Rank Commutators

Dongsheng Zhao, Fengming Dong, Weng Kin Ho {dongsheng.zhao,fengming.dong,wengkin.ho}@nie.edu.sg

National Institute of Education, Nanyang Technological University

June 5, 2012

Introduction

- Introduction
- 2 Range of rank(AB) rank(BA)

Main results

- Introduction
- 2 Range of rank(AB) rank(BA)

- Introduction
- 2 Range of rank(AB) rank(BA)

- Main results
- 4 Concluding remarks

Definition (Rank of a matrix)

The rank of a real $m \times n$ matrix A is defined as the dimension of its column space, i.e., the space spanned by the set of column vectors of A.

Definition (Rank of a matrix)

The rank of a real $m \times n$ matrix A is defined as the dimension of its column space, i.e., the space spanned by the set of column vectors of A.

The following results are well-known concerning rank:

$\mathsf{Theorem}$

Let A be an $n \times n$ matrix.

Definition (Rank of a matrix)

The rank of a real $m \times n$ matrix A is defined as the dimension of its column space, i.e., the space spanned by the set of column vectors of A.

The following results are well-known concerning rank:

Theorem

Let A be an $n \times n$ matrix.

Definition (Rank of a matrix)

The rank of a real $m \times n$ matrix A is defined as the dimension of its column space, i.e., the space spanned by the set of column vectors of A.

The following results are well-known concerning rank:

$\mathsf{Theorem}$

Let A be an $n \times n$ matrix.

- \bullet rank $(A) = \operatorname{rank}(A^T)$.
- ② For any invertible matrix B of size n, rank(AB) = rank(BA).

Many beginners believe that ...

For any square matrices A and B of the same size, it holds that

$$rank(AB) = rank(BA).$$

The preceding statement is false in general.

The preceding statement is false in general.

Counterexample

Let
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$.

The preceding statement is false in general.

Counterexample

Let
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$. Then,

$$rank(AB) = 0$$
 while $rank(BA) = 1$.

A natural question to ask

What exactly are those square matrices A such that

$$rank(AB) = rank(BA)$$

for all real $n \times n$ matrices B?

Question generalised

Definition (Rank-commutators)

let \mathcal{L} be any subset of real square matrices of size n.

Question generalised

Definition (Rank-commutators)

let \mathcal{L} be any subset of real square matrices of size n.

A non-zero square matrix A of size n is said to be a rank commutator over \mathcal{L} (or \mathcal{L} -rank commutators) if for all $B \in \mathcal{L}$,

$$rank(AB) = rank(BA).$$

Question generalised

Definition (Rank-commutators)

let \mathcal{L} be any subset of real square matrices of size n.

A non-zero square matrix A of size n is said to be a rank commutator over \mathcal{L} (or \mathcal{L} -rank commutators) if for all $B \in \mathcal{L}$,

$$rank(AB) = rank(BA).$$

The set of \mathcal{L} -rank commutators is denoted by \mathcal{L}^* .

Lemma

For any $n \times n$ matrices A and B,

$$rank(A) + rank(B) - n \le rank(AB) \le min\{rank(A), rank(B)\}.$$

Lemma

For any $n \times n$ matrices A and B,

$$0 \le |\operatorname{rank}(AB) - \operatorname{rank}(BA)| \le \min\{r, s, n - r, n - s\},\$$

where rank(A) = r and rank(B) = s.

Lemma

For any $n \times n$ matrix B with rank r and any integer i with $|i| \le \min\{r, n-r\}$, there is a matrix A such that

$$rank(AB) - rank(BA) = i$$
.

Lemma

For any $n \times n$ matrix B with rank r and any integer i with $|i| \le \min\{r, n-r\}$, there is a matrix A such that

$$rank(AB) - rank(BA) = i.$$

Furthermore, the bound $\min\{r, n-r\}$ is sharp.

The preceding lemma can be strengthened to the following:

The preceding lemma can be strengthened to the following:

$\mathsf{Theorem}$

For any $n \times n$ matrix B with rank r and any integer i with $1 \le i \le \min\{r, n - r\}$, the following conditions hold:

- There is a matrix A such that rank(AB) = rank(A) = i and BA is a zero-matrix.
- ② There is a matrix A' such that rank(BA') = rank(A') = i and A'B is a zero-matrix.

The preceding lemma can be strengthened to the following:

$\mathsf{Theorem}$

For any $n \times n$ matrix B with rank r and any integer i with $1 \le i \le \min\{r, n - r\}$, the following conditions hold:

- There is a matrix A such that rank(AB) = rank(A) = i and BA is a zero-matrix.
- ② There is a matrix A' such that rank(BA') = rank(A') = i and A'B is a zero-matrix.

Moreover, the bound $\min\{r, n-r\}$ is sharp.

Corollary

For any integers n > 0 and i with $0 \le i \le \lfloor n/2 \rfloor$, there are $n \times n$ matrices A and B such that

$$|\operatorname{rank}(AB) - \operatorname{rank}(BA)| = i.$$

Corollary

For any integers n > 0 and i with $0 \le i \le \lfloor n/2 \rfloor$, there are $n \times n$ matrices A and B such that

$$|\operatorname{rank}(AB) - \operatorname{rank}(BA)| = i.$$

Furthermore, the bound $\lfloor n/2 \rfloor$ is sharp.

Some notations

Throughout this talk, we adopt the following notations:

```
\mathcal{M}_{m \times n}
           the set of m \times n matrices
\mathcal{M}_n
           the set of non-zero square matrices of size n
\mathcal{GL}_n
           the set of invertible square matrices of size n
\mathcal{SL}_n
           the set of square matrices of size n whose determinant is 1
S_n
           the set of non-zero symmetric matrices of size n
\mathcal{D}_n
           the set of non-zero diagonal matrices of size n
\mathcal{DL}_n
           the set of non-zero diagonalizable matrices of size n
\mathcal{R}_{n,i}
           the set of non-zero square matrices of size n and of rank i
I_n
           the identity matrix of size n
           the m \times n zero matrix
0_{m,n}
```

General framework

For a given binary relation R on a set X, define a pair of endofunctions on $\mathcal{P}(X)$ as follows:

$$(-)^*: \mathcal{P}(X) \longrightarrow \mathcal{P}(X), M \mapsto M^*,$$

where $M^* := \{x \in X \mid \forall m \in M. \ m \ R \ x\}$, and

$$(-)_*: \mathcal{P}(X) \longrightarrow \mathcal{P}(X), \ N \mapsto N_*,$$

where $N_* := \{x \in X \mid \forall n \in \mathbb{N}. \times R \ n\}.$

It can be shown that ...

Theorem

For any $M, N \in \mathcal{P}(X)$,

$$M \subseteq N_* \iff M^* \supset N$$
.

We have:

We have:

• (-)* preserves arbitrary suprema in $(\mathcal{P}(X),\subseteq)$, i.e., for any family $(M_i)_{i\in I}$ of subsets of X, it holds that

$$\left(\bigcup_{i\in I}M_i\right)^*=\bigcap_{i\in I}M_i^*.$$

We have:

• (-)* preserves arbitrary suprema in $(\mathcal{P}(X),\subseteq)$, i.e., for any family $(M_i)_{i\in I}$ of subsets of X, it holds that

$$\left(\bigcup_{i\in I}M_i\right)^*=\bigcap_{i\in I}M_i^*.$$

② $(-)_*$ preserves arbitrary infima in $(\mathcal{P}(X), \supseteq)$, i.e., for any family $(N_i)_{i \in I}$ of subsets of X, it holds that

$$\left(\bigcup_{i\in I}N_i\right)_*=\bigcap_{i\in I}N_{i*}.$$

Corollary

The following conditions hold for any $M \in \mathcal{P}(X)$:

Corollary

The following conditions hold for any $M \in \mathcal{P}(X)$:

Corollary

The following conditions hold for any $M \in \mathcal{P}(X)$:

- 2 $M^* = ((M^*)_*)^*$ and $M_* = ((M_*)^*)_*$.

Specializing the results

For the special case where $X = \mathcal{M}_n$, define the binary relation \sim on X as follows:

$$A \sim B \iff \operatorname{rank}(AB) = \operatorname{rank}(BA).$$

Specializing the results

For the special case where $X = \mathcal{M}_n$, define the binary relation \sim on X as follows:

$$A \sim B \iff \operatorname{rank}(AB) = \operatorname{rank}(BA).$$

Since \sim is symmetric, $(-)^* = (-)_*$ and use only one notation $(-)^*$

One trivial result

Lemma

For any positive integer n,

$$\mathcal{GL}_n^* = \mathcal{SL}_n^* = \mathcal{M}_n$$
.

Another trivial result

Lemma

For any positive integer n and any $\mathcal{L} \subseteq \mathcal{M}_n$, it holds that

$$\mathcal{GL}_n \subseteq \mathcal{L}^*$$
.

\mathcal{M}_n -rank commutators

Theorem

For any positive integer n,

$$\mathcal{M}_n^* = \mathcal{GL}_n$$
.

$\mathcal{R}_{n,j}$ -rank commutators

Theorem

For any positive integers n and 1 < i < n,

$$\mathcal{R}_{n,i}^* = \mathcal{GL}_n$$
.

Notation

The *i*th row of a given matrix $A \in \mathcal{M}_n$ is denoted by $\vec{r_i}$, i.e.,

$$\vec{r_i} := \begin{pmatrix} a_{i1} & a_{i2} & \cdots & a_{in} \end{pmatrix},$$

while its *j*th column is denoted by $\vec{c_j}$, i.e.,

$$ec{c_j} := egin{pmatrix} a_{1j} \ a_{2j} \ dots \ a_{nj} \end{pmatrix}.$$

Definition (Rank-symmetric)

We say that $A \in \mathcal{M}_n$ is *rank-symmetric* if for any non-empty subset $K \subseteq \{1, \dots, n\}$, the following are equivalent:

Definition (Rank-symmetric)

We say that $A \in \mathcal{M}_n$ is *rank-symmetric* if for any non-empty subset $K \subseteq \{1, \dots, n\}$, the following are equivalent:

(i) The set $\{\vec{r_k} \mid k \in K\}$ is linearly independent.

Definition (Rank-symmetric)

We say that $A \in \mathcal{M}_n$ is *rank-symmetric* if for any non-empty subset $K \subseteq \{1, \dots, n\}$, the following are equivalent:

- (i) The set $\{\vec{r_k} \mid k \in K\}$ is linearly independent.
- (ii) The set $\{\vec{c_k} \mid k \in K\}$ is linearly independent.

Definition (Rank-symmetric)

We say that $A \in \mathcal{M}_n$ is *rank-symmetric* if for any non-empty subset $K \subseteq \{1, \dots, n\}$, the following are equivalent:

- (i) The set $\{\vec{r_k} \mid k \in K\}$ is linearly independent.
- (ii) The set $\{\vec{c_k} \mid k \in K\}$ is linearly independent.

The set of all rank-symmetric matrices of size n is denoted by \mathcal{T}_n .

Lemma

The following are equivalent for $A \in \mathcal{M}_n$:

Lemma

The following are equivalent for $A \in \mathcal{M}_n$:

(i) A is rank-symmetric.

Lemma

The following are equivalent for $A \in \mathcal{M}_n$:

- (i) A is rank-symmetric.
- (ii) For every non-empty subset $K \subseteq \{1, \dots, n\}$,

$$\dim \langle \vec{r_k} \mid k \in K \rangle = \dim \langle \vec{c_k} \mid k \in K \rangle.$$

Lemma

The following are equivalent for $A \in \mathcal{M}_n$:

- (i) A is rank-symmetric.
- (ii) For every non-empty subset $K \subseteq \{1, \dots, n\}$,

$$\dim \langle \vec{r_k} \mid k \in K \rangle = \dim \langle \vec{c_k} \mid k \in K \rangle.$$

(iii) A is either invertible or of the form $C\begin{pmatrix} X & 0_{r,n-r} \\ 0_{n-r,r} & 0_{n-r,n-r} \end{pmatrix} C^T$ for some invertible matrices C and X, where $\operatorname{rank}(X) = r < n$.

Theorem

For any positive integer n, we have

$$\mathcal{D}_n^* = \mathcal{S}_n^* = \mathcal{T}_n^* = \mathcal{T}_n.$$

Transformation theorems

Lemma

For any $\mathcal{L} \subseteq \mathcal{M}_n$, we have $(\mathcal{L}^T)^* = (\mathcal{L}^*)^T$.

Transformation theorems

Lemma

For any $\mathcal{L} \subseteq \mathcal{M}_n$, we have $(\mathcal{L}^T)^* = (\mathcal{L}^*)^T$.

Lemma

For any $\mathcal{L} \subseteq \mathcal{M}_n$ and any invertible matrix C, it holds that

$$(\mathcal{L}C)^* = C^{-1}\mathcal{L}^*$$
 and $(C\mathcal{L})^* = \mathcal{L}C^{-1}$.

Transformation theorems

Theorem 1

For any invertible matrix C, we have

$$(\mathcal{T}_nC)^*=\mathcal{T}_nC^{\mathsf{T}} \text{ and } (C\mathcal{T}_n)^*=C^{\mathsf{T}}\mathcal{T}_n.$$

Other fixed points of $(-)^*$

Corollary

For any symmetric and invertible matrix C, it holds that

$$(\mathcal{T}_nC)^* = \mathcal{T}_nC$$
 and $(C\mathcal{T}_n)^* = C\mathcal{T}_n$.

Other fixed points of $(-)^*$

Corollary

For any symmetric and invertible matrix C, it holds that

$$(\mathcal{T}_nC)^* = \mathcal{T}_nC$$
 and $(C\mathcal{T}_n)^* = C\mathcal{T}_n$.

Corollary

Let C_1, C_2, \dots, C_k be square matrices, each of which obtained from I_n by exchanging two columns. If $C = (C_1 C_2 \dots C_k)^T$, then

$$(\mathcal{T}_n C)^* = \mathcal{T}_n C^{-1}$$
.

\mathcal{DL}_n -rank commutators

Theorem

For any positive integer n,

$$\mathcal{DL}_n^* = \mathcal{GL}_n.$$

Let U_n , \mathcal{AS}_n , \mathcal{H}_n denote the sets of upper triangular, anti-symmetric, and Hadamard matrices of sizes n respectively.

Let U_n , \mathcal{AS}_n , \mathcal{H}_n denote the sets of upper triangular, anti-symmetric, and Hadamard matrices of sizes n respectively.

Question 1

Determine

$$\mathcal{U}_n^*$$
, \mathcal{AS}_n^* , \mathcal{H}_n^* .

Question 2

For a given $\mathcal{L} \subseteq \mathcal{M}_n$, is there always a finite subset $\mathcal{F} \subseteq \mathcal{L}$ such that

$$\mathcal{F}^* = \mathcal{L}^*$$
?

Question 2

For a given $\mathcal{L} \subseteq \mathcal{M}_n$, is there always a finite subset $\mathcal{F} \subseteq \mathcal{L}$ such that

$$\mathcal{F}^* = \mathcal{L}^*$$
?

Note that the above is true for $\mathcal{L} = \mathcal{T}_n$, \mathcal{D}_n , \mathcal{S}_n .

Question 3

Are there any other interesting real-valued matrix functions other than rank for which the same game can be played?

References

- D. S. Berstein, *Matrix Mathematics: Theory, Facts and Formulas*. Princeton University Press, 2005.
- Q. G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove and D. S. Scott, Continuous Lattices and Domains, Cambridge University Press, 2003.

The End

Thank you!

