
WHAT IS AN IRRATIONAL NUMBER?
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We learnt in school that a real number can be classified as either a rational
or an irrational number. A number is rational, not because it is logical or
reasonable but rather that it is the ratio of two integers. To be precise, a
number is rational if it can be expressed as a

b , where a and b are integers,
with the additional requirement that b is not zero.

What about irrational numbers? Correspondingly, these are numbers
that cannot be expressed as a ratio of two integers. We should tread with
caution when dealing with definitions that characterize the absence of certain
properties. If a child asks “what is a cat?”, it is more helpful to say a cat
has four legs and whiskers than to say a cat has no wings and does not bark,
or worse, to say a cat is not a dog.

A concept defined by clear conditions like a rational number is relatively
easy to understand. We can produce many examples like 1

2 , 2
3 , −3

4 or 17
11 .

In fact, any integer n is a rational number, since n = n
1 . But how do we

understand a number that cannot be expressed as a ratio of integers? It
begs the question what then can we express it as? Textbooks inform us that√

2 and π are examples of irrational numbers but usually do not explain
why such numbers cannot be expressed as a ratio of integers. The reason
for the omission is probably because proving that a number is irrational
can be quite difficult and may involve sophisticated mathematics. A famous
example is that of the Euler-Mascheroni constant,

γ = 0.5772156649 . . . .

At the time of writing, no mathematician in the world has managed to prove
conclusively that this number is irrational!

So are we resigned to accept that we cannot have a good idea of what is an
irrational number? Fortunately, there is an alternative way to think about
such numbers. In the example above, although understanding the nature of
the Euler-Mascheroni constant is difficult, it is still possible to represent it
using decimal digits. This leads us to consider the decimal representations of
some rational and irrational numbers. (It is worth pointing out that we are
assuming that every real number has at least one decimal representation.)
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1

2
= 0.5,

2

3
= 0.6666666666 . . . ,

17

11
= 1.5454545454 . . . ,

√
2 = 1.4142135623 . . . ,

π = 3.1415926535 . . . .

Besides 1
2 , the other four numbers all have decimal representations that

appear to go on indefinitely. We have only displayed the first ten digits
(without rounding) after the decimal point. You are free to try it out on your
own calculator but your results may differ slightly because your calculator
has limited precision and makes rounding adjustments.

Apart from the never ending string of decimals, what other patterns do
you observe? Science proceeds along the cycle of Observation–Hypothesis–
Validation. Likewise, mathematics progresses through the cycle of Observation–
Conjecture–Proof. Mathematicians conjecture (which is another word for
guess or hypothesize) that certain properties or results are true, usually
through studying sufficient data or examples, and then attempt to prove
the conjecture. If the proof is accepted as rigorous and correct, the conjec-
ture becomes a theorem.

Returning to the previous five decimal representations, a reasonable guess
could be that the decimal representation of a rational number either stops
or terminates at some point like 1

2 or it goes on indefinitely but eventually

exhibits a repeating pattern like that of 2
3 and 17

11 . On the other hand, the
decimal representations of irrational numbers goes on indefinitely without
any discernible pattern. Before proceeding further, it is prudent for us to
verify our conjecture with more data. First of all, we based our guess on
only the first ten digits. So, we should use a computer or other available
means to check further. The following shows the decimal representation of
the four numbers displayed to twenty digits.

2

3
= 0.66666666666666666666 . . . ,

17

11
= 1.54545454545454545454 . . . ,

√
2 = 1.41421356237309504880 . . . ,

π = 3.14159265358979323846 . . . .

The pattern appears to hold. Next, we should check the decimal represen-
tations of other rational and irrational numbers. Once we are sufficiently
confident that our guess is valid, we should write it down precisely so that we
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can attempt to prove it. There are a number of ways to state our conjecture
and the following is one.

Conjecture 1. If the decimal representation of a real number terminates
or is eventually repeating, then that number is a rational number.

We shall not prove Conjecture 1 but provide a couple of examples to
illustrate why it is true. First of all, consider a real number x = 3.141 where
the decimal representation terminates after three digits. This means that
x can be expressed as 3141

1000 , a rational number. It is not hard to see that
this idea extends to other real numbers with a decimal representation that
terminates.

Now, consider a real number y = 7.123123123 . . . , where the three digits
123 repeat indefinitely. Multiplying y by 1000 and putting the two together,

1000y = 7123.123123123 . . . ,

y = 7.123123123 . . . .

If we take the difference, the digits occurring after the decimal point should
cancel out and we end up with 999y = 7116. Equivalently y = 7116

999 , which
is a rational number. Again this idea can be extended to any decimal rep-
resentation that is eventually repeating.

A rigourous proof of Conjecture 1 using the same ideas can be found in
a number of undergraduate mathematics textbooks. We thus upgrade our
conjecture and record it as a theorem.

Theorem 2. If the decimal representation of a real number terminates or
is eventually repeating, then that number is a rational number.

What about irrational numbers? Instead of first posing it as a conjecture,
we state the result directly.

Theorem 3. The decimal representation of an irrational number neither
terminates, nor does it eventually repeat.

We shall prove Theorem 3 using a technique called proof by contradiction.
This is akin to ‘playing devil’s advocate’. In other words, when arguing a
certain point of view, we take on the opposite position for the sake of de-
bate. The proof of Theorem 3 is as follows. Consider an arbitrary irrational
number which we shall call x. We wish to show that the decimal repre-
sentation of x neither terminates, nor does it eventually repeat. We argue
by supposing that it does. That is, the decimal representation of x either
terminates or is eventually repeating. Now Theorem 2 states that in either
case x is a rational number and this would contradict the fact that x is an
irrational number. The only way to resolve this apparent contradiction is
to accept that our initial supposition about the decimal representation of x,
i.e. it terminates or eventually repeats, was untrue. Hence, Theorem 3 is
true.
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Two remarks are in order. First, our proof of Theorem 3 may read like we
are just playing with words and twisting facts around. It is in fact rigorous
and necessary. This is because irrational numbers are defined by what they
are not and so we are unable to argue based on properties that an irrational
number possesses. The second remark is to point out what we have not
proven. In our discussion, we have not shown that the decimal expansion
of a rational number either terminates or eventually repeats. This is the
converse of Theorem 2 and you are encouraged to think along the lines of
long division to show that this is in fact true.

Although irrational numbers remain a difficult concept to understand and
we did not get any closer to why

√
2 or π is irrational, nonetheless Theorem

3 provides us with an alternative way to characterize irrational numbers.
Instead of saying it cannot be written as a ratio of two integers, we can now
say that it is a number whose decimal representation continues indefinitely
but does not eventually repeat. We challenge you to come up with an
example of an irrational number based on this characterization. (Hint: all
you need are the digits 0 and 1.)
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