
MFPS 2006

An Operational Domain-theoretic Treatment of
Recursive Types

Weng Kin Ho 1,2

School of Computer Science
The University of Birmingham
Birmingham, United Kingdom

Abstract

We develop a domain theory for treating recursive types with respect to contextual
equivalence. The principal approach taken here deviates from classical domain
theory in that we do not produce the recursive types via the usual inverse limits
constructions - we have it for free by working directly with the operational semantics.
By extending type expressions to endofunctors on a ‘syntactic’ category, we establish
algebraic compactness. To do this, we rely on an operational version of the minimal
invariance property. In addition, we apply techniques developed herein to reason
about FPC programs.

Key words: Operational domain theory, recursive types, FPC,
realisable functor, algebraic compactness, generic approximation
lemma, denotational semantics

1 Introduction

We develop a domain theory for treating recursive types with respect to con-
textual equivalence. The language we consider is sequential and has, in addi-
tion to recursive types, sum, product, function and lifed types. It is, by now,
folklore that the domain-theoretic model of such a language is computationally
adequate but fails to be fully abstract, i.e., the denotational equality of two
terms implies their contextual equivalence but not the converse.

In order to cope with this phenomenon, we develop the operational coun-
terpart of domain theory that deals with the solutions of recursive domain
equations. Such an enterprise may be seen as an extension of a similar pro-
gramme by M.H. Escardó and W.K. Ho in [6] for the language PCF. Indeed

1 Ph.D. program sponsored by School of Computer Science International Research Stu-
dentships, University of Birmingham
2 Email: W.K.Ho@cs.bham.ac.uk

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Ho

many authors have already exported domain-theory into the study of the oper-
ational order. Amongst these are I.A. Mason, et al, [19], as well as L. Birkedal
and R. Harper [5] who, in particular, gave a relational interpretation to re-
cursive types in an operational setting. This paper complements with [5] in
that we focus on the connection between an operational version of Freyd’s
algebraic compactness and the underlying domain structure of the contextual
order. Our study also makes use of A.M. Pitts’ operational tools (which can
be traced back to works like [12,14,15,19]) developed in [22] which are recorded
in Section 2.

We work with the diagonal category A built from the category of closed
FPC types C. Details of this are discussed in Section 3 in conjunction with
the extension of formal type expressions to endofunctors on A. Based on this,
we introduce an operational notion of (parameterised) algebraic compactness.

The main result of this paper (in Section 4) asserts that A is (parame-
terised) algebraically compact operationally, the consequences of which are
covered in the next two sections. In particular, every closed type has an
SFP-structure from which one discovers an operational proof of the “generic
approximation lemma” [16]. In Section 6, running examples taken from [22]
demonstrate the versatility of this proof method as compared to others such
as bisimulation techniques ([12,22]) and program fusion ([11]).

Throughout the discussion we assume certain pre-requisites from the reader
which include the operational semantics of the call-by-name version of FPC
([17]), theory of recursive domain equations ([2,26]) and category theory ([18]).

2 Preliminaries

We choose to work with a call-by-name version of FPC 3 (Fixed Point Cal-
culus). The most salient part of the operational semantics of FPC has to do
with the following typing and evaluation rules:

Γ ` t : σ[µX.σ/X]

Γ ` fold(t) : µX.σ
(fold)

Γ ` t : µX.σ

Γ ` unfold(t) : σ[µX.σ/X]
(unfold)

fold(t) ⇓ fold(t)
(⇓ fold)

t ⇓ fold(s) s ⇓ v

unfold(t) ⇓ v
(⇓ unfold)

Note that sums of types are given an operational semantics corresponding
to the separated sum in domain theory, namely:

inl(t) ⇓ inl(t)
(⇓ inl)

inr(t) ⇓ inr(t)
(⇓ inr)

3 The call-by-value version of FPC was introduced by G.D. Plotkin [23] in his 1985 CSLI
lectures.

2

Ho

s ⇓ inl(t) s1[t/x] ⇓ v

case(s) of

 inl(x).s1

inr(y).s2

⇓ v
(⇓ case1)

s ⇓ inr(t) s2[t/y] ⇓ v

case(s) of

 inl(x).s1

inr(y).s2

⇓ v
(⇓ case2)

The typing and evaluation rules concerning lifted types are given by:

Γ ` x : σ

Γ ` up(x) : σ⊥

(up)
Γ ` x : σ⊥

Γ ` down(x) : σ
(down)

up(x) ⇓ up(x)
(⇓ up)

x ⇓ up(t) t ⇓ v

down(x) ⇓ v
(⇓ down)

In addition, we have:

Γ ` z : σ⊥ Γ ` y : τ

Γ ` case(z) of up(x).y : τ
(caseup)

z ⇓ up(t) y[t/x] ⇓ v

case(z) of up(x).y ⇓ v
(⇓ caseup)

By exploiting the recursive types, we define the fix operator as follows:
fixσ := λf : σ → σ.k(foldτ (k))

where τ := µX.(X → σ) and k := λx : τ.f(unfoldτ (x)x). Thus we do not
include an explicit fix operator.

Our theory relies heavily on three important facts.

(1) Every closed FPC type is rational-chain complete. We apply A.M. Pitts’
operationally based theories of program equivalence [22] to FPC where
contextual equivalence is taken with respect to the unit type Σ := (µX.X)⊥.
Most importantly, each closed type σ is (pre)ordered contextually (de-
noted by vσ) and is closed under the formation of rational chains:

⊥σ vσ f(⊥σ) vσ f (2)(⊥σ) vσ . . . vσ f (n)(⊥σ) v . . .
where ⊥σ := fix(λx : σ.x) and f : σ → σ. Moreover,

⊔
n f (n)(⊥) = fix(f).

The crucial point here is that rational chain-completeness is proven by
purely operational means and is independent of the properties of recursive
type expressions reported herein.

(2) Every program of function type is rationally continuous, i.e., for any
h : σ → τ and f : σ → σ, it holds that

h(
⊔

n f (n)(⊥σ)) =
⊔

n h ◦ f (n)(⊥σ).

3

Ho

(3) fold and unfold are mutually inverse (modulo contextual equivalence).
This can be justified by the η- and β-rules enjoyed by the contextual
equivalence: fold ◦ unfold = id (η-rule) and unfold ◦ fold = id (β-rule).

Proofs of (1), (2) and (3) are simply a reworking of those developed by A.M.
Pitts for the language PCFL in [22] and are thus omitted in this paper.

3 The categorical setting

This section gives an account of the categorical framework within which our
theory is organised. Our approach, largely adapted from [1], turns out to be
the appropriate option among others. We carefully explain this in two stages:
(i) understand the basic type expressions (i.e., without the function types) as
functors, and then (ii) consider those built from all possible type constructors.

The objects of C are the closed FPC types (i.e., type expressions with no
free variables) and the morphisms are terms-in-context of the form x : σ ` t : τ
for some type variable x and open term t such that fv(t) ⊆ {x}. Here fv(t)
denotes the set of free variables occurring in the term t. Given closed type
σ, the identity morphism idσ is just the x : σ ` x : σ and the composition
of two morphisms x : ρ ` s : σ and y : σ ` t : τ , for instance, is defined
as x : ρ ` t[s/y] : τ . Moreover, we identify morphisms x : σ ` t : τ and
x : σ ` t′ : τ as the same if t and t′ are contextually equivalent. Here the
contextual equivalence of open terms is defined using closed instantiations of
the free variables.

Formal FPC type expressions are called basic if they are generated by the
following fragment of the grammar:

σ := X | σ + σ | σ × σ | µX.σ | σ⊥
where X, Y range over type variables and σ, τ range over type expressions. In
other words, these are type expressions which do not include the function-type
constructor →. For convenience of notation, we write:

~σ for a sequence of closed types σ1, . . . , σn

~t for a sequence of closed terms t1, . . . , tn

~X for a sequence of type variables X1, . . . , Xn

~x for a sequence of term variables x1, . . . , xn

~σ/ ~X for the substitutions σ1/X1, . . . , σn/Xn

~t/~x for the substitutions t1/x1, . . . , tn/xn.

A functor T : Cn → C is basic if

(1) there exists a basic type expression τ in context ~X such that for every

sequence ~σ of closed types, it holds that T (~σ) := τ [~σ/ ~X], and

(2) there exist a sequence of term variables ~f and a term t with fv(t) ⊆
{f1, . . . , fn} such that for all morphisms ~u : ~σ → ~ρ (meaning ui : σi → ρi

4

Ho

for i = 1, . . . , n) we have the term-in-context

fi : (σi → ρi)|ni=1 ` t : τ [~σ/ ~X]→ τ [~ρ/ ~X]

with T (~u) = t[~u/~f]. We say that t realises T .

Of course, it comes as no surprise that

Proposition 3.1 Basic type expressions define basic functors.

We first present the construction and then prove functoriality. For each
type expression σ in context Θ ≡ ~X, we define by induction on the structure
of types the associated functor SΘ`σ : Cn → C (or simply S) as follows:

(1) Type variable
Let Θ ` Xi (i ∈ {1, . . . , n}). For object ~σ, define S(~σ) = σi and for
morphism ~u : ~σ → ~ρ, define S(~u) = ui.
Let Θ ` τ1, τ2 and suppose that Tj (j = 1, 2) is the basic functor associ-
ated with Θ ` τj and whose morphism part is realised by tj.

(2) Sum type
For object ~σ, define S(~σ) = T1(~σ) + T2(~σ). For morphism ~u : ~σ → ~ρ,
define S(~u) to be the term-in-context

~f : (~σ → ~ρ) ` λz.case(z) of

 inl(x).inl(t1(~f)(x))

inr(y).inr(t2(~f)(y))
.

(3) Product type
For object ~σ, define S(~σ) = T1(~σ) × T2(~σ). For morphism ~u : ~σ → ~ρ,
define S(~u) to be the unique morphism h such that πj ◦ h = Tj(~u) ◦ πj

(j = 1, 2), i.e., it is the term-in-context
~f : (~σ → ~ρ) ` λz.(t1(~f)(π1z), t2(~f)(π2z)).

(4) Recursive type
Let Θ, X ` τ and X /∈ {X1, . . . , Xn}. For object ~σ, define S(~σ) =

µX.T (~σ, X). We write T (~σ, S(~σ)) for τ [~σ/ ~X, S(~σ)/X]. For the morphism
~u : ~σ → ~ρ, define S(~u) to be the (contextually) least map h that makes
the following diagram

S(~σ)
unfoldS(~σ)

- T (~σ, S(~σ))

S(~ρ)

h

?

unfoldS(~ρ)
- T (~ρ, S(~ρ))

T (~u, h)

?

commute, i.e., it is the term-in-context ~f : (~σ → ~ρ) ` g : S(~σ) → S(~ρ)
with g being the least solution to the recursive equation

g = foldS(~ρ) ◦ t(g, ~f) ◦ unfoldS(~σ)

where t is the basic term realising T .

5

Ho

(5) Lifted type
Let Θ ` τ and T the associated functor whose morphism part is realised
by the term t. For object ~σ, define S(~σ) = (T (~σ))⊥. For morphism

~u : ~σ → ~ρ, define S(~u) to be the term-in-context ~f : (~σ → ~ρ) ` up ◦
T (~f) ◦ down where t is the basic term realising T .

Functoriality relies on the following two key lemmas.

Lemma 3.2 (Plotkin’s uniformity principle) Let f : σ → σ, g : τ → τ be
FPC programs and h : σ → τ a strict program, i.e., h(⊥σ) = ⊥τ such that
h ◦ f = g ◦ h. Then fix(g) = h(fix(f)).

Proof. Using rational-chain completeness, rational continuity, h ◦ f = g ◦ h
in turn, it follows that

h(fix(f)) = h(
⊔

n f (n)(⊥σ))

=
⊔

n h ◦ f (n)(⊥σ)

=
⊔

n g(n) ◦ h(⊥σ)

=
⊔

n g(n)(⊥τ)

= fix(g).

2

Lemma 3.3 (Operational Minimal Invariance) Let T : Cn+1 → C be a basic
functor and ~σ a given sequence of closed types. Write S(~σ) for µX.T (~σ, X).
Then the least endomorphism e : S(~σ)→ S(~σ) for which

e = foldS(~σ) ◦ T (~id, e) ◦ unfoldS(~σ)

must be idS(~σ).

Proof. The interpretation of e in the Scott model, denoted by [[e]], is the least
endomorphism f : [[S(~σ)]]→ [[S(~σ)]] such that the corresponding equation

f = [[foldS(~σ)]] ◦ [[T]]([[~id]], f) ◦ [[unfoldS(~σ)]]
holds. By classical domain theory, the least endomorphism [[e]] on [[S(~σ)]] must
be id[[S(~σ)]]. But Lemma 3.4 below asserts that e(x) = x for all x : S(~σ). Thus
by the Context Lemma ([20]), h = idS(~σ). 2

Lemma 3.4 Let e : τ → τ be a closed term such that [[e]] = id[[τ]] in the
Scott-model. Then for all x : τ , e(x) = x.

Proof. For all x : τ , it holds that [[e(x)]] = [[e]]([[x]]) = id[[τ]]([[x]]) = [[x]]. The
desired result then follows from the computational adequacy of the Scott-
model which in turn can be proven by adapting the proof of Theorem 7.14 of
[10] to our call-by-name setting. 2

Remark 3.5 Although a semantic trick has been employed in the above
proof, the result is purely operational. It is interesting to note that there

6

Ho

is indeed a purely operational proof of Lemma 3.3.in [5] by L. Birkedal and
R. Harper for a simply-typed fragment of ML 4 with one top-level recursive
type. As our principal objective is to understand the connections between op-
erational algebraic compactness and the underlying domain structure of the
contextual order, we choose not to present a modification of their operational
proof here. Notice that the operational proof by L. Birkedal and R. Harper
cannot be easily replaced by a direct proof by induction on types. That would
deem to fail because the least fixed point of a type expression is not in any
way built from those of its constituents.

Remark 3.6 Theorem 5.2 of [25] seems to suggest that the Plotkin’s unifor-
mity can be used to prove that the morphism fold : σ[µX.σ/X] → µX.σ is
a special invariant (which is equivalent to our operational minimal invariance
property). However, a closer inspection reveals that this implication holds
provided fold : σ[µX.σ/X]→ µX.σ is an initial algebra. But this, in our case,
cannot be established without invoking the operational minimal invariance
property itself. Thus we do not know for sure if the uniformity principle alone
implies Lemma 3.3.

We are now ready to prove functoriality.

Proof. First we prove the preservation of composition of morphisms. Con-
sider the following composition of morphisms:

(~u : ~σ → ~ρ) ◦ (~v : ~ρ→ ~τ)
Avoiding routine details, we just verify the case for constructors of the form
µX.T (~X, X), i.e., S(~v ◦ ~u) = S(~v) ◦ S(~u) where µX.T (~σ, X) is abbreviated
by S(~σ). For that purpose, let Φ = λh.foldS(~τ) ◦ T (~v, h) ◦ unfoldS(~ρ) and
Ψ = λf.foldS(~τ) ◦ T (~v ◦ ~u, f) ◦ unfoldS(~σ). Because for any h : S(~ρ)→ S(~τ),

Ψ(h ◦ S(~v)) = foldS(~τ) ◦ T (~v ◦ ~u, h ◦ S(~u)) ◦ unfoldS(~σ)

= foldS(~τ) ◦ T (~v, h) ◦ unfoldS(~ρ) ◦ foldS(~ρ) ◦ T (~u, S(~u)) ◦ unfoldS(~σ)

= Φ(h) ◦ S(~u)

the following diagram commutes:

(S(~ρ)→ S(~τ))
− ◦ S(~u)

- (S(~σ)→ S(~τ))

(S(~ρ)→ S(~τ))

Φ

?

− ◦ S(~u)
- (S(~σ)→ S(~τ))

Ψ

?

Since − ◦ S(~u) is a strict program, by Lemma 3.2 it follows that
S(~v ◦ ~u) = fix(Ψ) = fix(Φ) ◦ S(~u) = S(~v) ◦ S(~u).

4 This language is almost the same as ours except that it has a call-by-value evaluation
strategy and an explicit fix operator.

7

Ho

Finally we establish the preservation of identity morphisms. By definition
S(id~σ) is the least solution e of the equation e = foldS(~σ)◦T (id~σ, e)◦unfoldS(~σ).
But Lemma 3.3 already asserts that e = idS(~σ). Hence S(id~σ) = idS(~σ), which
concludes the proof of functoriality. 2

An unrestricted FPC type expression is more problematic.

(i) Once the function-type constructor → is involved, one needs to separate
the covariant and the contravariant variables (e.g. X is covariant and Y
is contravariant in X → Y).

(ii) A particular type variable may be covariant and contravariant (e.g. X in
X → X).

The usual solution to this problem, following the work of Freyd [9] is to work
with the category Cop × C. However, as discussed in Section 4, this is not
possible for FPC-definable functors. We work instead with a full subcategory
C∗ of this. Define C∗, the diagonal category, to be the full subcategory of Cop×C
whose objects are those of C and morphisms being pairs of C-morphisms 〈v, u〉
of the form: u : σ � τ : v. In this category, composition of morphisms
〈t, s〉 ◦ 〈v, u〉 is defined as the pair of compositions 〈v ◦ t, s ◦ u〉.

A functor T : (C∗)n → C∗ is said to be realisable if

(1) there is an FPC type expression τ in context ~X such that for each se-

quence ~σ of closed terms, T (~σ) = τ [~σ/ ~X], and

(2) there is a sequence of term variables ~f and a term t with fv(t) ⊆
{f1, . . . , fn} such that for all morphism pairs ~u : ~σ−→←−~ρ : ~v (i.e., the

morphism pairs σi

ui−→←−
vi

ρi for i = 1, . . . , n) the terms-in-context

fi : (σi → ρi), gi : (ρi → σi)|ni=1 ` t : τ [~σ/ ~X]−→←−τ [~ρ/ ~X] : s

are such that T (v1, ui, . . . , vn, un) = 〈s, t〉[~u/~f,~v/~g].

Notation. We write −→v; u for v1, u1, . . . , vn, un.

A type expression is functional if it is of the form τ1 → τ2 for some types-
in-context Θ ` τ1, τ2.

Theorem 3.7 All FPC type expressions define realisable functors.

Proof. Again we proceed by induction on the structure of types.

(1) Functional type expressions. Suppose ~X ` τ1 → τ2 for some types-in-

context ~X ` τ1, τ2. Let Tj : (C∗)n → C∗ (j = 1, 2) be functors that realise
~X ` τj. Define the action of S on
(i) Objects: Given ~σ, define S(~σ) = T1(~σ)→ T2(~σ).
(ii) Morphisms: Let ~u : ~σ−→←−~ρ : ~v be given. Since Tj’s are realisable,

there are term variables fi, gi and terms tj, sj with fv(tj), fv(sj) ⊆
{f1, . . . , fn, g1, . . . , gn} such that for all morphism pairs ~u : ~σ−→←−~ρ : ~v,
the term-in-context

8

Ho

fi : (σi → ρi), gi : (ρi → σi)|ni=1 ` tj : τj[~σ/ ~X]−→←−τj[~ρ/ ~X] : sj

such that Tj(−→v; u) = 〈sj, tj〉[~u/~f,~v/~g] (for j = 1, 2). We can thus
define the morphism part of S by u : S(~σ) � S(~ρ) : v where

~u = λh : S(~σ).λg : S(~ρ).t2(−→v; u) ◦ h ◦ s1(−→v; u)
~v = λg : S(~ρ).λh : S(~σ).s2(−→v; u) ◦ g ◦ t1(−→v; u)

Notice that S is realisable because Tj’s are.

(2) Non-functional types expressions. We define these functors in a way
similar to those of the basic case, except that these are upgraded to
functors typed (C∗)n → C∗ by adding the dual arrow when defining its
morphism part.

Functoriality of FPC type expressions can be established in a manner similar
to that of basic type expressions (c.f. Proposition 3.1). 2

4 Algebraic compactness operationally

In [8], P.J. Freyd introduced the notion of algebraic compactness to capture the
bifree nature of the canonical solution to the domain equation X = FX in that
“every endofunctor (on cpo-enriched categories, for example, D⊥, the category
of pointed cpos and strict maps 5) has an initial algebra and a final co-algebra
and they are canonically isomorphic”. Freyd’s Product Theorem asserts that
the algebraically compactness is closed under finite products. Crucially this
implies that Dop

⊥ ×D⊥ is algebraically compact (since its components are) and
thus allows one to cope well with the mixed-variant functors - making the
study of domain equations complete. Now proving that D⊥ is algebraically
compact is no easy feat as one inevitably has to switch to the category of
embeddings and projections, together with a bilimit construction. As opposed
to the classical case, operational algebraic compactness (with respect to the
class of realisable functors) is relatively simple.

The first step is to restrict our attention to a subcategory of C∗, namely A,
whose objects are those of C∗ but whose morphisms are strict morphism pairs.
Despite this restriction, there is no need to contract on our class of realisable
functors, owing to the following lemma.

Lemma 4.1 (Freyd, [7]) If T : (C∗)n+1 → C∗ is a locally monotone functor,
then it preserves strict morphism-pairs. In particular, so does every functor
that realises a type expression.

Proof. Essentially the same as Lemma 1 of [7]. 2

Notation. We define χ = An where n is a fixed natural number.

5 If non-strict maps are considered then the identity functor does not have an initial algebra.

9

Ho

We are now ready for one of the main theorems in this paper.

Theorem 4.2 (Operational parameterised algebraic compactness)
Let X, X1, . . . , Xn ` τ be a type-in-context and T : χ × A → A its realising
functor. Then there exists a realisable functor S : χ → A together with a
natural isomorphism i : T (−, S(−)) → S such that for any parameter P
of χ, the A-morphism iP : T (P, S(P))−→←−S(P) : i−1

P satisfies the following
universal property: For any realisable functor S ′ : χ → A and two natural
transformations kP : T (P, S ′(P))−→←−S ′(P) : jP , there is a unique pair of
natural transformations α and β such that the following diagrams commute:

T (P, S(P)) �
i−1
P S(P) T (P, S(P))

iP - S(P)

T (P, S ′(P))

T (idP , αP)

6

�
jP

S ′(P)

αP

6

T (P, S ′(P))

T (idP , βP)

?

kP

- S ′(P)

βP

?

We say that A is (operationally) parameterised algebraically compact (with
respect to the class of realisable functors). In the special case when χ = A0,
we drop the word “parameterised”.

Proof. Given P in χ, let S(P) = µX.T (P, X) and iP = foldS(P). Recall
that (i) i−1

P = unfoldS(P) and (ii) S is functorial by virtue of Theorem 3.7. It
remains to establish the universal property. For that purpose, define αP and
βP to be the least solutions of the recursive equations:

αP = iP ◦ T (idP , αP) ◦ jP

βP = kP ◦ T (idP , βP) ◦ i−1
P .

Of course, αP and βP make the required diagrams commute. That there are
no others is shown by an application of Lemma 3.2 to the following diagram:

(S(P)→ S(P))× (S(P)→ S(P))
G
- (S ′(P)→ S(P))× (S(P)→ S ′(P))

(S(P)→ S(P))× (S(P)→ S(P))

Φ

?

G
- (S ′(P)→ S(P))× (S(P)→ S ′(P))

Ψ

?

where Φ = λ(g, h).(ip ◦ T (idP , g) ◦ i−1
P , iP ◦ T (idP , h) ◦ i−1

P)
Ψ = λ(a, b).(iP ◦ T (idP , a) ◦ jP , kP ◦ T (idP , b) ◦ i−1

P)
and G = λ(g, h).(g◦α′P , β′P◦h) with α′P and β′P being “potential alternatives”
to αP and βP . 2

10

Ho

We close this section with a justification of our use of A rather than
Cop
⊥ × C⊥. Classical theory of recursive domain equations centres around func-

tors of the form F : (Dop
⊥ ×D⊥)n+1 → (Dop

⊥ ×D⊥) where D⊥ is the category of
pointed cpos and strict morphisms. As noted before, Dop

⊥ ×D⊥ is algebraically
compact. But even more generally Dop

⊥ × D⊥ is parameterised algebraically
compact - a result proven in [10].

Let C§ denote the product category Cop
⊥ × C⊥. The question is whether we

can define the type expressions as functors (belonging to a certain class F) of
the form T : (C§)n → (C§). Assume for the moment that we can do so. Let
~X∓ denote X−

1 , X+
1 , . . . , X−

n , X+
n and consider a type-in-context ~X∓, X ` τ .

Then by assumption there is an F -functor T : (C§)n+1 → (C§) that realises
σ. We expect that there exist an F -functor H := (H−, H+) : (C§)n → (C§)
and a natural isomorphism i such that for every sequence of closed types
~σ∓ := σ−1 , σ+

1 , . . . , σ−n , σ+
n , the pair (H(~σ∓), i~σ∓) is a bifree algreba of the

endofunctor T (~σ∓,−, +) : C§ → C§. Moreover, we anticipate that

H+(~σ∓) := µX.τ [~σ∓/ ~X∓] (†)
and in this way µX.τ is realised by H.

However, it turns out that our anticipation (†) is wrong as we shall explain
in the following stages:

1. Define the class of functors F based on the category C§.
2. Modify Freyd’s argument used in the Product Theorem (see Section 4 of

[9]) to prove that C§ is parametrised algebraically compact with respect
to the class of F -functors.

3. Conclude that our anticipation (†) is wrong.

Stage 1
The class F of functors which we define below is called the class of syntactic
functors (originally used by A. Rohr in his Ph.D. thesis [24]). A functor
T : (C§)n → C⊥ is syntactic if

(i) there are types in context ~X∓ := X−
1 , X+

1 , . . . , X−
n , X+

n ` τ such that for
every sequence of closed types ~σ∓ := σ−1 , σ+

1 , . . . , σ−n , σ+
n , it holds that

T (~σ∓) = τ [~σ∓/ ~X∓].

(ii) there are term variables ~f∓ and a term t with fv(t) ⊆ {f−1 , f+
1 , . . . ,

f−n , f+
n } such that for all morphisms ~u+ : ~σ+ → ~ρ+ (i.e., u+

i : σ+
i → ρ+

i

for i = 1, . . . , n) and ~u− : ~ρ− → ~σ− (i.e., u−i : ρ−i → σ−i for i = 1, . . . , n),
we have a term-in-context

f−i : (ρ−i → σ−i), f+
i : (σ+

i → ρ+
i) ` t : τ [~σ∓]→ τ [~ρ∓]

with T (~u∓) = t[~u∓/~f∓]. As usual, we say that t realises T .

We can generalise this a little further by defining a functor of the form
T : (C§)n → C§ to be syntactic if its projections onto C⊥ are syntactic.

11

Ho

Stage 2
For the sake of clarity, we restrict to n = 2.

Proposition 4.3 Let F : (C§)2 → C⊥ be a syntactic functor. Upgrade F to
F § : (C§)2 → (C§) by defining

F §(X−, X+, Y −, Y +) := (F (X+, X−, Y +, Y −), F (X−, X+, Y −, Y +)).
Then there exists a functor H : C§ → C§ and a pair of natural isomorphisms
i = (i−, i+) such that for all pairs of closed types P = (P−, P+) in C§ we have

i−P : H−(P) ∼= F (P+, P−, H+(P), H−(P)) and
i+P : F (P, H−(P), H+(P)) ∼= H+(P)

where H(P) := (H−(P), H+(P)). Moreover, (H(P), iP) is a bifree algebra
for the endofunctor F §(P,−) : C§ → C§. In other words, the category C§ is
(operationally) parametrised algebraically compact.

Proof. (Sketch) Let P = (P−, P+) be given. Then F §(P,−) defines a syntac-
tic endofunctor on C§. To such a P , we assign the pair of closed types H(P)
in the following way.

(1) Resolve F §(P,−) into its components:
T ′ : C§ → Cop

⊥ and T : C§ → C⊥
i.e., T ′(A∓) := F (P+, P−, A+, A−) and T (A∓) := F (P, A−, A+).

(2) Given a closed type A, T ′(−, A) defines an endofunctor on Cop
⊥ . This

induces a functor F ′ : C⊥ → Cop
⊥ defined by F ′(A) := µX.T ′(X,A). Let

u : A→ B in C⊥. The morphism F ′(u) : F ′(B)→ F ′(A) is the least map
which fits into the following commutative diagram:

F (P+, P−, A, F ′(A)) �
F (idP+ , idP− , u, F ′(u))

F (P+, P−, B, F ′(B))

F ′(A)

unfoldF ′(A)

6

�
F ′(u)

F ′(B)

unfoldF ′(B)

6

Again the functoriality of F ′ can be proven using methods similar to
those outlined in Proposition 3.1.

(3) Define the endofunctor G on C⊥ by G(A) := T (F ′(A), A). Notice that
G(A) = F (P, F ′(A), A).

(4) Define H+(P) := µY.G(Y) and H−(P) := F ′(H+(P)), i.e.,
H+(P) = µY.F (P, µX.F (P+, P−, Y, X), Y) and
H−(P) = µX.T ′(X, H+(P)).

This defines the object part of H. Then define the natural isomorphisms
i−P and i+P via the obvious folding and unfolding so that

i−P : H−(P) ∼= F (P+, P−, H+(P), H−(P))
i+P : F (P−, P+, H−(P), H+(P)) ∼= H+(P).

(5) The morphism part of H is defined as follows. Given f : P → Q in C§, we

12

Ho

define H(f) : H(P) → H(Q) as the least morphism g : H(P) → H(Q)
that makes the diagram below commute.

F §(P, H(P))
iP - H(P)

F §(Q, H(Q))

F §(f, g)

?

iQ
- H(Q)

g

?

(6) Then one routinely verifies that H(P) := (H−(P), H+(P)) together with
the pair of isomorphisms iP := (i−P , i+P) is indeed a bifree algebra for the
endofunctor F §(P,−).

2

Stage 3
From (4), we already know that H+(P) is not given by µX.F (P−, P+, X,X).
Thus we have demonstrated that if we use the category C§ to develop our
theory, the recursive type constructor cannot be defined as a functor H which
satisfies the bifree condition stated in Proposition 4.3. Note that our justifi-
cation echoes with a remark 6 made by M. Abadi and M. Fiore in [1]:

“Interestingly, the syntax seems to steer us away from the approach based on
C§, and towards that based on A.”

5 SFP-structure and the generic approximation lemma

In this section, we establish that every FPC closed type is rationally SFP.
This is similar to the one proven in [6] regarding PCF types. The most vital
consequence of this is a rigorous proof of the generic approximation lemma 7

first proposed by G. Hutton and J. Gibbons in [16] - in which the lemma was
proven via denotational semantics for polynomial types (i.e., types built only
from unit, sums and products) and claimed to “generalise to mutually recur-
sive, parameterised, exponential and nested datatypes” (page 4 of [16]). The
fresh insight here is that this useful lemma is a direct result of the underlying
operational domain structure of types.

A deflation on a type σ is an element of type (σ → σ) that (i) is below the
identity and (ii) has a finite image modulo contextual equivalence. A rational
SFP structure on a type σ is a rational chain idσ

n of idempotent deflations with⊔
n idσ

n = idσ. We say that a type is rationally SFP if it has an SFP structure.

6 In [1], the category C§ is denoted by C̆ and its diagonal subcategory A is denoted by CD.
7 This is a generalisation of R. Bird’s approximation lemma [3], which in turn generalises
the well-known take lemma [4].

13

Ho

Here we need to introduce an auxiliary type - the vertical natural numbers
ω, defined by ω = µX.X⊥. For each x : ω, its successor is defined by succ(x) =
fold ◦up(x). We define 0 := ⊥, n := succn(0), n− 1 := fold ◦down ◦unfold(n)
and ∞ := fix(λx : ω.succ(x)). Note: ∞ = ∞ − 1. Given x : ω, the Σ-
valued convergence test (x > 0) := case(unfold(x)) of up(y).> returns > iff
x = fold(up(y)) for some y : ω.

Using ω, define dσ : ω → (σ → σ) by induction on σ as follows:

dσ×τ (n)(x, y) = (dσ(n)(x), dτ (n)(y))

dσ+τ (n)inl(x) = inl(dσ(n)(x))

dσ+τ (n)inr(y) = inr(dτ (n)(y))

dσ⊥(n)(x) = up ◦ dσ(n) ◦ down(x)

dσ→τ (n)(f) = dτ (n) ◦ f ◦ dσ(n)

and, most crucially, for the recursive type µX.σ, the program dµX.σ(n) is
defined as follows. Recall that A is the subcategory of the diagonal category
C∗ whose morphisms are strict C∗-morphisms. Let S : A → A be the realisable
functor associated to the type-in-context X ` σ. Write S(dµX.σ(n), dµX.σ(n)) =
(eµX.σ(n), eµX.σ(n)). Define

dµX.σ(n)(x) := if (n > 0) then fold ◦ eµX.σ(n− 1) ◦ unfold(x)
where if a then b is syntactic sugar for case(a) of up(x).b. Then it is obvious
that dµX.σ satisfies the following equations:

dµX.σ(0) = ⊥µX.σ→µX.σ and dµX.σ(n + 1) = fold ◦ eµX.σ(n) ◦ unfold.
In what follows, we abuse notations by writing S(f) to denote one of the
morphisms in the pair S(f, f) where S : A → A is a realisable functor.

Lemma 5.1 Let S : A → A be a realisable functor associated to the type-
in-context X ` σ. Suppose f : τ → τ has a finite image modulo contextual
equivalence. Then so does S(f).

Proof. The proof proceeds by induction on σ and only the most interest-
ing part regarding recursive types is presented here. Suppose that σ =
µX.T (X,Y) for some realisable functor T : A2 → A. Recall that S(f) makes
the following diagram commute:

S(τ)
S(f)

- S(τ)

T (τ, S(τ))

unfold

?

T (f, S(f))
- T (τ, S(τ))

unfold

?

Let T ′ be the realisable functor T (−, S(τ)) : A → A. Then T ′(f) = T (f, idS(τ))
and thus by induction hypothesis has a finite image modulo contextual equiv-
alence. Since S(f) = fold ◦ T (idτ , S(f)) ◦ T (f, idS(τ)) ◦ unfold, it follows that
S(f) also has a finite image modulo contextual equivalence. 2

14

Ho

Theorem 5.2 The rational-chain idσ
n := dσ(n) is an SFP-structure on σ for

every closed type σ, i.e., the following hold:

(1) idσ
n ◦ idσ

n = idσ
n.

(2) idσ
n v idσ and

⊔
n idσ

n = idσ
∞ = idσ.

(3) idσ
n has finite image modulo contextual equivalence.

Proof. By induction on σ as usual. Since (1) is obvious and (3) a direct result
of Lemma 5.1, we shall only prove (2) by a further induction on n. Let S be
the functor realising X ` σ. The base case is trivial and the inductive step is
justified by the monotonicity of S in that:

idµX.σ
n = fold ◦ S(idµX.σ

n−1) ◦ unfold
v fold ◦ S(idµX.σ) ◦ unfold (Induction hypothesis)
= idµX.σ (S is a functor, unfold = fold−1)

Because∞ =∞−1, the morphism k := idµX.σ
∞ satisfies the recursive equation

k = fold ◦ S(k) ◦ unfold. By Lemma 3.3, idµX.σ is the least solution and
thus must be below idµX.σ

∞ . On the other hand, idµX.σ
∞ =

⊔
n idµX.σ

n so that
idµX.σ
∞ v idµX.σ. Hence idµX.σ

∞ = idµX.σ. 2

Notation. We write x =n y for idn(x) = idn(y).

Corollary 5.3 (The generic approximation lemma [16])
Let σ be a closed type and x, y : σ. Then x = y iff for all n ∈ N, x =n y.

Proof. Immediate from Theorem 5.2. 2

6 Sample applications

In this section, we demonstrate the versatility of the “generic approximation
lemma” by using running examples of programs taken from [22]. For each
example, we compare the use of Corollary 5.3 with an alternative method in
proving program properties. Let τ be a closed type and recall that 1 := µX.X
is the type which consists of ⊥ alone. The type [τ] := µα.1 + τ × α is called
the (lazy) list type associated to τ . An element of [τ] may be thought of as a
(finite or infinite) list of elements in τ . Note that the elements in a list may
include ⊥τ . In the course of our discussion, we make use of the following:

(1) [] := fold(inl(∗))
(2) cons : τ → [τ]→ [τ]

cons x xs = fold(inr(x, xs)) ≡ (x : xs).
(3) Let σ be a closed type.

A program f : [τ]→ σ defined by cases, i.e.,

f(l) = case(l) of

 inl(x).s1

inr(y).s2

is written in Haskell style:

f [] = s1

f (x : xs) = s2

Case definitions producing divergence are omitted, e.g. hd : [τ] → τ and

15

Ho

tl : [τ]→ [τ] are defined by: hd (x : xs) = x and tl (x : xs) = xs
(4) For programs f : (τ → τ)→ (τ → τ), we write h := fix(f) as:

h : τ → τ
h = f h

Since all the examples covered here only involve the basic type constructors,
one could have, for their sake, developed the machineries necessary for han-
dling basic type expressions.

The following proves handy whenever Corollary 5.3 is applied to lists.

Lemma 6.1 Let n > 0 be a natural number and τ be a closed type. Then the
program idn : [τ]→ [τ] satisfies the following equations:

idn[] = []
idn(x : xs) = (x : idn−1(xs))

Proof. Straightforward and thus omitted. 2

We define two familiar functions map and iterate.
map : (τ → τ)→ [τ]→ [τ] iterate : (τ → τ)→ τ → [τ]
map f [] = [] iteratef x = (x : iteratef f(x))
map (x : xs) = (f(x) : map f xs)

Proposition 6.2 (The map-iterate property)
Let τ be a closed type. For any f : (τ → τ) and any x : τ , it holds that

mapf (iteratef x) = iteratef f(x).

Program fusion has been used in [11] to prove the above. Define:
unfd : (σ → Bool)→ (σ → τ)→ (σ → σ)→ σ → [τ]
unfd p h t x = if p(x) then [] else (h(x) : unfd p h t tx)

The unfd function “encapsulates the natural basic pattern of co-recursive def-
inition” (page 9 of [11]) and so several familiar co-recursive functions on lists
can be defined in terms of unfd. For instance, if we have

null : [τ]→ Bool false : σ → Bool
null [] = true(:= inr(⊥)) false x = false (:= inl(⊥))
null (x : xs) = false(:= inl(⊥))

then define map f = unfd null (f ◦ hd) tl and iterate f = unfd false id f .
The proof method here relies on a universal property (described below) en-
joyed by unfd. Define q : σ → 1 + τ × σ by

q(x) = if p(x) then [] else inr(h(x), t(x))
and k : σ → [τ] by k = unfd p h t respectively. Then the following commutes:

σ
q

- 1 + τ × σ

[τ]

k

?

unfold[τ]
- 1 + τ × [τ]

1 + idτ × k

?

16

Ho

Moreover k = unfd p h t is the unique morphism making the above diagram
commute since unfold[τ] : [τ] → 1 + τ × [τ] is a final (1 + τ × −)-coalgebra.
Further suppose that p′ : σ → Bool, h′ : σ → τ and t′ : σ → σ are programs
such that p′ = p ◦ g, h′ = h ◦ g and g ◦ t′ = t ◦ g. By defining q′(x) =
if p(x) then [] else inr(hx, t′x), the following diagram:

σ
q′

- 1 + τ × σ

σ
q

-

g

-

1 + τ × σ
�

1 +
τ
×

g

[τ]

k ◦ g

?

unfold[τ]
-

�

k

1 + τ × [τ]

1 + τ × (k ◦ g)

?

1 +
τ ×

k -

commutes. Program fusion then guarantees that k ◦ g is the unique map of
type σ → [τ] such that the above diagram commutes. In particular, we have

(unfd p h t) ◦ t = unfd (p ◦ t) (h ◦ t) t (1)

map f ◦ (unfd p h t) = unfd p (f ◦ h) t (2)

Proof. (of Proposition 6.2 using program fusion)
(iterate f) ◦ f = (unfd false id f) ◦ f (definition of iterate)

= unfd (false ◦ f) (id ◦ f) f (fusion (1))
= unfd false (f ◦ id) f (constant, composition)
= map f ◦ unfd false id f (fusion (2))
= map f ◦ iterate f (definition of iterate) 2

Remark 6.3 The above method is too specialised in that programs involved
must be encoded using the unfd function.

Proof. (of Proposition 6.2 using Corollary 5.3)
We prove by induction on n that for any x : τ and any f : (τ → τ),

map f (iterate f x) =n iterate f f(x).
The base case is trivial and the inductive step is justified by:

idn+1(map f (iterate f x))
= idn+1(f(x) : map f (iterate f f(x))) (definition of iterate, map)
= f(x) : idn(map f (iterate f f(x))) (Lemma 6.1)
= f(x) : idn(iterate f f(f(x))) (induction hypothesis)
= idn+1(f(x) : iterate f f(f(x))) (Lemma 6.1)
= idn+1(iterate f f(x)) (definition of iterate)

Thus the desired result holds by Corollary 5.3. 2

17

Ho

The next sample application involves the filter function defined by:
filter : (τ → Bool)→ ([τ]→ [τ])
filter u [] = []
filter u (x : xs) = if u(x) then (x : filter u xs) else filter u xs.

Proposition 6.4 For any u : (τ → Bool), v : (τ → τ) and l : [τ], it holds:
filter u map v l = map v filter (u ◦ v) l.

In [22] the above was established using list-bisimulations. Given a typed-
indexed family R of binary relations Rσ between closed terms of type σ, there
is a known recipe of “expanding” R via the operation 〈−〉 8 so that the new
family 〈R〉 respects the operational behaviour of evaluation at each type σ.
For details, see page of 259 of [22]. A bisimulation is a typed-indexed family
R of such binary relations Rσ satisfying the condition R ⊆ 〈R〉. The largest
bisimulation (which is guaranteed to exist by the Tarski-Knaster fixed point
theorem) is called bisimilarity. There are two deep insights, originally due to
I.A. Mason, S.F. Smith and C.L. Talcott in [19] and re-iterated by A.M. Pitts
in [22]:

(I1) Bisimilarity coincides with contextual equivalence.
(I2) To prove contextual equivalence of terms, it suffices to find a bisimulation

of terms because such a bisimulation must be contained in the largest
bisimulation. This is known as the co-induction principle.

A special bisimulation called list-bisimulation was developed in [22] to prove
the contextual equivalence of lists.

Proposition 6.5 (List-bisimulation, Proposition 3.10 of [22])
For any type τ , a binary relation R ⊆ τ × τ is called a [τ]-bisimulation if
whenever lRl′

(1) l ⇓ []⇒ l′ ⇓ []
(2) l′ ⇓ []⇒ l ⇓ []
(3) l ⇓ (x : xs)⇒ ∃x′, xs′.(x =τ x′ & xs R xs′)
(4) l ⇓ (x′ : xs′)⇒ ∃x, xs.(x =τ x′ & xs R xs′)

Then for any l, l′ : [τ], l = l′ iff l R l′ for some [τ]-bisimulation R.

In addition to these, one needs to use induction on the depths of proofs
of evaluation to establish Proposition 6.4. Here we elaborate. Define the nth
level evaluation relation ⇓n (written as x ⇓n v) as follows. Replace in the
axioms and rule regarding ⇓ each occurrence of ⇓ by ⇓n in an axiom or the
premise of a rule and replacing ⇓ by ⇓n+1 in the conclusion of each rule. Then
we have:

x ⇓ v ⇔ ∃n ∈ N.(x ⇓n v) (††)
It suffices to show that there is a list bisimulation that relates filter u (map v l)
and map v (filter (u ◦ v) l). Usually it is Hobson’s choice:

8 The original symbol used in [22] is [−] but this confuses with the list operator in this
paper.

18

Ho

Proof. (of Proposition 6.4 using list-bisimulation)
Define R := {(filter u (map v l), map v (filter (u ◦ v) l))|l : [τ]}.
Instead of proving the four conditions (1)-(4) of a list bisimulation, we take
advantage of (††) and prove by induction on n that:

(i) ∀l.(filter u (map v l) ⇓n []⇒ map v (filter (u ◦ v) l ⇓ []).
(ii) ∀l.(map v (filter u (map v l) ⇓n []⇒ filter u (map v l) ⇓ []).
(iii) ∀l, x, xs.(filter u (map v l) ⇓n (x : xs)

⇒ ∃xs′.(map v filter (u ◦ v) l) ⇓ (x : xs′) & xsRxs′).
(iv) ∀l, x, xs′.(map v (filter (u ◦ v) (x : xs′)

⇒ ∃xs.(filter u (map v l) ⇓ (x : xs) & xsRxs′).

The proofs of (i)-(iv) by induction are straightforward but tedious. 2

Proof. (of Proposition 6.4 using Corollary 5.3)
This is trivially true when l = []. So it suffices to prove for l = (x : xs).
Again the argument is by induction on n that for every such u, v and l, it
holds that

filter u map v l =n map v filter (u ◦ v) l.
The base case is trivially true. So we prove the inductive step:
Case 1: u ◦ v(x) = true.

idn+1(filter u (map v l)) = idn+1(filter u (v(x) : map v xs))
= idn+1(v(x) : filter u (map v xs))
= (v(x) : idn(filter u (map v xs)))
= (v(x) : idn(map v filter (u ◦ v) xs))
= idn+1(v(x) : map v filter (u ◦ v) xs)
= idn+1(map v (x : filter (u ◦ v) xs))

Case 2: u ◦ v(x) = false. Even more immediate than the previous case.
The proof is thus complete by appealing to Corollary 5.3. 2

7 Conclusion and future work

The operational domain theory developed herein exploits the bifree algebra
structure of the recursive construction offered by the syntax of FPC. It turns
out that the chosen categorical framework facilitates a relatively clean theory
from which a powerful proof principle emerges. In our future work, we shall
explore the following possibilities.

(i) By adapting the methods in [5], construct a purely operational proof of
the minimal invariance property (Lemma 3.3) in our setting.

(ii) Investigate the implications of Pitts’ work ([21]) on relational properties
of domains to our operational domain theory (c.f. similar to that of [5]
but with emphasis on the functorial status of FPC type expressions).

(iii) Develop an operational domain-theory that caters for non-deterministic
languages, such as [13].

19

Ho

Acknowledgement

My gratefulness goes to my supervisor, M.H. Escardó, whose deep insight
and gentle advice I have greatly benefited from. I must also acknowledge
T. Streicher for a series of discussions leading to the justification of using the
diagonal category as our operational framework. I would also like to extend my
gratitude to the three anonymous referees for their comments and suggestions.

References

[1] Abadi, M., and M.P. Fiore, Syntactic considerations on recursive types, In
Proceedings of the 11th Annual IEEE Symposium on Logic In Computer
Science, IEEE Computer Society Press. (1996) 242 – 252.

[2] Abramsky, S. and A. Jung, Domain Theory, In S. Abramsky, D. Gabbay, T.
Maibaum, editors, Handbook for Logic in Computer Science, Oxford Science
Publications, 3, Clarendon Press, Oxford. (1994) 1 – 168.

[3] Bird, R., “Introduction to Functional Programming using Haskell (second
edition), Prentice Hall. (1998)

[4] Bird, R. and P. Wadler, “Introduction to Functional Programming”, Prentice-
Hall, New York. (1988)

[5] Birkedal, L. and R. Harper, Relational Interpretations of Recursive Types in an
Operational Setting, Information and Computation, 155. (1999) 3 – 63.

[6] Escardó, M.H. and W.K. Ho, Operational Domain Theory and topology of a
sequential language, In Proceedings of the 20th Annual IEEE Symposium on
Logic In Computer Science, IEEE Computer Society Press. (2005) 427 – 436

[7] Freyd, P.J., Recursive types reduced to inductive types, In Proceedings of the
5th Annual IEEE Symposium on Logic in Computer Science, IEEE Computer
Society Press. (1990) 498 – 507.

[8] Freyd, P.J., Algebraically complete categories, In A. Carboni, M.C. Pedicchio,
and G. Rosilini, editors, Proceedings of the 1990 Como Category Conference,
Lecture Notes in Mathematics, 1488. (1991) 95 – 104.

[9] Freyd, P.J., Remarks on algebraically compact categories, In Applications of
Categories in Computer Science, 177, Cambridge University Press. (1992) 95
– 106.

[10] Fiore, M.P. and G.D. Plotkin, An Axiomatisation of Computationally Adequate
Domain-Theoretic Models of FPC, In Proceedings of the 10th Annual IEEE
Symposium on Logic In Computer Science, IEEE Computer Society Press,
(1994) 92 – 102.

[11] Gibbons, J. and G. Hutton, Proof Methods for Corecursive Programs, In
Fundamenta Informaticae XX, IOS Press. (2005) 1 – 14.

[12] Gordon, A.D., Bisimilarity as a theory of functional programming, Theoretical
Computer Science 228(1-2). (1999) 5 – 47.

20

Ho

[13] Hennessy, M.C.B. and E.A. Ashcroft, A mathematical semantics for a
nondeterministic typed lambda-calculus, Theoretical Computer Science, 11(3).
(1980) 227 – 245.

[14] Howe, D.J., Equality in lazy computation systems, In Proceedings of the 4th
Annual IEEE Symposium on Logic in Computer Science, IEEE Computer
Society Press. (1989) 198 – 203.

[15] Howe, D.J., Proving congruence of bisimulation in functional programming
languages, Information and Computation, 124(2). (1996) 103 – 112.

[16] Hutton, G. and J. Gibbons, The Generic Approximation Lemma, Information
Processing Letters, 79(4). (2001) 197 – 201.

[17] McCusker, G., Games and full abstraction for FPC, Information and
Computation, 160. (2000) 1 – 61.

[18] Mac Lane, S., “Categories for the Working Mathematician”, Springer. (1971)

[19] Mason, I.A., S.F. Smith and C.L. Talcott, From Operational Semantics to
Domain Theory, Information and Computation, 128(1). (1996) 26 – 47.

[20] Milner, R., Fully abstract models of typed lambda-calculi, Theoretical Computer
Science, 4. (1977) 1 – 22.

[21] Pitts, A.M., Relational Properties of Domains, Information and Computat-
ion, 127(2). (1996) 66 – 90

[22] Pitts, A.M., Operationally-based Theories of Program Equivalence, In P. Dybjer
and A.M. Pitts, editors, Semantics and Logics of Computation, Publications of
the Newton Institute, Cambridge Press. (1997) 241 – 298.

[23] Plotkin, G.D., Lectures on predomains and partial functions. Notes for a course
given at the Center for the Study of Language and Information, Stanford. (1985)

[24] Rohr, A., “A Universal Realizability Model for Sequential Functional
Computation”, PhD. thesis, Technischen Universitat Darmstadt. (2002)

[25] Simpson, A.K., Recursive Types in Kleisli Categories, Unpublished note,
Department of Computer Science, University of Edinburgh. (1992) URL:
http://homepages.inf.ed.ac.uk/als/Research

[26] Streicher, T., Mathematical Foundations of Functional Programming, Lecture
Notes, Department of Mathematics, Technischen Universitat Darmstadt. (2003)
URL: http://www.mathematik.tu-darmstadt.de/~streicher.

21

http://homepages.inf.ed.ac.uk/als/Research
http://www.mathematik.tu-darmstadt.de/~streicher

	Introduction
	Preliminaries
	The categorical setting
	Algebraic compactness operationally
	SFP-structure and the generic approximation lemma
	Sample applications
	Conclusion and future work
	Acknowledgement
	References

