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The purpose of this study is to develop design principles for crafting tasks that will 

encourage conjecturing and proving in the context of elementary number theory at the 

undergraduate level. From the analyses of the written work of 46 prospective 

mathematics teachers on a task designed according to these principles, we think that 

there is potential to build on and refine from these principles for other undergraduate 

mathematics courses. 

INTRODUCTION 

Paul Erdös, one of the greatest mathematicians of the twentieth century, and certainly the 

most eccentric … believed that the meaning of life was to prove and conjecture. 

(Schechter, 2000) 

Most mathematicians would agree that making conjectures and then proving them is an 

indispensable component of practicing mathematics. The acts of conjecturing and 

proving also have immense educational value. The NCTM Principles and Standards 

for School Mathematics states that school programs at all levels should enable students 

to “recognize reasoning and proof as fundamental aspects of mathematics; make and 

investigate mathematical conjectures; develop and evaluate mathematical arguments 

and proofs.” (NCTM, 2000, p. 56). This is echoed by Lin et al. (2012, p. 308) who 

argued that “tasks of conjecturing and proving should be designed to be embedded into 

any level of mathematics classes in order to enhance students’ conceptual 

understanding, procedural fluency, or problem solving.” In addition, it would seem 

that for these acts of conjecturing and proving to be actualised in schools, it is even 

more imperative that prospective mathematics teachers should learn them in their 

mathematics training. This paper describes an attempt to develop design principles for 

crafting tasks that will encourage conjecturing and proving in an elementary number 

theory course for undergraduate prospective teachers.   

BACKGROUND 

It is widely accepted that the act of proving enhances students’ mathematical concepts 

and reasoning (Hanna, 2000), however the enactment in the curriculum sometimes 

result in students possessing a distorted view of what constitutes a mathematical proof. 

Selden (2012) suggests that the requirement to construct two-column geometry proofs 

may be partially responsible for some students’ perception that proofs are always 

constructed in a linear fashion. Hoyles (1997) argues that students see little meaning 
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and purpose in the act of proving mathematical statements, especially those which they 

already assumed to be true. Schoenfeld, after a series of studies exploring students’ 

understanding of geometry, formulated these erroneous students’ beliefs: (1) The 

processes of formal mathematics (e.g. “proof”) have little or nothing to do with 

discovery or invention. (2) Students who understand the subject matter can solve 

assigned mathematics problems in five minutes or less. (3) Only geniuses are capable 

of discovering, creating, or really understanding mathematics (1988, p. 151).  

One possible remedy to address these wrong perceptions is to provide students with 

opportunities to formulate and prove their own conjectures (Lin et al., 2012). As 

teacher educators, we recognize that correcting these perceptions in prospective 

teachers is a crucial step in arresting the propagation of these erroneous beliefs. The 

design of suitable tasks to elicit these dispositions from the prospective teachers is an 

important step towards this end. 

This study arose from the efforts of the first author – henceforth referred to in the first 

person singular pronoun – to design tasks to promote conjecturing and proving in an 

undergraduate elementary number theory course for prospective teachers. It is widely 

accepted that elementary number theory provides an appropriate context for 

undergraduates to learn proofs and engage in conjecturing (Ferrari, 2002; Selden & 

Selden 2002; Zazkis & Campbell, 2006). Thus I incorporated into the course problem 

solving tasks that explicitly required the prospective teachers to engage in conjecturing 

and proving. The tasks were designed according to these principles: (1) In line with the 

content emphasis of the course, the problem should require the content and techniques 

typical to undergraduate number theory courses; (2) The problem should lend itself to 

the motivation for prospective teachers to actively propose conjectures that is part of 

the process of solving the problem; in other words, we avoid problems that are too 

closed-ended – such as the conventional proof problems where the statement to be 

proven is given and thus there is no room for conjecturing; (3) the problem should be 

set at the right ‘level’; it should not be deemed too inaccessible for most of the students 

to the point that they do not feel encouraged to even try conjecturing; on the other hand, 

there should be sufficient cognitive demand in the problem to render the task of solving 

meaningful; (4) the problem should be unfamiliar to the prospective teachers and not 

easily found in public media. This is to reduce the likelihood of prospective teachers 

resorting to duplicating solutions found elsewhere and as such blunt their motivation to 

attack the problem through conjecturing and proving for themselves.  

In crafting these design principles, I relied on prior experiences teaching this course. It 

is heartening to note that these principles were in line with the characterisation of open 

problems as described by Furinghetti and Paola (2003), as well as several of the 

principles proposed by Lin et al. (2012). While the principles they stated were generic 

in nature, my motivation in deriving the design principles were for their specific 

relevance in the teaching of undergraduate-level number theory.  
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DATA SOURCE AND THE PROBLEM SOLVING TASK 

The aim of our study is to find out whether a problem crafted based on the design 

principles stated in the previous section will be efficacious, that is, whether it will bring 

about productive conjectures and motivation for proving these conjectures in the 

prospective teachers’ attempts at the problem.  

This study took place in a first year undergraduate number theory course for 46 

prospective teachers. The undergraduate programme for these prospective teachers is 

structured in such a way that they first learn mathematics content before they learn the 

pedagogical aspects concerning the teaching of the subject. Thus, during their first 

year, the academic profiles of these prospective teachers are typical to that of an 

undergraduate mathematics major.  Prior to this course, these prospective teachers had 

already read introductory calculus and introductory linear algebra. In addition, the first 

two weeks of this 13 week number theory course were devoted to methods of proof.  

Our data is taken from the following problem solving task assigned to the prospective 

teachers near the end of the course:  

Problem: An L-Shaped number is one that can be written as a difference of two squares. 

For example, 3 = 2
2
-1

2
 and 21 = 5

2
-2

2
 are L-Shaped numbers but 1 and 2 are not. Note that 

we do not consider 0 as a square. Can you describe as completely as possible, which 

natural numbers are L-Shaped numbers? (You should include proofs as necessary.)  

A diagram illustrating the geometric interpretation of L-shaped numbers (Figure 1) 

accompanied the description of the task.   

 

Figure 1: Geometric interpretation of L-Shaped numbers. 

The prospective teachers were given two weeks to complete the task on a practical 

worksheet, an instructional scaffold designed to develop problem solving disposition 

based on Pólya’s problem solving model (Pólya, 1945) and Schoenfeld’s problem 

solving framework (Schoenfeld, 1985). It contains sections that explicitly guide 

students to use the Pólya stages. The practical worksheet was used as part of the 

prospective teachers’ task as it provided a useful aid for their conjecturing and proving 

in the process of solving the problem. An account of how the practical worksheet was 

used to develop problem solving disposition in a previous iteration of the same number 

theory course can be found in Toh et al. (in press).  

It is clear that the task coheres with the design principles mentioned in the previous 

section: (1) an essential step in the complete solution require parity arguments which is 

a typical technique in number theory courses – and this point will be elaborated in the 
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context of discussion of solutions later; (2) the open nature of the problem requires the 

subjects’ active proposal of conjectures; (3) there are multiple entry levels into the 

problems – such as proceeding geometrically first, or just listing examples to observe a 

pattern – and thus encourage the prospective teachers to make good attempts at 

conjecturing and proving; (4) To the best of my knowledge, this problem is not found 

in the open media. In fact, this problem is a substantial adaptation from another 

problem I came across in the Singapore Mathematical Olympiads.     

ANALYSIS OF PROSPECTIVE TEACHERS’ WORKSHEETS 

All except one prospective teacher submitted their solution attempts. Their worksheets 

were analysed and coded according to whether they made one or more of three 

conjectures that are productive towards the complete solution of the problem, and 

whether they were able to provide a valid proof of their conjectures. 

Possible Conjectures Made the 

conjecture 

Provided valid 

proof 

All odd numbers, with the exception of 1, are 

L-shaped numbers 

43 34 

All even numbers which are multiples of 4, with 

the exception of 4, are L-shaped numbers 

39 22 

All even numbers which are not multiples of 4 are 

not L-shaped numbers 

15 3 

Table 1: Conjectures made and proved by prospective teachers. 

About conjecturing 

Most of the prospective teachers began by listing examples of L-shaped numbers and 

attempted to seek patterns from the list. All but two of the prospective teachers 

managed to observe that all odd numbers that are greater than 1, are L-shaped. A total 

of 39 prospective teachers also made the second conjecture that every even multiple of 

4, with the exception of 4, are L-shaped.
1
 Figure 2 provides an example of a 

prospective teacher who wrote the two conjectures clearly. It is noteworthy that – as we 

anticipated under Design Principle (3) – entries made into the problem include the 

technique of listing and geometrical approaches. 

                                           
1
 A mathematical point: Both 1 and 4 are not considered L-shaped numbers because of the explicit 

requirement that 0 is not a square. This additional constraint caused some difficulties for a small 

number of student teachers. However, since we were interested in the broad conjectures made by the 

student teachers, we did not make any distinction between students who included or ignored these 

two exceptional cases. 
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Figure 2: Prospective teacher formulating two conjectures. 

About proofs 

Almost 80% of the 43 prospective teachers managed to prove their conjecture that all 

odd numbers are L-shaped. For the second conjecture, a smaller albeit still significant 

56% of those who made the conjecture provided valid proofs. Examples of correct 

proofs of the two conjectures are given in Figure 3.  

Among the prospective teachers who failed to produce a valid proof of their 

conjectures, more than 75% chose to tackle the problem from the algebraic definition 

of an L-shaped number as n = a
2
 – b

2
. They then proceeded to consider all the possible 

parities of a and b which lead to the conclusion that L-shaped numbers are either odd or 

multiples of 4. These are actually the converses of the first two conjectures shown in 

Table 1; in other words, instead of proving that every odd number and every multiple of 

4 is an L-shaped number, they showed that an L-shaped number must be some odd 
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number or some multiple of 4. It is possible that some prospective teachers were not 

aware of the differences. Another explanation for this discrepancy between proof and 

conjecture is perhaps the lack of sufficient resources to prove their conjectures.  They 

focused on the definition of L-shaped numbers and attempted to deduce whatever 

implications they could, and stopped once they arrived at some plausible conclusions, 

without checking whether their conclusions were aligned to their conjectures. This is in 

line with the observations of Selden et al. (2010) of some students’ preference for 

immediately examining the hypothesis without considering the conclusion to be 

proved.   

 

 

Figure 3: Examples of correct proofs of the two conjectures. 

Only 15 out of 45 prospective teachers explicitly stated, in some form or other, the 

third conjecture that even numbers which are not multiples of 4 are not L-shaped. 

Proving this conjecture – together with the previous two – would have completed the 

solution to the problem. We believe there are two plausible reasons for the relatively 

small number of students who stated this conjecture: the first is related to the problem 

of distinguishing a statement and its converse, as discussed earlier; the second was the 

given instruction to “… describe as completely as possible, which natural numbers are 

L-Shaped numbers?” Prospective teachers may interpret it literally that they need not 

consider those numbers which are not L-shaped. 
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DISCUSSION 

We set out to study how prospective teachers would respond to a problem that was 

meant to encourage conjecturing and proving. We crafted the problem based on the 

design principles as stated in an earlier section of this paper. As seen from Table 1, we 

note that most of the prospective teachers were able to formulate correctly the first two 

conjectures and a majority managed to provide a valid proof. We derive 

encouragement from this result. We interpret this finding to mean that there is potential 

in these design principles in developing problems that will be helpful for prospective 

teachers to practise conjecturing and proving. In future research, we intend to replicate 

these principles and perhaps refine them to elicit better responses from the prospective 

teachers. 

We also notice that the reason a significant proportion of prospective teachers failed to 

provide a correct proof was due to their attempts at proving the converse instead. This 

finding reveals a gap in prospective teachers’ ability to make a distinction between 

necessary and sufficient conditions of a mathematical statement. From the perspective 

of teacher educators, there is a need to respond to this phenomenon. The responses can 

be in these forms: (1) In the regular teaching of mathematics courses, there should be 

more opportunities for prospective teachers to make judgments of statements and their 

converses; (2) in the design of the problems, we should be cognisant of these gaps in 

their knowledge. The errors made in confusing the necessary and sufficient conditions 

are opportunities for us to address these deficiencies. In general, we can include this in 

the list of design principles for problems: We should take into account prospective 

teachers’ errors in the choice of problems so that their solution attempts would reveal 

the errors and thus provide a motivation for us to address them accordingly. 
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