall_Q : (\sigma \to \Sigma) \to \Sigma$ such that

$$\forall_{Q}(p) = \top \iff \forall x \in Q.p(x) = \top$$

tells us that the process of searching through and verifying a given predicate over all the possible elements of a compact set terminates in finite time.

Operational compactness Properties of compact sets

Computational content of compactness

Example

Computational content of compactness

Example

N is not a compact set, otherwise number-theorists will be put out of job!

Operational compactness Properties of compact set

Computational content of compactness

Example

- N is not a compact set, otherwise number-theorists will be put out of job!
- **②** *C* is compact w.r.t the data language PCF_{Ω} but not the programming language PCF.

Operational compactness Properties of compact sets

Topological properties involving compactness

The following are very well-known elementary results in topology, but operationally manifested!

Proposition

Operational compactness Properties of compact sets

Topological properties involving compactness

The following are very well-known elementary results in topology, but operationally manifested!

Proposition

Ontinuous image of compact sets are compact.

Topological properties involving compactness

The following are very well-known elementary results in topology, but operationally manifested!

Proposition

- Continuous image of compact sets are compact.
- 2 Every compact subspace of a Hausdorff space is closed.

Topological properties involving compactness

The following are very well-known elementary results in topology, but operationally manifested!

Proposition

- Continuous image of compact sets are compact.
- 2 Every compact subspace of a Hausdorff space is closed.
- Intersection of compactly many open sets is open.

Topological properties involving compactness

Proof of (1).
$$\forall_{f(Q)} := \lambda p. \forall_{Q} (p \circ f)$$

The rest are homework exercises for my diligent PhD/MSc students!

Totality Moduli of continuity

Total elements

Definition (Totality)

Definition (Totality)

• An element of ground type γ is total.

Definition (Totality)

- An element of ground type γ is total.
- An element of product type is total if its projections are.

Definition (Totality)

- An element of ground type γ is total.
- An element of product type is total if its projections are.
- An element of function type is total if application to totals yields totals.

It turns out that

Theorem

The set of total elements of a given type are dense in it in the sense that every inhabited open set must contain at least one total element.

It turns out that

$\mathsf{Theorem}$

The set of total elements of a given type are dense in it in the sense that every inhabited open set must contain at least one total element.

Proof.

Hint: First show that every finite element is below a total element.

Theorem

For total $f: \sigma \to \mathtt{Baire}$ and Q a compact set of total elements of σ ,

$$\forall \epsilon \in \mathbb{N}. \exists \delta \in \mathbb{N}. \forall x, \ y \in Q. (x =_{\delta} y \implies f(x) =_{\epsilon} f(y)).$$

Omitting this proof, we inspect another similar result for types other than Baire.

Proposition

For ground types γ , $f: \sigma \to \gamma$ total and Q a compact set of total elements of σ .

Proposition

For ground types γ , $f: \sigma \to \gamma$ total and Q a compact set of total elements of σ ,

```
1 Big m.o.c. of f at Q: \exists \delta \in \mathbb{N}. \forall x \in Q. f(x) = f(id_{\delta}(x)).
```

Proposition

For ground types γ , $f: \sigma \to \gamma$ total and Q a compact set of total elements of σ ,

- **1** Big m.o.c. of f at Q: $\exists \delta \in \mathbb{N}. \forall x \in Q. f(x) = f(id_{\delta}(x)).$
- **Small m.o.c.** of f at Q: $\exists \delta \in \mathbb{N}. \forall x, y \in Q. x =_{\delta} y \implies f(x) = f(y).$

Recall that for total elements in Nat one has an equality semidecision e, which can be written as

Then the program *e* behaves as follows:

If
$$s, t \in Nat$$
 are total, then $s = t \iff e(s, t) = \top$.

We aim to show

$$\exists \delta \in \mathbb{N}. \forall x \in Q. f(x) = f(\mathrm{id}_{\delta}(x)).$$

Proof

Let p(x) := e(f(x), f(x)). Clearly, because $x \in Q$ and f are total, we always have

$$\forall_Q(p) = \top$$
.

Proof.

So by the finiteness of \top , there is $\delta \in \mathbb{N}$ such that already

$$\forall_Q(\mathsf{id}_\delta(p)) = \top$$

which implies that $\forall_Q(p(id_\delta(x))) = \top$, i.e.,

$$\forall x \in Q.e(\mathrm{id}_{\delta}(x),\mathrm{id}_{\delta}(x)) = \top.$$

Applying monotonicity applied to $id_{\delta}(x) \sqsubseteq id(x)$, we must have

$$\exists \delta \in \mathbb{N}. \forall x \in Q.e(x, id_{\delta}(x)) = \top.$$

as desired.

Universal quantification for boolean-valued predicates

Theorem (U. Berger)

There is a total program

$$\varepsilon: (\mathtt{Cantor} \to \mathtt{Bool}) \to \mathtt{Cantor}$$

such that for any total $p: (Cantor \rightarrow Bool)$, if p(s) = 0 for some total s: Cantor, then $\varepsilon(p)$ is such an s.

Here 0 stands for true.

Proof.

By simple induction on the big m.o.c. of p at C.

Conclusion

In today's tutorial, we have

Conclusion

In today's tutorial, we have

 talked about the computational parallel of topological compactness,

Conclusion

In today's tutorial, we have

- talked about the computational parallel of topological compactness,
- explored some of its uses in programming and

Conclusion

In today's tutorial, we have

- talked about the computational parallel of topological compactness,
- explored some of its uses in programming and
- used a 'quantitative domain theoretic' approach to check program correctness.

References

References

• M.H. Escardó. *Synthetic topology of data types and classical spaces*. ENTCS, 87, pp. 21–156, 2004.

References

- M.H. Escardó. *Synthetic topology of data types and classical spaces.* ENTCS, 87, pp. 21–156, 2004.
- M.H. Escardó & W.K. Ho. An operational domain theory and topology of sequential languages. Information and Computation, 207(3), pp. 411–437, 2009.

References

- M.H. Escardó. Synthetic topology of data types and classical spaces. ENTCS, 87, pp. 21–156, 2004.
- M.H. Escardó & W.K. Ho. An operational domain theory and topology of sequential languages. Information and Computation, 207(3), pp. 411–437, 2009.
- W.K. Ho. Operational Domain Theory and Topology of Sequential Functional Languages. PhD Thesis, School of Computer Science, University of Birmingham, Oct 2006.

All these can be downloaded from my webpage at http://math.nie.edu.sg/wkho/pubtalk.htm.

