

écolenormalesupérieure _____ paris _ saclay ____

Jean Goubault-Larrecq

Continuous R-valuations

School of Mathematics

Xiaodong Jia (贾晓东)

ISDT 2022 Singapore (virtual)

Continuous valuations

* **Continuous valuations** on a topological space X = maps $\nu : \mathcal{O}(X) \to \mathbb{R}_+$ that are: - strict: $\nu(\emptyset) = 0$ — modular: $\nu(U \cup V) + \nu(U \cap V) = \nu(U) + \nu(V)$ - Scott-continuous.

Continuous valuations \cong measures. **

What's so special about $\overline{\mathbb{R}}_+$ here?

\Rightarrow We will replace \mathbb{R}_+ by Abelian d-rags

http://www.andrej.com/mathematicians/large/Danos_Vincent.jpg

✤ Defn. A rag is (*R*,0, + ,1,×) such that: -(R,0,+) Abelian monoid -(R,1,X) monoid $- \times$ distributes over +

* Similar but weaker than a **semi-ring** (or **rig**):

we do **not** require $0 \times r = r \times 0 = 0$

✤ Defn. A rag is (*R*,0, + ,1,×) such that: -(R,0,+) Abelian monoid -(R,1,X) monoid $- \times$ distributes over +

A d-rag is a rag with a dcpo structure such that +, × are Scott-continuous

* An Abelian d-rag is one whose X is commutative

Fundamental examples

- * Example 1. \mathbb{R}_+ Note: actually a rig, and $0 = \bot$ here * Example 2. **I** \mathbb{R}^*_+ ≝ {intervals [*a*, *b*], 0 ≤ *a* ≤ *b* ≤ ∞}, reverse inclusion $0 \triangleq [0, 0]$... different from $\bot = [0, \infty]$
 - with the obvious (componentwise) operations except $[a, 0] \times [b, \infty] \triangleq [ab, \infty]$ (while $[0,c] \times [\infty,d] \triangleq [0,cd]$)

*

required for X to be Scott-continuous (and then causes it **not** to be a rig)

Continuous R-valuations: the wrong approach

- * Given an Abelian d-rag *R*, the **obvious** definition of an *R*-valued continuous valuation would be: $\nu \colon \mathcal{O}(X) \to R$ that are: 0? (needed for algebraic reasoning) - strict: $\nu(\emptyset) = ?$ — modular: $\nu(U \cup V) + \nu(U \cap V) =$ - Scott-continuous. \perp ? (needed to define integral as supremum of elementary sums) * Instead, we define continuous *R*-valuations as the desired **integration functionals** $h \mapsto hd\nu$, **directly**
 - (and we will write them simply as ν)

$$= \nu(U) + \nu(V)$$

Continuous R-valuations

★ **Defn.** A continuous *R*-valuation on *X* is a Scott-continuous, linear map ν from $[X \rightarrow R]$ to *R*

with pointwise ordering

Note. with R = R₊, we retrieve the usual notion of continuous valuation with R = IR₊, we get something akin to (but subtly different from) the interval-valued integrals of
 Abbas Edalat (2009) A computable approach to measure and integration theory. Inf. Comp. 207:642–659

$\nu(a \times h) = a \times \nu(h) \quad (a \in R)$ $\nu(h_1 + h_2) = \nu(h_1 + h_2)$

Monads of continuous R-valuations

★ Thm. Fix an Abelian d-rag R. There is a strong monad (V^R, η, _[†], t) on Dcpo (or on Top) where — V^R(X) = dcpo of continuous R-valuations, ordered pointwise — η: x ∈ X ↦ δ_x, where δ_x(h) = h(x) [Dirac R-valuation] — for every f: X → V^R(Y), f[†]: V^R(X) → V^R(Y) is defined by f[†](ν) = k ∈ V^R(Y) ↦ ν(x ∈ X ↦ f(x)(k)) — for all x ∈ X, ν ∈ V^R(Y), t(x, ν) = k ∈ [X × Y → R] ↦ ν(y ↦ k(x, y))

A word of warning, and a subtle point

- * Warning. Not directly useful for semantics of programs with interval-valued probabilities: if μ is a (representable) measure on [0,1], then $\mu([0, \frac{1}{2}[))$ is not Scott-cocontinuous i.e., if $[a, b] = \mu([0, \frac{1}{2}[) \text{ and } a = b]$ then [*a*, *b*] is **not continuous** as a function of μ
- * In practice, the semantics of any non-trivial **loop** / **recursive** function using a monad of continuous *R*-valuations with $R = I\mathbb{R}^*_+$

 - will be an **imprecise** interval of the form $[a, \infty]$

Klaus Weihrauch (1999) *Computability* on the probability measures on the Borel sets of the unit interval. TCS 219:421-437

(implemented in RealPCF, say)

Commutative monads of continuous R-valuations

- * In semantics, we wish our probability monads to be commutative $(x \leftarrow random; y \leftarrow random \Rightarrow should be equivalent to <math>(x \leftarrow random; x \leftarrow random)$
- **Defn.** An **elementary** *R***-valuation** is a finite **non-empty** linear combination * $\sum_{i=1}^{n} a_i \times \delta_{x_i} \text{ (with } a_i \in R)$

(Note the similarity with **simple valuations**)

* **Defn.** The dcpo $V_m^R(X)$ of minimal *R*-valuations is the inductive closure of the set of elementary *R*-valuations inside $V^{R}(X)$ (= smallest subdcpo =take elementary *R*-valuations, their directed suprema, then again directed suprema, etc.)

* **Thm.** The monad $(V_m^R, \eta, _^{\dagger}, t)$ is **commutative** on **Dcpo**. <

- But are minimal *R*-valuations enough to represent, say, Lebesgue measure?

The Lebesgue R-valuation on [0,1] is minimal (on \mathbb{IR})

* Let $R \stackrel{\text{\tiny def}}{=} \mathbf{I} \mathbb{R}_+^*$. How do we model drawing a real number uniformly in [0, 1]? * Let $\overline{\lambda}_n \cong \sum_{i=1}^{2^n} \left[\frac{1}{2^n}, \frac{1}{2^n} \right] \times \delta_{\left[\frac{i-1}{2^n}, \frac{i}{2^n}\right]}$: an elementary *R*-valuation on IR

* The directed supremum $\overline{\lambda} \cong \sup_{n}^{\uparrow} \overline{\lambda_{n}}$ is the **Lebesgue** *R*-valuation on [0, 1]

* This is essentially Edalat's interval-valued Riemann integration operator Abbas Edalat (2009) A computable approach to measure and integration theory. Inf. Comp. 207:642–659

... and is **minimal** by definition

How does λ model Lebesgue measure, really?

* Say that $k: X \to I\mathbb{R}$ approximates f:iff $f(x) \in k(x)$ for every $x \in X$

* $\nu \in V^{R}(X)$ approximates a Borel measure μ on Xiff for all *k*, *f* such that *k* approximates *f*, we have $\int fd\mu \in \nu(k)$ i.e., $\nu^-(k) \leq \int f d\mu \leq \nu^+(k)$

$$X \to \mathbb{R}$$

i.e., $k^{-}(x) \le f(x) \le k^{+}(x)$ where $k = [k^{-}, k^{+}]$

On largest continuous *R*-valuations approximating a measure

* For every τ -smooth measure μ on X, and every usc map $h: X \to \mathbb{R}_+$, let $\int^+ h d\mu \cong \int h d\mu$ if h is μ -bounded (namely if $h < \infty$ on some compact sat. support of μ) ∞ otherwise needed to make $h \mapsto \int^+ h d\mu$ Scott-cocontinuous * Then $\tilde{\mu}(k) \cong \left[\int k^- d\mu, \int k^+ d\mu \right]$ defines a continuous *R*-valuation

* **Thm.** If μ is non-zero and bounded and X is a T₂ patch-compact subset of a stably compact, 2nd countable space, then:

 $-\mu$ is τ -smooth

 $-\tilde{\mu}$ is the **largest** continuous *R*-valuation that **approximates** μ .

Summary

- We can extend continuous valuations to continuous *R*-valuations where *R* is any Abelian d-rag
- * When $R = \overline{\mathbb{R}}_+$, generalizes ordinary continuous valuations When $R = \mathbb{IR}_+^*$, we retrieve something close to Edalat's interval-valued integration operators
- * We obtain **commutative** monads of **minimal** *R*-valuations
- Under some assumptions, there is a largest (=most precise)
 continuous IR*-valuation approximating a given non-zero bounded measure
- ★ That largest continuous $I\mathbb{R}^*_+$ -valuation is minimal in the case of Lebesgue measure on $[0, 1] \subseteq I\mathbb{R}$

Oops, it seems you've got too far ... or have you?

Let $h_n: [0,1] \to \mathbb{IR}_+^*$

* (Note: Edalat integrates with values in IR,

*

* With the obvious variant of Edalat's integral, $\int h_n d\lambda = \frac{1}{2^n} \times [0,\infty] + \left(1 - \frac{1}{2^n}\right) \times [0,0] = [0,\infty]$

* With $h \stackrel{\circ}{=} \sup_{n}^{\uparrow} h_{n'}$ $h d\lambda = [0,0] \neq \sup_{n}^{\uparrow} h_{n} d\lambda$

 $_{*}$ Hence that obvious variant is **not continuous** — we repair this by using [.

