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Abstract

Recently, Beck studied a new partition statistic which involves counting the total

number of parts of a partition with certain rank or crank. Andrews proved two

of Beck’s conjectures related to ranks. Chern subsequently proved several results

involving weighted rank and crank moments and deduced a number of similar

Andrews-Beck type congruences. In this paper, we show that some of Chern’s

results can be explained by a simple combinatorial argument, and extend this

approach to the study of k-colored partitions. As a consequence, we derive a

large number of new Andrews-Beck type congruences for k-colored partitions.
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1. Introduction

A partition λ of a positive integer n is a weakly decreasing sequence of

positive integers whose sum is n. Each term of the sequence is called a part of

the partition. We use λ ` n to denote a partition λ of n and |λ| to denote the

sum of all parts, which equals n. We also use `(λ) to denote the largest part of

λ and #(λ) to denote the number of parts of λ. Finally, we use p(n) to denote
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the number of partitions of n. Ramanujan famously discovered that

p(5n+ 4) ≡ 0 (mod 5),

p(7n+ 5) ≡ 0 (mod 7),

p(11n+ 6) ≡ 0 (mod 11).

Elementary proofs of the modulo 5 and 7 congruences can be found in Chapter

2 of Berndt’s excellent book [6]. In an attempt to provide combinatorial expla-

nations for the modulo 5 and 7 congruences, Dyson [10] defined the rank of a

partition λ by

rank(λ) := `(λ)−#(λ).

Subsequently, Atkin and Swinnerton-Dyer [5] proved that the rank could explain

Ramanujan’s modulo 5 and 7 congruences.

In 1988, Andrews and Garvan [4] defined the crank of a partition which

explained all three of Ramanujan’s congruences combinatorially. The crank is

defined by

crank(λ) :=

`(λ) if ω(λ) = 0,

µ(λ)− ω(λ) if ω(λ) > 0,

where ω(λ) denotes the number of parts of size 1 in λ and µ(λ) denotes the

number of parts in λ larger than ω(λ). It is worth mentioning that Andrews5

and Garvan related the crank to Garvan’s work [13] on vector partitions.

Recently, George Beck introduced a new partition statistic by considering the

total number of parts of the partitions of n with a certain rank. Let NT (m, j, n)

be the total number of parts of the partitions of n with rank congruent to m

modulo j. Andrews [3] proved the following Andrews-Beck type congruence10

which was originally conjectured by Beck.

Theorem 1.1. For any n ≥ 0, if i = 1, 4,

NT (1, 5, 5n+i)+2NT (2, 5, 5n+i)−2NT (3, 5, 5n+i)−NT (4, 5, 5n+i) ≡ 0 (mod 5),

(1.1)
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which is equivalent to

4∑
m=1

mNT (m, 5, 5n+ i) ≡ 0 (mod 5).

Chern [7] gave a different proof of the above theorem by showing that the

weighted first rank moment is related to the ordinary second rank moment.

Namely, ∑
λ`n

#(λ)rank(λ) = −1

2

∑
λ`n

rank2(λ). (1.2)

Subsequently, Chern devoted another paper [8] to the study of weighted higher

order rank and crank moments using analytic methods. For example, Chern

established the following interesting theorem.

Theorem 1.2 (Chern). For any j > 0,∑
λ`n

#(λ)rank2j−1(λ) = −1

2

∑
λ`n

rank2j(λ), (1.3)

∑
λ`n

ω(λ)crank2j−1(λ) = −1

2

∑
λ`n

crank2j(λ). (1.4)

One of the aims of this paper is to provide combinatorial arguments to

explain Theorem 1.2. We first observe that mapping each partition λ to its

conjugate λ′ gives ∑
λ`n

`(λ) =
∑
λ′`n

#(λ′) =
∑
λ`n

#(λ). (1.5)

We thus have

−1

2

∑
λ`n

rank2j(λ) = −1

2

∑
λ`n

(
`(λ)−#(λ)

)(
`(λ)−#(λ)

)2j−1
=

1

2

∑
λ`n

#(λ)
(
`(λ)−#(λ)

)2j−1 − 1

2

∑
λ`n

`(λ)
(
`(λ)−#(λ)

)2j−1
=

1

2

∑
λ`n

#(λ)
(
`(λ)−#(λ)

)2j−1 − 1

2

∑
λ′`n

#(λ′)
(
#(λ′)− `(λ′)

)2j−1
=

1

2

∑
λ`n

#(λ)
(
`(λ)−#(λ)

)2j−1
+

1

2

∑
λ`n

#(λ)
(
`(λ)−#(λ)

)2j−1
=
∑
λ`n

#(λ)rank2j−1(λ).
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This proves (1.3). The proof of (1.4) is more complicated and will be described15

in Section 4.

Building on these ideas, we turn our attention to the generalized crank de-

fined by Fu and Tang [11] for k-colored partitions, where k ≥ 2. A k-colored

partition π of n is a k-tuple of partitions,

π := (π1, π2, . . . , πk)

with |π1|+ |π2|+ · · ·+ |πk| = n. We use the notation π � n if π = (π1, π2, . . . , πk)

is a k-colored partition of n. Let pk(n) denote the number of k-colored partitions

of n with the corresponding generating function of pk(n) given by

∞∑
n=0

pk(n)qn =
1

(q; q)k∞
, (1.6)

where

(a; q)n :=

n−1∏
j=0

(1− aqj) and (a; q)∞ :=

∞∏
j=0

(1− aqj).

Fu and Tang defined a generalized crank for k-colored partitions by

crankk(π) := #(π1)−#(π2). (1.7)

In terms of these generalized cranks, we have the following new results relating

the weighted (2j−1)-th generalized crank moment to the ordinary 2j-th moment

for k-colored partitions.

Theorem 1.3. For any j > 0 and k ≥ 2,∑
π�n

#(π1)crank2j−1
k (π) =

1

2

∑
π�n

crank2j
k (π). (1.8)

We also have the corresponding result for symmetrized generalized crank20

moments.

Theorem 1.4. For any j > 0 and k ≥ 2,∑
π�n

#(π1)(crankk(π) + j − 1)2j−1 =
1

2

∑
π�n

(crankk(π) + j − 1)2j , (1.9)

where we adopted the falling factorial notation

(x)r := x(x− 1) · · · (x− r + 1).
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In the rest of this section, we will present some results for the k = 2 case

of 2-colored partitions, otherwise known as bipartitions. Gandhi [12, Eq. (4.9)]

attributed the following congruences to Ramanathan [18]. For any n ≥ 0,

p2(5n+ 2) ≡ p2(5n+ 3) ≡ p2(5n+ 4) ≡ 0 (mod 5). (1.10)

Hammond and Lewis [15] subsequently introduced a birank function in order

to provide combinatorial explanations for these congruences. For a bipartition

π = (π1, π2) � n, the birank (which is the k = 2 case of the generalized crank)

is defined as

birank(π) := #(π1)−#(π2).

Define NB2(m, j, n) as the total number of parts of π1 in each bipartition π of

n with birank(π) congruent to m modulo j. In other words,

NB2(m, j, n) :=
∑
π�n

birank(π)≡m (mod j)

#(π1). (1.11)

We shall establish the following Andrews-Beck type congruence.

Theorem 1.5. For any n ≥ 0, if i = 0, 2, 3 or 4,

4∑
m=1

mNB2(m, 5, 5n+ i) ≡ 0 (mod 5). (1.12)

We illustrate Theorem 1.5 for bipartitions of 3.

Bipartitions of 3 birank(mod 5) Sum of #(π1)

(2, 1), (1, 2) 0 2

(3, –), (1+1, 1) 1 3

(2+1, –), (–, 1+1+1) 2 2

(1+1+1, –), (–, 2+1) 3 3

(1, 1+1), (–, 3) 4 1

Consequently,

NB2(1, 5, 3) + 2NB2(2, 5, 3) + 3NB2(3, 5, 3) + 4NB2(4, 5, 3)

= 3 + 2 · 2 + 3 · 3 + 4 · 1 = 20.
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In Section 2, we shall prove Theorems 1.3 and 1.4, and present a large25

number of Andrews-Beck type congruences for other values of k. In Section 3, we

consider alternative analytic proofs and investigate congruences and conjectures

associated with higher order moments. Finally in Section 4, we will provide a

combinatorial proof of Chern’s (1.4).

2. Weighted generalized crank moments30

We begin with a proof of our main results.

Proof of Theorem 1.3. For k-colored partitions, we consider the map

π = (π1, π2, . . . , πk) 7→ δ = (δ1, δ2, . . . , δk) = (π2, π1, . . . , πk)

which interchanges partitions π1 and π2. It is clear that∑
π�n

#(π1) =
∑
δ�n

#(δ2) =
∑
π�n

#(π2). (2.1)

We thus have

1

2

∑
π�n

crank2j
k (π) =

1

2

∑
π�n

(
#(π1)−#(π2)

)(
#(π1)−#(π2)

)2j−1
=

1

2

∑
π�n

#(π1)
(
#(π1)−#(π2)

)2j−1 − 1

2

∑
π�n

#(π2)
(
#(π1)−#(π2)

)2j−1
=

1

2

∑
π�n

#(π1)
(
#(π1)−#(π2)

)2j−1
+

1

2

∑
π�n

#(π2)
(
#(π2)−#(π1)

)2j−1
=

1

2

∑
π�n

#(π1)
(
#(π1)−#(π2)

)2j−1
+

1

2

∑
δ�n

#(δ1)
(
#(δ1)−#(δ2)

)2j−1
=
∑
π�n

#(π1)crank2j−1
k (π).

This completes the proof.
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Proof of Theorem 1.4. Using the same map π 7→ δ as before, we have∑
π�n

(crankk(π) + j − 1)2j +
∑
δ�n

(crankk(δ) + j − 1)2j

=
∑
π�n

(
(crankk(π) + j − 1)2j + (−crankk(π) + j − 1)2j

)
=
∑
π�n

2 crankk(π)
(
crankk(π) + j − 1

)
2j−1

= 2
∑
π�n

#(π1)
(
crankk(π) + j − 1

)
2j−1 − 2

∑
π�n

#(π2)
(
crankk(π) + j − 1

)
2j−1

= 2
∑
π�n

#(π1)
(
crankk(π) + j − 1

)
2j−1 − 2

∑
δ�n

#(δ1)
(
− crankk(δ) + j − 1

)
2j−1

= 2
∑
π�n

#(π1)
(
crankk(π) + j − 1

)
2j−1 + 2

∑
δ�n

#(δ1)
(
crankk(δ) + j − 1

)
2j−1

= 4
∑
π�n

#(π1)
(
crankk(π) + j − 1

)
2j−1.

In the second equality above, we used the identity

(m+ j − 1)2j + (−m+ j − 1)2j = 2m(m+ j − 1)2j−1, (2.2)

while another identity

(−m+ j − 1)2j−1 = −(m+ j − 1)2j−1, (2.3)

was used for the second sum in the fifth equality.

We now turn our attention to Andrews-Beck type congruences. For k ≥ 2,

define NBk(m, j, n) as the total number of parts of π1 in each k-colored partition

π of n with crankk(π) congruent to m modulo j. We have

NBk(m, j, n) :=
∑
π�n

crankk(π)≡m (mod j)

#(π1). (2.4)

In addition to Theorem 1.5, the following Andrews-Beck type congruences also

hold.35

Theorem 2.1. For any n ≥ 0,

NB3(1, 3, 3n+ 2) + 2NB3(2, 3, 3n+ 2) ≡ 0 (mod 3). (2.5)
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Theorem 2.2. For any n ≥ 0, if i = 0 or 7,

10∑
m=1

mNB3(m, 11, 11n+ i) ≡ 0 (mod 11). (2.6)

Theorem 2.3. For any n ≥ 0, if i = 0 or 15,

16∑
m=1

mNB3(m, 17, 17n+ i) ≡ 0 (mod 17). (2.7)

Theorem 2.4. For any n ≥ 0, if i = 0, 3 or 4,

4∑
m=1

mNB4(m, 5, 5n+ i) ≡ 0 (mod 5). (2.8)

Theorem 2.5. For any n ≥ 0, if i = 0, 2, 4, 5 or 6,

6∑
m=1

mNB4(m, 7, 7n+ i) ≡ 0 (mod 7). (2.9)

Theorem 2.6. For any n ≥ 0, if i = 0 or 8,

10∑
m=1

mNB5(m, 11, 11n+ i) ≡ 0 (mod 11). (2.10)

Theorem 2.7. For any n ≥ 0, if i = 0 or 9,

10∑
m=1

mNB7(m, 11, 11n+ i) ≡ 0 (mod 11). (2.11)

Theorem 2.8. For any n ≥ 0, if i = 0 or 11,

16∑
m=1

mNB9(m, 17, 17n+ i) ≡ 0 (mod 17). (2.12)

Theorem 2.9. For any n ≥ 0, if i = 0 or 17,

18∑
m=1

mNB9(m, 19, 19n+ i) ≡ 0 (mod 19). (2.13)

Theorem 2.10. For any n ≥ 0, if i = 0 or 9,

22∑
m=1

mNB9(m, 23, 23n+ i) ≡ 0 (mod 23). (2.14)
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We remark that in addition to the above list, there are a large number of

other Andrews-Beck type congruences, including some infinite families, for val-

ues of k ≥ 5. The key result to establish these Andrews-Beck type congruences

is the following.

Theorem 2.11. For any k ≥ 2,∑
π�n

crank2
k(π) =

2n

k
pk(n). (2.15)

Theorem 2.11 was stated without proof in [11, Eq. (4.2)], and so for com-

pleteness, we will provide an analytic proof in the next section. For now, we

note that invoking the j = 1 case of Theorem 1.3, we have∑
π�n

#(π1)crankk(π) =
n

k
pk(n). (2.16)

Hirschhorn [16, Eq. (1.3)] recently showed that

p3(3n+ 2) ≡ 0 (mod 9).

Hence

NB3(1, 3, 3n+ 2) + 2NB3(2, 3, 3n+ 2) ≡
∑

π�(3n+2)

#(π1)crank3(π) ≡ 0 (mod 3),

which proves Theorem 2.1.40

Suppose now that ` is any odd prime that does not divide k, by (2.16) we

have an infinite family of congruences,

`−1∑
m=1

mNBk(m, `, `n) ≡
∑
π�(`n)

#(π1)crankk(π) ≡ 0 (mod `). (2.17)

This settles the i = 0 case in each of Theorem 1.5 and Theorems 2.2 to 2.10.

The remaining cases can be proved by establishing the following congruences

for pk(n) which are analogues of (1.10).
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Theorem 2.12. For any n ≥ 0,

p3(11n+ 7) ≡ 0 (mod 11), (2.18)

p3(17n+ 15) ≡ 0 (mod 17), (2.19)

p4(5n+ 3) ≡ p4(5n+ 4) ≡ 0 (mod 5), (2.20)

p4(7n+ 2) ≡ p4(7n+ 4) ≡ p4(7n+ 5) ≡ p4(7n+ 6) ≡ 0 (mod 7), (2.21)

p5(11n+ 8) ≡ 0 (mod 11), (2.22)

p7(11n+ 9) ≡ 0 (mod 11), (2.23)

p9(17n+ 11) ≡ 0 (mod 17), (2.24)

p9(19n+ 17) ≡ 0 (mod 19), (2.25)

p9(23n+ 9) ≡ 0 (mod 23). (2.26)

Proof. We generalize the definition of pk(n) to allow negative integers k. A

large number of congruences satisfied by pk(n) for specific values of negative k

were established by Newman [17]. For example,

p−8(11n+ 7) ≡ 0 (mod 11). (2.27)

In general, if ` is a prime that does not divide k, we have

∞∑
n=0

pk−`(n)qn =
(q; q)`∞
(q; q)k∞

≡ (q`; q`)∞

∞∑
n=0

pk(n)qn (mod `). (2.28)

We can then conclude (2.18) holds with ` = 11 and k = 3 by appealing to

(2.27). Similarly, each of (2.19) and (2.22) to (2.26) holds respectively from the

following six congruences

p−14(17n+ 15) ≡ 0 (mod 17), (2.29)

p−6(11n+ 8) ≡ 0 (mod 11), (2.30)

p−4(11n+ 9) ≡ 0 (mod 11), (2.31)

p−8(17n+ 11) ≡ 0 (mod 17), (2.32)

p−10(19n+ 17) ≡ 0 (mod 19), (2.33)

p−14(23n+ 9) ≡ 0 (mod 23). (2.34)
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Four of the congruences, namely (2.30) to (2.32) and (2.34), can be deduced from

Newman [17]. Cooper, Hirschhorn and Lewis subsequently extended Newman’s45

result, and both (2.29) and (2.33) can be deduced from [9, Thm. 1].

To prove (2.21), we note that

(q7; q7)∞

∞∑
n=0

p4(n)qn ≡ (q; q)3∞ (mod 7)

=

∞∑
j=0

(−1)j(2j + 1)qj(j+1)/2 (2.35)

by Jacobi’s identity [6, Thm. 1.3.9]. Since j(j+1)
2 is only congruent to 0, 1, 3, 6

(mod 7), there are no powers of q that are congruent to 2, 4 or 5 (mod 7). We

are left with the coefficients of q7n+6. In this case, j(j+1)
2 ≡ 6 (mod 7) if and

only if j ≡ 3 (mod 7) which means that 2j + 1 is divisible by 7, and so the50

coefficients are congruent to 0 modulo 7.

Finally, (2.20) is a direct consequence of (1.10) since

∞∑
n=0

p4(n)qn =

( ∞∑
n=0

p2(n)qn

)2

. (2.36)

This completes the proof.

We remark that (2.21) is a special case of an observation by Andrews [2,

Thm. 1] that for every prime ` > 3, there are (`+ 1)/2 values of b such that

p`−3(`n+ b) ≡ 0 (mod `). (2.37)

This immediately yields another infinite family of Andrews-Beck type congru-

ences of the form

`−1∑
m=1

mNB`−3(m, `, `n+ b) ≡ 0 (mod `). (2.38)

Finally, if we fix ` and let k vary, each of the Andrews-Beck type congruences

that we have proved can be viewed as the first case of an infinite family. For

example, having established that Theorem 2.4 holds, then it is immediate that

4∑
m=1

mNB4+5j(m, 5, 5n+ i) ≡ 0 (mod 5) (2.39)

also holds for the same values of i and j ≥ 1.
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3. Analytic proofs and higher order moments

Previously, we adopted a combinatorial approach to prove Theorems 1.3 and55

1.4 which relate the weighted and ordinary moments for generalized cranks for

k-colored partitions. In this section, we provide alternative analytic proofs and

consider some implications for the higher order moments.

For k ≥ 2, the generating function for generalized cranks of k-colored parti-

tions [11, Eq. (1.1)] is given by

(q; q)2−k∞
(qz; q)∞(q/z; q)∞

.

The next result gives us a useful representation of the generating function for

the weighted generalized crank.60

Lemma 3.1.

(q; q)2−k∞
(qxz; q)∞(q/z; q)∞

=
(q; q)1−k∞
(qx; q)∞

∞∑
n=0

(−1)nqn(n+1)/2 (qx; q)n+1

(q; q)n

×

(
1 +

∞∑
m=1

qm(n+1)(xmzm + z−m)

)
. (3.1)

Proof. From the q-binomial theorem [1, p. 17] or [6, p. 8], we have

1

(qxz; q)∞(q/z; q)∞
=

∞∑
r=0

(qxz)r

(q; q)r
·
∞∑
s=0

(q/z)s

(q; q)s
:=

∞∑
m=−∞

A(m)zm.

For m ≥ 0, the coefficient

A(m) =

∞∑
s=0

(qx)s+m

(q; q)s+m

qs

(q; q)s

=
qmxm

(q; q)m

∞∑
s=0

(q2x)s

(qm+1; q)s(q; q)s

=
qmxm

(q; q)m
· 1

(qm+1; q)∞(q2x; q)∞

∞∑
s=0

(−1)sqms+s(s+1)/2(q2x; q)s
(q; q)s

=
qmxm

(q; q)∞(qx; q)∞

∞∑
s=0

(−1)sqms+s(s+1)/2(qx; q)s+1

(q; q)s
.
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Heine’s transformation [1, p. 19] was used to establish the penultimate equality

above. Similarly, for m ≥ 1, we find that

A(−m) =
qm

(q; q)∞(qx; q)∞

∞∑
s=0

(−1)sqms+s(s+1)/2(qx; q)s+1

(q; q)s
.

It follows that

A(0) +

∞∑
m=1

(A(m)zm +A(−m)z−m)

=
1

(q; q)∞(qx; q)∞

∞∑
s=0

(−1)sqs(s+1)/2(qx; q)s+1

(q; q)s

(
1 +

∞∑
m=1

qm(s+1)xmzm + qm(s+1)z−m

)
.

This completes the proof.

We remark that Lemma 3.1 is equivalent to [8, Thm. 3.1], although our

method of proof differs from his.

We observe that

∞∑
n=0

∑
π�n

x#(π1)zcrankk(π)qn =
(q; q)2−k∞

(qxz; q)∞(q/z; q)∞
, (3.2)

and thus

∞∑
n=0

∑
π�n

x#(π1)crankjk(π)qn = Dj

(
(q; q)2−k∞

(qxz; q)∞(q/z; q)∞

)∣∣∣∣
z=1

,

where

Dj(f(z)) := z
∂

∂z
Dj−1(f(z)).

The representation in Lemma 3.1 gives us

Dj

(
(q; q)2−k∞

(qxz; q)∞(q/z; q)∞

)∣∣∣∣
z=1

=
(q; q)1−k∞
(qx; q)∞

∞∑
n=0

(−1)nqn(n+1)/2 (qx; q)n+1

(q; q)n

×
∞∑
m=1

qm(n+1)(mjxm + (−m)j). (3.3)

When j is even, setting x = 1 yields the even moments, which we record as

∞∑
n=0

∑
π�n

crank2j
k (π)qn =

1

(q; q)k∞

∞∑
n=0

(−1)nqn(n+1)/2(1−qn+1)×
∞∑
m=1

qm(n+1)2m2j .

(3.4)
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On the other hand, if j is odd, we can differentiate (3.3) with respect to x

and then set x = 1. This gives us the weighted odd moments

∞∑
n=0

∑
π�n

#(π1)crank2j−1
k (π)qn =

1

(q; q)k∞

∞∑
n=0

(−1)nqn(n+1)/2(1− qn+1)×
∞∑
m=1

m2jqm(n+1).

(3.5)

Comparing (3.5) and (3.4) yields an alternative proof of Theorem 1.3. An

alternative proof of Theorem 1.4 can also be obtained in an analogous manner.65

Next, we prove Theorem 2.11 which was stated without proof in [11].

Proof of Theorem 2.11. Applying

∞∑
m=1

m2zm =
z(1 + z)

(1− z)3
(3.6)

to (3.4), we have

∞∑
n=0

∑
π�n

crank2
k(π)qn =

2

(q; q)k∞

∞∑
n=0

(−1)nqn(n+1)/2 q
n+1(1 + qn+1)

(1− qn+1)2

=
2

(q; q)k∞

∞∑
n=1

(−1)n−1qn(n+1)/2 (1 + qn)

(1− qn)2
.

From [14, Cor. 3.4], we have

∞∑
n=1

(−1)n−1qn(n+1)/2 (1 + qn)

(1− qn)2
=

∞∑
n=1

qn

(1− qn)2
.

Hence,
∞∑
n=0

∑
π�n

crank2
k(π)qn =

2

(q; q)k∞

∞∑
n=1

qn

(1− qn)2
.

On the other hand, applying q
∂

∂q
to the generating function of pk(n) yields

∞∑
n=0

npk(n)qn =
1

(q; q)k∞

∞∑
n=1

knqn

1− qn
=

k

(q; q)k∞

∞∑
n=1

qn

(1− qn)2
.

It follows that ∑
π�n

crank2
k(π) =

2n

k
pk(n).

This completes the proof.
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All the Andrews-Beck type congruences in the previous section arose from

(2.16), the identity for the weighted first moment of the generalized crank. Other

interesting congruences can also be deduced from the higher order moments. By

differentiating (3.6) and applying to (3.5), we have expressions for the weighted

third moment,

∞∑
n=0

∑
π�n

#(π1)crank3
k(π)qn =

1

(q; q)k∞

∞∑
n=1

(−1)n−1qn(n+1)/2 1 + 11qn + 11q2n + q3n

(1− qn)4
,

(3.7)

and weighted fifth moment,

∞∑
n=0

∑
π�n

#(π1)crank5
k(π)qn

=
1

(q; q)k∞

∞∑
n=1

(−1)n−1qn(n+1)/2 1 + 57qn + 302q2n + 302q3n + 57q4n + q5n

(1− qn)6
.

(3.8)

Let us first consider the weighted third moment. Since j3 ≡ j (mod 3),

any modulo 3 congruence satisfied by the weighted first moment, for example

(2.5), extends to the third moment. For a non-trivial congruence, set k = 5 and

consider (3.7) modulo 5.

∞∑
n=0

∑
π�n

#(π1)crank3
5(π)qn ≡ 1

(q5; q5)∞

∞∑
n=1

(−1)n−1qn(n+1)/2 1 + qn + q2n + q3n

(1− qn)4

≡ 1

(q5; q5)∞

∞∑
n=1

(−1)n−1qn(n+1)/2 (1 + qn + q2n + q3n)(1− qn)

(1− qn)5

≡ 1

(q5; q5)∞

∞∑
n=1

(−1)n−1qn(n+1)/2 (1− q4n)

(1− q5n)
(mod 5).

(3.9)

Now j(j+1)
2 is only congruent to 0, 1, 3 (mod 5) and likewise j(j+1)

2 + 4j. Thus

there are no powers of q which are congruent to 2 or 4 (mod 5) in (3.9). We

summarize this as the next result.70

Theorem 3.1. For any n ≥ 0, if i = 2 or 4,

4∑
m=1

m3NB5(m, 5, 5n+ i) ≡ 0 (mod 5). (3.10)
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Next we consider the weighted fifth moment. In this case, we have j5 ≡ j

(mod 5) and also j5 ≡ j (mod 3). Thus congruences modulo 3 or 5 for the

weighted first moment extend to the weighted fifth moment. The next non-

trivial case occurs when we consider (3.8) modulo 7.

∞∑
n=0

∑
π�n

#(π1)crank5
k(π)qn

≡ 1

(q; q)k∞

∞∑
n=1

(−1)n−1qn(n+1)/2 1 + qn + q2n + q3n + q4n + q5n

(1− qn)6

≡ 1

(q; q)k∞

∞∑
n=1

(−1)n−1qn(n+1)/2 (1− q6n)

(1− q7n)
(mod 7). (3.11)

The expression j(j+1)
2 is only congruent to 0, 1, 3, 6 (mod 7) and likewise j(j+1)

2 +

6j. So if k = 7, there are no powers of q which are congruent to 2, 4 or 5 (mod 7)

in (3.11). This gives rise to another Andrews-Beck type congruence.

Theorem 3.2. For any n ≥ 0, if i = 2, 4 or 5,

6∑
m=1

m5NB7(m, 7, 7n+ i) ≡ 0 (mod 7). (3.12)

Suppose now that k = 4, (3.11) becomes

∞∑
n=0

∑
π�n

#(π1)crank5
4(π)qn ≡ (q; q)3∞

(q7; q7)∞

∞∑
n=1

(−1)n−1qn(n+1)/2 (1− q6n)

(1− q7n)
(mod 7).

(3.13)

As before, both j(j+1)
2 and j(j+1)

2 + 6j contain only powers of q congruent

to 0, 1, 3, 6 (mod 7). On the other hand, as discussed in (2.35), (q; q)3∞ when75

expanded as a series modulo 7 contains only powers of q congruent to 0, 1 or

3 (mod 7). Thus the right side of (3.13), as a product of two q-series, has no

powers of q congruent to 5 (mod 7), resulting in another congruence.

Theorem 3.3. For any n ≥ 0,

6∑
m=1

m5NB4(m, 7, 7n+ 5) ≡ 0 (mod 7). (3.14)

16



The three Andrews-Beck type congruences that we have proved appear to

be just the tip of the iceberg. We conclude with a selected list of congruences80

that are conjectured to hold.

Conjecture 3.1. For any n ≥ 0,

6∑
m=1

m3NB4(m, 7, 7n+ 6) ≡ 0 (mod 7). (3.15)

Conjecture 3.2. For any n ≥ 0,

10∑
m=1

m3NB5(m, 11, 11n+ 8) ≡ 0 (mod 11). (3.16)

Conjecture 3.3. For any n ≥ 0,

12∑
m=1

m3NB5(m, 13, 13n+ 12) ≡ 0 (mod 13). (3.17)

Conjecture 3.4. For any n ≥ 0, if i = 0 or 3,

16∑
m=1

m3NB7(m, 17, 17n+ i) ≡ 0 (mod 17). (3.18)

Conjecture 3.5. For any n ≥ 0, if i = 0, 9 or 16,

18∑
m=1

m3NB7(m, 19, 19n+ i) ≡ 0 (mod 19). (3.19)

Conjecture 3.6. For any n ≥ 0,

10∑
m=1

m5NB7(m, 11, 11n+ 9) ≡ 0 (mod 11). (3.20)

Conjecture 3.7. For any n ≥ 0,

12∑
m=1

m5NB11(m, 13, 13n+ 9) ≡ 0 (mod 13). (3.21)

Conjecture 3.8. For any n ≥ 0,

18∑
m=1

m5NB11(m, 19, 19n+ 13) ≡ 0 (mod 19). (3.22)
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4. Combinatorial proof of (1.4)

We first define an involution ϕ on an ordinary partition λ = λ1 + λ2 + · · · .

Suppose first that both ω(λ) and µ(λ) are nonzero. Then λ contains a µ(λ) ×

ω(λ) block, which we label as A, as well as a µ(λ)×1 column immediately to the85

right of A, in its Ferrers diagram. (See Figure 1.) The map ϕ interchanges this

µ(λ)× 1 column with the ω(λ)× 1 column of parts of size 1, switches blocks B

and C, and then conjugates all three blocks A, B and C. The tail end consisting

of the difference of the two largest parts, λ1 − λ2, is left intact.

©
©
©
...
©

A B

C

©· · · ©©
...
©

ω(λ)

ω(λ) λ1 − λ2

µ(λ)

A′ω(λ) C ′

©
©
©
...
©

©· · · ©
µ(λ) λ1 − λ2

B′

©
...
©

µ(λ)

−→
ϕ

Figure 1: Involution ϕ

It is clear that µ(ϕ(λ)) = ω(λ) and ω(ϕ(λ)) = µ(λ), thus ϕ is an involution90

satisfying crank(ϕ(λ)) = −crank(λ). It remains to consider the cases where

either of ω(λ) or µ(λ) is zero. If ω(λ) = 0, we remove the largest part λ1,

create λ1 many parts of size 1 and call this resulting partition ϕ(λ). Note that

µ(ϕ(λ)) = 0 and thus crank(ϕ(λ)) = −λ1. Finally, if µ(λ) = 0, then ω(λ) ≥ λ1,

the largest part. We remove these parts of size 1, and insert a new largest part95

of size ω(λ), resulting in crank(ϕ(λ)) = ω(λ) = −crank(λ).

Proof of (1.4). We collect all the partitions of n into these two sets

P1(n) := {λ ` n | ω(λ) > 0, µ(λ) > 0} ,

P2(n) := {λ ` n | ω(λ) = 0 or µ(λ) = 0} .
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For partitions in P1(n), we have

2
∑

λ∈P1(n)

ω(λ)crank2j−1(λ) =
∑

λ∈P1(n)

ω(λ)crank2j−1(λ) +
∑

ϕ(λ)∈P1(n)

ω(ϕ(λ))crank2j−1(ϕ(λ))

=
∑

λ∈P1(n)

ω(λ)crank2j−1(λ)−
∑

ϕ(λ)∈P1(n)

µ(λ)crank2j−1(λ)

= −
∑

λ∈P1(n)

(µ(λ)− ω(λ))crank2j−1(λ). (4.1)

Now for partitions in P2(n), we first observe that∑
λ∈P2(n)
ω(λ)>0

crank2j(λ) =
∑

ϕ(λ)∈P2(n)
ω(ϕ(λ))=0

crank2j(ϕ(λ))

=
∑

λ∈P2(n)
ω(λ)=0

crank2j(λ). (4.2)

Hence

−2
∑

λ∈P2(n)

ω(λ)crank2j−1(λ) = −2
∑

λ∈P2(n)
ω(λ)>0

ω(λ)crank2j−1(λ)

= 2
∑

λ∈P2(n)
ω(λ)>0

crank2j(λ)

=
∑

λ∈P2(n)
ω(λ)>0

crank2j(λ) +
∑

λ∈P2(n)
ω(λ)=0

crank2j(λ)

=
∑

λ∈P2(n)

crank2j(λ). (4.3)

Combining (4.1) and (4.3) completes the proof.
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