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Abstract

This paper proposes a potential meeting point of the history of mathe-
matics and information and communication technology (ICT), where the
seemingly ill-matched duo collaborate to develop an interesting learner-
centred lesson on undergraduate calculus. In addition, we present a novel
proof of the famous product formula for sine which does not rely on the-
orems of uniform convergence or complex analysis.

1 Introduction

By now, the use of Information and Communication Technology (ICT)
in mathematics classroom has become more of a norm than an excep-
tion. Because of their versatility in giving users visual representation of
information, computers and graphing calculators are heavily harnessed in
teaching pre-calculus and calculus concepts in high schools and universi-
ties all over the world; particularly, the graphing of functions (see [20, 19]).
Specifically, the role of visualization in calculus was studied by David Tall
in [18] with particular emphasis on appropriate choice of complicated ex-
amples using graphing facilities. The use of ICT in teaching and learning
has become a characteristic milestone for mathematics education in the
21st century. Naturally, there is no lack of formal studies at all levels,
investigating the feasibility, potentialities and risks involved when ICT is
integrated into classroom teaching (see [7, 6, 17, 22, 14]).

Apart from their prowess in graphic display, computers and graphing
calculators possess the important facility of handling tedious calculations
– an inevitable challenge everyone (students and mathematicians alike)
had to face during times of their non-existence. Exploiting the computa-
tional power of computers, mathematicians can now either formulate or
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refute conjectures based on empirical evidence churned out from exoteric
‘number-crunching’ that, otherwise, would have been impossible to per-
form. Recently, this aspect of harnessing computing power to look out for
patterns, structures and even proofs in different areas of mathematics has
been exploited and popularized by J.M. Borwein and D.H. Bailey under
the banner of Experimental Mathematics (see, for instance, [4, 2, 1, 3]).

The main drive of this paper is to bring out this potentiality of ICT in
teaching mathematics at an undergraduate (or even pre-university) course
in Calculus. By thrusting the audience into a hypothetical scenario of
how the famous Swiss mathematician, Leonhard Euler (1707–1783), might
have exploited the present-day graphing calculators, we hope to create a
deep impression in the reader of how meaningful mathematical learning
can take place with the aid of modern-day computing facilities. While
advocating the potentialities of computers in mathematics discovery, we
hope that the reader can appreciate the eureka moments in the lives of
mathematicians and be reminded of the indispensable role of rigorous
proofs in mathematics. We drive home the importance of mathematical
rigor by presenting an elementary proof of the infinite product formula
for sine without appeal to uniform convergence (c.f. the remarks made on
p. 520 of [21] about Euler’s unjustified interchange of limits).

We organize our exposition as follows. In Section 2, we take advantage
of a well-known historical anecdote of how Leonhard Euler solved the
then-longstanding Basel’s problem in 1735, taking by faith the famous
infinite-product representation of the sine function. In our hypothetical
scenario painted in Section 3, we picture how Euler chanced upon an
access to modern-day graphing calculators which he quickly exploited to
give him further confidence in the conjecture he formulated, i.e.,

sinx = x

∞∏
k=1

(
1− x2

k2π2

)
. (1)

In the process of obtaining a visual assurance for the above conjecture,
we walk the reader (in the eyes of Euler) through the use of TI-nspire
– a modern graphing calculator. This leads us to Section 4, where an
elementary proof of Equation (1), which Euler failed to supply during
his time, is presented. This proof requires only minimum background
knowledge of definite integration. We then conclude our paper in Section
5 with some pedagogical justification for our design and implementation
of this historically-inspired ICT-based lesson.

2 The Basel problem and Leonard Euler

First posed by Pietro Mengoli in 1644, the Basel problem is a famous
problem in mathematical analysis and number theory which demanded
its solver to produce the exact value (in closed form) of the infinite series

∞∑
k=1

1

k2
:= lim

n→∞

(
1

12
+

1

22
+ · · ·+ 1

n2

)
,

which is the summation of reciprocals of all perfect squares. Of course, a
proof of its correctness was expected as part of its solution. This problem
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was later popularized by Jakob Bernoulli in around 1689 and survived the
attacks of many leading mathematicians of the day, notably the Bernoulli
family. According to historical records, Euler announced to the mathe-

matical community in 1735 that the exact sum is π2

6
(see [10]), though his

arguments then were based on algebraic manipulations not entirely justi-
fied. Later in 1741, Euler did manage to produce a rigorous proof of his
solution to the Basel problem (see [11]), albeit via a completely different
method.

For details of the history of the Basel problem and the biography
of Euler, the reader is encouraged to consult the excellent works of L.
Debnath [8, 9] and V.S. Varadarajan [21], all written as tricentennial
tributes to Leonhard Euler.

3 The hypothetical scenario

In this section, we consider a hypothetical scenario in which Euler some-
how gained access to the modern-day graphing calculator. While caution-
ing the reader not to take this scenario as actual historical fact, we do
encourage a healthy amount of imagination on the part of the reader in
order to appreciate the difference ICT can make in creating a new learn-
ing experience. Let us proceed in Euler’s first person. We have to begin
somewhere in 1730.

Figure 1: Leonhard Euler (1707 - 1783)

For some time, I, Leonhard Euler of Basel, have been contemplating
the idea that the sine-function (written below with my newly invented
symbol for function1)

f(x) = sinx

behaves in many ways like a polynomial. Well, a polynomial is nothing
but an expression in an indeterminate x of the form

P (x) = anx
n + an−1x

n−1 + an−2x
n−2 + · · ·+ a1x+ a0, ai ∈ R.

Thanks to René Descartes (1596 – 1650) and his Cartesian philosophy2

some 80 years ago, one can now conveniently visualize the variation of a
given function in the Cartesian plane. Any section of f(x) = sinx can
be graphed without having my quill-pen leave the surface of the paper
in the midst of the sketch. Furthermore, the sine-function f has all its

1The function symbol f(x) first appeared in print around 1734.
2In 1723 Euler completed his Master’s degree in philosophy with a scholastic comparison

between the philosophies of René Descartes and Isaac Newton.
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derivatives, just like the polynomials. Of course, the periodicity of f is a
distinctive feature which distinguishes it from any polynomial.

Nevertheless, polynomials can be used to approximate any function
that possesses all derivatives; in particular, the sine-function. In fact, I
had earlier worked out the infinite series expansion for the sine-function,
i.e.,

sinx =

∞∑
k=1

(−1)k+1

(2k − 1)!
x2k−1 = x− 1

3!
x3 +

1

5!
x5 − . . . (2)

relying on a formula (discovered by myself), which I learnt later was first
derived by Taylor and later popularized by Maclaurin (through private
communication with James Stirling). From the above formula, the sine-
function can be regarded as a ‘polynomial of infinite degree’. Sketching
a succession of partial sums of this series certainly illustrates this point.
But such an enterprise will grow monstrously tedious, if not impossible
by hand, as the number of summands increases indefinitely. Yes, even
for me, despite having an extraordinary gift for handling complex mental
calculations. Alas, if only one could have in quiet possession a calculating
machine that can relieve this heavy burden of mundane calculations!

Just then, something caught my attention. Whatever is this? It must
be the cataract3 in my left eye playing tricks on me. Lately, such visual
ailments have worsened. Pondering over its origin, I begin to study the
object’s structure. This gadget has several buttons, marked with numerals
and mathematical symbols, and even has a glass window through which
one might seem to peer into the future. It bears the label ‘TI-nspire’4.
Judging from its appearance, I have every belief that its design is intended
for calculations of all kinds. Is this a dream or, should I say, God answering
my fervent prayers? [Accidentally, hitting the ON button...] Wow, it
seems I have just set the machine rolling.

Fiddling with this gadget for a while, it is not difficult to use the
various functions on the calculator (I shall use this nomenclature for the
moment) that results in the plotting of the graph of y = sin (x) (as shown
below) as the values of x runs from −2π to 2π.

Figure 2: Graph of y = sinx on [−2π, 2π]

3R. Calinger in [5] suggests that Euler’s left eye turned blind later because of cataract.
Readers might have noticed Euler’s eye defect from the 1753 portrait of Euler in Figure 1.

4Those who are curious about the looks of this machine may like to visit
http://education.ti.com/calculators/products/US/Nspire-Family/.
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Unimaginable! Let me quickly exploit this machine to sketch the first
few partial sums of the infinite series (2). Presto! I immediately obtain
the following graphs.

Figure 3: Graphs of partial sums in Taylor series of the sine function

Inspecting the graph of each member of the family, i.e.,

Pn(x) =

n∑
k=1

(−1)k+1

(2k − 1)!
x2k−1, n = 1, 2, . . .

it is easy to see that none of these have any zeros in common with
f(x) = sinx; this is a little unsatisfactory. But one cannot ask for more
since we generate these polynomials by recursively adding a polynomial
of higher degree to the existing partial sum. Perhaps, a better way to
get polynomials whose zeros agree with the sine-function is to consider a
scheme that recursively multiplies suitable linear factors to certain exist-
ing finite products.

The first zero of the sine-function is α0 = 0. So, the simplest polyno-
mial that has this zero is

Q0(x) = x.

The next two zeros of sine are α1 = π and α−1 = −π. If we require the
curve of a cubic polynomial to pass through the coordinates (αk, 0) for
k = −1, 0, 1, then a simple choice would be

(x+ π)x(x− π).

However, the knowledge that limx→0
sin x
x

= 1 indicates that this choice is
inappropriate since

lim
x→0

(x+ π)x(x− π)

x
= lim
x→0

(x+ π)(x− π) = −π2.

But this imperfection can be easily restored via a division of Q1(x) by
precisely the constant of −π2 so as to obtain

Q1(x) =
−1

π2
(x+ π)x(x− π) =

(
1 +

x

π

)
x
(

1 +
x

π

)
= x

(
1− x2

π2

)
.

5



Catching on the pattern, one naturally forms

Qn(x) = x

(
1− x2

π2

)(
1− x2

22π2

)
. . .

(
1− x2

n2π2

)
,

which surely has roots αk = ±kπ, k = 1, 2, . . . , n as desired. Notice that

lim
x→0

Qn(x)

x
= lim
x→0

(
1− x2

π2

)(
1− x2

22π2

)
. . .

(
1− x2

n2π2

)
= 1,

confirming that my choice of these polynomials, Qn(x), is good.
All of what I have obtained looks good so far. But there is still an

nudging guilt that is eating into my mathematical conscience – the fol-
lowing conjecture is ill-justified:

Conjecture 3.1. For any value of x ∈ R, it holds that

sinx = lim
n→∞

Qn(x),

where Qn(x) = x
∏n
k=1

(
1− x2

k2π2

)
.

To be honest, I am not even totally sure if it is correct. Now that I
have this wonderful graphing machine with me, why not make use of it to
check the credibility of my conjecture?

One good thing about this TI-nspire (CAS) calculator is that it has
a built-in “slider” functionality that allows users to vary the size of pa-
rameters easily – that is useful for my investigative work. Let me make
use of the slider to control the value of n in the expression Qn(x) =

x
∏n
k=1

(
1− x2

k2π2

)
. Life is now made so easy through the exploit of this

miraculous machine: the first two sketches of y = Qn(x) for n = 10 and
n = 102 are already very promising (see Figure 4).

Figure 4: Sketches of y = Qn(x) for n = 10, 102

The blue curve is the sine curve, while the green curves are y = Qn(x)
for the various values of n. By the time one reaches n = 103, the curve
of y = Qn(x) almost completely overlaps with that of y = sinx (see
Figure 5).

Extremely reassuring! Clearly, these three sketches provide strong
empirical evidence for the convergence of Qn(x) to sinx, thus confirming
my conjecture!
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Figure 5: Sketch of y = Qn(x) for n = 103

Rigor aside, my sixth sense tells me something nontrivial is hiding
under this identity. So far, I have two different representations for the
sine function (namely, the infinite summation and the infinite product).
Surely nothing should stop me from equating them:

∞∑
k=1

(−1)k+1

2k − 1
x2k−1 = x

∞∏
k=1

(
1− x2

k2π2

)
.

Comparing the coefficients of x3 on both sides of the equation, I have

− 1

3!
= − 1

π2
− 1

22π2
− 1

32π2
− . . .

This then implies that

1

12
+

1

22
+

1

32
+ · · · = π2

6
.

Isn’t this precisely the solution to the famous Basel problem everyone is
seeking after? To be sure, let me enslave the mystery machine to verify the

105-th partial sum of
∑∞
k=1

1
k2

against π2

6
≈ 1.64493406685 (see Figure 6).

With this added confidence, I am now ready to announce this remarkable
result to the Academy!

The rest of the story is, as they say, history. Eventually, Euler an-
nounced his solution to the Basel problem in 1735.

Figure 6: Tabulation of
∑n

k=1
1
k2 for n = 99990, . . . , 100000
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4 Proof of the infinite product identity

Euler himself was aware that his original solution of the Basel problem
(which involved the audacious generalization of the Newton’s formula for
sums of powers of the roots of a polynomial to the case when the polyno-
mial was replaced by a power series) were open to objections. He spent a
good ten years filling in the gap, appealing crucially to the famous prod-
uct formula for sine, i.e., Equation (1). The proof that Euler supplied,
according to Varadarajan (p. 519 of [21]), involved the following equation:

sinx

x
= lim
n→∞

(
1 + ix

n

)n − (1− ix
n

)n
2ix

= lim
n→∞

2n+1∏
k=1

(
1− x2

n2

1 + cos 2kπ
n

1− cos 2kπ
n

)

At this juncture, Euler made a passage to limit termwise by using the

clever estimate of

∣∣∣∣∣1 + cos 2kπ
n

1− cos 2kπ
n

∣∣∣∣∣ ≤ C x2

k2π2
which, by present day stan-

dards, can be justified by uniform convergence. The keen reader should
also be informed that Equation (1) can be alternatively established using
complex analysis, e.g., see Section 8.4 of [9], p. 248.

In this section, we deliver what we promised in our introduction: a
new elementary proof for Equation (1) which does not depend on theo-
rems involving uniform convergence or complex variables. In contrast, our
method is far simpler and easily accessible to undergraduate students in a
first year calculus course. Our result depends on two technical lemmata.
The first is a well-known identity, whose proof we give a reference:

Lemma 4.1 (Infinite partial fractions representation of cot t).
Let t ∈ R which is not an integral multiple of π. Then the following
identity holds:

cot t ≡ 1

t
+

∞∑
k=1

(
1

t+ kπ
+

1

t− kπ ). (3)

Proof. For an elementary proof (also independent of uniform convergence
and complex analysis results) of this, see a recent work of the authors [16].

Lemma 4.2. Let r be a positive integer. Then the following holds:

ln 2 +

r−1∑
k=1

ln(
r2

k2
− 1) +

∞∑
k=r+1

ln(1− r2

k2
) = 0. (4)

Proof. The first two terms of Equation 4 simplify to

ln 2 +

r−1∑
k=1

ln(
r2

k2
− 1) = ln 2 +

r−1∑
k=1

(
− ln k + ln(r − k)− ln k + ln(r + k)

)

= ln 2−
r−1∑
k=1

ln k +

r−1∑
k=1

ln k −
r−1∑
k=1

ln k +

2r−1∑
k=r+1

ln k

= ln

(
(2r)!

(r!)2

)
,
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while the third term is equivalent to

∞∑
k=r+1

ln

(
k2 − r2

k2

)

=

∞∑
k=r+1

(
ln(k + r)− ln k + ln(k − r)− ln k

)

=

∞∑
k=r+1

r∑
s=1

(
ln(k + s)− ln(k + s− 1)− ln(k − s+ 1) + ln(k − s)

)

=

r∑
s=1

lim
n→∞

n∑
k=r+1

(
ln(k + s)− ln(k + s− 1)− ln(k − s+ 1) + ln(k − s)

)

= lim
n→∞

r∑
s=1

(
ln(n+ s)− ln(r + s)− ln(n− s+ 1) + ln(r − s+ 1)

)

=

r∑
s=1

(
− ln(r + s) + ln(r − s+ 1)

)

= −
2r∑

s=r+1

ln s+

r∑
s=1

ln s

= ln

(
r!÷ (

(2r)!

r!
)

)
= ln

(
(r!)2

(2r)!

)
.

We are ready to establish the main result:

Theorem 4.3. Let x ∈ R. Then the following identity holds:

sinx = x

∞∏
k=1

(
1− x2

k2π2

)
.

Proof. Rearranging the identity (3) to

cot t− 1

t
=

∞∑
k=1

2t

t2 − k2π2
. (5)

A direct integration of Equation (5) over (0, x) for 0 < x < π yields:[
ln

(
sin t

t

)]x
0

=

∞∑
k=1

[
ln (k2π2 − t2)

]x
0
, (6)

which results in

sinx = x

∞∏
k=1

(
1− x2

k2π2

)
.

Note that the interchange of limits leading to Equation (6) can be achieved
without appealing to any convergence theorems: One first compute a
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closed formula for the finite N -th partial sum
∑N
k=1

2t
t2−k2π2 , followed by

direct integration and taking limits. Such a technique has already been
advertised in the derivation of the infinite partial fractions representation
of the cotangent function (see the proof of Corollary 4.2 of [16]).

To extend the above result to the whole real line, consider an arbi-
trary positive real number x. The Archimedean property of real numbers
ensures that there is a positive integer r so large that x ∈ (rπ, (r + 1)π).
The proof commences by considering the following definite integral

I =

∫ x

rπ

(cot t− 1

t− rπ −
1

t+ rπ
) dt. (7)

On one hand, by virtue of Lemma 4.1, we can trade away the cotangent
function with its partial fractions representation, resulting in

I =

∫ x

rπ

1

t
dt+

∞∑
k=1
k 6=r

∫ x

rπ

(
1

t+ kπ
+

1

t− kπ ) dt. (8)

Evaluating the definite integral (8) yields

lnx− ln(rπ) +

r−1∑
k=1

ln

(
x2 − k2π2

(r2 − k2)π2

)
+

∞∑
k=r+1

ln

(
k2π2 − x2

(k2 − r2)π2

)

= ln(
x

rπ
) +

r−1∑
k=1

ln

(
x2 − k2π2

k2π2

)
−
r−1∑
k=1

ln(
r2

k2
− 1)

+

∞∑
k=r+1

ln

(
k2π2 − x2

k2π2

)
−

∞∑
k=r+1

ln(1− r2

k2
).

On the other hand, one can evaluate (7) directly to obtain

ln |sinx| − ln
∣∣x2 − r2π2

∣∣+ ln(2rπ)

so that equating these expressions, one has

ln

∣∣∣∣ sinxx
∣∣∣∣ =

∞∑
k=1

ln

∣∣∣∣1− x2

k2π2

∣∣∣∣− ln 2−
r−1∑
k=1

ln(
r2

k2
− 1)−

∞∑
k=r+1

ln(1− r2

k2
). (9)

But by invoking Lemma 4, the above expression then simplifies to

ln

∣∣∣∣ sinxx
∣∣∣∣ =

∞∑
k=1

ln

∣∣∣∣1− x2

k2π2

∣∣∣∣ . (10)

Finally, since our choice of r (such that x ∈ (rπ, (r + 1)π)) yields the
following inequalities:

(−1)r
(

sinx

x

)
> 0, (−1)r·

r∏
k=1

(
1− x2

k2π2

)
> 0 and

∞∏
k=r+1

(
1− x2

k2π2

)
> 0,

this warrants a legitimate removal of the modulus signs in Equation (10),
and the desired result follows immediately.
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5 Concluding remarks

The question of whether history of mathematics has any role to play in the
teaching and learning of mathematics has recently attracted the attention
of many mathematics educators. The most systematic, in-depth and large-
scale study of this question was unarguably the ICMI study on History
in Mathematics Education ([13]) carried out in 2000. A similar study
was carried out in [15] with special emphasis on Singapore mathematics
education.

In this concluding section, we appeal to the didactic framework sug-
gested by [15] to support the methodology we adopt herein. This particu-
lar framework advocates a two-fold process: (1) backward sourcing, and (2)
forward implementing. Roughly speaking, while planning to integrate the
history of mathematics in a mathematics lesson, the teacher must begin
by identifying the learning points in the topic where the learner is likely
to experience an intellectual leap. By understanding the learning difficul-
ties or potential confusion anticipated in such an experience, the teacher
then explores the psycho-genetical mechanisms that are needed to help the
learner transit smoothly over these identified learning points/difficulties.
Once these psycho-genetical mechanisms are identified, the corresponding
historical mechanisms are to be sought after. This is then followed by
an understanding of what problems these specific historical mechanisms
or processes were used to tackle. Having identified the salient histori-
cal mechanisms, the teacher then browse through the historical resources
to look for relevant historical episodes where such identified mechanisms
had been invoked. Collectively, what the teacher has just performed is
backward sourcing. The lesson plan should then be developed to take
advantage of these powerful historical moments with a primary focus of
addressing the anticipated learning difficulties. This portion is known
as forward implementation and must consists of meaningful activities or
teaching moves that incorporate the historical element to achieve the spe-
cific learning objectives.

In the preceding sections, we demonstrate how a hypothetical situation
of Leonhard Euler establishing his famous infinite product representation
of the sine function with the help of an ICT tool such as TI-nspire. Here,
the learning point we have identified is the topic of graphs and approxi-
mation by functions5. Learning difficulties concerning limiting processes
and graphing techniques are anticipated. The backward sourcing pro-
cess allows us to identify a historical moment in which a similar difficulty
was experienced by a mathematician, i.e., Leonhard Euler. What was
then taken by faith can now be verified by modern day technology. It
is exactly at this juncture of blatent mismatch and conflict where we be-
lieve that history of mathematics collaborates seamlessly with information
technology.

On one hand, it has long been identified that history of mathematics
helps improve students’ learning attitude, sustain interest and arouse ex-
citement in mathematics (see [12, 15]). On the other hand, with fast-paced
advancement and pervasive use of ICT in teaching and learning cutting

5This can be seen as a precursor to the Stone-Weierstrass approximation theorem.
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across every grade level and subject, Mathematics educators have both
recognized and harnessed the strengths of ICT tools to design increas-
ingly inspiring and engaging mathematics lessons. Our novel pedagogical
approach proposed herein fuses the old (history) and the new (ICT), and
should warrant further investigation and development. Adopting this ap-
proach to teaching Calculus topics, for instance, not only helps students
“visualise” an abstract theorem, but also allows students to see how that
particular mathematical result was brewed in the minds of mathemati-
cians. For example, the dynamic and interactive feature of the TI-nspire
calculator helps deliver the abstract concepts of limits, convergence and
functional approximation in a convincing way; learners see for themselves
how Qn(x)’s get closer and closer to sin (x). It is hoped by immersing
learners in experiencing mathematics through the tangibles that they be-
gin to see the relevance of justifying these observations rigorously. Mathe-
matical proofs then become more meaningful when learners are sufficiently
motivated.

There are many great episodes in the history of mathematics; several
of which, we believe, can be suitably coupled with modern day ICT tools
to help students gain insight as well as inspirations in their mathematics
learning journey. Let us begin to excavate those precious gems of mathe-
matics history and incorporate them with ICT to create a fresh platform
for teaching and learning of mathematics.
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