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Today, we shall encounter a very mesmerizing problem now known
as the

Basel Problem.
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The city of Basel

Basel is Switzerland’s third most populous city with about 166,000
inhabitants.

Figure: Mittlere Brücke over the Rhine
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The city of Basel

Located where the Swiss, French and German borders meet, Basel
also has suburbs in France and Germany.

Figure: Locality map of Basel
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Historic vs Modern Basel

Figure: Basilea from Nuremberg chronicles and Map of Basel in 1642
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Figure: Rhine river and Basel Bahnhof Train-station
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The Basel problem is a famous problem in mathematical analysis
with relevance to number theory, first posed by Italian
mathematician Pietro Mengoli in 1644.

Figure: Pietro Mengoli (1626, Bologna – 1686, Bologna)

Weng Kin Ho The Basel Problem



The Place
The Problem

The Mathematician
The Solution
The Sequel

The Basel Problem
Understanding the problem

The Basel Problem

The Basel problem asks for the exact value of

∞
∑
k=1

1

k2
= lim

n→∞(
1

12
+

1

22
+⋯ +

1

n2
)

i.e., the precise summation of the reciprocals of the squares of the
natural numbers.
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This problem survived the attacks of many people like these:

Figure: The Bernoulli family: (T1) Jacob, (T2) Johann, (T3) Nicolaus II,
(B1) Daniel, (B2) Johann III and (B3) Jacob II Bernoulli
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Jacob Bernoulli (1654-1705; also known as James or Jacques)
Mathematician after whom Bernoulli numbers are named.

Nicolaus Bernoulli (1662-1716) Painter and alderman of Basel.

Johann Bernoulli (1667-1748; also known as Jean) Swiss
mathematician and early adopter of infinitesimal calculus.

Nicolaus I Bernoulli (1687-1759) Swiss mathematician.

Nicolaus II Bernoulli (1695-1726) Swiss mathematician;
worked on curves, differential equations, and probability.
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Daniel Bernoulli (1700-1782) Developer of Bernoulli’s
principle and St. Petersburg paradox.

Johann II Bernoulli (1710-1790; also known as Jean) Swiss
mathematician and physicist.

Johann III Bernoulli (1744-1807; also known as Jean)
Swiss-German astronomer, geographer, and mathematician.

Jacob II Bernoulli (1759-1789; also known as Jacques)
Swiss-Russian physicist and mathematician.
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The problem is named after the hometown of its solver:

Leonhard Euler.

We shall come back to him in a moment.
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Activity (5 mins)

Use your GC, find the value of

∞
∑
k=1

1

k2
,

correcting your answer to 10 decimal places.
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The correct answer is

∞
∑
k=1

1

k2
≈ 1.6449340668,

up to 10 decimal places.

Your G.C. probably can’t deliver this answer. Why? G.C. spoiled?
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The Basel Problem demands its solver to give the exact value of
the infinite series ∞

∑
k=1

1

k2
,

and the proof.

Question

When did you first encounter an infinite series?
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Definition

A sequence of real numbers

a1, a2,⋯, an,⋯

is a geometric progression if the ratio between the consecutive
terms is constant, i.e., there is a constant r such that

an+1 = an ⋅ r

for all n = 1,2,⋯
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It is easy to see that

(
an

an−1
) ⋅ (

an−1
an−2
) ⋅ ⋯ ⋅ (

a2
a1
)

= r ⋅ r ⋅ ⋯ ⋅ r
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n−1 copies

=rn−1.

It follows that
an = a1 ⋅ r

n−1, n = 1,2,⋯
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Examples

Here are some geometric progressions:

1 1,2,4,8,⋯

2 1, 12 ,
1
22
, 1
23
,⋯

3 1,−1,1,−1,⋯

Weng Kin Ho The Basel Problem



The Place
The Problem

The Mathematician
The Solution
The Sequel

The Basel Problem
Understanding the problem

Understanding the problem

Examples

Here are some geometric progressions:

1 1,2,4,8,⋯

2 1, 12 ,
1
22
, 1
23
,⋯

3 1,−1,1,−1,⋯

Weng Kin Ho The Basel Problem



The Place
The Problem

The Mathematician
The Solution
The Sequel

The Basel Problem
Understanding the problem

Understanding the problem

Examples

Here are some geometric progressions:

1 1,2,4,8,⋯

2 1, 12 ,
1
22
, 1
23
,⋯

3 1,−1,1,−1,⋯

Weng Kin Ho The Basel Problem



The Place
The Problem

The Mathematician
The Solution
The Sequel

The Basel Problem
Understanding the problem

Understanding the problem

Examples

Here are some geometric progressions:

1 1,2,4,8,⋯

2 1, 12 ,
1
22
, 1
23
,⋯

3 1,−1,1,−1,⋯

Weng Kin Ho The Basel Problem



The Place
The Problem

The Mathematician
The Solution
The Sequel

The Basel Problem
Understanding the problem

Understanding the problem

The sum to infinity of a geometric progression

a + ar + ar2 +⋯

exists if the limit

lim
n→∞(a + ar + ar2 +⋯ + arn−1)

exists.
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Figure: Sum to infinity of a G.P.
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Do we have a formula for the finite sum

n

∑
k=1

ark−1 = a + ar + ar2 +⋯ + arn−1

so that perhaps we can better figure out the limiting value?
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Exercise

Suppose we denote the finite sum by

Sn = a + ar + ar2 +⋯ + arn−1

and multiply it by r to obtain rSn.
By finding Sn − rSn, deduce a formula for Sn in terms of n.
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Now the sum to infinity of a geometric progression exists if and
only if the limit

lim
n→∞Sn = lim

n→∞(
a

1 − r
) (1 − rn)

exists.

Theorem

S∞ <∞ ⇐⇒ ∣r ∣ < 1.
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Returning to the Basel problem, i.e., the infinite series

1

12
+

1

22
+

1

32
+⋯ +

1

n2
+⋯

we have two questions to ask:

Are we so lucky to have a closed formula for the finite sum?

If not, how sure are we that the sum to infinity exists?

or maybe it does not ...
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The answer to the first question is

NO, at the moment.

Weng Kin Ho The Basel Problem



The Place
The Problem

The Mathematician
The Solution
The Sequel

The Basel Problem
Understanding the problem

Understanding the problem

The answer to the second problem is

YES.
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For any positive integer k > 1, note that

1

k(k + 1)
<

1

k2
<

1

(k − 1)k
.

So, for any positive integer n > 1, we have

n

∑
k=2

1

k(k + 1)
<

n

∑
k=2

1

k2
<

n

∑
k=2

1

(k − 1)k
.
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1
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<

1
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<

1
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.
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The left hand sum simplifies to

n

∑
k=2

1

k(k + 1)
=

n

∑
k=2
(

1

k
−

1

k + 1
)

=
1

2
−

1

3

+
1

3
−

1

4
+ ⋮

+
1

n
−

1

n + 1
=

1

2
−

1

n + 1
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The right hand side simplifies to

n

∑
k=2

1

(k − 1)k
= 1 −

1

n

likewise.
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For any positive integer n, we have

1 + (
1

2
−

1

n + 1
) <

n

∑
k=1

1

k2
< 1 + (1 −

1

n
)

i.e.,
3

2
−

1

n + 1
<

n

∑
k=1

1

k2
< 2 −

1

n
.

Letting n →∞,
3

2
≤

∞
∑
k=1

1

k2
≤ 2.
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Theorem

The infinite series ∞
∑
k=1

1

k2

converges.

Proof.

Since the sequence {∑n
k=1

1
k2 }

∞
n=1 is monotone increasing and

bounded above, the series converges.
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Problem far from solved

Even if we know that ∞
∑
k=1

1

k2

exists, we still have no idea what its exact value is.
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The Mathematician

Our main character today is

Figure: Leonhard Euler (15 April 1707 - 18 September 1783)

Weng Kin Ho The Basel Problem



The Place
The Problem

The Mathematician
The Solution
The Sequel

Early years
St Petersburg
Berlin

Early years

Euler was born on April 15, 1707, in Basel to Paul Euler, a pastor
of the Reformed Church. His mother was Marguerite Brucker, a
pastor’s daughter. He had two younger sisters named Anna Maria
and Maria Magdalena.
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Figure: A Swiss Reform church at Riehen

Soon after the birth of Leonhard, the Eulers moved from Basel to
the town of Riehen, where Euler spent most of his childhood.
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Figure: Johann Bernoulli

Paul Euler was a friend of the Bernoulli family - Johann Bernoulli,
who was then regarded as Europe’s foremost mathematician, would
eventually be the most important influence on young Leonhard.

Weng Kin Ho The Basel Problem



The Place
The Problem

The Mathematician
The Solution
The Sequel

Early years
St Petersburg
Berlin

Early years

Early formal education started in Basel: live with his maternal
grandmother

1720: Enrolled at the University of Basel at age of 13

1723: Received his M.Phil. (compared the philosophies of
Descartes and Newton)

1723: Received Saturday afternoon lessons from Johann
Bernoulli
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1723: Studying theology, Greek, and Hebrew under father’s
urge

Bernoulli convinced him that Leonhard was destined to
become a great mathematician

1726: Completed a dissertation on the propagation of sound
with the title De Sono
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1727: Entered the Paris Academy Prize Problem competition,
in which he won second place

Won this coveted annual prize 12 times in his career
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1725: Johann Bernoulli’s two sons, Daniel and Nicolas, were
working at the Imperial Russian Academy of Sciences in St
Petersburg

July 10, 1726: Nicolas died of appendicitis after spending a
year in Russia

Daniel assumed his brother’s position in the
mathematics/physics division, he recommended that the post
in physiology that he had vacated be filled by his friend Euler

November 1726: Euler eagerly accepted the offer, but delayed
making the trip to St Petersburg while he unsuccessfully
applied for a physics professorship at the University of Basel
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17 May, 1727: Arrived at Russian capital St Petersburg

Promoted to a position in the mathematics department

Lodged with Daniel Bernoulli with whom he often worked in
close collaboration

Mastered Russian and settled into life in St Petersburg

Took on an additional job as a medic in the Russian Navy.
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Figure: A Soviet stamp depicting Euler

The Academy at St. Petersburg wanted to improve education
in Russia and to close the scientific gap with Western Europe

Attract foreign scholars like Euler

Good money and library, low enrollment to lessen the faculty’s
teaching burden, and the academy emphasized research
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Russian nobility gained power in the year of Peter II

Nobility got suspicious of the academy’s foreign scientists

Cut money and caused other difficulties for Euler and his
colleagues.
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Things got a bit better when Peter II died

1731: Euler became professor of physics

1733: Daniel Bernoulli, fed up with the censorship and
hostility, left for Basel

1733: Euler succeeded as the head of the mathematics
department
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Figure: The Neva River

7 January 1734: Married Katharina Gsell (1707-1773), a
daughter of Georg Gsell, a painter from the Academy
Gymnasium

Young couple bought a house by the Neva River
Of their thirteen children, only five survived childhood
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19 June 1741: Euler left St. Petersburg to take up a post at
the Berlin Academy

Lived for twenty-five years in Berlin, where he wrote over 380
articles

In Berlin, he published the two works which he would be most
renowned for:

1 the Introductio in analysin infinitorum, a text on functions
published in 1748, and

2 the Institutiones calculi differentialis, published in 1755 on
differential calculus.

1755: Elected a foreign member of the Royal Swedish
Academy of Sciences.
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Tutored the Princess of Anhalt-Dessau, Frederick’s niece

Early 1760s: Wrote over 200 letters to her (Letters of Euler)

Compilation became more widely read than any of his
mathematical works

Left Berlin because of personal conflict with Frederick The
Great
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The sine function

The story begins in around 1735 with an ordinary function

f (x) = sin (x).

Weng Kin Ho The Basel Problem



The Place
The Problem

The Mathematician
The Solution
The Sequel

sin (x)
Polynomials
Devise a plan
Carry out the plan
Checking and re-looking
Maclaurin’s series

The sine function

We know this function looks like:

Figure: The sine curve
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The sine function

We know that this function has a period of 2π, i.e.,

sin (x + 2π) = sin(x)

for all real x .

Figure: Periodic curve
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The sine function

The sine function has several nice properties:

1 It is continuous.

2 It is differentiable.

3 It has infinitely many zeros, i.e.,

sin (x) = 0 at x = ⋯,−2π,−π,0, π,2π,⋯

4 sin(0) = 0.

5 limx→0
sin(x)

x = 1.
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The sine function

We do know of another family of functions which has the first two
properties:

1 Continuity

2 Differentiability
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The polynomials

Definition

A function of the form

P(x) = a0 + a1x + a2x2
+⋯ + anxn, an ≠ 0

is called a polynomial in x .
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The polynomials

Example

An example of a polynomial is

P(x) = (x + 1)x(x − 1)

whose graph is given by ...
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The polynomials

Figure: The graph of y = (x + 1)x(x − 1)
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The polynomials

The cubic polynomial

P(x) = (x + 1)x(x − 1) = x3
− x

has zeros
x = −1,0,1.
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Devise a plan

Euler’s 1st big idea

The sine function may be seen as an infinite polynomial with
infinitely many zeros

⋯,−3π,−2π,−π,0, π,2π,3π,⋯

Weng Kin Ho The Basel Problem



The Place
The Problem

The Mathematician
The Solution
The Sequel

sin (x)
Polynomials
Devise a plan
Carry out the plan
Checking and re-looking
Maclaurin’s series

Carry out the plan

Activity

Using your G.C., sketch the following graphs in succession:

1 y = x

2 y = (x + π)x(x − π)

3 y = (x + 2π)(x + π)x(x − π)(x − 2π)

4 y = (x + 3π)(x + 2π)(x + π)x(x − π)(x − 2π)(x + 3π)
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Checking the solution

None of these curves look like the sine curve:

Figure: The graph of y = sin(x)
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Checking the solution

We know that

lim
x→0

sin(x)

x
= 1

but

lim
x→0

(x + nπ)⋯x⋯(x − nπ)

x
≠ 1.

Weng Kin Ho The Basel Problem



The Place
The Problem

The Mathematician
The Solution
The Sequel

sin (x)
Polynomials
Devise a plan
Carry out the plan
Checking and re-looking
Maclaurin’s series

Re-looking

But one can resort to a little trick ...

lim
x→0

(1 + x
nπ
) ⋅ (1 + x

(n−1)π)⋯x⋯ (1 − x
(n−1)π) (1 −

x
nπ
)

x
= 1.
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Carry out the second plan

Activity

Using your G.C., sketch the following graphs in succession:

1 y = x

2 y = (1 + x
π
) x (x − x

π
)

3 y = (1 + x
2π
) (1 + x

π
) x (x − x

π
) (1 − x

2π
)

4 y = (1 + x
3π
) (1 + x

2π
) (1 + x

π
) x (x − x

π
) (1 − x

2π
) (1 − x

3π
)
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Re-looking

Let’s do better than your G.C.’s.
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Re-looking

Matlab program

%% This MATLAB program plots the curve

%% of y = Q_n(x) for a user-input integer n.

clear; clc;

n = input(’Enter the value of n : ’);

x = [-5*pi:0.001*pi:5*pi];

y = x; z = sin(x); w = 0;

for k = 1:n

y = y.*(1-(x.^2)/(k*pi)^2);

end

plot(x,y,’-k’); hold on;

plot(x,z,’-r’); hold on;

plot(x,w,’-b’);

title(’Graph of Q_n(x)’);
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Re-looking

It is intended that the program outputs the graph whose equation
is

Qn(x) = x ⋅
n

∏
k=−n
(1 −

x

kπ
),

where n = 1,2,⋯.
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Sample runs

Figure: The graph of y = Q10(x)
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Sample runs

Figure: The graph of y = Q100(x)
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Sample runs

Figure: The graph of y = Q1000(x)
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Sample runs

Figure: The graph of y = Q10000(x)
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Maclaurin’s series

The story has an important second part which has to do with the
famous

Maclaurin’s series.
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Maclaurin’s series

That a function can be seen as an infinite polynomial is not new.

The Maclaurin’s series expansion of an infinitely-differentiable
function f is given by:

f (x) =
∞
∑
k=0

f (k)(0)
k!

xk ,

where f (k)(0) denotes the kth derivative evaluated at x = 0.
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The Maclaurin’s series expansion of an infinitely-differentiable
function f is given by:

f (x) =
∞
∑
k=0

f (k)(0)
k!

xk ,

where f (k)(0) denotes the kth derivative evaluated at x = 0.
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Maclaurin’s series

Suppose that a function has all derivatives, and it can be expressed
as an infinite polynomial

f (x) = a0 + a1x + a2x2
+ a3x3

+⋯ + anxn
+⋯.

Then, by substituting x = 0 into this equation, we have

f (0) = a0

so that

a0 = f (0) =
f (0)(0)

0!
.
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Suppose that a function has all derivatives, and it can be expressed
as an infinite polynomial
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+⋯ + anxn
+⋯.

Then, by substituting x = 0 into this equation, we have
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Maclaurin’s series

Differentiating, w.r.t. x , the original series

f (x) = a0 + a1x + a2x2
+ a3x3

+⋯ + anxn
+⋯

yields:

f (1)(x) = a1 + 2a2x + 3a3x2
+⋯ + nanxn−1

+⋯.

Again by substituting x = 0, we have:

f ′(0) = a1

so that

a1 = f ′(1) =
f (1)(0)

1!
.
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f (x) = a0 + a1x + a2x2
+ a3x3

+⋯ + anxn
+⋯

yields:

f (1)(x) = a1 + 2a2x + 3a3x2
+⋯ + nanxn−1

+⋯.

Again by substituting x = 0, we have:
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so that

a1 = f ′(1) =
f (1)(0)

1!
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Maclaurin’s series

Going on this way, it is not difficult to see that

f (k)(0) = k! ⋅ ak ,

i.e.,

ak =
f (k)(0)

k!
.
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Maclaurin’s series

The Maclaurin’s series expansion for the sine function is given by

sin (x) = x −
x3

3!
+

x5

5!
−

x7

7!
+⋯
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Maclaurin’s series

Euler’s 2nd big idea

The infinite product representation and the infinite sum
representation of the sine function as an infinite polynomial must
be the same!
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The ‘Eureka’ moment

Since the two representations are equal, the coefficient of each xk

must agree.

Let us say, we compare the coefficients of x3.
For the infinite product

⋯(1 +
x

3π
)(1 +

x

2π
)(1 +

x

π
) x (1 −

x

π
)(1 −

x

2π
)(1 −

x

3π
)⋯,

we expand systematically:

−
1

π2
−

1

22π2
−

1

32π2
−⋯
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The ‘Eureka’ moment

For the infinite sum

x −
x3

3!
+

x5

5!
−

x7

7!
+⋯,

the coefficient of x3 is

−
1

3!
= −

1

6
.
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The ‘Eureka’ moment

Equating the coefficients of x3 yields:

−
1

π2
−

1

22π2
−

1

32π2
−⋯ = −

1

6

which gives
1

12
+

1

22
+

1

32
+⋯ =

π2

6
.
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Search for a rigorous proof

For years to come, Euler searched for a rigorous proof that justifies
the infinite product formula for the sine function. He found a
rigorous proof in 1741.
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Other developments

Euler found the exact values for

∞
∑
k=1

1

k2m
, m ∈ N.

In fact, each of these are of the form

r ⋅ π2m

where r = (−1)
n−122n−1B2n

(2n)! .
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Zeta function

Definition

The zeta function, defined by Bernard Riemann, is

ζ(s) =
∞
∑
k=1

1

ks
, s ∈ C.
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Zeta at odd integral arguments

Open problems

Find the exact value of

ζ(2m + 1), m ∈ N.
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Zeta at odd integral arguments

It has been proven that
ζ(3) /∈ Q.

Open problems

Are these zeta-values

ζ(2m + 3), m ∈ N.

irrational?
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