The Basel Problem

Weng Kin Ho

National Institute of Education, Nanyang Technological University wengkin.ho@nie.edu.sg

16 April 2012

Basel The city of Basel Historic vs Modern Basel

Today, we shall encounter a very mesmerizing problem now known as the

Basel Problem.

A D

Basel **The city of Basel** Historic vs Modern Basel

The city of Basel

Basel is Switzerland's third most populous city with about 166,000 inhabitants.

Figure: Mittlere Brücke over the Rhine

Basel **The city of Basel** Historic vs Modern Basel

The city of Basel

Located where the Swiss, French and German borders meet, Basel also has suburbs in France and Germany.

Figure: Locality map of Basel

Basel The city of Basel Historic vs Modern Basel

Historic vs Modern Basel

Figure: Basilea from Nuremberg chronicles and Map of Basel in 1642

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Basel The city of Basel Historic vs Modern Basel

Historic vs Modern Basel

Figure: Rhine river and Basel Bahnhof Train-station

▲ 同 ▶ ▲ 目

The Basel Problem Understanding the problem

The Basel Problem

The Basel problem is a famous problem in mathematical analysis with relevance to number theory, first posed by Italian mathematician Pietro Mengoli in 1644.

Figure: Pietro Mengoli (1626, Bologna – 1686, Bologna)

The Basel Problem Understanding the problem

The Basel Problem

The Basel problem asks for the exact value of

$$\sum_{k=1}^{\infty} \frac{1}{k^2} = \lim_{n \to \infty} \left(\frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{n^2} \right)$$

i.e., the precise summation of the reciprocals of the squares of the natural numbers.

The Basel Problem Understanding the problem

The Basel Problem

This problem survived the attacks of many people like these:

Figure: The Bernoulli family: (T1) Jacob, (T2) Johann, (T3) Nicolaus II, (B1) Daniel, (B2) Johann III and (B3) Jacob II Bernoulli

The Basel Problem Understanding the problem

The Bernoulli family

- Jacob Bernoulli (1654-1705; also known as James or Jacques) Mathematician after whom Bernoulli numbers are named.
- Nicolaus Bernoulli (1662-1716) Painter and alderman of Basel.
- Johann Bernoulli (1667-1748; also known as Jean) Swiss mathematician and early adopter of infinitesimal calculus.
- Nicolaus I Bernoulli (1687-1759) Swiss mathematician.
- Nicolaus II Bernoulli (1695-1726) Swiss mathematician; worked on curves, differential equations, and probability.

The Basel Problem Understanding the problem

The Bernoulli family

- Daniel Bernoulli (1700-1782) Developer of Bernoulli's principle and St. Petersburg paradox.
- Johann II Bernoulli (1710-1790; also known as Jean) Swiss mathematician and physicist.
- Johann III Bernoulli (1744-1807; also known as Jean)
 Swiss-German astronomer, geographer, and mathematician.
- Jacob II Bernoulli (1759-1789; also known as Jacques) Swiss-Russian physicist and mathematician.

The Basel Problem Understanding the problem

The Basel Problem

The problem is named after the hometown of its solver:

Leonhard Euler.

A 10

The Basel Problem Understanding the problem

The Basel Problem

The problem is named after the hometown of its solver:

Leonhard Euler.

We shall come back to him in a moment.

The Basel Problem Understanding the problem

The Basel Problem

Activity (5 mins)

Use your GC, find the value of

$$\sum_{k=1}^{\infty} \frac{1}{k^2}$$

correcting your answer to 10 decimal places.

A 10

The Basel Problem Understanding the problem

The Basel Problem

The correct answer is

$$\sum_{k=1}^{\infty} \frac{1}{k^2} \approx 1.6449340668,$$

up to 10 decimal places.

___ ▶ <

The Basel Problem Understanding the problem

The Basel Problem

The correct answer is

$$\sum_{k=1}^{\infty} \frac{1}{k^2} \approx 1.6449340668,$$

up to 10 decimal places. Your G.C. probably can't deliver this answer.

The Basel Problem Understanding the problem

The Basel Problem

The correct answer is

$$\sum_{k=1}^{\infty} \frac{1}{k^2} \approx 1.6449340668,$$

up to 10 decimal places. Your G.C. probably can't deliver this answer. Why?

The Basel Problem Understanding the problem

The Basel Problem

The correct answer is

$$\sum_{k=1}^{\infty} \frac{1}{k^2} \approx 1.6449340668,$$

up to 10 decimal places.

Your G.C. probably can't deliver this answer. Why? G.C. spoiled?

The Basel Problem Understanding the problem

Understanding the problem

The Basel Problem demands its solver to give the exact value of the infinite series

$$\sum_{k=1}^{\infty}\frac{1}{k^2},$$

and the proof.

The Basel Problem Understanding the problem

Understanding the problem

The Basel Problem demands its solver to give the exact value of the infinite series

$$\sum_{k=1}^{\infty}\frac{1}{k^2},$$

and the proof.

Question

When did you first encounter an infinite series?

The Basel Problem Understanding the problem

Understanding the problem

Definition

A sequence of real numbers

 $a_1, a_2, \cdots, a_n, \cdots$

is a *geometric progression* if the ratio between the consecutive terms is constant, i.e., there is a constant r such that

 $a_{n+1} = a_n \cdot r$

for all $n = 1, 2, \cdots$

The Basel Problem Understanding the problem

Understanding the problem

It is easy to see that

$$\left(\frac{a_n}{a_{n-1}}\right)\cdot \left(\frac{a_{n-1}}{a_{n-2}}\right)\cdot \cdots \cdot \left(\frac{a_2}{a_1}\right)$$

A ►

The Basel Problem Understanding the problem

Understanding the problem

It is easy to see that

$$\left(\frac{a_n}{a_{n-1}}\right) \cdot \left(\frac{a_{n-1}}{a_{n-2}}\right) \cdot \dots \cdot \left(\frac{a_2}{a_1}\right)$$
$$= \underbrace{r \cdot r \cdot \dots \cdot r}_{n-1 \text{ copies}}$$

< □ > <

The Basel Problem Understanding the problem

Understanding the problem

It is easy to see that

$$\left(\frac{a_n}{a_{n-1}}\right) \cdot \left(\frac{a_{n-1}}{a_{n-2}}\right) \cdot \dots \cdot \left(\frac{a_2}{a_1}\right)$$
$$= \underbrace{r \cdot r \cdot \dots \cdot r}_{n-1 \text{ copies}}$$
$$= r^{n-1}.$$

A ►

The Basel Problem Understanding the problem

Understanding the problem

It is easy to see that

$$\left(\frac{a_n}{a_{n-1}}\right) \cdot \left(\frac{a_{n-1}}{a_{n-2}}\right) \cdot \dots \cdot \left(\frac{a_2}{a_1}\right)$$
$$= \underbrace{r \cdot r \cdot \dots \cdot r}_{n-1 \text{ copies}}$$
$$= r^{n-1}.$$

It follows that

$$a_n = a_1 \cdot r^{n-1}, \quad n = 1, 2, \cdots$$

The Basel Problem Understanding the problem

Understanding the problem

Examples

Here are some geometric progressions:

A D

The Basel Problem Understanding the problem

Understanding the problem

Examples

Here are some geometric progressions:

1, 2, 4, 8, ⋯

< 一□ > <

The Basel Problem Understanding the problem

Understanding the problem

Examples

Here are some geometric progressions:

1, 2, 4, 8,
$$\cdots$$

2 1, $\frac{1}{2}$, $\frac{1}{2^2}$, $\frac{1}{2^3}$, \cdots

A D

The Basel Problem Understanding the problem

Understanding the problem

Examples

Here are some geometric progressions:

1,2,4,8,...
1,
$$\frac{1}{2}$$
, $\frac{1}{2^2}$, $\frac{1}{2^3}$,...
1,-1,1,-1,...

A D

The Basel Problem Understanding the problem

Understanding the problem

The sum to infinity of a geometric progression

 $a + ar + ar^2 + \cdots$

exists if the limit

$$\lim_{n\to\infty} (a + ar + ar^2 + \dots + ar^{n-1})$$

exists.

The Basel Problem Understanding the problem

Understanding the problem

Figure: Sum to infinity of a G.P.

A ►

The Basel Problem Understanding the problem

Understanding the problem

Do we have a formula for the finite sum

$$\sum_{k=1}^{n} ar^{k-1} = a + ar + ar^{2} + \dots + ar^{n-1}$$

so that perhaps we can better figure out the limiting value?

The Basel Problem Understanding the problem

Understanding the problem

Exercise

Suppose we denote the finite sum by

$$S_n = a + ar + ar^2 + \dots + ar^{n-1}$$

and multiply it by r to obtain rS_n . By finding $S_n - rS_n$, deduce a formula for S_n in terms of n.

The Basel Problem Understanding the problem

Understanding the problem

Now the sum to infinity of a geometric progression exists if and only if the limit

$$\lim_{n\to\infty}S_n=\lim_{n\to\infty}\left(\frac{a}{1-r}\right)(1-r^n)$$

exists.

The Basel Problem Understanding the problem

Understanding the problem

Now the sum to infinity of a geometric progression exists if and only if the limit

$$\lim_{n\to\infty}S_n=\lim_{n\to\infty}\left(\frac{a}{1-r}\right)(1-r^n)$$

exists.

Theorem

$$S_{\infty} < \infty \iff |r| < 1.$$

A D

The Basel Problem Understanding the problem

Understanding the problem

Returning to the Basel problem, i.e., the infinite series

$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} + \dots$$

we have two questions to ask:

The Basel Problem Understanding the problem

Understanding the problem

Returning to the Basel problem, i.e., the infinite series

$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} + \dots$$

we have two questions to ask:

• Are we so lucky to have a closed formula for the finite sum?

The Basel Problem Understanding the problem

Understanding the problem

Returning to the Basel problem, i.e., the infinite series

$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} + \dots$$

we have two questions to ask:

- Are we so lucky to have a closed formula for the finite sum?
- If not, how sure are we that the sum to infinity exists?

The Basel Problem Understanding the problem

Understanding the problem

Returning to the Basel problem, i.e., the infinite series

$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} + \dots$$

we have two questions to ask:

• Are we so lucky to have a closed formula for the finite sum?

• If not, how sure are we that the sum to infinity exists? or maybe it does not ...

The Basel Problem Understanding the problem

Understanding the problem

The answer to the first question is

NO, at the moment.

The Basel Problem Understanding the problem

Understanding the problem

The answer to the second problem is

YES.

The Basel Problem Understanding the problem

Understanding the problem

For any positive integer k > 1, note that

$$\frac{1}{k(k+1)} < \frac{1}{k^2} < \frac{1}{(k-1)k}.$$

A 10

The Basel Problem Understanding the problem

Understanding the problem

For any positive integer k > 1, note that

$$\frac{1}{k(k+1)} < \frac{1}{k^2} < \frac{1}{(k-1)k}.$$

So, for any positive integer n > 1, we have

$$\sum_{k=2}^{n} \frac{1}{k(k+1)} < \sum_{k=2}^{n} \frac{1}{k^2} < \sum_{k=2}^{n} \frac{1}{(k-1)k}$$

The Basel Problem Understanding the problem

Understanding the problem

The left hand sum simplifies to

The Basel Problem Understanding the problem

Understanding the problem

The left hand sum simplifies to

$$\sum_{k=2}^{n} \frac{1}{k(k+1)} = \sum_{k=2}^{n} \left(\frac{1}{k} - \frac{1}{k+1} \right)$$

A D

The Basel Problem Understanding the problem

Understanding the problem

The left hand sum simplifies to

$$\sum_{k=2}^{n} \frac{1}{k(k+1)} = \sum_{k=2}^{n} \left(\frac{1}{k} - \frac{1}{k+1}\right)$$
$$= \frac{1}{2} - \frac{1}{3}$$

A 10

The Basel Problem Understanding the problem

Understanding the problem

The left hand sum simplifies to

$$\sum_{k=2}^{n} \frac{1}{k(k+1)} = \sum_{k=2}^{n} \left(\frac{1}{k} - \frac{1}{k+1} \right)$$
$$= \frac{1}{2} - \frac{1}{3}$$
$$+ \frac{1}{3} - \frac{1}{4}$$

A ►

The Basel Problem Understanding the problem

Understanding the problem

The left hand sum simplifies to

$$\sum_{k=2}^{n} \frac{1}{k(k+1)} = \sum_{k=2}^{n} \left(\frac{1}{k} - \frac{1}{k+1} \right)$$
$$= \frac{1}{2} - \frac{1}{3}$$
$$+ \frac{1}{3} - \frac{1}{4}$$
$$+ \vdots$$

< □ > <

The Basel Problem Understanding the problem

Understanding the problem

The left hand sum simplifies to

$$\sum_{k=2}^{n} \frac{1}{k(k+1)} = \sum_{k=2}^{n} \left(\frac{1}{k} - \frac{1}{k+1} \right)$$
$$= \frac{1}{2} - \frac{1}{3}$$
$$+ \frac{1}{3} - \frac{1}{4}$$
$$+ \vdots$$
$$+ \frac{1}{n} - \frac{1}{n+1} = \frac{1}{2} - \frac{1}{n+1}$$

A 10

The Basel Problem Understanding the problem

Understanding the problem

The right hand side simplifies to

$$\sum_{k=2}^{n} \frac{1}{(k-1)k} = 1 - \frac{1}{n}$$

likewise.

____ ▶

The Basel Problem Understanding the problem

Understanding the problem

i.e.,

For any positive integer n, we have

$$1 + \left(\frac{1}{2} - \frac{1}{n+1}\right) < \sum_{k=1}^{n} \frac{1}{k^2} < 1 + \left(1 - \frac{1}{n}\right)$$
$$\frac{3}{2} - \frac{1}{n+1} < \sum_{k=1}^{n} \frac{1}{k^2} < 2 - \frac{1}{n}.$$

< □ > <

The Basel Problem Understanding the problem

Understanding the problem

For any positive integer n, we have

$$1 + \left(\frac{1}{2} - \frac{1}{n+1}\right) < \sum_{k=1}^{n} \frac{1}{k^2} < 1 + \left(1 - \frac{1}{n}\right)$$

i.e.,

$$\frac{3}{2} - \frac{1}{n+1} < \sum_{k=1}^{n} \frac{1}{k^2} < 2 - \frac{1}{n}.$$

Letting $n \to \infty$,

$$\frac{3}{2} \leq \sum_{k=1}^{\infty} \frac{1}{k^2} \leq 2.$$

A D

The Basel Problem Understanding the problem

The Basel Problem

heorem	

The infinite series

 $\sum_{k=1}^{\infty} \frac{1}{k^2}$

converges.

< 🗇 > < 🖃 >

The Basel Problem Understanding the problem

The Basel Problem

Theorem		
The infinite series	$\sum_{k=1}^{\infty} \frac{1}{k^2}$	
converges.		

Proof.

Since the sequence $\{\sum_{k=1}^{n} \frac{1}{k^2}\}_{n=1}^{\infty}$ is monotone increasing and bounded above, the series converges.

Early years St Petersburg Berlin

Problem far from solved

Even if we know that

 $\sum_{k=1}^{\infty} \frac{1}{k^2}$

exists, we still have no idea what its exact value is.

Early years St Petersburg Berlin

The Mathematician

Our main character today is

Figure: Leonhard Euler (15 April 1707 - 18 September 1783)

< 4 ₽ > < E

Weng Kin Ho The Basel Problem

Early years St Petersburg Berlin

Euler was born on April 15, 1707, in Basel to Paul Euler, a pastor of the Reformed Church. His mother was Marguerite Brucker, a pastor's daughter. He had two younger sisters named Anna Maria and Maria Magdalena.

Early years St Petersburg Berlin

Figure: A Swiss Reform church at Riehen

Soon after the birth of Leonhard, the Eulers moved from Basel to the town of Riehen, where Euler spent most of his childhood.

Early years St Petersburg Berlin

Figure: Johann Bernoulli

Paul Euler was a friend of the Bernoulli family - Johann Bernoulli, who was then regarded as Europe's foremost mathematician, would eventually be the most important influence on young Leonhard.

▲ □ ▶ ▲ □ ▶ ▲

Early years St Petersburg Berlin

• Early formal education started in Basel: live with his maternal grandmother

- Early formal education started in Basel: live with his maternal grandmother
- 1720: Enrolled at the University of Basel at age of 13

- Early formal education started in Basel: live with his maternal grandmother
- 1720: Enrolled at the University of Basel at age of 13
- 1723: Received his M.Phil. (compared the philosophies of Descartes and Newton)

- Early formal education started in Basel: live with his maternal grandmother
- 1720: Enrolled at the University of Basel at age of 13
- 1723: Received his M.Phil. (compared the philosophies of Descartes and Newton)
- 1723: Received Saturday afternoon lessons from Johann Bernoulli

Early years St Petersburg Berlin

• 1723: Studying theology, Greek, and Hebrew under father's urge

Early years St Petersburg Berlin

- 1723: Studying theology, Greek, and Hebrew under father's urge
- Bernoulli convinced him that Leonhard was destined to become a great mathematician

A D

- 1723: Studying theology, Greek, and Hebrew under father's urge
- Bernoulli convinced him that Leonhard was destined to become a great mathematician
- 1726: Completed a dissertation on the propagation of sound with the title *De Sono*

Early years St Petersburg Berlin

• 1727: Entered the Paris Academy Prize Problem competition, in which he won second place

Early years St Petersburg Berlin

- 1727: Entered the Paris Academy Prize Problem competition, in which he won second place
- Won this coveted annual prize 12 times in his career

A D

Early years St Petersburg Berlin

St Petersburg

• 1725: Johann Bernoulli's two sons, Daniel and Nicolas, were working at the Imperial Russian Academy of Sciences in St Petersburg

Early years St Petersburg Berlin

St Petersburg

- 1725: Johann Bernoulli's two sons, Daniel and Nicolas, were working at the Imperial Russian Academy of Sciences in St Petersburg
- July 10, 1726: Nicolas died of appendicitis after spending a year in Russia

Early years St Petersburg Berlin

St Petersburg

- 1725: Johann Bernoulli's two sons, Daniel and Nicolas, were working at the Imperial Russian Academy of Sciences in St Petersburg
- July 10, 1726: Nicolas died of appendicitis after spending a year in Russia
- Daniel assumed his brother's position in the mathematics/physics division, he recommended that the post in physiology that he had vacated be filled by his friend Euler

Early years St Petersburg Berlin

St Petersburg

- 1725: Johann Bernoulli's two sons, Daniel and Nicolas, were working at the Imperial Russian Academy of Sciences in St Petersburg
- July 10, 1726: Nicolas died of appendicitis after spending a year in Russia
- Daniel assumed his brother's position in the mathematics/physics division, he recommended that the post in physiology that he had vacated be filled by his friend Euler
- November 1726: Euler eagerly accepted the offer, but delayed making the trip to St Petersburg while he unsuccessfully applied for a physics professorship at the University of Basel

▲□ ► < □ ► </p>

Early years St Petersburg Berlin

• 17 May, 1727: Arrived at Russian capital St Petersburg

- 17 May, 1727: Arrived at Russian capital St Petersburg
- Promoted to a position in the mathematics department

- 17 May, 1727: Arrived at Russian capital St Petersburg
- Promoted to a position in the mathematics department
- Lodged with Daniel Bernoulli with whom he often worked in close collaboration

- 17 May, 1727: Arrived at Russian capital St Petersburg
- Promoted to a position in the mathematics department
- Lodged with Daniel Bernoulli with whom he often worked in close collaboration
- Mastered Russian and settled into life in St Petersburg

- 17 May, 1727: Arrived at Russian capital St Petersburg
- Promoted to a position in the mathematics department
- Lodged with Daniel Bernoulli with whom he often worked in close collaboration
- Mastered Russian and settled into life in St Petersburg
- Took on an additional job as a medic in the Russian Navy.

Early years St Petersburg Berlin

Figure: A Soviet stamp depicting Euler

• The Academy at St. Petersburg wanted to improve education in Russia and to close the scientific gap with Western Europe

Early years St Petersburg Berlin

Figure: A Soviet stamp depicting Euler

- The Academy at St. Petersburg wanted to improve education in Russia and to close the scientific gap with Western Europe
- Attract foreign scholars like Euler

Early years St Petersburg Berlin

Figure: A Soviet stamp depicting Euler

- The Academy at St. Petersburg wanted to improve education in Russia and to close the scientific gap with Western Europe
- Attract foreign scholars like Euler
- Good money and library, low enrollment to lessen the faculty's teaching burden, and the academy emphasized research

Early years St Petersburg Berlin

• Russian nobility gained power in the year of Peter II

- Russian nobility gained power in the year of Peter II
- Nobility got suspicious of the academy's foreign scientists

- Russian nobility gained power in the year of Peter II
- Nobility got suspicious of the academy's foreign scientists
- Cut money and caused other difficulties for Euler and his colleagues.

Early years St Petersburg Berlin

St Petersburg

• Things got a bit better when Peter II died

- Things got a bit better when Peter II died
- 1731: Euler became professor of physics

- Things got a bit better when Peter II died
- 1731: Euler became professor of physics
- 1733: Daniel Bernoulli, fed up with the censorship and hostility, left for Basel

Early years St Petersburg Berlin

St Petersburg

- Things got a bit better when Peter II died
- 1731: Euler became professor of physics
- 1733: Daniel Bernoulli, fed up with the censorship and hostility, left for Basel
- 1733: Euler succeeded as the head of the mathematics department

Early years St Petersburg Berlin

St Petersburg

Figure: The Neva River

• 7 January 1734: Married Katharina Gsell (1707-1773), a daughter of Georg Gsell, a painter from the Academy Gymnasium

Early years St Petersburg Berlin

St Petersburg

Figure: The Neva River

- 7 January 1734: Married Katharina Gsell (1707-1773), a daughter of Georg Gsell, a painter from the Academy Gymnasium
- Young couple bought a house by the Neva River

Early years St Petersburg Berlin

St Petersburg

Figure: The Neva River

- 7 January 1734: Married Katharina Gsell (1707-1773), a daughter of Georg Gsell, a painter from the Academy Gymnasium
- Young couple bought a house by the Neva River
- Of their thirteen children, only five survived childhood

Early years St Petersburg **Berlin**

Berlin

• 19 June 1741: Euler left St. Petersburg to take up a post at the Berlin Academy

Early years St Petersburg **Berlin**

Berlin

- 19 June 1741: Euler left St. Petersburg to take up a post at the Berlin Academy
- Lived for twenty-five years in Berlin, where he wrote over 380 articles

A ►

Early years St Petersburg **Berlin**

Berlin

- 19 June 1741: Euler left St. Petersburg to take up a post at the Berlin Academy
- Lived for twenty-five years in Berlin, where he wrote over 380 articles
- In Berlin, he published the two works which he would be most renowned for:
 - the Introductio in analysin infinitorum, a text on functions published in 1748, and
 - the Institutiones calculi differentialis, published in 1755 on differential calculus.

Early years St Petersburg **Berlin**

Berlin

- 19 June 1741: Euler left St. Petersburg to take up a post at the Berlin Academy
- Lived for twenty-five years in Berlin, where he wrote over 380 articles
- In Berlin, he published the two works which he would be most renowned for:
 - the Introductio in analysin infinitorum, a text on functions published in 1748, and
 - the Institutiones calculi differentialis, published in 1755 on differential calculus.
- 1755: Elected a foreign member of the Royal Swedish Academy of Sciences.

Early years St Petersburg **Berlin**

• Tutored the Princess of Anhalt-Dessau, Frederick's niece

Early years St Petersburg Berlin

- Tutored the Princess of Anhalt-Dessau, Frederick's niece
- Early 1760s: Wrote over 200 letters to her (Letters of Euler)

< 67 ▶

Early years St Petersburg **Berlin**

- Tutored the Princess of Anhalt-Dessau, Frederick's niece
- Early 1760s: Wrote over 200 letters to her (Letters of Euler)
- Compilation became more widely read than any of his mathematical works

< A ▶

- Tutored the Princess of Anhalt-Dessau, Frederick's niece
- Early 1760s: Wrote over 200 letters to her (Letters of Euler)
- Compilation became more widely read than any of his mathematical works
- Left Berlin because of personal conflict with Frederick The Great

sin (x) Polynomials Devise a plan Carry out the plan Checking and re-looking Maclaurin's series

The sine function

The story begins in around 1735 with an ordinary function

 $f(x) = \sin(x).$

sin (x) Polynomials Devise a plan Carry out the plan Checking and re-looking Maclaurin's series

The sine function

We know this function looks like:

sin (x) Polynomials Devise a plan Carry out the plan Checking and re-looking Maclaurin's series

The sine function

We know that this function has a period of 2π , i.e.,

 $\sin\left(x+2\pi\right)=\sin(x)$

for all real x.

Figure: Periodic curve

< 同 ▶

sin (x) Polynomials Devise a plan Carry out the plan Checking and re-looking Maclaurin's series

The sine function

The sine function has several nice properties:

sin (x) Polynomials Devise a plan Carry out the plan Checking and re-looking Maclaurin's series

The sine function

The sine function has several nice properties:

It is continuous.

sin (x) Polynomials Devise a plan Carry out the plan Checking and re-looking Maclaurin's series

The sine function

The sine function has several nice properties:

- It is continuous.
- It is differentiable.

sin (x) Polynomials Devise a plan Carry out the plan Checking and re-looking Maclaurin's series

The sine function

The sine function has several nice properties:

- It is continuous.
- It is differentiable.
- It has infinitely many zeros, i.e.,

$$\sin(x) = 0$$
 at $x = \dots, -2\pi, -\pi, 0, \pi, 2\pi, \dots$

A ▶

sin (x) Polynomials Devise a plan Carry out the plan Checking and re-looking Maclaurin's series

The sine function

The sine function has several nice properties:

- It is continuous.
- It is differentiable.
- It has infinitely many zeros, i.e.,

$$\sin(x) = 0$$
 at $x = \dots, -2\pi, -\pi, 0, \pi, 2\pi, \dots$

 $\sin(0) = 0.$

A ▶

sin (x) Polynomials Devise a plan Carry out the plan Checking and re-looking Maclaurin's series

The sine function

The sine function has several nice properties:

- It is continuous.
- It is differentiable.
- It has infinitely many zeros, i.e.,

 $\sin(x) = 0$ at $x = \dots, -2\pi, -\pi, 0, \pi, 2\pi, \dots$

____ ▶

sin (x) Polynomials Devise a plan Carry out the plan Checking and re-looking Maclaurin's series

The sine function

We do know of another family of functions which has the first two properties:

Continuity

Oifferentiability

A ►

sin (x) Polynomials Devise a plan Carry out the plan Checking and re-looking Maclaurin's series

The polynomials

Definition

A function of the form

$$P(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n, \quad a_n \neq 0$$

is called a *polynomial* in *x*.

▲ □ ► < □ ►</p>

э

sin (x) Polynomials Devise a plan Carry out the plan Checking and re-looking Maclaurin's series

The polynomials

Example

An example of a polynomial is

$$P(x) = (x+1)x(x-1)$$

whose graph is given by ...

Image: A = A

sin (x) Polynomials Devise a plan Carry out the plan Checking and re-looking Maclaurin's series

The polynomials

Figure: The graph of y = (x + 1)x(x - 1)

<ロ> <同> <同> < 同> < 同>

sin (x) Polynomials Devise a plan Carry out the plan Checking and re-looking Maclaurin's series

The polynomials

The cubic polynomial

$$P(x) = (x+1)x(x-1) = x^3 - x$$

has zeros

x = -1, 0, 1.

sin (x) Polynomials Devise a plan Carry out the plan Checking and re-looking Maclaurin's series

Devise a plan

Euler's 1st big idea

The sine function may be seen as an infinite polynomial with infinitely many zeros

 $\dots, -3\pi, -2\pi, -\pi, 0, \pi, 2\pi, 3\pi, \dots$

< 4 ₽ > < 3

sin (x) Polynomials Devise a plan **Carry out the plan** Checking and re-looking Maclaurin's series

Carry out the plan

Activity

Using your G.C., sketch the following graphs in succession:

- **●** *y* = *x*
- **2** $y = (x + \pi)x(x \pi)$
- **3** $y = (x + 2\pi)(x + \pi)x(x \pi)(x 2\pi)$
- $y = (x+3\pi)(x+2\pi)(x+\pi)x(x-\pi)(x-2\pi)(x+3\pi)$

Image: A image: A

sin (x) Polynomials Devise a plan Carry out the plan **Checking and re-looking** Maclaurin's series

Checking the solution

None of these curves look like the sine curve:

Figure: The graph of $y = \sin(x)$

< □ > <

sin (x) Polynomials Devise a plan Carry out the plan **Checking and re-looking** Maclaurin's series

Checking the solution

We know that

$$\lim_{x\to 0}\frac{\sin(x)}{x}=1$$

but

$$\lim_{x\to 0}\frac{(x+n\pi)\cdots x\cdots (x-n\pi)}{x}\neq 1.$$

・ロッ ・ 一 ・ ・ ・ ・

sin (x) Polynomials Devise a plan Carry out the plan Checking and re-looking Maclaurin's series

But one can resort to a little trick ...

$$\lim_{x \to 0} \frac{\left(1 + \frac{x}{n\pi}\right) \cdot \left(1 + \frac{x}{(n-1)\pi}\right) \cdots x \cdots \left(1 - \frac{x}{(n-1)\pi}\right) \left(1 - \frac{x}{n\pi}\right)}{x} = 1.$$

sin (x) Polynomials Devise a plan Carry out the plan Checking and re-looking Maclaurin's series

Carry out the second plan

Activity

Using your G.C., sketch the following graphs in succession:

- y = x
- $y = \left(1 + \frac{x}{\pi}\right) x \left(x \frac{x}{\pi}\right)$ $y = \left(1 + \frac{x}{2\pi}\right) \left(1 + \frac{x}{\pi}\right) x \left(x - \frac{x}{\pi}\right) \left(1 - \frac{x}{2\pi}\right)$

Image: A image: A

sin (x) Polynomials Devise a plan Carry out the plan **Checking and re-looking** Maclaurin's series

Let's do better than your G.C.'s.

sin (x) Polynomials Devise a plan Carry out the plan **Checking and re-looking** Maclaurin's series

Re-looking

Matlab program

```
%% This MATLAB program plots the curve
\% of y = Q_n(x) for a user-input integer n.
clear; clc;
n = input('Enter the value of n : ');
x = [-5*pi:0.001*pi:5*pi];
y = x; z = sin(x); w = 0;
for k = 1:n
y = y.*(1-(x.^2)/(k*pi)^2);
end
plot(x,y,'-k'); hold on;
plot(x,z,'-r'); hold on;
plot(x,w,'-b');
title('Graph of Q_n(x)');
```

< m# >

sin (x) Polynomials Devise a plan Carry out the plan **Checking and re-looking** Maclaurin's series

It is intended that the program outputs the graph whose equation is

$$Q_n(x) = x \cdot \prod_{k=-n}^n \left(1 - \frac{x}{k\pi}\right),$$

where n = 1, 2,

sin (x) Polynomials Devise a plan Carry out the plan **Checking and re-looking** Maclaurin's series

Sample runs

Figure: The graph of $y = Q_{10}(x)$

▲御 ▶ ▲ 臣 ▶

-≣->

sin (x) Polynomials Devise a plan Carry out the plan **Checking and re-looking** Maclaurin's series

Sample runs

Figure: The graph of $y = Q_{100}(x)$

- 4 回 > - 4 回 > - 4 回 >

sin (x) Polynomials Devise a plan Carry out the plan **Checking and re-looking** Maclaurin's series

Sample runs

Figure: The graph of $y = Q_{1000}(x)$

| 4 回 🕨 🔺 三 🕨 🖌 三 🕨

sin (x) Polynomials Devise a plan Carry out the plan **Checking and re-looking** Maclaurin's series

Sample runs

Figure: The graph of $y = Q_{10000}(x)$

→ □ ▶ → 三 ▶ → 三 ▶

sin (x) Polynomials Devise a plan Carry out the plan Checking and re-looking Maclaurin's series

Maclaurin's series

The story has an important second part which has to do with the famous

Maclaurin's series.

< □ > <

sin (×) Polynomials Devise a plan Carry out the plan Checking and re-looking Maclaurin's series

Maclaurin's series

That a function can be seen as an infinite polynomial is not new.

sin (x) Polynomials Devise a plan Carry out the plan Checking and re-looking Maclaurin's series

Maclaurin's series

That a function can be seen as an infinite polynomial is not new. The Maclaurin's series expansion of an infinitely-differentiable function f is given by:

$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k,$$

where $f^{(k)}(0)$ denotes the kth derivative evaluated at x = 0.

sin (x) Polynomials Devise a plan Carry out the plan Checking and re-looking Maclaurin's series

Maclaurin's series

Suppose that a function has all derivatives, and it can be expressed as an infinite polynomial $% \left({{{\mathbf{r}}_{i}}} \right)$

$$f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n + \dots$$

< 1 →

sin (x) Polynomials Devise a plan Carry out the plan Checking and re-looking Maclaurin's series

Maclaurin's series

Suppose that a function has all derivatives, and it can be expressed as an infinite polynomial

$$f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n + \dots$$

Then, by substituting x = 0 into this equation, we have

 $f(0) = a_0$

so that

$$a_0 = f(0) = \frac{f^{(0)}(0)}{0!}.$$

< A >

sin (x) Polynomials Devise a plan Carry out the plan Checking and re-looking Maclaurin's series

Maclaurin's series

Differentiating, w.r.t. x, the original series

$$f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n + \dots$$

yields:

$$f^{(1)}(x) = a_1 + 2a_2x + 3a_3x^2 + \dots + na_nx^{n-1} + \dots$$

< □ > <

sin (x) Polynomials Devise a plan Carry out the plan Checking and re-looking Maclaurin's series

Maclaurin's series

Differentiating, w.r.t. x, the original series

$$f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n + \dots$$

yields:

$$f^{(1)}(x) = a_1 + 2a_2x + 3a_3x^2 + \dots + na_nx^{n-1} + \dots$$

Again by substituting x = 0, we have:

 $f'(0) = a_1$

so that

$$a_1 = f'(1) = \frac{f^{(1)}(0)}{1!}.$$

▲ 同 ▶ → 三 ▶

sin (x) Polynomials Devise a plan Carry out the plan Checking and re-looking Maclaurin's series

Maclaurin's series

Going on this way, it is not difficult to see that

 $f^{(k)}(0) = k! \cdot a_k,$

i.e.,

$$a_k=\frac{f^{(k)}(0)}{k!}.$$

sin (x) Polynomials Devise a plan Carry out the plan Checking and re-looking Maclaurin's series

Maclaurin's series

The Maclaurin's series expansion for the sine function is given by

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$

▲ 同 ▶ ▲ 三

sin (x) Polynomials Devise a plan Carry out the plan Checking and re-looking Maclaurin's series

Maclaurin's series

Euler's 2nd big idea

The infinite product representation and the infinite sum representation of the sine function as an infinite polynomial must be the same!

< □ > <

sin (x) Polynomials Devise a plan Carry out the plan Checking and re-looking Maclaurin's series

The 'Eureka' moment

Since the two representations are equal, the coefficient of each x^k must agree.

sin (x) Polynomials Devise a plan Carry out the plan Checking and re-looking Maclaurin's series

The 'Eureka' moment

Since the two representations are equal, the coefficient of each x^k must agree.

Let us say, we compare the coefficients of x^3 .

sin (x) Polynomials Devise a plan Carry out the plan Checking and re-looking Maclaurin's series

The 'Eureka' moment

Since the two representations are equal, the coefficient of each x^k must agree.

Let us say, we compare the coefficients of x^3 . For the infinite product

$$\cdots\left(1+\frac{x}{3\pi}\right)\left(1+\frac{x}{2\pi}\right)\left(1+\frac{x}{\pi}\right)x\left(1-\frac{x}{\pi}\right)\left(1-\frac{x}{2\pi}\right)\left(1-\frac{x}{3\pi}\right)\cdots,$$

we expand systematically:

▲ 伊 ▶ ▲ 三 ▶

sin (x) Polynomials Devise a plan Carry out the plan Checking and re-looking Maclaurin's series

The 'Eureka' moment

For the infinite sum

$$x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots,$$

the coefficient of x^3 is
 $-\frac{1}{3!} = -\frac{1}{6}.$

sin (x) Polynomials Devise a plan Carry out the plan Checking and re-looking Maclaurin's series

The 'Eureka' moment

Equating the coefficients of x^3 yields:

$$-\frac{1}{\pi^2} - \frac{1}{2^2\pi^2} - \frac{1}{3^2\pi^2} - \dots = -\frac{1}{6}$$

which gives

$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}.$$

< □ > <

Rigor Open problems

Search for a rigorous proof

For years to come, Euler searched for a rigorous proof that justifies the infinite product formula for the sine function. He found a rigorous proof in 1741.

Rigor Open problems

Other developments

Euler found the exact values for

$$\sum_{k=1}^{\infty}\frac{1}{k^{2m}}, \quad m \in \mathbb{N}.$$

局 ▶ ◀

Rigor Open problems

Other developments

Euler found the exact values for

$$\sum_{k=1}^{\infty} \frac{1}{k^{2m}}, \quad m \in \mathbb{N}.$$

In fact, each of these are of the form

$$r \cdot \pi^{2m}$$

where $r = \frac{(-1)^{n-1}2^{2n-1}B_{2n}}{(2n)!}$.

Rigor Open problems

Zeta function

Definition

The zeta function, defined by Bernard Riemann, is

$$\zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^s}, \quad s \in \mathbb{C}.$$

Rigor Open problems

Zeta at odd integral arguments

Open problems

Find the exact value of

$\zeta(2m+1), m \in \mathbb{N}.$

< 17 > <

Rigor Open problems

Zeta at odd integral arguments

It has been proven that

 $\zeta(3) \notin \mathbb{Q}.$

