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Abstract: The Concrete-Pictorial-Abstract (CPA) approach, based on 
Bruner’s conception of the enactive, iconic and symbolic modes of 
representation, is a well-known instructional heuristic advocated by the 
Singapore Ministry of Education since early 1980’s.  Despite its ubiquity as a 
teaching strategy throughout the entire mathematics education community in 
Singapore, it is somewhat surprising to see a lack of an account of its 
theoretical roots. This paper is an attempt to contribute to this discussion on 
the CPA strategy and its potential role in continuing advancement of quality 
mathematics education. 
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Introduction 

The theories of instruction proposed by Bruner in his 1966 book Toward a 
Theory of Instruction have undoubtedly bequeathed a rich legacy to 
generations of educators in the domain of learning and instruction.  
Amongst his voluminous contributions, one of the most well-known 
conception is that of “enactive-iconic-symbolic” modes of representation. 
This conception forms the foundation for a spectrum of instructional 
practices related to mathematics education, all bearing a conspicuous 
tripartite semblance to the Bruner’s model.  
 
One such adaptation of Bruner’s model is the Concrete-Representation-
Abstract (CRA) sequence.  The CRA sequence has been shown to be 
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particularly effective with students who have difficulties with mathematics 
(Jordan, Miller, & Mercer, 1998; Sousa, 2008).  
  
The ‘Concrete’ segment of CRA, in particular, has been the theoretical basis 
for the use of manipulatives in learning mathematics (Reisman, 1982; Ross 
& Kurtz, 1993).  The CRA approach has also been employed to aid students 
with learning disabilities to learn mathematics; CRA has been reported to be 
effective in remediating deficits in basic mathematics computation (Morin & 
Miller, 1998), in the teaching of place value (Peterson, Mercer, & O’Shea, 
1998), fractions (Butler, Miller, Crehan, Babbit, & Pierce, 2003) and algebra 
(Maccinni & Ruhl, 2000; Witzel, Mercer, & Miller, 2003).  With regards to 
mathematics students (first and third graders), Fuchs, Fuchs, and Hollenback 
(2007) also advocate the use of the CRA sequence to teach place value, 
geometry, and fractions. 
 
In the practice of mathematics instruction in Singapore, Bruner’s enactive-
iconic-symbolic conception is at the heart of the Concrete-Pictorial-Abstract 
(CPA) approach. Since its inception in the early 1980’s, the CPA approach 
has remained a key instructional strategy advocated by the Singapore 
Ministry of Education. This is attested by its regular mention in official 
curricular documents, including the latest syllabus for implementation in 
2013: 

This [activity-based] approach is about learning by doing. It is 
particularly effective for teaching mathematical concepts and skills at 
primary and lower secondary levels, but is also effective at higher levels. 
Students engage in activities to explore and learn mathematical concepts 
and skills … . They could use manipulatives or other resources to 
construct meanings and understandings. From concrete manipulatives 
and experiences, students are guided to uncover abstract mathematical 
concepts or results.  … During the activity, students communicate and 
share their understanding using concrete and pictorial representations. 
The role of the teacher is that of a facilitator who guides students through 
the concrete, pictorial and abstract levels of understanding by providing 
appropriate scaffolding and feedback. (Ministry of Education, 2012, p. 
23, emphases added) 

 
Although CPA is now well-known within (and even outside) the Singapore 
mathematics education community, it is surprisingly difficult to find 
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scholarly works related to its theoretical roots and actual classroom 
implementation in the literature. This paper is an attempt to contribute to 
this discussion on the CPA strategy. In particular, we attempt to trace the 
origins of CPA and examine its influence over mathematics curriculum 
development and instruction in Singapore. 

Theoretical considerations 

First, this recommended instructional approach of starting with modes of 
learning that are more concrete to students and then gradually replacing the 
representations into forms that approximate formal mathematical symbols or 
language is not uncommon.  For example, this is the instructional strategy 
that is recommended by Ketterlin-Geller, Chard, and Fien (2008): “a 
gradated instructional sequence that proceeds from concrete to 
representational to abstract (CRA) benefits struggling students” (p. 35). 
   
In a recent study on using the CRA instruction sequence in teaching 
subtraction with regrouping to some low-achieving Grade 3 mathematics 
students, Flores (2010) reported that the students show improvement in 
fluency and confidence in doing arithmetic computations involving 
subtractions.  In addition, a number of other studies have provided evidence 
of positive effect of using CRA on low achievers in the area of fractions 
(Butler et al., 2003), word problems (Maccini & Hughes, 2000), simple 
linear functions (Witzel, 2003), and advanced linear functions (Witzel, 
Mercer, & Miller, 2003).  Indeed, the use of CRA approach to teaching 
mathematics concepts, especially at the elementary level has been proven to 
be effective. 
 
Despite the commonalities to these other ways of labelling the instructional 
sequence, it appears that certain features of CPA are somewhat unique to 
Singapore Mathematics education. Its uniqueness is not restricted to the C-
P-A as labels for the respective modes; it is also in its ubiquity throughout 
the entire mathematics education community in Singapore. CPA is a 
teaching strategy that is advocated by the Ministry of Education (Ministry of 
Education, 2012), embedded in textbooks used by schools (Fan, 2012), and 
taught in pre-service courses of mathematics teachers (e.g., Chua, 2010; 
Edge, 2006).  
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A number of writers (e.g., Edge, 2006, Wong, 2010) attributed the 
theoretical roots of the CPA to Bruner’s (1966) “enactive”, “iconic”, and 
“symbolic”. To answer the question about the “Singapore CPA” and 
“Bruner” link, we directed our inquiry to a source within the Ministry of 
Education. Kho Tek Hong is a consultant to the Mathematics Unit, 
Curriculum, Planning and Development Division. He oversaw the school 
mathematics syllabus formulations since the late 1970s and remains 
involved in an advisory role in recent syllabus revisions. In response to our 
enquiry, Kho (personal communication, 2012) replied and part of his 
response is reproduced here: 

Truly the CPA Approach was idealised from Bruner's … . [It was] 
researched and adopted by me at the initiation of the Primary 
Mathematics Project (PMP) in 1979 and 1980, and the CPA Approach 
was highlighted in the First Edition of the PMP's Primary Mathematics 
instructional materials first published in 1981. The approach was 
reported in Ministry of Education internal documents (not for 
circulation). 

Since CPA is acknowledged to be based on Bruner’s conceptions, we now 
turn to the latter for theoretical foundations. 

Examining Bruner’s Enactive-Iconic-Symbolic 

Perhaps a good point to start is to note that Bruner’s original project was far 
more ambitious than the enactive-iconic-symbolic that he is now more 
known for. He set forth to craft a “theory of instruction”—as revealed in the 
title of his 1966 book, and he began by making explicit the parameters 
which such a theory must address: (1) specify ways to help students develop 
a “predisposition towards learning” (p. 40), (2) specify ways to structure an 
intended body of knowledge for learners, (3) specify the most effective 
sequences to present teaching materials, and (4) specify the involvement of 
rewards and punishments. Enactive-iconic-symbolic played some parts (but 
not the whole) in (2) and (3) but none at all in (1) and (4).  Not wanting to 
discuss Bruner’s vision of a theory of instruction here, it suffices to remark 
that (4) fell out of fashion in recent times together with behaviourist theories 
and (1) is closely related to affect and remains a challenging area of intense 
research. That (2) and (3) survive in various forms (including CPA) may 
have to do with its relative simplicity—at least in the forms that are 
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perpetrated—and thus suitability for dissemination in teacher professional 
development. 
 
It is under point (2) on the structure of knowledge that Bruner (1966) 
introduced the enactive-iconic-symbolic as “modes of representation”: 

Any set of knowledge … can be represented in three ways: by a set of 
actions appropriate for achieving a certain result (enactive 
representation); by a set of summary images or graphics that stand for a 
concept without defining it fully (iconic representation); and a set of 
symbolic or logical propositions drawn from a symbolic system that is 
governed by rules or laws forming and transforming propositions 
(symbolic representation) (pp. 44-45). 

Quite clearly, using modern parlance, Bruner was not referring to 
representations as conceived in internal mental states; rather, he was 
interested in external representations of knowledge for the purpose of public 
discourse, and more particularly, in instructional settings. He was asserting 
that knowledge (including and especially for educative purposes) can be 
embodied in any one of these forms: action, visual image, or language-
symbolic. Far be it that Bruner was advocating that a unique representation 
of a concept exists under each of the modes. In fact, contrary to this, he 
noted that “[m]any subjects, such as mathematics, have alternative modes of 
representation” (p. 45).  
 
As part of his theory of instruction, the choice among multiple modes is 
dependent on other features of representation: economy and power. The 
former has to do with the amount of information needed to process the 
representation in order to comprehend the underlying knowledge; the latter 
refers to the potential of the representation in helping the learner go beyond 
what is couched on the surface of the representation to connect to deeper or 
related ideas. Bringing it closer to mathematics classroom instruction, 
Bruner’s theory of representations is part of his broader theory of 
instruction. In other words, he was positing modes of representations of 
mathematical ideas that teachers can bring into the classroom and how they 
can decide, based on notions such as economy and power, on the actual 
forms these modes can take for students’ learning. 
 
As to the more popular interpretation of Bruner’s method as moving from 
enactive to iconic to symbolic, he dealt with this matter under (3) on 
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effective sequences: “If it is true that the usual course of intellectual 
development moves from enactive through iconic to symbolic representation 
of the world, it is likely that an optimum sequence will progress in the same 
direction” (p. 49). 
 
Before proceeding, we propose to make a distinction here between the 
language of “mode” and the language of “stage”. Bruner uses these two 
terms and sometimes interchangeably to refer to each of the three constructs. 
For clarity of the readers, we use “mode” to refer to the representational 
form and “stage” to refer to the predominant mode used during the time 
sequence of instruction. 
 
Bruner moved closer to the specific domain of mathematics instruction in 
his illustration within the same book of how the sequence can be carried out 
in the teaching of solving quadratic equation. He described at length how the 
“enactive” stage could be carried out by getting students to work on algebra 
blocks (a three-dimensional form of algebra tiles) and then gradually 
guiding them “to an iconic representation … . Along the way, notation was 
developed and … converted into a properly symbolic system” (pp. 64-65, 
emphases added). Bruner’s “along the way” debunked a myth that seems 
commonly held within some sectors of the mathematics education 
community: that Bruner’s modes are distinct and separated chronologically.  
In his conception, elements of the “symbolic” mode, such as algebraic 
notations, are developed alongside the primarily enactive and iconic stages 
of instruction, leading towards a proficiency of operation within the 
symbolic system. The moving through the stages provides an overarching 
broad instructional flow, with careful attention given to developing 
notations of the symbolic system gradually across the changing stages and 
overlapping modes.  
 
Also, the goal of starting with “enactive” stage is not to remain merely at 
that mode; it is ultimately to get the students to fluency in the “Symbolic” 
mode. In the process, teachers are to help students “wean themselves from 
the perceptual embodiment to the symbolic notation” (p. 63). This point, to 
us, is significant as it avoids two extremes: being complacent merely with 
students’ comfort in enactive or iconic modes on one end; and, proceeding 
quickly through (or not at all) through the earlier stages to get to symbolic 
mode on the other. The former is perhaps more common among teachers 
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working with mathematics ‘low-achievers’. The possible defence is that 
they are incapable of symbolic manipulations and thus working with less 
formal representations can be considered, for them, as success. Bruner 
(1966), however, did not share this view: “For if a child is to deal with 
mathematical properties he will have to deal with symbols per se, else he 
will be limited to the narrow and rather trivial range of symbolism that can 
be given direct … visual embodiment” (p. 63).  We stand with Bruner on 
this, and add that stopping short of working primarily in the symbolic mode 
denies students of a wide range of rich and rewarding mathematical 
experiences. In fact, if students work purely in enactive and iconic modes 
over the long term, they can hardly be said to be doing mathematics; we 
contend, with others (e.g., Ma, 1999), that fluent operation within the 
symbolic domain is at the heart of the mathematics discipline. The other 
temptation for teachers to skip or move quickly through the earlier stages to 
‘get to’ symbolic representations is also real. And the argument for it may 
seem compelling: if the final goal is to get students proficient with working 
purely in the symbolic system, why waste (so much) time teaching the other 
modes? Again, Bruner (1966) provided a balanced answer: 

For when the learner has a well-developed symbolic system, it may be 
possible to by-pass the first two stages. But one does so with the risk that 
the learner may not possess the imagery to fall back on when his symbolic 
transformations fail to achieve a goal in problem solving (p. 49). 

 
One inference from this is that, to Bruner, (i) while it is important for 
students to be able to work solely in the symbolic system, the symbolic 
mode of representation is not necessarily a ‘superior’ mode to, say, the 
iconic mode across all mathematical situations. He gave the context of 
problem solving as one example in which the imagery of a concept may 
provide a good alternative in attacking the problem. This implies that one’s 
inability to switch to a different mode limits one’s problem solving ability; 
(ii) familiarity with other modes allows students to “fall back”. We 
understand this to mean that if a student learns purely in the symbolic mode, 
in the event that he cannot recall its workings, he can then have something 
to “fall back” to in order to recover the meanings of the notations in the 
symbolic mode. There is no way to “fall back” if there is no history of 
meaningful learning in other modes of representation; (iii) the moving 
through the three modes in instruction theoretically mirrors the “usual 
course of intellectual development” (p. 49).  
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Nevertheless, Bruner’s point that “it may be possible to by-pass the first two 
stages” is not an insignificant statement. It is a reminder that students who 
are adept at the symbolic system should not be compelled to always start 
their learning at the earlier stages. Where the tools learnt in the other modes 
are not potentially powerful problem solving resources, these students 
should not be ‘forced’ to go through the full works of the three stages. 
Rather, an alternative learning trajectory that bypasses the earlier modes 
should be catered to these students.  
 
Today, stadial theories have gone out of fashion in favour of more complex 
views of instruction that take into account socio-cultural factors (Merttens, 
2012). Bruner’s enactive-iconic-symbolic is not spared from this effect. We 
recognize that teaching is a complex cultural activity that is not easily 
reducible to a context-free universal three-step method. But the aspects of 
Bruner’s modes and sequence that we reviewed does not claim to do that; it 
sets out what is to us a reasonable theory of external representations for use 
in teaching, without over-complexifying it to a point that renders it 
unworkable for dissemination; it recognises differences among students but 
sets up a broad sequence of stages that serves as a good rule of thumb for 
structuring instruction when introducing mathematics ideas/methods. Insofar 
as its theoretical assumptions are sound and can be easily translatable to 
classroom use, we think it remains a useful teaching heuristic for teachers’ 
reference. 

From Bruner to Singapore’s CPA 

There is quite clearly a one-to-one correspondence between Singapore’s 
Concrete-Pictorial-Abstract to Bruner’s Enactive-Iconic-Symbolic. The 
change in labels of each of the modes appears more an attempt at language 
simplification rather than conscious theory revision. The extract from the 
Ministry of Education syllabus document (Ministry of Education, 2012) at 
the beginning of this paper makes clear the official interpretation of 
“Concrete” as not restricted to “concrete manipulatives”, but also “concrete 
experiences”. The latter was further explained as comprising activities with 
suitable manipulatives. This view of “Concrete” is thus very much in line 
with Bruner’s “Enactive” which is also about mathematical knowledge as 
embodied in actions. Within the same extract, relatively little is mentioned 
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about “Pictorial” and “Abstract”. There is, nevertheless, a reference to 
“Pictorial” as “representations”, which aligns closely to Bruner’s “Iconic”; 
and the language of “guiding through” is in line with the sequential order of 
the three modes. We can then infer that “Abstract” is conceptually not far 
off from the language-symbolic emphasis of Bruner’s “Symbolic”. 
 
Another source of reference about what the official take on these terms are 
can be found in Singapore mathematics textbooks commissioned by the 
Ministry of Education, since CPA is said to be incorporated in these 
textbooks: 

The Primary Mathematics Project (PMP), led by Dr Kho Tek Hong, was 
tasked to produce instructional materials for the teaching and learning of 
primary mathematics with effective teaching approaches and professional 
development of teachers. The PMP instructional materials advocated the 
Concrete-Pictorial-Abstract Approach (Kho, Yeo, & Lee, 2009, p. 2). 

 
We reviewed a number of textbooks that arose from the work of the PMP 
(e.g. Curriculum Development Institute of Singapore, 1982; 1983). A typical 
chapter introduction of these textbooks follows this order: a ‘real-life’ 
setting that provides a context for a noteworthy situation or problem (e.g., a 
pie-division problem), a visual representation of the situation or other 
related problems (e.g., representing pies by circles), and abstracting from 
visual forms to a symbolic form (e.g., working with numeric fractions). 
There is thus a sequence that mirrors closely the CPA stages. However, the 
“Concrete” as is presented in the textbooks appeared to have deviated from 
Bruner’s original conception of activity to taking the form of a mere 
description of an activity. In other words, the textbook writers appeared to 
have taken the liberty to broaden “Concrete” to include not just activity, but 
also a reading (or teacher-talk) about the activity.  
 
There appears then a difference between the notion of “Concrete” as used by 
the PMP writers in the early 1980s and the writers of the most recent 
syllabus document for implementation in 2013. If so, we surmised that, 
within the Ministry of Education, there could have been a change in thinking 
or emphasis about “Concrete” over the years (and recently converging to 
Bruner’s original conception). As it turned out, Kho confirmed this hunch 
(personal communication, 2012): 
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The significant change was the shift of emphasis from teaching to 
learning in the 1990s. Besides teaching aids, a wide range of learning 
manipulatives were introduced. The teacher's role is to provide 
appropriate learning experiences, including concrete experiences … to 
facilitate learning. Concrete experiences can take the form of activities, 
real-life context, or use of manipulatives. 

In tracing the Ministry of Education’s documents over the last three decades 
on CPA, we also notice that CPA as an instructional strategy was first 
introduced only to the Primary levels through the outcomes of the PMP in 
the early 1980s. The oldest source available dates back to 1990 (Ministry of 
Education, 1990b) in which CPA was also officially endorsed as a 
recommended teaching approach to the Lower Secondary levels. 
 
There is, however, one feature that appears to be different from Bruner: 
concrete, pictorial, and abstract are depicted in the Ministry of Education 
documents as “levels of understanding” (Ministry of Education, 1990a, p. 
10; Ministry of Education, 2012, p. 23). Bruner does not use the language of 
“levels”. His use of “stages” has more to do with instructional sequencing 
with respect to time rather than “levels of understanding”. The latter appears 
to go beyond the external representational forms into psychological modes 
of operation within learners. We think this association (intended or 
otherwise) to internal states of competence of students is perhaps a step too 
far. Psychological workings in, say, a problem solving situation involve 
complex working flexibly across different modes of representations, and not 
merely mental operation at a single level. Nevertheless, we agree (with 
Bruner too) that students capable of operating fluently at the Abstract mode 
possess mental tools that enable them to handle more sophisticated 
mathematical tasks. 
 
A final point about CPA is the potential ambiguity with the terms 
“Concrete” and “Abstract”. Part of the ambiguity has to do with the different 
definitions of these terms from different theoretical traditions. In some 
schools of thought (e.g., of the Piagetian tradition), “Concrete” tends to be 
associated more with objects rather than actions. Similarly, “Abstract” can 
be defined as the end result of the process of abstracting by comparing 
similarities (e.g., Skemp, 1986) rather than the Brunerian conception of 
operating in a symbolic system. A further complication is in the subjective 
nature of what is viewed as concrete or abstract. For example, a 
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mathematician will consider working with algebraic symbols in the 
quadratics “concrete” while the same activity would be seen as “abstract” to 
students not accustomed to the task. One implication of these ambiguities 
and subjectivities to mathematics instruction is that what is considered 
“concrete”, “pictorial”, and “abstract” for a particular body of mathematical 
knowledge is not a fixed universal; rather, teachers will need to calibrate the 
modes to suit the needs of their students. For this, the features of economy 
and power of representations that Bruner purported remain useful 
guidelines.  
 
So far, we have discussed Singapore CPA in its general characteristics. In 
the next section, we go into the specifics of how CPA can be utilised as a 
guiding heuristic in actual classroom mathematical instruction. In particular, 
we provide a description of our interpretation of CPA as it was applied in 
the design of a lesson on quadratic factorisation.  

CPA applied in actual lessons: An example 

The mathematics lesson was part of a project led by the first author that 
involved the application of CPA—including the principles of instruction and 
representations discussed in the earlier sections—in the context of teaching 
a Year Eight class in a Singapore secondary school (henceforth referred to 
as the project school). The details of the project are reported in Leong, Yap, 
Teo, Thilagam, Karen, Quek, & Tan (2010).  As the focus of this paper is 
not on that project, only a brief description is provided here. 
 
Discussions among teachers prior to the project were over the difficulty that 
students—particularly students who were mathematically-challenged—in 
the school faced when confronted with algebraic manipulation. The teachers 
reported that students made many mistakes in symbolic manipulations and it 
seemed that the students could not make sense of the basic rules and 
symbols of algebra. The goal of the project was thus to design lessons that 
will help students make sense of the algebra they do.  Seen through the lens 
of CPA, the project aimed to help students start with concrete 
representations of algebra and then connect it gradually to the symbolic 
form of formal algebra over the course of the lessons. The topic selected for 
the study was “factorisation involving quadratic polynomials” as this was 
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agreed among the teachers to be the most challenging topic for their 
students. 
 
Sixty students from the Secondary Two Normal (Academic) class were 
taught using the CPA approach.  In Singapore, pupils who have completed 
primary education are streamed into three ability streams, according to their 
performance in the national examination. The streams are known as 
Express, Normal (Academic), Normal (Technical) and the percentage of 
students in each of these streams are roughly 60, 25, and 15 respectively. 
These selected students were judged by their resident teachers to be among 
those who had the most difficulty with algebra. 
 
Guided by CPA, the connection between the concrete mode of representing 
factorisation to its more abstract algebraic form was carried out. We used 
the geometric analogy of factorisation as finding length/breadth of the 
rectangle given the area. To concretise this “forming of rectangle” stage, we 
introduced AlgeCards for a start.  AlgeCards are similar to Algebra tiles 
with the difference that “x2”, “x”, and “1” are imprinted on the cards to help 
students make clearer visual connections between the concrete and the 
symbolic modes. The purpose of using the AlgeCards is to help students 
actively carry out the “forming rectangle” as an essential part of 
factorisation in a concrete way. In line with the foregoing discussion in the 
earlier sections, we were mindful that students ought not to stay too 
comfortable with AlgeCards; rather, we wanted students to make entrance 
into factorisation using a representation that made sense to them but would 
subsequently progress to a method that approximates algebraic dexterity. 
Figure 1 shows the links among these modes of representation. “Rectangle 
Diagram” is a pictorial simplification of the concrete AlgeCards; and unlike 
the latter, it can be easily drawn and thus portable as a useable tool in paper-
and-pencil contexts, including paper-and-pencil test situations. 
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Factorise AlgeCards Diagram Rectangle Diagram 
232 ++ xx   

= )2)(1( ++ xx  
 
 
 
 
 

  
 
 
 
 

Figure 1. Linking AlgeCards to rectangle diagram and to the algebraic factorization. 
 
The design of AlgeCards is similar to those employed by Bruner himself 
(Bruner, 1966, pp. 60-62). The co-existence of the written algebraic symbols 
with the concrete manipulatives provides a gradual build-up of the algebraic 
notations through the modes of representation and creates a physical passage 
to allow a gradual transition from the “Concrete” to the “Abstract”, with an 
explicit feature of “decontextualizing” or “fading away”. In our design, this 
is characterized by the following sequence of representations: AlgeCards 
(Concrete pieces suitable for manipulation) → Rectangle Diagram (Pictorial 
representation) → Quadratic expressions (Abstract symbols).  Such a 
gradual fading process has been hinted by Bruner (1966): 

  … by giving a child multiple embodiments of the same general idea 
expressed in a common notation we lead him to “empty” the concept of 
specific sensory properties until he is able to grasp its abstract properties 
(p. 65). 

Many proponents of concrete manipulatives have also made mention of this 
fading process; for instance, Goldstone & Son, 2005; Gravemeijer, 2002; 
Lehrer & Schauble, 2002; Lesh, 1979.  More recently, McNeil & Fyfe 
(2012) reported on the positive effects of fading on the transfer performance 
for a sample of undergraduates learning group theory.  
 
The duration of the fading process varied across students. Subsequent 
lessons were designed in such a way as to allow students to transit to using 
the Pictorial as the predominant mode gradually by introducing larger 
positive coefficients as a motivation. When students could operate 
comfortably with the Rectangle Diagram without first starting with the 
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AlgeCards, then expressions with negative coefficients, such as x2 - 3x + 2, 
were given. For these items, the students were encouraged to use the 
Rectangle Diagram as a template to work out the factorisation instead of still 
thinking of the components as ‘negative areas’.  
 
Alongside the goal of helping students learn factorisation through the CPA 
heuristic, this project was also conceived as a Lesson Study enterprise. The 
school invited the first author into the group as a Knowledgeable Other. Led 
by the stages advocated by Lewis (2002), and Stepanek, Appel, Leong, 
Mangan, and Mitchell (2007), we used the common features of their Lesson 
Study model to guide the entire process: We met to discuss the difficulties 
students faced and identified the goals of the project; that was followed with 
more discussion meetings on the design of the module—as mentioned in the 
earlier paragraphs; subsequently one teacher in the team carried out the 
teaching of the lessons.  Other teachers in the team sat in for the lessons, 
made disciplined observations, and shared in post-lesson meetings after each 
lesson.   
 
As the focus of this paper is a study on the roots and realisations of CPA in 
the Singapore mathematics curriculum, rigorous investigations into the 
effect of this CPA-based innovation in the participating classes will be the 
subject of another study. Suffice to mention here that the teachers who 
participated in the team shared that they learnt much both from the approach 
taken in the module as well as the observation of students’ work in class. 
Since this method of teaching the topic was first designed and carried out in 
2009, it has been embedded as standard instructional practice in the project 
school: the teachers have continued to employ the CPA approach and the 
instructional materials—the full works of AlgeCards and the accompanying 
worksheets—for every Secondary Two Normal (Academic) cohorts since 
then.  

Regularising the CPA strategy in classrooms 

Despite strong emphasis at the policy level and actual examples of 
alignment to CPA in classroom teaching, there are anecdotal evidences that 
suggest that the common instructional approach in Singapore mathematics 
classrooms is mainly that of direct teaching of the “Abstract”—the rules, the 
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symbols, and the question-specific techniques—without building up from 
“Concrete” and/or “Pictorial”. In this last section of the paper, we discuss 
the challenges of regularising CPA in Singapore classrooms. While we 
mention Singapore as the arena of research, insofar as some of these 
challenges are similarly encountered in other jurisdictions, we think the 
discussion would be of interest to a wider readership. 
 
It is well-known that teachers experience time pressure in attempting to 
complete the assigned syllabus within the constraints of the allocated time as 
stipulated in given teaching schedules (e.g., Assude, 2005; Leong & Chick, 
2011). Working regularly under such conditions of limited time to ‘cover 
topics’, there is a natural tendency to get to the main skills to teach for each 
topic in the most time-efficient way. This result in a quick convergence to 
the rules and formulas that students are expected to learn, which means the 
bypassing of other modes of representation and proceeding straight to the 
‘Abstract’. Doing so, however, often also means a bypassing of students’ 
sense-making and hence the basis for fall back as discussed in the earlier 
sections. 
 
Despite realising that direct teaching of arbitrary rules compromises the 
strength in which the students grasp the underlying mathematical concepts, 
the time pressure challenge is so strong that teachers are unlikely to buy-in 
to CPA so long as it is perceived as (i) taking up an unrealistic amount of 
classroom time; and/or (ii) not of direct benefit to students in terms of test 
scores for the topic. We think that any genuine attempt to regularise CPA 
needs to take into consideration these concerns. 
 
We propose that a feasible way forward is to begin with designing 
exemplary instructional units where CPA can be easily trialled and where 
the results can be observed immediately. Doing so is an acknowledgement 
that (a) it is far too ambitious to implement CPA throughout the whole span 
of the syllabus at one go; (b) a “unit”—of about 4 to 6 hours of lesson 
time—is reasonable temporal space to test the time-workability of the CPA 
sequence and to observe its outcomes on students’ learning; and (c) CPA 
may not be appropriate for the teaching of some mathematics topics. As 
such, the focus should be on those mathematics units whose instructional 
development lends itself well to a CPA progression. 
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Developing the CPA strategy over a unit of lessons also allows the gradual 
transition between stages to take place more seamlessly. Moreover, given 
the diversity among learners, the duration of 4-6 lessons provide the 
temporal latitude for different students to transit to the next predominant 
mode of representation at points they feel they are ready to. In contrast, 
‘forcing’ the entire CPA progression within, say, a single lesson would not 
allow each mode to be developed to a point in which the sense-making takes 
root and where intermodal links can be meaningfully established, thus 
heightening the sense of failure of the CPA innovation; on the other hand, 
stretching the CPA development over a much longer time period beyond a 
“unit” would render it unrealistic from the point of view of keeping to the 
time allocations of the teaching schedule. 
 
Beginning with unit design is also advantageous from the standpoint of 
teacher development. Where feasible, teachers can be involved in the design 
process. As such, they do not see themselves as mere ‘end-user’ of the CPA-
based design; rather, through active participation in the crafting of the unit 
sequence and instructional materials, they are not only given an opportunity 
to develop a more refined interpretation of CPA; they are also able to 
contribute to concretising its use in actual classroom instruction. 
 
Over time, if the unit design strategy can be sustained, we would have a 
collection of a number of CPA-based instructional units that are trialled, 
refined, and avowed by teachers to be workable in actual mathematics 
classrooms. It can then serve as a repository for other teachers who want to 
learn about the usefulness of the CPA heuristic to start their inquiry and 
subsequent adaptations for use in their classrooms. 
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