
A PROBLEM ON EGYPTIAN FRACTIONS
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Egyptian fractions.

The ancient Egyptians used only fractions with unit numerator. Thus,
instead of writing 3

4 , they would use 1
2 + 1

4 instead. Similarly, 7
11 would be

expressed as 1
2 + 1

8 + 1
88 but in their own hieroglyphs, of course.

This expression of fractions as sums of Egyptian fractions can be quite
practical even today. Suppose 11 friends bought 7 loaves of bread and want
to share them equally. That would mean 7

11 each. One could cut every loaf
into 11 equal slices and give each friend 7 slices. If each loaf were a cuboid
and each slice has equal cross-section, this would take 70 cuts. Can we do
it with fewer cuts? If we express 7

11 = 1
2 + 1

8 + 1
88 , then this can translate

into cutting the 7 loaves into halves first, followed by cutting 3 halves into
eighths (of a whole), and ending with cutting one eighth into eighty-eighths.
Each person now gets a half, an eighth and an eighty-eighth of a loaf. The
number of cuts is 7 + 9 + 10 = 26.

Quite some work has been done on Egyptian fractions (you may refer
to the excellent website [2]). For example, it has been proved that each
fraction can always be written as sums of Egyptian fractions and that there
are an infinite number of ways of doing so. New results concerning Egyptian
fractions continue to appear [1]. In this paper, we are interested in the
number of ways an Egyptian fraction can itself be represented as the sum
of two other Egyptian fractions.

Classifying solutions to 1
n as a sum of two Egyptian fractions.

Let x, y, n ∈ Z+, x 6= y and assume that gcd(x, y, n) = 1. We wish to
classify all solutions to the equation

1

x
+

1

y
=

1

n
.

Since 1
y < 1

n , we have y > n and we can write y = n + k for some k > 0.

So
1

x
=

1

n
− 1

n + k
=⇒ n(n + k) = xk.

Let gcd(n, k) = d, and write n = dr and k = ds where gcd(r, s) = 1. We
further observe that d | y and so gcd(d, x) = 1.
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Our equation now simplifies to

dr(r + s) = xs.

By Euclid’s Lemma, since gcd(d, x) = 1, we have d | s. Similarly, r | x
and (r + s) | x. This means that we have the following equations

x = r(r + s) and s = d.

In other words, the original equation can be written as

1

r(r + d)
+

1

d(r + d)
=

1

rd
, where gcd(r, d) = 1.

Number of representations of 1
n as a sum of two Egyptian

fractions.

We shall prove our main result with the help of the following two lemmas.

Lemma 1. Let n = pa11 pa22 . . . pakk be the prime factorisation of the positive

integer n. Let 1
n = 1

x + 1
y , where x, y ∈ Z+, x 6= y. If gcd(x, y, n) = 1, then

the number of such representations is 2k−1.

Proof. If gcd(x, y, n) = 1, then by the classification above, the number of
such representations is the number of ways of expressing n as the product
of two coprime factors r and d. This is the number of ways of dividing
k distinct objects (the k distinct primes) into 2 identical boxes, where the
boxes may be allowed to be empty, i.e. 2k−1 ways. �

Lemma 2. Let 1
n = 1

x + 1
y , where x, y ∈ Z+, x 6= y. If gcd(x, y, n) = d, then

the number of such representations is the number of representations of

1

n′
=

1

x′
+

1

y′
,

where n′ = n
d , x

′ = x
d , y

′ = y
d and gcd(x′, y′, n′) = 1.

Theorem 3. Let n = pa11 pa22 . . . pakk be the prime factorisation of the positive

integer n. Let 1
n = 1

x + 1
y , where x, y ∈ Z+, x 6= y. The total number of such

representations is

k∑
i=1

2i−1
∑

16j1<j2<···<ji6k

aj1aj2 . . . aji .

Proof. By Lemma 2, we can divide into cases by considering the number of
representations of 1

n′ = 1
x′ + 1

y′ , where n′ = n
d and gcd(x′, y′, n′) = 1.

Let i be the number of distinct primes dividing n′. Suppose

n′ = p
bj1
j1

p
bj2
j2

...p
bji
ji
, where 1 6 j1 < j2 < · · · < ji 6 k

and for each r from 1 to i, 1 6 bjr 6 ajr . By Lemma 1, the number
of representations is 2i−1. The total number of possible choices for n′ is
aj1aj2 . . . aji for this set of i primes. Thus the number of representations is
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2i−1aj1aj2 . . . aji . Summing across all possible combinations of i primes, we
have that the total number of representations when there are i primes is

2i−1
∑

16j1<j2<···<ji6k

aj1aj2 . . . aji .

Finally, we sum across all i to obtain the total number of representations
as

k∑
i=1

2i−1
∑

16j1<j2<···<ji6k

aj1aj2 . . . aji .

�

We conclude with two examples to illustrate the main result.

Example 4. If n = pa11 pa22 pa33 where pi are distinct primes, then the total
number of representations of 1

n as a sum of two Egyptian fractions is

4a1a2a3 + 2(a1a2 + a1a3 + a2a3) + a1 + a2 + a3.

Example 5. If n = p2q, where p and q are distinct primes, then there are
7 distinct representations of 1

n as a sum of two Egyptian fractions. These
are listed in the table below, arranged by possible divisors of n.

d 2i−1
1

x
+

1

y

1 2
1

1 + p2q
+

1

p2q(1 + p2q)
1

p2(p2 + q)
+

1

q(p2 + q)

p 2
1

p(1 + pq)
+

1

p2q(1 + pq)
1

p2(p + q)
+

1

pq(p + q)

p2 1
1

p2(1 + q)
+

1

p2q(1 + q)

q 1
1

q(1 + p2)
+

1

p2q(1 + p2)

pq 1
1

pq(1 + p)
+

1

p2q(1 + p)
p2q 0
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