
ON ANGLES FORMED BY LINES ON A SQUARE

LATTICE

PEE CHOON TOH

Consider two arbitrary intersecting line segments drawn on a square lat-
tice, i.e. with the endpoints of the segments on lattice points. One may
ask what values can arise as the angle of intersection. Clearly, there are too
many possibilities, so we ask a simpler question. Ignoring the trivial cases
of perpendicular lines and 45◦ formed by diagonals of a square, we would
like to know what “nice” values can arise as the angle of intersection?

Let us rephrase the question more precisely. Let a, b, c, d ∈ Z and consider
vectors (a, b) and (c, d) in R2. For what values of a, b, c and d, does the angle
between the vectors (a, b) and (c, d) assume the values of 30◦, 45◦ or 60◦?
Utilizing the dot product of two vectors, the two theorems below provide
a fairly complete answer. The values of 30◦ and 60◦ never appear. There
are some implications. For example, it is impossible to draw an equilateral
triangle or a 30◦ − 60◦ − 90◦ triangle where all three vertices lie on lattice
points. On the other hand, for every line segment, one can always find
another segment that intersects it at 45◦ degrees. However, up to scaling,
there are essentially only two ways to do this.

Theorem 1. There does not exist integers a, b, c, d ∈ Z, such that

ac + bd√
a2 + b2

√
c2 + d2

= ±
√

3

2
or ± 1

2
.

Theorem 2. Let a, b, c, d ∈ Z, such that gcd(a, b) = gcd(c, d) = 1 and

ac + bd√
a2 + b2

√
c2 + d2

=

√
2

2
.

Then if ad − bc > 0, (c, d) = (a − b, a + b) or
(
a−b
2 , a+b

2

)
. Otherwise, if

ad− bc < 0, (c, d) = (a + b, b− a) or
(
a+b
2 , b−a

2

)
.

We shall prove both theorems together. First we recall the sum of squares
identity

(a2 + b2)(c2 + d2) = (ad− bc)2 + (ac + bd)2.

One can easily verify the above algebraically but it is more instructive to
view it as the multiplicative property of the norm in complex numbers.
Suppose we have

ac + bd√
a2 + b2

√
c2 + d2

= ±
√
m

2
,
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where m = 1, 2 or 3. By squaring and clearing denominators, we have

4(ac + bd)2 = m(a2 + b2)(c2 + d2)

= m(ad− bc)2 + m(ac + bd)2

which means
(4−m)(ac + bd)2 = m(ad− bc)2.

When m = 1 or 3, we have 3x2 = y2 for some integers x and y which
violates the Fundamental Theorem of Arithmetic. This proves Theorem 1.
To continue with the proof of Theorem 2, we further assume m = 2 and
gcd(a, b) = gcd(c, d) = 1. We have

ac + bd = ±(ad− bc).

Recall that in the theorem statement the left side of the above is positive,
so we first consider ad− bc > 0. This means ac + bd = ad− bc and thus

b(d + c) = a(d− c). (1)

As gcd(a, b) = 1, Euclid’s Lemma means that b | d − c. In other words,
d− c = kb for some k ∈ Z. Likewise, a | d + c which means d + c = ja. for
some j ∈ Z. Substituting both into (1), we can conclude j = k. Taking sum
and differences then yield

2c = k(a− b) and 2d = k(a + b). (2)

We can combine (2) into

2(ad− bc) = k(a2 + b2).

Since ad− bc > 0, k must be positive. Recall that gcd(a, b) = 1, so if either
one of a or b is even, in order to satisfy gcd(c, d) = 1, we must have k = 2
which leads to (c, d) = (a− b, a+ b). On the other hand, if both a and b are
odd, then k = 1 which means (c, d) =

(
a−b
2 , a+b

2

)
.

Now in the case ad− bc < 0, we have

ac + bd = bc− ad. (3)

We can then reason as before to obtain (c, d) = (a + b, b− a) or
(
a+b
2 , b−a

2

)
.
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