A GENERAL TRANSFORMATION FOR THETA SERIES ASSOCIATED WITH THE QUADRATIC FORM $x^{2}+k y^{2}$

THI PHUONG NHI HO AND PEE CHOON TOH

Abstract

Using elementary techniques, we prove a general transformation for theta series associated with the quadratic form $x^{2}+k y^{2}$. The transformation is then applied to establish several infinite families of identities involving theta series whose Fourier coefficients are interlinked.

1. Introduction

Let $q=e^{2 \pi i \tau}$, where τ is any complex number in the upper half plane. We define the Dedekind eta-function as

$$
\eta(\tau)=q^{1 / 24} \prod_{j=1}^{\infty}\left(1-q^{j}\right)
$$

Next we define $a(n)$ and $\tilde{a}(n)$ as the Fourier coefficients of the following pair of infinite products

$$
\begin{align*}
& \sum_{n \geq 0} a(n) q^{n}=\frac{\eta(16 \tau)^{2} \eta(32 \tau)^{3}}{\eta(8 \tau)}=q^{5}+q^{13}+q^{29}+\cdots \tag{1.1a}\\
& \sum_{n \geq 0} \tilde{a}(n) q^{n}=\frac{\eta(8 \tau)^{3} \eta(16 \tau)^{2}}{\eta(32 \tau)}=q-3 q^{9}-2 q^{17}+\cdots \tag{1.1b}
\end{align*}
$$

Hirschhorn 3] used elementary techniques to prove that the coefficients of $a(n)$ and $\tilde{a}(n)$ are interlinked in the following manner.

$$
\begin{align*}
& \sum_{n \geq 0} a(5 n) q^{n}+5 \sum_{n \geq 0} a(n) q^{5 n}=\sum_{n \geq 0} \tilde{a}(n) q^{n} \tag{1.2a}\\
& \sum_{n \geq 0} \tilde{a}(5 n) q^{n}+5 \sum_{n \geq 0} \tilde{a}(n) q^{5 n}=16 \sum_{n \geq 0} a(n) q^{n} \tag{1.2b}
\end{align*}
$$

He remarked that a question worth investigating was whether this was an isolated phenomenon or if there were more of such examples. One of the authors [5] showed that in fact Hirschhorn's identities were special cases of a more general phenomenon. He used the theory of modular forms to generalize (1.2) from the case $p=5$ to all primes $p \equiv 1(\bmod 4)$.

[^0]Theorem 1.1 (Theorem 2.1 of [5]). For any prime $p \equiv 1(\bmod 4)$, we have

$$
\begin{align*}
& \sum_{n \geq 0} a(p n) q^{n}+p \sum_{n \geq 0} a(n) q^{p n}= \begin{cases}\tilde{a}(p) \sum_{n \geq 0} a(n) q^{n} & \text { if } p \equiv 1 \quad(\bmod 8) \\
a(p) \sum_{n \geq 0} \tilde{a}(n) q^{n} & \text { if } p \equiv 5 \quad(\bmod 8)\end{cases} \tag{1.3a}\\
& \sum_{n \geq 0} \tilde{a}(p n) q^{n}+p \sum_{n \geq 0} \tilde{a}(n) q^{p n}=\left\{\begin{array}{ll}
\tilde{a}(p) \sum_{n \geq 0} \tilde{a}(n) q^{n} & \text { if } p \equiv 1 \\
16 a(p) \sum_{n \geq 0} a(n) q^{n} & \text { if } p \equiv 5
\end{array} \quad(\bmod 8)\right. \tag{1.3b}
\end{align*}
$$

In addition, he found another pair of infinite products whose Fourier coefficients satisfied analogous relations.

Theorem 1.2 (Theorem 2.3 of [5]). If

$$
\begin{align*}
& \sum_{n \geq 0} b(n) q^{n}=\frac{\eta(8 \tau)^{3} \eta(64 \tau)^{2}}{\eta(32 \tau)}=q^{5}-3 q^{13}+5 q^{29}+\cdots \tag{1.4a}\\
& \sum_{n \geq 0} \tilde{b}(n) q^{n}=\frac{\eta(8 \tau)^{3} \eta(32 \tau)^{5}}{\eta(16 \tau)^{2} \eta(64 \tau)^{2}}=q-3 q^{9}+2 q^{17}+\cdots \tag{1.4b}
\end{align*}
$$

then for any prime $p \equiv 1(\bmod 4)$, we have

$$
\begin{align*}
& \sum_{n \geq 0} b(p n) q^{n}+p \sum_{n \geq 0} b(n) q^{p n}=\left\{\begin{array}{ll}
\tilde{b}(p) \sum_{n \geq 0} b(n) q^{n} & \text { if } p \equiv 1 \\
(\bmod 8) \\
b(p) \sum_{n \geq 0} \tilde{b}(n) q^{n} & \text { if } p \equiv 5
\end{array} \quad(\bmod 8),\right. \tag{1.5a}\\
& \sum_{n \geq 0} \tilde{b}(p n) q^{n}+p \sum_{n \geq 0} \tilde{b}(n) q^{p n}= \begin{cases}\tilde{b}(p) \sum_{n \geq 0} \tilde{b}(n) q^{n} & \text { if } p \equiv 1 \quad(\bmod 8) \\
4 b(p) \sum_{n \geq 0} b(n) q^{n} & \text { if } p \equiv 5 \quad(\bmod 8)\end{cases} \tag{1.5b}
\end{align*}
$$

The Jacobi triple product identity [1, p. 10] allows us to write each of the four infinite products from Theorems 1.1 and 1.2 as a theta series of the following form

$$
\sum_{\substack{x \equiv x_{0}(\bmod A) \\ y \equiv y_{0}(\bmod B)}} f(x, y) q^{x^{2}+4 y^{2}}
$$

for some function $f(x, y)$. By Fermat's theorem, every prime $p \equiv 1(\bmod 4)$, can always be expressed as a sum of two squares. Since one of the two squares must be even, we can write $p=\alpha^{2}+4 \beta^{2}$. Two questions arise naturally. Can Theorems 1.1 and 1.2 be proved using elementary methods? In other words, can they be proved without appealing to the theory of modular forms? The second question is whether there exist analogous identities associated to primes of the form $p=\alpha^{2}+k \beta^{2}$ for other values of k. In this article, we answer both questions by deriving a general transformation associated with the quadratic form $x^{2}+k y^{2}$. With the help of this transformation, we can provide elementary proofs of Theorems 1.1 and 1.2 and many other analogous infinite families of identities. In the following, we list some of the more striking examples.

Theorem 1.3. If

$$
\begin{align*}
& \sum_{n \geq 0} c(n) q^{n}=\frac{\eta(4 \tau)^{2} \eta(24 \tau)^{5}}{\eta(8 \tau) \eta(48 \tau)^{2}}=q-2 q^{5}+2 q^{17}+\cdots \tag{1.6a}\\
& \sum_{n \geq 0} \tilde{c}(n) q^{n}=\frac{\eta(16 \tau)^{2} \eta(24 \tau)^{5}}{\eta(8 \tau) \eta(12 \tau)^{2}}=q^{5}+q^{13}+2 q^{17}+\cdots \tag{1.6b}
\end{align*}
$$

then for any prime $p \equiv 1(\bmod 12)$, we have

$$
\begin{align*}
& \sum_{n \geq 0} c(p n) q^{n}+p \sum_{n \geq 0} c(n) q^{p n}= \begin{cases}c(p) \sum_{n \geq 0} c(n) q^{n} & \text { if } p=\alpha^{2}+36 \beta^{2} \\
16 \tilde{c}(p) \sum_{n \geq 0} \tilde{c}(n) q^{n} & \text { if } p=9 \alpha^{2}+4 \beta^{2}\end{cases} \tag{1.7a}\\
& \sum_{n \geq 0} \tilde{c}(p n) q^{n}+p \sum_{n \geq 0} \tilde{c}(n) q^{p n}= \begin{cases}c(p) \sum_{n \geq 0} \tilde{c}(n) q^{n} & \text { if } p=\alpha^{2}+36 \beta^{2} \\
\tilde{c}(p) \sum_{n \geq 0} c(n) q^{n} & \text { if } p=9 \alpha^{2}+4 \beta^{2}\end{cases} \tag{1.7b}
\end{align*}
$$

Theorem 1.4. If

$$
\begin{array}{ll}
\sum_{n \geq 0} d_{1}(n) q^{n}=\frac{\eta(8 \tau) \eta(12 \tau)^{2} \eta(32 \tau) \eta(48 \tau)^{2}}{\eta(16 \tau) \eta(24 \tau)}, & \quad \sum_{n \geq 0} d_{2}(n) q^{n}=\frac{\eta(4 \tau)^{2} \eta(48 \tau)^{13}}{\eta(8 \tau) \eta(24 \tau)^{5} \eta(96 \tau)^{5}} \\
\sum_{n \geq 0} d_{3}(n) q^{n}=\frac{\eta(8 \tau) \eta(24 \tau)^{5} \eta(32 \tau)}{\eta(12 \tau)^{2} \eta(16 \tau)}, & \sum_{n \geq 0} d_{4}(n) q^{n}=\frac{\eta(8 \tau)^{5} \eta(48 \tau)^{13}}{\eta(4 \tau)^{2} \eta(16 \tau)^{2} \eta(24 \tau)^{5} \eta(96 \tau)^{5}}
\end{array}
$$

then for any prime $p \equiv 1(\bmod 12)$, we have

$$
\begin{aligned}
& \sum_{n \geq 0} d_{1}(p n) q^{n}+(-1)^{\frac{p-1}{12}} p \sum_{n \geq 0} d_{1}(n) q^{p n}= \begin{cases}d_{4}(p) \sum_{n \geq 0} d_{1}(n) q^{n} & \text { if } p=\alpha^{2}+36 \beta^{2}, \beta \text { even }, \\
d_{2}(p) \sum_{n \geq 0} d_{3}(n) q^{n} & \text { if } p=\alpha^{2}+36 \beta^{2}, \beta \text { odd }, \\
d_{1}(p) \sum_{n \geq 0} d_{4}(n) q^{n} & \text { if } p=9 \alpha^{2}+4 \beta^{2}, \beta \text { even }, \\
d_{3}(p) \sum_{n \geq 0}^{n} d_{2}(n) q^{n} & \text { if } p=9 \alpha^{2}+4 \beta^{2}, \beta \text { odd } ;\end{cases} \\
& \sum_{n \geq 0} d_{2}(p n) q^{n}+(-1)^{\frac{p-1}{12}} p \sum_{n \geq 0} d_{2}(n) q^{p n}= \begin{cases}d_{2}(p) \sum_{n \geq 0} d_{2}(n) q^{n} & \text { if } p=\alpha^{2}+36 \beta^{2}, \beta \text { even }, \\
-d_{4}(p) \sum_{n \geq 0} d_{4}(n) q^{n} & \text { if } p=\alpha^{2}+36 \beta^{2}, \beta \text { odd }, \\
16 d_{3}(p) \sum_{n \geq 0} d_{3}(n) q^{n} & \text { if } p=9 \alpha^{2}+4 \beta^{2}, \beta \text { even }, \\
-16 d_{1}(p) \sum_{n \geq 0} d_{1}(n) q^{n} & \text { if } p=9 \alpha^{2}+4 \beta^{2}, \beta \text { odd } ;\end{cases}
\end{aligned}
$$

4

$$
\begin{aligned}
& \sum_{n \geq 0} d_{3}(p n) q^{n}+(-1)^{\frac{p-1}{12}} p \sum_{n \geq 0} d_{3}(n) q^{p n}= \begin{cases}d_{2}(p) \sum_{n \geq 0} d_{3}(n) q^{n} & \text { if } p=\alpha^{2}+36 \beta^{2}, \beta \text { even }, \\
d_{4}(p) \sum_{n \geq 0} d_{1}(n) q^{n} & \text { if } p=\alpha^{2}+36 \beta^{2}, \beta \text { odd }, \\
d_{3}(p) \sum_{n \geq 0}^{n} d_{2}(n) q^{n} & \text { if } p=9 \alpha^{2}+4 \beta^{2}, \beta \text { even }, \\
d_{1}(p) \sum_{n \geq 0}^{n} d_{4}(n) q^{n} & \text { if } p=9 \alpha^{2}+4 \beta^{2}, \beta \text { odd },\end{cases} \\
& \sum_{n \geq 0} d_{4}(p n) q^{n}+(-1)^{\frac{p-1}{12}} p \sum_{n \geq 0} d_{4}(n) q^{p n}= \begin{cases}d_{4}(p) \sum_{n \geq 0} d_{4}(n) q^{n} & \text { if } p=\alpha^{2}+36 \beta^{2}, \beta \text { even }, \\
-d_{2}(p) \sum_{n \geq 0} d_{2}(n) q^{n} & \text { if } p=\alpha^{2}+36 \beta^{2}, \beta \text { odd }, \\
16 d_{1}(p) \sum_{n \geq 0} d_{1}(n) q^{n} & \text { if } p=9 \alpha^{2}+4 \beta^{2}, \beta \text { even }, \\
-16 d_{3}(p) \sum_{n \geq 0} d_{3}(n) q^{n} & \text { if } p=9 \alpha^{2}+4 \beta^{2}, \beta \text { odd } .\end{cases}
\end{aligned}
$$

Theorem 1.5. If

$$
\begin{align*}
& \sum_{n \geq 0} f(n) q^{n}=\frac{\eta(2 \tau)^{2} \eta(24 \tau)^{5}}{\eta(4 \tau) \eta(48 \tau)^{2}}=q-2 q^{3}+2 q^{9}-2 q^{19}-5 q^{25}+\cdots \tag{1.8a}\\
& \sum_{n \geq 0} \tilde{f}(n) q^{n}=\frac{\eta(12 \tau)^{5} \eta(16 \tau)^{2}}{\eta(6 \tau)^{2} \eta(8 \tau)}=q^{3}+2 q^{9}+q^{11}+2 q^{17}+q^{27}+\cdots \tag{1.8b}
\end{align*}
$$

then for any prime $p \equiv 1$ or $3(\bmod 8)$ and $p \neq 3$, we have

$$
\sum_{n \geq 0} f(p n) q^{n}+\left(\frac{p}{3}\right) p \sum_{n \geq 0} f(n) q^{p n}= \begin{cases}f(p) \sum_{n \geq 0} f(n) q^{n} & \text { if } p=\alpha^{2}+18 \beta^{2} \tag{1.9a}\\ -8 \tilde{f}(p) \sum_{n \geq 0} \tilde{f}(n) q^{n} & \text { if } p=9 \alpha^{2}+2 \beta^{2}\end{cases}
$$

$$
\sum_{n \geq 0} \tilde{f}(p n) q^{n}+\left(\frac{p}{3}\right) p \sum_{n \geq 0} \tilde{f}(n) q^{p n}= \begin{cases}f(p) \sum_{n \geq 0} \tilde{f}(n) q^{n} & \text { if } p=\alpha^{2}+18 \beta^{2} \tag{1.9b}\\ \tilde{f}(p) \sum_{n \geq 0} f(n) q^{n} & \text { if } p=9 \alpha^{2}+2 \beta^{2}\end{cases}
$$

Theorem 1.6. If

$$
\begin{align*}
& \sum_{n \geq 0} g(n) q^{n}=\frac{\eta(3 \tau)^{2} \eta(24 \tau)^{5}}{\eta(6 \tau) \eta(48 \tau)^{2}}=q-2 q^{4}+2 q^{13}+\cdots \tag{1.10a}\\
& \sum_{n \geq 0} \tilde{g}(n) q^{n}=\frac{\eta(6 \tau)^{5} \eta(48 \tau)^{2}}{\eta(3 \tau)^{2} \eta(24 \tau)}=q^{4}+2 q^{7}-4 q^{19}+\cdots \tag{1.10b}
\end{align*}
$$

then for any prime $p \equiv 1(\bmod 3)$, we have

$$
\begin{align*}
& \sum_{n \geq 0} g(p n) q^{n}+p \sum_{n \geq 0} g(n) q^{p n}= \begin{cases}g(p) \sum_{n \geq 0} g(n) q^{n} & \text { if } p=\alpha^{2}+12 \beta^{2} \\
4 \tilde{g}(p) \sum_{n \geq 0} \tilde{g}(n) q^{n} & \text { if } p=4 \alpha^{2}+3 \beta^{2}\end{cases} \tag{1.11a}\\
& \sum_{n \geq 0} \tilde{g}(p n) q^{n}+p \sum_{n \geq 0} \tilde{g}(n) q^{p n}= \begin{cases}g(p) \sum_{n \geq 0} \tilde{g}(n) q^{n} & \text { if } p=\alpha^{2}+12 \beta^{2} \\
\tilde{g}(p) \sum_{n \geq 0} g(n) q^{n} & \text { if } p=4 \alpha^{2}+3 \beta^{2}\end{cases} \tag{1.11b}
\end{align*}
$$

Theorem 1.7. For a prime $p \equiv 1$ or $9(\bmod 20)$, define

$$
\delta(p)= \begin{cases}0 & \text { if } p=\alpha^{2}+45 \beta^{2} \\ 1 & \text { if } p=9 \alpha^{2}+5 \beta^{2}\end{cases}
$$

If

$$
\begin{array}{ll}
\sum_{n \geq 0} h_{1}(n) q^{n}=\frac{\eta(5 \tau)^{2} \eta(24 \tau)^{5}}{\eta(10 \tau) \eta(48 \tau)^{2}}, & \sum_{n \geq 0} h_{2}(n) q^{n}=\frac{\eta(6 \tau)^{5} \eta(80 \tau)^{2}}{\eta(3 \tau)^{2} \eta(40 \tau)} \\
\sum_{n \geq 0} h_{3}(n) q^{n}=\frac{\eta(\tau)^{2} \eta(120 \tau)^{5}}{\eta(2 \tau) \eta(240 \tau)^{2}}, & \sum_{n \geq 0} h_{4}(n) q^{n}=\frac{\eta(16 \tau)^{2} \eta(30 \tau)^{5}}{\eta(8 \tau) \eta(15 \tau)^{2}}
\end{array}
$$

then for any prime $p \equiv 1$ or $9(\bmod 20)$, we have

$$
\begin{aligned}
& \sum_{n \geq 0} h_{1}(p n) q^{n}+(-1)^{\delta(p)} p \sum_{n \geq 0} h_{1}(n) q^{p n}= \begin{cases}h_{1}(p) \sum_{n \geq 0} h_{1}(n) q^{n} & \text { if } p=\alpha^{2}+45 \beta^{2}, \beta \text { even }, \\
4 h_{2}(p) \sum_{n \geq 0} h_{2}(n) q^{n} & \text { if } p=\alpha^{2}+45 \beta^{2}, \beta \text { odd }, \\
-20 h_{4}(p) \sum_{n \geq 0} h_{4}(n) q^{n} & \text { if } p=9 \alpha^{2}+5 \beta^{2}, \beta \text { even }, \\
-5 h_{3}(p) \sum_{n \geq 0} h_{3}(n) q^{n} & \text { if } p=9 \alpha^{2}+5 \beta^{2}, \beta \text { odd } ;\end{cases} \\
& \sum_{n \geq 0} h_{2}(p n) q^{n}+(-1)^{\delta(p)} p \sum_{n \geq 0} h_{2}(n) q^{p n}= \begin{cases}h_{1}(p) \sum_{n \geq 0} h_{2}(n) q^{n} & \text { if } p=\alpha^{2}+45 \beta^{2}, \beta \text { even }, \\
h_{2}(p) \sum_{n \geq 0}^{n} h_{1}(n) q^{n} & \text { if } p=\alpha^{2}+45 \beta^{2}, \beta \text { odd }, \\
-5 h_{4}(p) \sum_{n \geq 0} h_{3}(n) q^{n} & \text { if } p=9 \alpha^{2}+5 \beta^{2}, \beta \text { even }, \\
-5 h_{3}(p) \sum_{n \geq 0} h_{4}(n) q^{n} & \text { if } p=9 \alpha^{2}+5 \beta^{2}, \beta \text { odd } ;\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{n \geq 0} h_{3}(p n) q^{n}+(-1)^{\delta(p)} p \sum_{n \geq 0} h_{3}(n) q^{p n}= \begin{cases}h_{1}(p) \sum_{n \geq 0} h_{3}(n) q^{n} & \text { if } p=\alpha^{2}+45 \beta^{2}, \beta \text { even }, \\
4 h_{2}(p) \sum_{n \geq 0} h_{4}(n) q^{n} & \text { if } p=\alpha^{2}+45 \beta^{2}, \beta \text { odd }, \\
4 h_{4}(p) \sum_{n \geq 0} h_{2}(n) q^{n} & \text { if } p=9 \alpha^{2}+5 \beta^{2}, \beta \text { even }, \\
h_{3}(p) \sum_{n \geq 0} h_{1}(n) q^{n} & \text { if } p=9 \alpha^{2}+5 \beta^{2}, \beta \text { odd } ;\end{cases} \\
& \sum_{n \geq 0} h_{4}(p n) q^{n}+(-1)^{\delta(p)} p \sum_{n \geq 0} h_{4}(n) q^{p n}= \begin{cases}h_{1}(p) \sum_{n \geq 0} h_{4}(n) q^{n} & \text { if } p=\alpha^{2}+45 \beta^{2}, \beta \text { even }, \\
h_{2}(p) \sum_{n \geq 0}^{n \geq 0} h_{3}(n) q^{n} & \text { if } p=\alpha^{2}+45 \beta^{2}, \beta \text { odd }, \\
h_{4}(p) \sum_{n \geq 0} h_{1}(n) q^{n} & \text { if } p=9 \alpha^{2}+5 \beta^{2}, \beta \text { even }, \\
h_{3}(p) \sum_{n \geq 0} h_{2}(n) q^{n} & \text { if } p=9 \alpha^{2}+5 \beta^{2}, \beta \text { odd } .\end{cases}
\end{aligned}
$$

Theorems 1.3 and 1.4 are both associated with the quadratic form $x^{2}+4 y^{2}$ while Theorems 1.51 .6 and 1.7 are related to the forms $x^{2}+2 y^{2}, x^{2}+3 y^{2}$ and $x^{2}+5 y^{2}$ respectively. In the next section, we will derive the aforementioned transformation. Details of the proofs of Theorems 1.1 and 1.6 are described in the subsequent sections. The proofs of the remaining theorems can be obtained in an analogous way and are hence omitted. In our final section, we state several generalizations of recent results by Mahadeva Naika and Gireesh [4] which can be proved with our transformation formula.

2. General Transformation

Theorem 2.1. Let k be a positive integer and p an odd prime (distinct from k) that can be expressed as $\mu^{2}+k \nu^{2}$. Let A and B be positive integers such that $A \mid p^{2}-1$ and $B \mid p^{2}-1$. Suppose there exist integers $a>0, b>0, \alpha, \beta$ such that $\operatorname{gcd}(a, b)=\operatorname{gcd}(\alpha, \beta)=1$,

$$
\begin{equation*}
p=a^{2} \alpha^{2}+k b^{2} \beta^{2} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
E F=A B, \quad E\left|p^{2}-1, \quad F\right| p^{2}-1 \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
E=\operatorname{gcd}(A a, k B b) \quad \text { and } \quad F=\operatorname{gcd}(A b, B a) \tag{2.3}
\end{equation*}
$$

Then the following transformation holds.

$$
\begin{equation*}
\sum_{\substack{x \equiv x_{0}(\bmod A) \\ y \equiv y_{0}(\bmod B) \\ x^{2}+k y^{2} \equiv 0(\bmod p)}} f(x, y) q^{x^{2}+k y^{2}}=T_{1}+T_{2}-T_{3}, \tag{2.4}
\end{equation*}
$$

where

$$
\begin{align*}
& T_{1}=\sum_{\substack{m \equiv p\left(a \alpha x_{0}-k b \beta y_{0}\right)(\bmod E) \\
n \equiv p\left(b \beta x_{0}+a \alpha y_{0}\right)(\bmod F)}} f(a \alpha m+k b \beta n,-b \beta m+a \alpha n) q^{p\left(m^{2}+k n^{2}\right)} ; \tag{2.5}\\
& T_{2}=\sum_{\substack{m \equiv p\left(a \alpha x_{0}+k b \beta y_{0}\right)(\bmod E) \\
n \equiv p\left(b \beta x_{0}-a \alpha y_{0}\right)(\bmod F)}} f(a \alpha m+k b \beta n, b \beta m-a \alpha n) q^{p\left(m^{2}+k n^{2}\right)} ; \tag{2.6}\\
& T_{3}=\sum_{\substack{x \equiv x_{0}(\bmod A) \\
y \equiv y_{0}(\bmod B) \\
x \equiv y \equiv 0(\bmod p)}} f(x, y) q^{x^{2}+k y^{2}} . \tag{2.7}
\end{align*}
$$

Proof. Let p be an odd prime that can be expressed as $\mu^{2}+k \nu^{2}$ for some positive integer k. We rewrite $\mu=a \alpha$ and $\nu=b \beta$, so that

$$
\begin{equation*}
p=a^{2} \alpha^{2}+k b^{2} \beta^{2} \tag{2.8}
\end{equation*}
$$

for some integers a, b, α, β such that $\operatorname{gcd}(a, b)=\operatorname{gcd}(\alpha, \beta)=1$.
Since $b \beta$ is relatively prime to p, it has a multiplicative inverse modulo p. Hence there exists s such that

$$
\begin{equation*}
s^{2} \equiv-k \quad(\bmod p) \tag{2.9}
\end{equation*}
$$

We now fix a choice of $a>0, b>0, \alpha, \beta$ and s to satisfy

$$
\begin{equation*}
a \alpha \equiv-s b \beta \quad(\bmod p) \tag{2.10}
\end{equation*}
$$

It is then straightforward to see that

$$
\begin{equation*}
s a \alpha \equiv k b \beta \quad(\bmod p) \tag{2.11}
\end{equation*}
$$

Now consider a binary quadratic form $x^{2}+k y^{2}$, where x and y are of the form

$$
\begin{equation*}
x=A x_{1}+x_{0} \quad \text { and } \quad y=B y_{1}+y_{0} \tag{2.12}
\end{equation*}
$$

with the additional requirement that

$$
\begin{equation*}
A \mid p^{2}-1 \quad \text { and } \quad B \mid p^{2}-1 \tag{2.13}
\end{equation*}
$$

We wish to make a change of variables that holds whenever p divides any quadratic form $x^{2}+k y^{2}$ satisfying 2.12 and 2.13 .

$$
\begin{equation*}
\sum_{\substack{x \equiv x_{0}(\bmod A) \\ y \equiv y_{0}(\bmod B)}} f(x, y) q^{x^{2}+k y^{2}}=\sum_{\substack{x \equiv x_{0}(\bmod A) \\ x^{2}+k y^{2} \equiv 0(\bmod p)}} f(x, y) q^{x^{2}+k y^{2}}+\sum_{\substack{x \equiv x_{0}(\bmod A) \\ y \equiv y_{0}(\bmod B) \\ x \equiv s y(\bmod p) \\ x \equiv-s y(\bmod p)}} f(x, y) q^{x^{2}+k y^{2}} \tag{2.14}
\end{equation*}
$$

with the three sums corresponding to T_{1}, T_{2} and T_{3} respectively in the statement of the theorem. We next obtain the stated form for T_{1}. From

$$
\begin{equation*}
x \equiv s y \quad(\bmod p) \tag{2.15}
\end{equation*}
$$

we use 2.12 to obtain

$$
\begin{equation*}
A x_{1}-s B y_{1} \equiv-x_{0}+s y_{0} \quad(\bmod p) \tag{2.16}
\end{equation*}
$$

Multiplying 2.16 by $a \alpha$ and $b \beta$ respectively and using 2.10, 2.11, we obtain

$$
\begin{align*}
A a \alpha x_{1}-k B b \beta y_{1} & \equiv a \alpha\left(-x_{0}+s y_{0}\right) \\
& \equiv-a \alpha x_{0}+k b \beta y_{0} \quad(\bmod p) \tag{2.17}
\end{align*}
$$

and

$$
\begin{align*}
A b \beta x_{1}+B a \alpha y_{1} & \equiv b \beta\left(-x_{0}+s y_{0}\right) \\
& \equiv-b \beta x_{0}-a \alpha y_{0} \quad(\bmod p) \tag{2.18}
\end{align*}
$$

Dividing by E in 2.17 and F in 2.18, we have

$$
\begin{align*}
\frac{A a \alpha}{E} x_{1}-\frac{k B b \beta}{E} y_{1} & =p u+\frac{1-p^{2}}{E}\left(-a \alpha x_{0}+k b \beta y_{0}\right) \tag{2.19a}\\
\frac{A b \beta}{F} x_{1}+\frac{B a \alpha}{F} y_{1} & =p v+\frac{1-p^{2}}{F}\left(-b \beta x_{0}-a \alpha y_{0}\right) \tag{2.19b}
\end{align*}
$$

for some integers u, v. Solving this system, we obtain x_{1} and y_{1} which lead to the following

$$
\begin{align*}
& x=A x_{1}+x_{0}=E a \alpha u+k F b \beta v+p^{2} x_{0} \tag{2.20a}\\
& y=B y_{1}+y_{0}=-E b \beta u+F a \alpha v+p^{2} y_{0} \tag{2.20b}
\end{align*}
$$

Using the expressions above and 2.8, we can show that

$$
\begin{equation*}
x^{2}+k y^{2}=p\left(E u+p\left(a \alpha x_{0}-k b \beta y_{0}\right)\right)^{2}+k p\left(F v+p\left(b \beta x_{0}+a \alpha y_{0}\right)\right)^{2} \tag{2.21}
\end{equation*}
$$

To reiterate, what we have done is to transform the quadratic form $x^{2}+k y^{2}$ (which are multiples of p) into an expression involving the variables,

$$
\begin{equation*}
m=E u+p\left(a \alpha x_{0}-k b \beta y_{0}\right) \text { and } n=F v+p\left(b \beta x_{0}+a \alpha y_{0}\right) \tag{2.22}
\end{equation*}
$$

The expressions for x and y from 2.20 can also be rewritten in terms of these two variables.

$$
\begin{align*}
x & =a \alpha m+k b \beta n \tag{2.23a}\\
& =a \alpha\left(E u+p\left(a \alpha x_{0}-k b \beta y_{0}\right)\right)+k b \beta\left(F v+p\left(b \beta x_{0}+a \alpha y_{0}\right)\right) \\
y & =-b \beta m-a \alpha n \tag{2.23b}\\
& =-b \beta\left(E u+p\left(a \alpha x_{0}-k b \beta y_{0}\right)\right)+a \alpha\left(F v+p\left(b \beta x_{0}+a \alpha y_{0}\right)\right) .
\end{align*}
$$

Replacing the variables x and y in the first sum of 2.14 completes the expression for T_{1}.

Likewise for T_{2}, we begin with

$$
\begin{equation*}
x \equiv-s y \quad(\bmod p) \tag{2.24}
\end{equation*}
$$

and multiply appropriate factors to get

$$
\begin{align*}
\frac{A a \alpha}{E} x_{1}-\frac{k B b \beta}{E} y_{1} & =p u+\frac{1-p^{2}}{E}\left(-a \alpha x_{0}-k b \beta y_{0}\right) \tag{2.25a}\\
\frac{A b \beta}{F} x_{1}+\frac{B a \alpha}{F} y_{1} & =p v+\frac{1-p^{2}}{F}\left(-b \beta x_{0}+a \alpha y_{0}\right) \tag{2.25b}
\end{align*}
$$

for some integers u, v. Solving this system for x_{1} and y_{1} allows us to compute

$$
\begin{align*}
& x=A x_{1}+x_{0}=E a \alpha u+k F b \beta v+p^{2} x_{0} \tag{2.26a}\\
& y=B y_{1}+y_{0}=E b \beta u-F a \alpha v+p^{2} y_{0} \tag{2.26b}
\end{align*}
$$

and

$$
\begin{equation*}
x^{2}+k y^{2}=p\left(E u+p\left(a \alpha x_{0}+k b \beta y_{0}\right)\right)^{2}+k p\left(F v+p\left(b \beta x_{0}-a \alpha y_{0}\right)\right)^{2} . \tag{2.27}
\end{equation*}
$$

As before, we can rewrite

$$
\begin{align*}
x & =a \alpha m+k b \beta n \tag{2.28a}\\
& =a \alpha\left(E u+p\left(a \alpha x_{0}+k b \beta y_{0}\right)\right)+k b \beta\left(F v+p\left(b \beta x_{0}-a \alpha y_{0}\right)\right) \\
y & =b \beta m-a \alpha n \tag{2.28b}\\
& =b \beta\left(E u+p\left(a \alpha x_{0}+k b \beta y_{0}\right)\right)-a \alpha\left(F v+p\left(b \beta x_{0}-a \alpha y_{0}\right)\right)
\end{align*}
$$

The transformation in 2.4 is thus verified.

3. Proof of Theorem 1.1

Having established the transformation in the previous section, we are now ready to prove Theorem 1.1. We first note that the Jacobi triple product identity [1, p. $10]$ allows us to prove the following results.

Lemma 3.1. The following identities hold:

$$
\begin{align*}
\eta(8 \tau)^{3} & =\sum_{n \in \mathbb{Z}}(4 n+1) q^{(4 n+1)^{2}}=-\sum_{n \in \mathbb{Z}}(4 n+3) q^{(4 n+3)^{2}} ; \tag{3.1a}\\
0 & =\sum_{n \in \mathbb{Z}}(4 n) q^{(4 n)^{2}}=\sum_{n \in \mathbb{Z}}(4 n+2) q^{(4 n+2)^{2}} ; \tag{3.1b}\\
\frac{\eta(16 \tau)^{2}}{\eta(8 \tau)} & =\sum_{n \in \mathbb{Z}} q^{(4 n+1)^{2}}=\sum_{n \in \mathbb{Z}} q^{(4 n+3)^{2}} ; \tag{3.1c}\\
\frac{\eta(4 \tau)^{2}}{\eta(8 \tau)} & =\sum_{n \in \mathbb{Z}}(-1)^{n} q^{4 n^{2}}=\sum_{n \in \mathbb{Z}} q^{(4 n)^{2}}-\sum_{n \in \mathbb{Z}} q^{(4 n+2)^{2}} \tag{3.1d}
\end{align*}
$$

Moreover, these identities are invariant under the transformation $n \mapsto n+k$ for any integer k.

Using (3.1a), (3.1c and (3.1d), we can rewrite the infinite products in 1.1 a and 1.1 b respectively as

$$
\begin{equation*}
\sum_{n \geq 0} a(n) q^{n}=\sum_{\substack{x \equiv 1(\bmod 4) \\ y \equiv 1(\bmod 4)}} y q^{x^{2}+4 y^{2}} \tag{3.2a}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n \geq 0} \tilde{a}(n) q^{n}=\sum_{\substack{x \equiv 1(\bmod 4) \\ y \in \mathbb{Z}}}(-1)^{y} x q^{x^{2}+16 y^{2}}=\sum_{\substack{x \equiv 1(\bmod 4) \\ y \equiv 0(\bmod 2)}}(-1)^{y / 2} x q^{x^{2}+4 y^{2}} \tag{3.2b}
\end{equation*}
$$

Let p be an odd prime satisfying $p \equiv 1(\bmod 4)$, thus

$$
p=\alpha^{2}+4 \beta^{2}
$$

for some unique $\alpha \equiv 1(\bmod 4)$. As for β, if $p \equiv 5(\bmod 8)$ then β is odd and we can pick $\beta \equiv 1(\bmod 4)$. With these choices of α and β, we can see from 3.2a) that

$$
\begin{equation*}
a(p)=\beta \tag{3.3}
\end{equation*}
$$

However, if $p \equiv 1(\bmod 8)$, one can show that β is even. In this case, we choose $\beta>0$. Since there is no constraint on the sign of the variable y in the sum 3.2b, we conclude that

$$
\begin{equation*}
\tilde{a}(p)=2(-1)^{\beta / 2} \alpha \tag{3.4}
\end{equation*}
$$

With these choices for α, β, we shall use Theorem 2.1 with $k=4, a=b=1$, and $A=B=4$ to obtain

$$
\begin{equation*}
\sum_{\substack{x \equiv y \equiv 1(\bmod 4) \\ x^{2}+4 y^{2} \equiv 0(\bmod p)}} y q^{x^{2}+4 y^{2}}=T_{1}+T_{2}-T_{3} \tag{3.5}
\end{equation*}
$$

To simplify T_{3}, we can write $x=p m$ and $y=p n$, which means

$$
\begin{equation*}
T_{3}=\sum_{m \equiv n \equiv 1(\bmod 4)} p n q^{(p m)^{2}+4(p n)^{2}}=p \sum_{n \geq 0} a(n) q^{p^{2} n} \tag{3.6}
\end{equation*}
$$

For the sum T_{1} in (3.5), we have $x_{0}=y_{0}=1, E=F=4$ and thus

$$
\begin{align*}
T_{1}= & \sum_{u, v \in \mathbb{Z}}-\beta(4 u+p(\alpha-4 \beta)) q^{p(4 u+p(\alpha-4 \beta))^{2}+4 p(4 v+p(\alpha+\beta))^{2}} \\
& +\sum_{u, v \in \mathbb{Z}} \alpha(4 v+p(\alpha+\beta)) q^{p(4 u+p(\alpha-4 \beta))^{2}+4 p(4 v+p(\alpha+\beta))^{2}} \\
=- & \beta \sum_{v \in \mathbb{Z}} q^{4 p(4 v+p(\alpha+\beta))^{2}}\left(\sum_{u \in \mathbb{Z}}(4 u+p(\alpha-4 \beta)) q^{p(4 u+p(\alpha-4 \beta))^{2}}\right) \tag{3.7}\\
& +\alpha \sum_{u \in \mathbb{Z}} q^{p(4 u+p(\alpha-4 \beta))^{2}}\left(\sum_{v \in \mathbb{Z}}(4 v+p(\alpha+\beta)) q^{4 p(4 v+p(\alpha+\beta))^{2}}\right)
\end{align*}
$$

Similarly,

$$
\begin{align*}
T_{2}= & \sum_{u, v \in \mathbb{Z}} \beta(4 u+p(\alpha+4 \beta)) q^{p(4 u+p(\alpha+4 \beta))^{2}+4 p(4 v+p(\beta-\alpha))^{2}} \\
& -\sum_{u, v \in \mathbb{Z}} \alpha(4 v+p(\beta-\alpha)) q^{p(4 u+p(\alpha+4 \beta))^{2}+4 p(4 v+p(\beta-\alpha))^{2}} \\
=\beta & \sum_{v \in \mathbb{Z}} q^{4 p(4 v+p(\beta-\alpha))^{2}}\left(\sum_{u \in \mathbb{Z}}(4 u+p(\alpha+4 \beta)) q^{p(4 u+p(\alpha+4 \beta))^{2}}\right) \tag{3.8}\\
& \quad-\alpha \sum_{u \in \mathbb{Z}} q^{p(4 u+p(\alpha+4 \beta))^{2}}\left(\sum_{v \in \mathbb{Z}}(4 v+p(\beta-\alpha)) q^{4 p(4 v+p(\beta-\alpha))^{2}}\right) .
\end{align*}
$$

At this point, we need to consider separately the cases $p \equiv 1(\bmod 8)$ and $p \equiv 5$ $(\bmod 8)$. In the latter case, recall that $\alpha \equiv \beta \equiv 1(\bmod 4)$. We can thus use both (3.1a) and 3.1b to simplify (3.7) and 3.8 to

$$
\begin{align*}
& T_{1}=-\beta\left(\sum_{v \in \mathbb{Z}} q^{4 p(4 v+2)^{2}}\right) \eta(8 p \tau)^{3}+0 \tag{3.9}\\
& T_{2}=\beta\left(\sum_{v \in \mathbb{Z}} q^{4 p(4 v)^{2}}\right) \eta(8 p \tau)^{3}+0 \tag{3.10}
\end{align*}
$$

Consequently, the results in (3.9), 3.10, (3.6), 3.1d and (3.3) imply

$$
\begin{align*}
\sum_{n \geq 0} a(p n) q^{p n}= & T_{1}+T_{2}-T_{3} \\
= & -\beta\left(\sum_{v \in \mathbb{Z}} q^{4 p(4 v+2)^{2}}\right) \eta(8 p \tau)^{3}+\beta\left(\sum_{v \in \mathbb{Z}} q^{4 p(4 v)^{2}}\right) \eta(8 p \tau)^{3} \\
& -p \sum_{n \geq 0} a(n) q^{p^{2} n} \\
= & \beta\left(\frac{\eta(16 p \tau)^{2}}{\eta(32 p \tau)}\right) \eta(8 p \tau)^{3}-p \sum_{n \geq 0} a(n) q^{p^{2} n} \\
= & a(p) \sum_{n \geq 0} \tilde{a}(n) q^{p n}-p \sum_{n \geq 0} a(n) q^{p^{2} n} \tag{3.11}
\end{align*}
$$

On the other hand, when $p \equiv 1(\bmod 8)$, we have $\alpha \equiv 1(\bmod 4)$ and β is even. Therefore, using 3.1a again, we have

$$
\begin{align*}
& T_{1}=-\beta\left(\sum_{v \in \mathbb{Z}} q^{4 p(4 v+1)^{2}}\right) \eta(8 p \tau)^{3}+(-1)^{\beta / 2} \alpha\left(\sum_{u \in \mathbb{Z}} q^{p(4 u+1)^{2}}\right) \eta(32 p \tau)^{3} \tag{3.12}\\
& T_{2}=\beta\left(\sum_{v \in \mathbb{Z}} q^{4 p(4 v+1)^{2}}\right) \eta(8 p \tau)^{3}+(-1)^{\beta / 2} \alpha\left(\sum_{u \in \mathbb{Z}} q^{p(4 u+1)^{2}}\right) \eta(32 p \tau)^{3} \tag{3.13}
\end{align*}
$$

By virtue of (3.12), (3.13), (3.6), (3.1c) and (3.4), we obtain

$$
\begin{aligned}
& \sum_{n \geq 0} a(p n) q^{p n}=-\beta\left(\sum_{v \in \mathbb{Z}} q^{4 p(4 v+1)^{2}}\right) \eta(8 p \tau)^{3}+(-1)^{\beta / 2} \alpha\left(\sum_{u \in \mathbb{Z}} q^{p(4 u+1)^{2}}\right) \eta(32 p \tau)^{3} \\
&+\beta\left(\sum_{v \in \mathbb{Z}} q^{4 p(4 v+1)^{2}}\right) \eta(8 p \tau)^{3}+(-1)^{\beta / 2} \alpha\left(\sum_{u \in \mathbb{Z}} q^{p(4 u+1)^{2}}\right) \eta(32 p \tau)^{3} \\
&-p \sum_{n \geq 0} a(n) q^{p^{2} n} \\
&= 2(-1)^{\beta / 2} \alpha\left(\frac{\eta(16 p \tau)^{2}}{\eta(8 p \tau)}\right) \eta(32 p \tau)^{3}-p \sum_{n \geq 0} a(n) q^{p^{2} n} \\
&(3.14) \quad \tilde{a}(p) \sum_{n \geq 0} a(n) q^{p n}-p \sum_{n \geq 0} a(n) q^{p^{2} n} .
\end{aligned}
$$

Finally, replacing $q^{p n}$ by q^{n} in both (3.11) and (3.14 proves 1.3a.

We now devote our attention to 1.3 b . As before, we extract only the terms in (3.2b where the power of q is divisible by p

$$
\begin{align*}
\sum_{\substack{x \equiv 1(\bmod 4) \\
y \equiv 0(\bmod 2) \\
x^{2}+4 y^{2} \equiv 0(\bmod p)}}(-1)^{y / 2} x q^{x^{2}+4 y^{2}}= & \sum_{\substack{x \equiv 1(\bmod 4) \\
y \equiv 0(\bmod 2) \\
x \equiv s y(\bmod p)}}(-1)^{y / 2} x q^{x^{2}+4 y^{2}}+\sum_{\substack{x \equiv 1(\bmod 4) \\
y \equiv 0(\bmod 2) \\
x \equiv-s y(\bmod p)}}(-1)^{y / 2} x q^{x^{2}+4 y^{2}} \tag{3.15}\\
& -\sum_{\substack{x \equiv 1(\bmod 4) \\
y \equiv 0(\bmod 2) \\
x \equiv y \equiv 0(\bmod p)}}(-1)^{y / 2} x q^{x^{2}+4 y^{2}} \\
= & 2 T_{1}-T_{3} .
\end{align*}
$$

The transformation $y \mapsto-y$ shows that the first and second sums on the right-hand side of (3.15) are equal.

Similar to (3.6), one can show that

$$
\begin{equation*}
T_{3}=p \sum_{n \geq 0} \tilde{a}(n) q^{p^{2} n} \tag{3.16}
\end{equation*}
$$

For the sum T_{1}, we use the parameters $A=4, B=2, x_{0}=1, y_{0}=0, E=4$ and $F=2$ in Theorem 2.1

$$
\begin{align*}
T_{1}= & \sum_{u, v \in \mathbb{Z}}(-1)^{v} \alpha(4 u+p \alpha) q^{p(4 u+p \alpha)^{2}+4 p(2 v+p \beta)^{2}} \tag{3.17}\\
& +\sum_{u, v \in \mathbb{Z}} 4(-1)^{v} \beta(2 v+p \beta) q^{p(4 u+p \alpha)^{2}+4 p(2 v+p \beta)^{2}} .
\end{align*}
$$

As before, when $p \equiv 5(\bmod 8)$, we have $\alpha \equiv \beta \equiv 1(\bmod 4)$. Using (3.1a) and (3.1c), we simplify (3.17) to

$$
\begin{align*}
T_{1}= & \alpha \eta(8 p \tau)^{3}\left(\sum_{v \in \mathbb{Z}}(-1)^{v} q^{4 p(2 v+p \beta)^{2}}\right) \tag{3.18}\\
& +4 \beta\left(\frac{\eta(16 p \tau)^{2}}{\eta(8 p \tau)}\right)\left(\sum_{v \in \mathbb{Z}}(-1)^{v}(2 v+p \beta) q^{4 p(2 v+p \beta)^{2}}\right) \\
= & 0+4 \beta\left(\frac{\eta(16 p \tau)^{2}}{\eta(8 p \tau)}\right)\left(\sum_{v \in \mathbb{Z}}(4 v+p \beta) q^{4 p(4 v+p \beta)^{2}}-\sum_{v \in \mathbb{Z}}(4 v+2+p \beta) q^{4 p(4 v+2+p \beta)^{2}}\right) \\
= & 8 \beta\left(\frac{\eta(16 p \tau)^{2} \eta(32 p \tau)^{3}}{\eta(8 p \tau)}\right)
\end{align*}
$$

The results in (3.18), (3.16) and (3.3) give us

$$
\begin{align*}
\sum_{n \geq 0} \tilde{a}(p n) q^{p n} & =2 T_{1}-T_{3} \\
& =16 \beta\left(\frac{\eta(16 p \tau)^{2} \eta(32 p \tau)^{3}}{\eta(8 p \tau)}\right)-p \sum_{n \geq 0} \tilde{a}(n) q^{p^{2} n} \\
& =16 a(p) \sum_{n \geq 0} a(n) q^{p n}-p \sum_{n \geq 0} \tilde{a}(n) q^{p^{2} n} \tag{3.19}
\end{align*}
$$

In the case $p \equiv 1(\bmod 8)$, we have $\alpha \equiv 1(\bmod 4)$ and β is even. We can use (3.1a), 3.1b and (3.1d) to write T_{1} in 3.17) as

$$
\begin{align*}
T_{1} & =(-1)^{\beta / 2} \alpha \eta(8 p \tau)^{3}\left(\sum_{v \in \mathbb{Z}}(-1)^{v+\beta / 2} q^{4 p(2 v+p \beta)^{2}}\right)+0 \\
& =(-1)^{\beta / 2} \alpha \eta(8 p \tau)^{3}\left(\frac{\eta(16 p \tau)^{2}}{\eta(32 p \tau)}\right) . \tag{3.20}
\end{align*}
$$

Altogether, 3.20, (3.16 and (3.4) give us

$$
\begin{align*}
\sum_{n \geq 0} \tilde{a}(p n) q^{p n} & =\tilde{a}(p)\left(\frac{\eta(8 p \tau)^{3} \eta(16 p \tau)^{2}}{\eta(32 p \tau)}\right)-p \sum_{n \geq 0} \tilde{a}(n) q^{p^{2} n} \\
& =\tilde{a}(p) \sum_{n \geq 0} \tilde{a}(n) q^{p n}-p \sum_{n \geq 0} \tilde{a}(n) q^{p^{2} n} \tag{3.21}
\end{align*}
$$

We can now replace q^{p} by q in both (3.19) and 3.21 to complete the proof of 1.3b.

4. Proof of Theorem 1.6

In this section, we provide the details of the proof of Theorem 1.6 .
Lemma 4.1. The following identities hold:

$$
\begin{align*}
\frac{\eta(24 \tau)^{5}}{\eta(48 \tau)^{2}} & =\sum_{n \in \mathbb{Z}}(6 n+1) q^{(6 n+1)^{2}} \tag{4.1a}\\
\frac{\eta(3 \tau)^{2}}{\eta(6 \tau)} & =\sum_{n \in \mathbb{Z}}(-1)^{n} q^{3 n^{2}} \tag{4.1b}\\
\frac{\eta(6 \tau)^{5}}{\eta(3 \tau)^{2}} & =\sum_{n \in \mathbb{Z}}(-1)^{n}(3 n+1) q^{(3 n+1)^{2}} \tag{4.1c}\\
\frac{\eta(16 \tau)^{2}}{\eta(8 \tau)} & =\sum_{n \in \mathbb{Z}} q^{(4 n+1)^{2}}=\sum_{n \in \mathbb{Z}} q^{(4 n+3)^{2}}=\frac{1}{2} \sum_{n \in \mathbb{Z}} q^{(2 n+1)^{2}} \tag{4.1d}
\end{align*}
$$

Moreover, these identities are invariant under the transformation $n \mapsto n+k$ for any integer k.

Identities 4.1a and 4.1c are consequences of the quintuple product identity. An informative discussion on these two identities can be found in [2, Section 9.1]. The other two identities appeared in Lemma 3.1 and are re-stated here for the convenience of the reader.

Using Lemma 4.1, we can rewrite the infinite products in 1.10 as

$$
\sum_{n \geq 0} g(n) q^{n}=\sum_{x \equiv 1\left(\begin{array}{c}
\bmod 6) \tag{4.2a}\\
y \in \mathbb{Z}
\end{array}\right.}(-1)^{y} x q^{x^{2}+3 y^{2}}
$$

and

$$
\begin{equation*}
\sum_{n \geq 0} \tilde{g}(n) q^{n}=\sum_{\substack{x \equiv 1(\bmod 3) \\ y \equiv 1(\bmod 4)}}(-1)^{(x-1) / 3} x q^{x^{2}+3 y^{2}} \tag{4.2b}
\end{equation*}
$$

Any prime $p \equiv 1(\bmod 3)$ can be written in the form

$$
p=\mu^{2}+3 \nu^{2}
$$

Furthermore, exactly one of μ or ν is even. In the latter case, we rewrite $p=$ $\alpha^{2}+12 \beta^{2}$, and it can be seen that α is odd and $3 \nmid \alpha$. Hence, we can fix $\alpha \equiv 1$ $(\bmod 6)$. Since there is no constraint on the variable y in the sum 4.2a), we observe that the coefficient of q^{p} is

$$
\begin{equation*}
g(p)=g\left(\alpha^{2}+3(2 \beta)^{2}\right)=2(-1)^{2 \beta} \alpha=2 \alpha \tag{4.3}
\end{equation*}
$$

On the other hand, if μ is even, we have $p=4 \alpha^{2}+3 \beta^{2}$, with β odd and $3 \nmid \alpha$. We can then choose α and β such that $\alpha \equiv 2(\bmod 3)$ and $\beta \equiv 1(\bmod 4)$. It follows that the coefficient of q^{p} in the sum 4.2 b is

$$
\begin{equation*}
\tilde{g}(p)=\tilde{g}\left((2 \alpha)^{2}+3 \beta^{2}\right)=(-1)^{(2 \alpha-1) / 3} 2 \alpha=-2 \alpha \tag{4.4}
\end{equation*}
$$

We shall first prove identity 1.11 a$)$. For a fixed prime $p \equiv 1(\bmod 3)$, which is either of the form $p=\alpha^{2}+12 \beta^{2}$ or $p=4 \alpha^{2}+3 \beta^{2}$, we extract the terms in 4.2a where the power of q is a multiple of p.

$$
\begin{align*}
& \sum_{\substack{x \equiv 1(\bmod 6) \\
y \in \mathbb{Z} \\
x^{2}+3 y^{2} \equiv 0(\bmod p)}}(-1)^{y} x q^{x^{2}+3 y^{2}}=\sum_{\substack{x \equiv 1(\bmod 6) \\
y \in \mathbb{Z} \\
x \equiv s y(\bmod p)}}(-1)^{y} x q^{x^{2}+3 y^{2}}+\sum_{\substack{x \equiv 1(\bmod 6) \\
y \in \mathbb{Z} \\
x \equiv-s y(\bmod p)}}(-1)^{y} x q^{x^{2}+3 y^{2}} \tag{4.5}\\
& \\
& -\sum_{\substack{x \equiv 1(\bmod 6) \\
y \in \mathbb{Z} \\
x \equiv y \equiv 0(\bmod p)}}(-1)^{y} x q^{x^{2}+3 y^{2}} \tag{4.6}\\
& (4.6) \quad=2 T_{1}-T_{3} .
\end{align*}
$$

In the above, the first sum is equal to the second sum via the transformation $y \mapsto-y . T_{3}$ can be simplified by writing $x=p m, y=p n$. Since $x \equiv 1(\bmod 6)$ and $y \in \mathbb{Z}$, we have $m \equiv 1(\bmod 6)$ and $n \in \mathbb{Z}$. Thus

$$
\begin{equation*}
T_{3}=\sum_{\substack{m \equiv 1(\bmod 6) \\ n \in \mathbb{Z}}}(-1)^{p n} p m q^{p^{2}\left(m^{2}+3 n^{2}\right)}=p \sum_{n \geq 0} g(n) q^{p^{2} n} \tag{4.7}
\end{equation*}
$$

To calculate T_{1} for $p=\alpha^{2}+12 \beta^{2}$, we set $k=3, a=1, b=2, A=6, B=1$, $x_{0}=1, y_{0}=0, E=6, F=1$ in Theorem 2.1. In addition, since $p \alpha \equiv 1(\bmod 6)$ and α is odd, we thus have

$$
\begin{align*}
T_{1}= & \sum_{u, v \in \mathbb{Z}}(-1)^{-12 \beta u+\alpha v}(\alpha(6 u+p \alpha)+6 \beta(v+2 p \beta)) q^{p(6 u+p \alpha)^{2}+3 p(v+2 p \beta)^{2}} \\
= & \alpha \sum_{u \in \mathbb{Z}}(6 u+p \alpha) q^{p(6 u+p \alpha)^{2}} \sum_{v \in \mathbb{Z}}(-1)^{v} q^{3 p(v+2 p \beta)^{2}} \\
& +6 \beta \sum_{v \in \mathbb{Z}}(-1)^{v}(v+2 p \beta) q^{3 p(v+2 p \beta)^{2}} \sum_{u \in \mathbb{Z}} q^{p(6 u+p \alpha)^{2}} \\
= & \alpha \sum_{u \in \mathbb{Z}}(6 u+1) q^{p(6 u+1)^{2}} \sum_{v \in \mathbb{Z}}(-1)^{v} q^{3 p v^{2}}+6 \beta \sum_{v \in \mathbb{Z}}(-1)^{v} v q^{3 p v^{2}} \sum_{u \in \mathbb{Z}} q^{p(6 u+1)^{2}} \tag{4.8}\\
= & \alpha \frac{\eta(24 p \tau)^{5} \eta(3 p \tau)^{2}}{\eta(48 p \tau)^{2} \eta(6 p \tau)},
\end{align*}
$$

where Lemma 4.1 is used and the sum over v in the second term of 4.8 is 0 .
Combining the results in 4.6, 4.7, 4.9 and 4.3, we obtain that for $p=$ $\alpha^{2}+12 \beta^{2}$,

$$
\sum_{n \geq 0} g(p n) q^{p n}=g(p) \frac{\eta(3 p \tau)^{2} \eta(24 p \tau)^{5}}{\eta(6 p \tau) \eta(48 p \tau)^{2}}-p \sum_{n \geq 0} g(n) q^{p^{2} n}
$$

proving the first assertion of 1.11 a when q^{p} is replaced by q.
We now consider the second assertion of 1.11 a for $p=4 \alpha^{2}+3 \beta^{2}$. In this case, to calculate T_{1}, we substitute $a=2, b=1, A=6, B=1, x_{0}=1, y_{0}=0, E=3$, $F=2$ in Theorem 2.1. Recall that we chose α such that $\alpha \equiv 2(\bmod 3)$ which means $2 p \alpha \equiv 1(\bmod 3)$. We have

$$
\begin{align*}
T_{1}= & \sum_{u, v \in \mathbb{Z}}(-1)^{-3 \beta u+4 \alpha v}(2 \alpha(3 u+2 p \alpha)+3 \beta(2 v+p \beta)) q^{p(3 u+2 p \alpha)^{2}+3 p(2 v+p \beta)^{2}} \\
= & 2 \alpha \sum_{u \in \mathbb{Z}}(-1)^{u}(3 u+2 p \alpha) q^{p(3 u+2 p \alpha)^{2}} \sum_{v \in \mathbb{Z}} q^{3 p(2 v+p \beta)^{2}} \\
& +3 \beta \sum_{v \in \mathbb{Z}}(2 v+p \beta) q^{3 p(2 v+p \beta)^{2}} \sum_{u \in \mathbb{Z}}(-1)^{u} q^{p(3 u+2 p \alpha)^{2}} \\
0)= & (-1)^{(2 p \alpha-1) / 3} 2 \alpha \sum_{u \in \mathbb{Z}}(-1)^{u}(3 u+1) q^{p(3 u+1)^{2}} \sum_{v \in \mathbb{Z}} q^{3 p(2 v+1)^{2}} \tag{4.10}\\
& +3 \beta \sum_{v \in \mathbb{Z}}(2 v+1) q^{3 p(2 v+1)^{2}} \sum_{u \in \mathbb{Z}}(-1)^{u} q^{p(3 u+1)^{2}} \\
1)= & \tilde{g}(p) \frac{\eta(6 p \tau)^{5}}{\eta(3 p \tau)^{2}} \cdot 2 \frac{\eta(48 p \tau)^{2}}{\eta(24 p \tau)}, \tag{4.11}
\end{align*}
$$

where Lemma 4.1 is used and the sum over v in the second term of 4.10 reduces to 0 . In addition, the coefficient in (4.11) is due to (4.4).

As a result of 4.5, 4.7) and 4.11, we have for $p=4 \alpha^{2}+3 \beta^{2}$,

$$
\sum_{n \geq 0} g(p n) q^{p n}=4 \tilde{g}(p) \frac{\eta(6 p \tau)^{5} \eta(48 p \tau)^{2}}{\eta(3 p \tau)^{2} \eta(24 p \tau)}-p \sum_{n \geq 0} g(n) q^{p^{2} n}
$$

proving the second assertion of 1.11 a .
We now turn to identity 1.11 b$)$. Similar to 4.5 , we can write

$$
\begin{align*}
& \sum_{\begin{array}{c}
x \equiv 1(\bmod 3) \\
y \equiv 1(\bmod 4) \\
x^{2}+3 y^{2} \equiv 0(\bmod p)
\end{array}}(-1)^{(x-1) / 3} x q^{x^{2}+3 y^{2}} \\
& =\sum_{\substack{x \equiv 1(\bmod 3) \\
y \equiv 1(\bmod 4) \\
x \equiv s y(\bmod p)}}(-1)^{(x-1) / 3} x q^{x^{2}+3 y^{2}}+\sum_{\substack{x \equiv 1(\bmod 3) \\
y \equiv 1(\bmod 4) \\
x \equiv-s y(\bmod p)}}(-1)^{(x-1) / 3} x q^{x^{2}+3 y^{2}} \tag{4.12}\\
& -\sum_{\substack{x \equiv 1(\bmod 3) \\
y \equiv 1(\bmod 4) \\
x \equiv y \equiv 0(\bmod p)}}(-1)^{(x-1) / 3} x q^{x^{2}+3 y^{2}} \\
& =T_{1}+T_{2}-T_{3} . \tag{4.13}
\end{align*}
$$

As before, since $p \equiv 1(\bmod 6)$, we can simplify T_{3} as follows

$$
\begin{equation*}
T_{3}=\sum_{\substack{p m \equiv 1(\bmod 3) \\ p n \equiv 1(\bmod 4)}}(-1)^{(p m-1) / 3} p m q^{p^{2}\left(m^{2}+3 n^{2}\right)} \quad=p \sum_{n \geq 0} \tilde{g}(n) q^{p^{2} n} \tag{4.14}
\end{equation*}
$$

We now calculate T_{1} for $p=\alpha^{2}+12 \beta^{2}$, where $a=1$ and $b=2$. In order to proceed to utilize Theorem 2.1, we rewrite T_{1} as two sums. The transformation for each of the two sum uses parameters $a=1, b=2, A=6, B=4, y_{0}=1, E=6$, $F=4$ but the former requires $x_{0}=1$ while the latter $x_{0}=4$. We have

$$
\begin{align*}
T_{1}= & \sum_{\substack{x \equiv 1(\bmod 6) \\
y \equiv 1(\bmod 4) \\
x \equiv s y(\bmod p)}}(-1)^{(x-1) / 3} x q^{x^{2}+3 y^{2}}+\sum_{\substack{x \equiv 4(\bmod 6) \\
y \equiv 1(\bmod 4) \\
x \equiv s y(\bmod p)}}(-1)^{(x-1) / 3} x q^{x^{2}+3 y^{2}} \\
= & \alpha \sum_{u \in \mathbb{Z}}(6 u+p(\alpha-6 \beta)) q^{p(6 u+p(\alpha-6 \beta))^{2}} \sum_{\substack{v \in \mathbb{Z}}} q^{3 p(4 v+p(2 \beta+\alpha))^{2}} \tag{4.15}\\
& +6 \beta \sum_{v \in \mathbb{Z}}(4 v+p(2 \beta+\alpha)) q^{3 p(4 v+p(2 \beta+\alpha))^{2}} \sum_{u \in \mathbb{Z}} q^{p(6 u+p(\alpha-6 \beta))^{2}} \\
& -\alpha \sum_{u \in \mathbb{Z}}(6 u+p(4 \alpha-6 \beta)) q^{p(6 u+p(4 \alpha-6 \beta))^{2}} \sum_{v \in \mathbb{Z}} q^{3 p(4 v+p(8 \beta+\alpha))^{2}} \\
& -6 \beta \sum_{v \in \mathbb{Z}}(4 v+p(8 \beta+\alpha)) q^{3 p(4 v+p(8 \beta+\alpha))^{2}} \sum_{u \in \mathbb{Z}} q^{p(6 u+p(4 \alpha-6 \beta))^{2}}
\end{align*}
$$

Repeating this process for T_{2}, we obtain

$$
\begin{aligned}
T_{2}= & \sum_{\substack{x \equiv 1(\bmod 6) \\
y \equiv 1(\bmod 4) \\
x \equiv-s y(\bmod p)}}(-1)^{(x-1) / 3} x q^{x^{2}+3 y^{2}}+\sum_{\substack{x \equiv 4(\bmod 6) \\
y \equiv 1(\bmod 4) \\
x \equiv-s y(\bmod p)}}(-1)^{(x-1) / 3} x q^{x^{2}+3 y^{2}} \\
= & \alpha \sum_{u \in \mathbb{Z}}(6 u+p(\alpha+6 \beta)) q^{p(6 u+p(\alpha+6 \beta))^{2}} \sum_{\substack{v \in \mathbb{Z}}} q^{3 p(4 v+p(2 \beta-\alpha))^{2}} \\
& +6 \beta \sum_{v \in \mathbb{Z}}(4 v+p(2 \beta-\alpha)) q^{3 p(4 v+p(2 \beta-\alpha))^{2}} \sum_{u \in \mathbb{Z}} q^{p(6 u+p(\alpha+6 \beta))^{2}} \\
& -\alpha \sum_{u \in \mathbb{Z}}(6 u+p(4 \alpha+6 \beta)) q^{p(6 u+p(4 \alpha+6 \beta))^{2}} \sum_{v \in \mathbb{Z}} q^{3 p(4 v+p(8 \beta-\alpha))^{2}} \\
& -6 \beta \sum_{v \in \mathbb{Z}}(4 v+p(8 \beta-\alpha)) q^{3 p(4 v+p(8 \beta-\alpha))^{2}} \sum_{u \in \mathbb{Z}} q^{p(6 u+p(4 \alpha+6 \beta))^{2}} .
\end{aligned}
$$

For $p=\alpha^{2}+12 \beta^{2}$, recall that we fixed $\alpha \equiv 1(\bmod 6)$. In addition with $p(2 \beta+\alpha) \equiv-p(2 \beta-\alpha)(\bmod 4)$, one can show that

$$
\begin{align*}
T_{1}+T_{2} & =2 \alpha \sum_{u \in \mathbb{Z}}(6 u+1) q^{p(6 u+1)^{2}} \sum_{v \in \mathbb{Z}} q^{3 p(4 v+1)^{2}}-2 \alpha \sum_{u \in \mathbb{Z}}(6 u+4) q^{p(6 u+4)^{2}} \sum_{v \in \mathbb{Z}} q^{3 p(4 v+1)^{2}} \\
& =2 \alpha \sum_{u \in \mathbb{Z}}(-1)^{u}(3 u+1) q^{p(3 u+1)^{2}} \sum_{v \in \mathbb{Z}} q^{3 p(4 v+1)^{2}} \\
& =g(p) \frac{\eta(6 p \tau)^{5} \eta(48 p \tau)^{2}}{\eta(3 p \tau)^{2} \eta(24 p \tau)} \tag{4.17}
\end{align*}
$$

where the coefficient in 4.17) is due to 4.3.

Consequently, 4.13, 4.14 and 4.17 give us

$$
\begin{equation*}
\sum_{n \geq 0} \tilde{g}(p n) q^{p n}=g(p) \frac{\eta(6 p \tau)^{5} \eta(48 p \tau)^{2}}{\eta(3 p \tau)^{2} \eta(24 p \tau)}-p \sum_{n \geq 0} \tilde{g}(n) q^{p^{2} n} \tag{4.18}
\end{equation*}
$$

proving the first assertion of 1.11 b .
Finally, we shall prove the second assertion of 1.11 b where $p=4 \alpha^{2}+3 \beta^{2}$. Similar to 4.15, we rewrite T_{1} as two sums and apply Theorem 2.1. This time, the parameters involved are $a=2, b=1, A=6, B=4, y_{0}=1, E=12, F=2$ and the former sum requires $x_{0}=1$ while the latter $x_{0}=4$. We then have

$$
\begin{align*}
T_{1}= & \sum_{\substack{x \equiv 1(\bmod 6) \\
y \equiv 1(\bmod 4) \\
x \equiv s y(\bmod p)}}(-1)^{(x-1) / 3} x q^{x^{2}+3 y^{2}}+\sum_{\substack{x \equiv 4(\bmod 6) \\
y \equiv 1(\bmod 4) \\
x \equiv s y(\bmod p)}}(-1)^{(x-1) / 3} x q^{x^{2}+3 y^{2}} \\
= & 2 \alpha \sum_{u \in \mathbb{Z}}(12 u+p(2 \alpha-3 \beta)) q^{p(12 u+p(2 \alpha-3 \beta))^{2}} \sum_{v \in \mathbb{Z}} q^{3 p(2 v+p(\beta+2 \alpha))^{2}} \tag{4.19}\\
& +3 \beta \sum_{v \in \mathbb{Z}}(2 v+p(\beta+2 \alpha)) q^{3 p(2 v+p(\beta+\alpha))^{2}} \sum_{u \in \mathbb{Z}} q^{p(12 u+p(2 \alpha-3 \beta))^{2}} \\
& -2 \alpha \sum_{u \in \mathbb{Z}}(12 u+p(8 \alpha-3 \beta)) q^{p(12 u+p(8 \alpha-3 \beta))^{2}} \sum_{v \in \mathbb{Z}} q^{3 p(2 v+p(4 \beta+2 \alpha))^{2}} \\
& -3 \beta \sum_{v \in \mathbb{Z}}(2 v+p(4 \beta+2 \alpha)) q^{3 p(2 v+p(4 \beta+2 \alpha))^{2}} \sum_{u \in \mathbb{Z}} q^{p(12 u+p(8 \alpha-3 \beta))^{2}} .
\end{align*}
$$

Repeating this process with Theorem 2.1. we arrive at

$$
\begin{align*}
T_{2}= & \sum_{\substack{x \equiv 1(\bmod 6) \\
y \equiv 1(\bmod 4) \\
x \equiv-s y(\bmod p)}}(-1)^{(x-1) / 3} x q^{x^{2}+3 y^{2}}+\sum_{\substack{x \equiv 4(\bmod 6) \\
y \equiv 1(\bmod 4) \\
x \equiv-s y(\bmod p)}}(-1)^{(x-1) / 3} x q^{x^{2}+3 y^{2}} \\
= & 2 \alpha \sum_{u \in \mathbb{Z}}(12 u+p(2 \alpha+3 \beta)) q^{p(12 u+p(2 \alpha+3 \beta))^{2}} \sum_{v \in \mathbb{Z}} q^{3 p(2 v+p(\beta-2 \alpha))^{2}} \tag{4.20}\\
& +3 \beta \sum_{v \in \mathbb{Z}}(2 v+p(\beta-2 \alpha)) q^{3 p(2 v+p(\beta-2 \alpha))^{2}} \sum_{u \in \mathbb{Z}} q^{p(12 u+p(2 \alpha+3 \beta))^{2}} \\
& -2 \alpha \sum_{u \in \mathbb{Z}}(12 u+p(8 \alpha+3 \beta)) q^{p(12 u+p(8 \alpha+3 \beta))^{2}} \sum_{v \in \mathbb{Z}} q^{3 p(2 v+p(4 \beta-2 \alpha))^{2}} \\
& -3 \beta \sum_{v \in \mathbb{Z}}(2 v+p(4 \beta-2 \alpha)) q^{3 p(2 v+p(4 \beta-2 \alpha))^{2}} \sum_{u \in \mathbb{Z}} q^{p(12 u+p(8 \alpha+3 \beta))^{2}} .
\end{align*}
$$

It can be observed that the second and the last term in each of 4.19) and 4.20 reduces to 0 . In addition, recall that for $p=4 \alpha^{2}+3 \beta^{2}$, we have fixed α, β such that $\alpha \equiv 2(\bmod 3)$ and $\beta \equiv 1(\bmod 4)$. One can then use elementary methods to show that
(i) if $p(2 \alpha-3 \beta) \equiv 1(\bmod 12)$, then $p(2 \alpha+3 \beta) \equiv 7(\bmod 12)$; and
(ii) if $p(2 \alpha-3 \beta) \equiv 7(\bmod 12)$, then $p(2 \alpha+3 \beta) \equiv 1(\bmod 12)$.

Moreover, we can also prove that $p(8 \alpha-3 \beta) \equiv 7(\bmod 12)$ and $p(8 \alpha+3 \beta) \equiv 1$ $(\bmod 12)$. These results are useful in adding 4.19) and 4.20 as follows

$$
\begin{align*}
T_{1}+T_{2} & =2 \alpha \sum_{u \in \mathbb{Z}}\left((12 u+1) q^{p(12 u+1)^{2}}+(12 u+7) q^{p(12 u+7)^{2}}\right) \sum_{v \in \mathbb{Z}}\left(q^{3 p(2 v+1)^{2}}-q^{3 p(2 v)^{2}}\right) \\
& =-2 \alpha \sum_{u \in \mathbb{Z}}(6 u+1) q^{p(6 u+1)^{2}} \sum_{v \in \mathbb{Z}}(-1)^{v} q^{3 v^{2}} \\
(4.21) & \tag{4.21}\\
& =\tilde{g}(p) \frac{\eta(24 p \tau)^{5} \eta(3 p \tau)^{2}}{\eta(48 p \tau)^{2} \eta(6 p \tau)}
\end{align*}
$$

where the coefficient in 4.21) comes from (4.4).
With (4.13), 4.14) and (4.21), we obtain that for $p=4 \alpha^{2}+3 \beta^{2}$,

$$
\begin{equation*}
\sum_{n \geq 0} g(p n) q^{p n}=\tilde{g}(p) \frac{\eta(24 p \tau)^{5} \eta(3 p \tau)^{2}}{\eta(48 p \tau)^{2} \eta(6 p \tau)}-p \sum_{n \geq 0} g(n) q^{p^{2} n} \tag{4.22}
\end{equation*}
$$

proving the second assertion of 1.11 b .

5. Concluding Remarks

In this article, we derived a general transformation for theta series associated with the quadratic form $x^{2}+k y^{2}$ and used this transformation to provide elementary proofs of many striking identities that interlinked coefficients of such theta series. It appears that there are many such identities that can be proved using our method and thus we did not attempt to be exhaustive and only presented five new infinite families of identities. Much more can be done. For example, in a recent paper by Mahadeva Naika and Gireesh (4), four identities analogous to (1.2) were proved. Using our general transformation, it is fairly straight forward to prove the following generalization.

Theorem 5.1. Let j be a positive integer such that $p=2 j+1$ is prime. If

$$
\begin{align*}
\sum_{n \geq 0} s_{j}(n) q^{n} & =\sum_{\substack{x \equiv 1(\bmod 4) \\
y \equiv 1(\bmod 4)}} q^{x^{2}+2 j y^{2}}=\frac{\eta(16 \tau)^{2} \eta(32 j \tau)^{2}}{\eta(8 \tau) \eta(16 j \tau)} \tag{5.1a}\\
\sum_{n \geq 0} t_{j}(n) q^{n} & =\sum_{\substack{x \equiv 1(\bmod 4) \\
y \equiv 0(\bmod 2)}} q^{x^{2}+2 j y^{2}}=\frac{\eta(16 \tau)^{2} \eta(16 j \tau)^{5}}{\eta(8 \tau) \eta(8 j \tau)^{2} \eta(32 j \tau)^{2}} \tag{5.1b}
\end{align*}
$$

then

$$
\begin{align*}
& \sum_{n \geq 0} s_{j}(p n) q^{n}+\sum_{n \geq 0} s_{j}(n) q^{p n}=\sum_{n \geq 0} t_{j}(n) q^{n} \tag{5.2a}\\
& \sum_{n \geq 0} t_{j}(p n) q^{n}+\sum_{n \geq 0} t_{j}(n) q^{p n}=4 \sum_{n \geq 0} s_{j}(n) q^{n} \tag{5.2b}
\end{align*}
$$

Identity 5.2 a is equivalent to [4 Equation (1.1)] while identity 5.2 b is a generalization of [4, Equations (1.2) to (1.4)] which were stated and proved only for the cases $j=1,2$ and 3 , corresponding to the primes $p=3,5$ and 7 . Furthermore, if we keep j fixed, our technique allows us to generalize each case from the prime $p=2 j+1$ to all primes that can be represented as $p=\alpha^{2}+2 j \beta^{2}$. We illustrate this for the cases of $j=1,2$ and 3 .

Theorem 5.2. For any prime $p \equiv 1$ or $3(\bmod 8)$, we have

$$
\begin{align*}
& \sum_{n \geq 0} s_{1}(p n) q^{n}+\sum_{n \geq 0} s_{1}(n) q^{p n}=\left\{\begin{array}{lll}
t_{1}(p) \sum_{n \geq 0} s_{1}(n) q^{n} & \text { if } p \equiv 1 & (\bmod 8) \\
s_{1}(p) \sum_{n \geq 0} t_{1}(n) q^{n} & \text { if } p \equiv 3 & (\bmod 8)
\end{array}\right. \tag{5.3a}\\
& \sum_{n \geq 0} t_{1}(p n) q^{n}+\sum_{n \geq 0} t_{1}(n) q^{p n}=\left\{\begin{array}{lll}
t_{1}(p) \sum_{n \geq 0} t_{1}(n) q^{n} & \text { if } p \equiv 1 & (\bmod 8) \\
4 s_{1}(p) \sum_{n \geq 0} s_{1}(n) q^{n} & \text { if } p \equiv 3 & (\bmod 8)
\end{array}\right. \tag{5.3~b}
\end{align*}
$$

For any prime $p \equiv 1(\bmod 4)$, we have

$$
\begin{align*}
& \sum_{n \geq 0} s_{2}(p n) q^{n}+\sum_{n \geq 0} s_{2}(n) q^{p n}=\left\{\begin{array}{lll}
t_{2}(p) \sum_{n \geq 0} s_{2}(n) q^{n} & \text { if } p \equiv 1 & (\bmod 8) \\
s_{2}(p) \sum_{n \geq 0}^{n} t_{2}(n) q^{n} & \text { if } p \equiv 5 & (\bmod 8)
\end{array}\right. \tag{5.4a}\\
& \sum_{n \geq 0} t_{2}(p n) q^{n}+\sum_{n \geq 0} t_{2}(n) q^{p n}=\left\{\begin{array}{lll}
t_{2}(p) \sum_{n \geq 0} t_{2}(n) q^{n} & \text { if } p \equiv 1 & (\bmod 8) \\
4 s_{2}(p) \sum_{n \geq 0} s_{2}(n) q^{n} & \text { if } p \equiv 5 & (\bmod 8)
\end{array}\right.
\end{align*}
$$

For any prime $p \equiv 1$ or $7(\bmod 24)$, we have

$$
\begin{align*}
& \sum_{n \geq 0} s_{3}(p n) q^{n}+\sum_{n \geq 0} s_{3}(n) q^{p n}=\left\{\begin{array}{lll}
t_{3}(p) \sum_{n \geq 0} s_{3}(n) q^{n} & \text { if } p \equiv 1 & (\bmod 24) \\
s_{3}(p) \sum_{n \geq 0} t_{3}(n) q^{n} & \text { if } p \equiv 7 & (\bmod 24)
\end{array}\right. \tag{5.5a}\\
& \sum_{n \geq 0} t_{3}(p n) q^{n}+\sum_{n \geq 0} t_{3}(n) q^{p n}=\left\{\begin{array}{lll}
t_{3}(p) \sum_{n \geq 0} t_{3}(n) q^{n} & \text { if } p \equiv 1 & (\bmod 24) \\
4 s_{3}(p) \sum_{n \geq 0} s_{3}(n) q^{n} & \text { if } p \equiv 7 & (\bmod 24)
\end{array}\right.
\end{align*}
$$

References

[1] B. C. Berndt, Number theory in the spirit of Ramanujan, Amer. Math. Soc., Providence, Rhode Island, 2006.
[2] S. Cooper, The quintuple product identity, Int. J. Number Theory, 2 (2006), 115-161.
[3] M. D. Hirschhorn, Some interesting q-series identities, Ramanujan J., 36 (2015) 297-304.
[4] M. S. Mahadeva Naika, D. S. Gireesh, Arithmetic properties arising from Ramanujan's theta functions, Ramanujan J., 42 (2017) 601-615.
[5] P. C. Toh, On certain pairs of q-series identities, Ramanujan J., 40 (2016), 359-365.
Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371

E-mail address: phnhi.ho@ntu.edu.sg
Mathematics \& Mathematics Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616

E-mail address, Corresponding Author: peechoon.toh@nie.edu.sg

[^0]: Date: September 13, 2017.
 2010 Mathematics Subject Classification. Primary—11F27 Secondary—11E25.
 Key words and phrases. theta series, Jacobi triple product identity.
 This research was partially supported by the NIE Academic Research Fund RI 3/12 TPC.

