On Real Roots of Flow Polynomials

F.M. Dong†
Mathematics and Mathematics Education
National Institute of Education
Nanyang Technological University, Singapore 637616

Abstract

This article studies the real roots of the flow polynomial $F(G, \lambda)$ of a bridgeless graph G. Let $W(G)$ be the set of vertices in G of degrees larger than 3. For any integer $k \geq 0$, let ξ_k be the largest real number in $(1, 2]$ such that $F(G, \lambda)$ has no real zeros in $(1, \xi_k)$ for all graphs G with $|W(G)| \leq k$. We show that ξ_k can be determined by considering a finite set of graphs and therefore deduce that $\xi_k = 2$ for $k \leq 2$, $\xi_3 = 1.430 \cdots$ and $\xi_4 = 1.361 \cdots$. We also show that for any bridgeless graph G, if $W(G)$ is dominated by some component of $G - W(G)$, then $F(G, \lambda)$ has no roots in $(1, 2)$. This result implies that $F(G, \lambda)$ has no zeros in $(1, 2)$ whenever $|W(G)| \leq 2$.

Keywords: matroid, graph, characteristic polynomial, chromatic polynomial, flow polynomial, root

1 Introduction

Following Tutte [14] (also see Brylawski and Oxley [2]), the flow polynomial of a graph $G = (V, E)$ is the polynomial defined as

$$F(G, \lambda) = \sum_{E' \subseteq E} (-1)^{|E| - |E'|} \lambda^{|E'| + c(E') - |V|},$$

where $c(E')$ is the number of components of the spanning subgraph (V, E') of G. This definition is equivalent to the following basic properties of $F(G, \lambda)$ (see [14] also):

$$F(G, \lambda) = \begin{cases} 1, & \text{if } E = \emptyset; \\ F(G_1, \lambda)F(G_2, \lambda), & \text{if } G = G_1 \cup G_2; \\ 0, & \text{if } G \text{ has a bridge}; \\ (t - 1)F(G - e, \lambda), & \text{if } e \text{ is a loop}; \\ F(G/e, \lambda) - F(G - e, \lambda), & \text{otherwise}, \end{cases}$$

where G/e and $G - e$ are the graphs obtained from G by contracting e and deleting e respectively, and $G_1 \cup G_2$ is the disjoint union of graphs G_1 and G_2.

*Partially supported by NIE AcRf funding (RI 5/06 DFM) of Singapore.
†Corresponding author. Email: fengming.dong@nie.edu.sg.