THIRD LEE PENG YEE SYMPOSIUM Celebrating Mathematics National Institute of Education Nanyang Technological University 18-19 November 2013

THE HENSTOCK APPROACH TO THE ITÔ STOCHASTIC INTEGRAL

EMMANUEL A. CABRAL, PH.D. ATENEO DE MANILA UNIVERSITY, PHILIPPINES

The <u>function</u>

$$F(x) = \begin{cases} x^2 \sin \frac{1}{x^2}, & x > 0\\ 0, & x = 0 \end{cases}$$

is differentiable everywhere with

$$f(x) = F'(x) = \begin{cases} 2x \sin \frac{1}{x^2} - \frac{2}{x} \cos \frac{1}{x^2}, & x > 0\\ 0, & x = 0 \end{cases}$$

However, $\int_0^x F'(t) dt \neq F(x)$ in the sense of Riemann or Lebesgue integration.

Definition A function f is Henstock integrable on [a, b] if for some number A, the following holds: for every $\varepsilon > 0$ there exists a positive function δ on [a, b] such that

$$\left|A - \sum_{i=1}^{n} f(t_i)(x_{i+1} - x_i)\right| < \varepsilon$$

whenever

$$D = \{(t_i, [x_i, x_{i+1}])\}_{i=1}^n$$

is a division¹ of [a, b] with

$$t_i \in [x_i, x_{i+1}] \subset (t_i - \delta(t_i), t_i + \delta(t_i))$$

for every point-interval pair in the division *D*.
We write

$$\int_{a}^{b} f(x)dx = A.$$

¹ A division of [a, b] consists of point-interval pairs such that the union of the intervals is [a, b]. The division being described above is called a δ –fine division.

If a function f is Henstock integrable on [a, b], then it is also Henstock integrable in every subinterval [c, d] of [a, b]. It is then natural to define the primitive F as

$$F(x) = \int_{a}^{x} f(x) dx$$

which can also be taken as a function of intervals in the sense that

$$F(u,v) = \int_a^v f(x)dx - \int_a^u f(x)dx.$$

Cousin's Lemma For every positive function δ on [a, b], there exists a δ -fine division of [a, b].

Henstock's Lemma Suppose a function f is Henstock integrable on [a, b]. Then for every $\varepsilon > 0$ there exists a function δ on [a, b] such that

$$\sum_{i=1}^{n} \left| \left(F(x_{i+1}) - F(x_i) \right) - f(t_i)(x_{i+1} - x_i) \right|$$

whenever $D = \{(t_i, [x_i, x_{i+1}])\}_{i=1}^n$ is a δ -fine partial division of [a, b].

Decomposability property

Suppose $f_n \rightarrow f$ and each f_n is Henstock integrable with primitive F_n . Then δ_n could be found for each f_n that satisfies the integrability condition.

One may subdivide [a, b] into a countable union of pairwise disjoint sets X_n such that $\delta(x) = \delta_n(x)$ for $x \in X_n$. This is the δ that we need to prove integrability of f given other conditions on f_n and F_n .

FUNDAMENTAL THEOREM OF CALCULUS

A function f is Henstock integrable with primitive F if and only if F is ACG* and F'(x) = f(x) almost everywhere.

A function f is Lebesgue integrable with primitive F if and only if F is AC and F'(x) = f(x) almost everywhere.

HENSTOCK APPROACH TO THE LEBESGUE INTEGRAL

A function f is McShane integrable on [a, b] if for every $\varepsilon > 0$ there exists a positive function $\delta > 0$ such that

$$\left| A - \sum_{i=1}^{n} f(t_i)(x_{i+1} - x_i) \right|$$

whenever

 $D = \{(t_i, [x_i, x_{i+1}])\}_{i=1}^n$

is a δ -fine McShane division of [a, b].

RUDIMENTS OF PROBABILITY THEORY

- Sample space Ω
- Events
- σ –algebra or σ –field ${\mathcal F}$
- Filtration $\{\mathcal{F}_t\}$
- Probability space $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}, \mathbf{P})$
- Probability measure
- Random variable
- Expectation
- Conditional expectation

STOCHASTIC PROCESSES

- A stochastic process $f: [0,T] \times \Omega \rightarrow \mathbb{R}$ is a collection of random variables $f_t, t \in [0,T]$. We may write $f = \{f_t\}$.
- A process f is adapted to the filtration $\{\mathcal{F}_t\}$ if for every $t \in [0,T]$, f_t is \mathcal{F}_t -measurable.

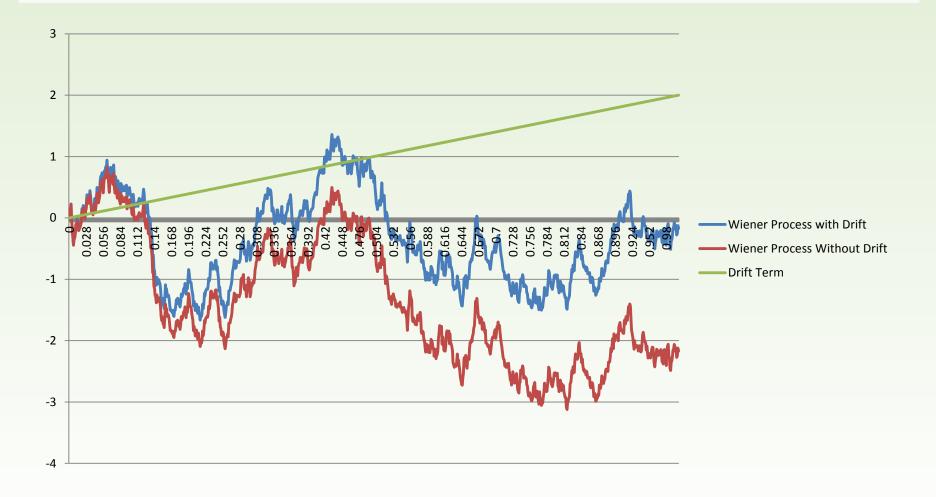
WIENER PROCESS

- Also known as Brownian motion.
- A process $\{W_t\}$ is a Wiener process if
 - $W_{t+\Delta t} W_t$ is normally distributed for each t.
 - Mean of $W_{t+\Delta t} W_t$ is 0.
 - Variance of $W_{t+\Delta t} W_t$ is Δt .
 - For $0 \le u < v \le s < t$, $W_v W_u$ and $W_t W_s$ are independent random variables.
- Standard filtration is given by $\mathcal{F}_t = \sigma(W_s: 0 \le s \le t)$.

BROWNIAN MOTION WITH DRIFT

- If a and b are constants, then we have a Brownian motion with drift $adt + bdW_t$, also written $\int_0^t ads + \int_0^t bdW_s$.
- In general a and b could be functions of t and W_t and then we have an Itô process.
- Appears very often in financial mathematics models.

WIENER PROCESS WITH CONSTANT DRIFT



CONSTRUCTION OF THE CLASSICAL ITÔ INTEGRAL: SIMPLE PROCESSES

Definition A stochastic process $f = {f_t}_{0 \le t \le T}$ is called a simple process if it can be written as

$$f_t(\omega) = \sum_{i=1}^p \phi_i(\omega) \, \mathbf{1}_{(t_{i-1}, t_i]}(t)$$

where

 $0 = t_0 < t_1 < \dots < t_p = T$

and ϕ_i is $\mathcal{F}_{t_{i-1}}$ –measurable and bounded.

CONSTRUCTION OF THE CLASSICAL ITÔ INTEGRAL: STOCHASTIC INTEGRAL OF A SIMPLE PROCESS

Definition For $t \in (t_k, t_{k+1}]$, the stochastic integral $I(f)_t$ over [0, t] of a simple process is defined by

$$I(f)_{t} = \sum_{i=1}^{k} \phi_{i} (W_{t_{i}} - W_{t_{i-1}}) + \phi_{k+1} (W_{t} - W_{t_{k}}),$$

which can also be compactly written as

$$I(f)_t = \sum_{i=1}^p \phi_i (W_{t_i \wedge t} - W_{t_{i-1} \wedge t}).$$

We also write

$$\int_0^t f_s dW_s = \sum_{i=1}^p \phi_i (W_{t_i \wedge t} - W_{t_{i-1} \wedge t}).$$

How then do we give meaning to $\int_{0}^{T} f_{t} dW_{t}$ if *f* is not a simple process?

This integral cannot be defined pathwise, that is for every $\omega \in \Omega$ similar to the Lebesgue-Stieltjes integral precisely because the Wiener sample paths are of unbounded variation.

Definition 3.4 Let L₂ be the space of stochastic process f:
[0,T] × Ω → ℝ, such that
(i) f is B × F_t -measurable where B denotes the Borel σ-algebra on [0,t];
(ii) the process (f (ω)) is adopted to the filtration T and

(ii) the process $\{f_t(\omega)\}_{t\in[a,b]}$ is adapted to the filtration \mathcal{F}_t ; and (iii) $\|f\|_{\mathcal{L}_2}^2 = \mathbb{E}\left((L)\int_a^b f_t^2 dt\right) < \infty.$

Theorem For every $f \in \mathcal{L}_2$, there exist a sequence of simple processes $f^n = \{f_t^n\}$ and a unique random variable $F_T \in L^2$ such that

$$\mathbb{E}\left[\int_0^T |f_s^n - f_s|^2 ds\right] \to 0$$

and

$$\mathbb{E}[(I(f^n)_T - F_T)^2] \to 0.$$

We call F_T the stochastic integral of f over the interval [0,T] and we write

$$\int_0^T f_s dW_s = F_T.$$

It can be shown that

$$\int_{0}^{t} f_{s} dW_{s}$$

also exists for $0 \le t \le T$. It is then natural to define the process $F = \{F_t\}_{0 \le t \le T}$ where

$$F_t = \int_0^t f_s dW_s \, .$$

Theorem Suppose $f \in \mathcal{L}_2$. Then the process $F = \{F_t\}_{0 \le t \le T}$ defined by

$$F_t = \int_0^t f_s dW_s$$

has the following properties 1) Ito Isometry, that is

$$\mathbb{E}\left[\left(\int_{0}^{t} f_{s} dW_{s}\right)^{2}\right] = \mathbb{E}\left[\int_{0}^{t} f_{s}^{2} ds\right].$$

2) Martingale property, that is *F* is adapted to the filtration $\mathcal{F} = \{\mathcal{F}_t\}, \mathbb{E}(f_t) < \infty$, and for all *s*, *t* with $0 \le s \le t \le T$, we have

$$\mathbb{E}[f_t|\mathcal{F}_S] = f_S.$$

Definition Let $f = \{f_s : s \in [0,T]\}$ a stochastic process adapted to the standard filtering space $(\Omega, \mathcal{F}, \{\mathcal{F}_s\}, \mathbf{P})$. Then f is said to be Itô integrable on [0,T] if there exists a random variable $F_T \in L^2$ such that for $\varepsilon > 0$, there exists a positive function δ on [0,T) and a positive number η such that

$$\mathbb{E}\left| \left(F_T - \sum_{i=1}^n f_{u_i} (W_{v_i} - W_{u_i}) \right)^2 \right| < \varepsilon$$
whenever $D = \{ ([u_i, v_i), u_i) \}_{i=1}^n$ is $a \, \delta$ -fine belated partial division of $[0, T)$ with
$$\left| T - \sum_{i=1}^n (v_i - u_i) \right| < \eta.$$

Consider L^2 to be the space of random variables *X* such that $||X||_{L^2} = \mathbb{E}(|X|^2) < \infty$.

Henstock Lemma Let f be Itô integrable on [0,T] with

$$F_t = \int_0^t f_s dW_s \, .$$

Then for every $\varepsilon > 0$ there exists a positive function $\delta > 0$ on [0,T) such that

$$\sum_{i=1} \mathbb{E} \left| \left(F_{v_i} - F_{u_i} \right) - f_{u_i} \left(W_{v_i} - W_{u_i} \right) \right|^2 < \varepsilon$$

whenever $D = \{([u_i, v_i), u_i)\}_{i=1}^n \text{ is } \delta - fine \text{ partial } division of [0, T).$

Definition The stochastic process $X = \{X_t\}$ is said to have the AC^2 property if for every $\varepsilon > 0$, there exists a positive number η such that

$$\mathbb{E}\left[\left(\sum_{i=1}^{n} \left(F_{v_i} - F_{u_i}\right)\right)^2\right]$$

whenever $\{[u_i, v_i)\}$ is a finite collection of disjoint subintervals of [0, T].

AC² was introduced by Toh, T.L. and Chew T.S. in the paper *The Non-Uniform Riemann Approach to Itô's Integral*, Real Analysis Exchange 18(1992/1993), 352-366.

Definition An adapted process $f = \{f_s : s \in [0,T]\}$ on $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}, \mathbf{P})$ is called a L^2 –martingale if it satisfies the following:

- *1.* For every *s* ∈ [0,T], we have $\mathbb{E}(f_s) < \infty$.
- 2. For all s,t with $0 \le s \le t \le T$, we have $\mathbb{E}[f_t | \mathcal{F}_s] = f_s$.
- $3. \sup_{t \in [0,T]} \mathbb{E}(f_t^2) < \infty.$

Definition The stochastic process F_t on [0,T] is said to have a <u>belated</u> derivative f_t with respect to the Wiener process if for every $\varepsilon > 0$, there exists a positive number $\delta(t)$ such that

$$\mathbb{E}[(F_{v} - F_{t}) - f_{t}(W_{v} - W_{t})]^{2} \leq \varepsilon \mathbb{E}(W_{v} - W_{t})^{2}$$

whenever the pair ([t, v), t) is δ –fine. We write $D_b F_t = f_t$.

Toh, T.L. and Chew T.S., On belated differentiation and a characterization of Henstock-Kurzweil-Ito integrable processes, *Mathematica Bohemica*, Vol. 130 (2005), No. 1, 63--72

Fundamental Theorem of Calculus

The following set of conditions is sufficient and necessary for a stochastic process $f: [0,T] \times \Omega$ to Itô integrable on [0,T]: 1. F is an L^2 –martingale; 2. F has AC^2 property on [0,T]; 3. $D_bF_t = f_t$ for almost every $t \in [0,T)$.

Toh, T.L. and Chew T.S., On belated differentiation and a characterization of Henstock-Kurzweil-Ito integrable processes, *Mathematica Bohemica*, Vol. 130 (2005), No. 1, 63--72

BACKWARDS STOCHASTIC INTEGRALS³

- Filtration $\mathcal{F}_t = \sigma(W_s: 0 \le s \le t)$ is replaced by backwards filtration $\mathcal{G}_t = \sigma(W_s: t \le s \le T)$.
- Partial divisions are tagged from the right, that is, $D = \{((u_i, v_i], v_i)\}_{i=1}^n$.
- $F_{(t,T]} = \int_t^T f_s dW_s$.
- Backwards derivative is defined using backwards filtration.

³ Backwards Stochastic integral using Henstock approach is given in the paper by Arcede, J.P. and Cabral, E.A., *An Equivalent Definition for the Backwards Itô Integral*, Thai Journal of Mathematics, 9 (2011), 619 - 630.

BACKWARDS STOCHASTIC INTEGRALS

Example: The Wiener process is backwards integrable with

$$\int_{a}^{b} W_{s} dW_{s} = \frac{1}{2} \left(W_{b}^{2} - W_{a}^{2} \right) + \frac{1}{2} (b - a).$$

BACKWARDS STOCHASTIC INTEGRALS

Example Consider the processes $X_{(\xi,T]} = \frac{1}{2} \left(W_T^2 - W_{\xi}^2 \right) + \frac{1}{2} \left(T - \xi \right)$

and

$$Y_{(\xi,T]} = \frac{1}{2} (W_T^2 - W_{\xi}^2).$$

Both have backward derivatives W_{ξ} . Both processes have the AC² property but only the first one is an L^2 –martingale.

One may check out the details in the paper Arcede, J.P. and Cabral, E.A., *Fundamental Theorem of Calculus for the Backward Itô Integral*, Matimyas Matematika, 34(1), 2011, 1-9.

