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Outline
❖ The classical setting: complete metric spaces of probability measures

❖ Extending this to quasi-metric spaces through domain theory

❖ Warning.  There is way too much to be explained here. 
                   Please forgive me for skipping a lot of details 
                               (while giving a pretty technical talk altogether, still ☹)

❖ Main reference: 
📖 JGL (2021) Kantorovich-Rubinstein quasi-metrics I: 
                        spaces of measures and of continuous valuations. 
                        Topology and its Applications 295



The classical setting



A theorem of Prohorov’s
✤ Let  ≝ {Borel probability measures on X} 

We give it the weak topology, generated by  ≝ , 
       where 

✤ Recall that a Polish space is a second-countable, completely metrizable space

✤ Theorem (Prohorov 1956).  For every Polish space X,  is Polish.

P(X)
[U > r] {μ ∈ P(X) ∣ μ(U) > r}

U ∈ 𝒪(X), r ∈ ℝ+

P(X)
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A theorem of Prohorov’s
✤ Theorem (Prohorov 1956).  For every Polish space X,  is Polish.

✤ Crux of the argument: given a metric d on X,

✤ lift d to a metric dLP on 

✤ show that, if d is complete, then dLP is complete

✤ show that, if X is second-countable, then the open ball topology of dLP 
coincides with the weak topology

✤ Prohorov invented, and used the Levy-Prohorov metric dLP for that task

P(X)

P(X)
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The Kantorovich-Rubinstein metric
✤ Theorem (Prohorov 1956).  For every Polish space X,  is Polish.

✤ Instead of dLP, we may use the 1-bounded Kantorovich-Rubinstein metric 
 

                                     ≝  

… a kind of L1 metric, where h ranges over the 1-bounded 1-Lipschitz maps
✤ I will present quasi-metric extensions of this result
✤ We will proceed through domain theory

P(X)

d1
KR

d1
KR(μ, ν) sup

h ∫ hdμ − ∫ hdν
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Quasi-metrics and formal balls



Quasi-metrics
❖ A quasi-metric d on X is an asymmetric form of a metric:

•d(x, y)=d(y, x)                   [no symmetry required]

•d(x, z) ≤ d(x, y) + d(y, z)    [triangular inequality] 

•d(x, x)=0

• if d(x, y)=0 and d(y, x)=0 then x=y

❖ Specialization ordering       x≤y iff d(x, y)=0 
          [I’ll tell you later what topology I prefer; for now, think open ball topology]



Fundamental examples of quasi-metrics

❖ Any metric is a quasi-metric 
         [with equality as specialization ordering]

❖ Any poset (X, ≤) gives rise to a quasi-metric d≤(x, y) ≝ 0 if x≤y, 
                                                                                               ∞ otherwise 
         [and its specialization ordering is ≤]

❖ On :  ≝ , namely 0 if s≤t,  otherwise 
         [specialization ordering is ≤, but ]

ℝ, ℝ+, ℝ+ dℝ(s, t) (s − t)+ s − t
dℝ ≠ d≤

Hence quasi-metrics 
unify classical metric 
topology and order 

theory



Completeness

❖ A metric is complete iff every Cauchy net converges

❖ Similarly, one can define a quasi-metric d as being (Yoneda-)complete 
                  iff every (forward) Cauchy net has a so-called d-limit

❖ Instead of using this definition, I will use an equivalent one 
                  based on formal balls 
                 (Weihrauch&Schreiber81, 
                  Edalat&Heckmann98, 
                  Kostanek&Waszkiewicz10)



Formal balls
❖ Let (X, d) be a quasi-metric space.  A formal ball is a pair (x, r) of: 

— a point x of X        [the center] 
— a number r  [the radius]

❖ This is syntax for an actual (closed) ball

❖ Formal balls are ordered by:  iff  
             [in particular, ]

❖ This implies  (reverse inclusion of formal balls), 
         but is not equivalent to it

∈ ℝ+

(x, r) ≤d+ (y, s) d(x, y) ≤ r − s
r ≥ s

Bd
x,≤r ⊇ Bd

y,≤s

y
xs

r X



The Kostanek-Waszkiewicz theorem

❖ There is a poset  of formal balls, 
                          ordered by  iff 

❖ We take the following theorem as a definition (Kostanek&Waszkiewicz10)

❖ Defn.  The quasi-metric space  is:

❖ complete iff  is a dcpo

❖ continuous complete iff  is a continuous dcpo.

B(X, d)
(x, r) ≤d+ (y, s) d(x, y) ≤ r − s

(X, d)

B(X, d)

B(X, d)



The idea behind the Kostanek-Waszkiewicz theorem

❖ Consider any monotone net of formal balls  such that 

❖ Then  is a (forward) Cauchy net 
          whose speed of convergence is controlled by the radii  
          — I call  a Cauchy-weighted net, 
                              a Cauchy-weightable net

❖ A supremum  of the net  must have , 
    and  must be the so-called d-limit of  
          — I will take that as definition of a d-limit

(xi, ri)i∈I,⊑ inf
i∈I

ri = 0

(xi)i∈I,⊑
ri

(xi, ri)i∈I,⊑
(xi)i∈I,⊑

(x, r) (xi, ri)i∈I,⊑ r = 0
x (xi)i∈I,⊑

xi
ri

x



Examples of continuous complete quasi-metrics
❖  is [continuous] complete iff  is a [continuous] dcpo

❖ For d metric, complete iff complete in the usual sense 
                                         and this implies continuity   (Edalat&Heckmann96)

❖ For d=  (arising from a poset), 
—  complete iff  dcpo 
—  continuous complete iff  continuous dcpo

❖ Recall  ≝ : continuous complete on , 
not even complete on  (missing ∞)

(X, d) B(X, d)

d≤
(X, d≤) (X, ≤ )
(X, d≤) (X, ≤ )

dℝ(s, t) (s − t)+ ℝ+
ℝ, ℝ+

xi
ri

x



The d-Scott topology
❖ The usual topology on a quasi-metric space  is the open ball topology

❖ Let me instead consider the d-Scott topology, defined below

❖ Inject X into  by equating x with (x, 0)

❖ Give  the Scott topology of 

❖ The d-Scott topology on X is the subspace topology 
induced by the embedding into 

❖ Note.  d-Scott=open ball on metric spaces 
            d-Scott=Scott on posets 
            -Scott=Scott on 

(X, d)

B(X, d)

B(X, d) ≤d+

B(X, d)

dℝ ℝ, ℝ+, ℝ+

x=(x,0)
X

B(X, d)



A nagging point: standardness
❖  is standard iff 

                   for every directed family  of formal balls, 
                         for every shift , 

                    has a supremum ⇔  has a supremum

❖ It is unfortunate that not all quasi-metric spaces are standard

❖ If  is standard, then lots of nice things happen: 
— the radius map  is Scott-continuous from  to  
—  ≝  is Scott-open in  
— X =  is Gδ in 

❖ Fortunately: Thm.  Every complete quasi-metric space is standard.

X, d
(xi, ri)i∈I

s ≥ − inf
i∈I

ri

(xi, ri)i∈I (xi, ri + s)i∈I

X, d
(x, r) ↦ r B(X, d) ℝop

+
Vϵ {(x, r) ∈ B(X, d) ∣ r < ϵ} B(X, d)

⋂
↓

n∈ℕ
V1/2n B(X, d)

📖 JGL & K.M. Ng (2017) A few notes on formal balls. LMCS 13(4:18)1–34

x=(x,0)
X

B(X, d)

Vϵ ϵ



Lipschitz maps
❖  is a-Lipschitz iff for all , 

❖ This entails continuity wrt. the underlying open ball topologies, 
                     not wrt. the underlying d-Scott topologies

❖ The domain-theoretic view: 
let  map  to 

❖ Fact.  f is a-Lipschitz iff  is monotonic

❖ Defn.  f is a-Lipschitz continuous iff  is Scott-continuous

❖ Between metric spaces, Lipschitzianity implies continuity 
Between posets, a-Lipschitz=monotonic, a-Lipschitz continuous=Scott-continuous

f : X, d → Y, ∂ x, y ∈ X ∂( f(x), f(y)) ≤ a . d(x, y)

Ba( f ) (x, r) ∈ B(X, d) ( f(x), a . r) ∈ B(Y, ∂)

Ba( f )

Ba( f )



Spaces of Lipschitz continuous maps



When the target space is ℝ+

❖ Special case , 

❖  is a-Lipschitz iff for all , 

❖  is a-Lipschitz continuous iff , 
                                                              ≝  
                                                       is Scott-continuous       [provided  is standard]

❖ I will write  for the set of a-Lipschitz continuous maps from  to 

❖ and also  for those bounded from above by 

Y = ℝ+ ∂ = dℝ

h : X, d → ℝ+ x, y ∈ X h(x) ≤ h(y) + a . d(x, y)

h h′ : B(X, d) → ℝ ∪ {∞}
h′ (x, r) h(x) − a . r

X, d

ℒaX X ℝ+

ℒ1
aX a



 ⊆ ℒaX ℒX
❖ Let  ≝ {continuous maps : }            /   with the Scott topology 

where X has the d-Scott topology 
      and  has the -Scott = Scott topology

❖ Fact.  If  is standard, then  ⊆ .

❖ Proof.  For every ,  
                                                            [  ≝ ]

❖ Hence I will equip  with the subspace topology from  
            (this is not the Scott topology on  in general!)

ℒX X → ℝ+

ℝ+ dℝ

X, d ℒaX ℒX

h ∈ ℒaX h : X → B(X, d) → ℝ ∪ {∞}
x ≅ (x,0) ↦ h′ (x,0) h′ (x, r) h(x) − a . r

ℒaX ℒX
ℒaX



 ⊆ … ⊆  ⊆ ℒaX ℒ∞X ℒX

(Assuming X standard.)
 (continuous maps)ℒX

 ≝  (Lipschitz cont. maps)ℒ∞X ⋃
a

ℒaX

ℒ1X ℒ2X ℒ3X



Lipschitz approximation
❖ Thm.  Let  be standard. 

For every , for every , 
— there is a largest  below  
— 

X, d
h ∈ ℒX a > 0

h(a) ∈ ℒaX h
h = sup↑

a h(a)
h

h(a)



Continuous valuations



Continuous valuations
❖ Instead of working with measures, let me consider continuous valuations 

= maps  that are: 
— strict:  
— modular:  
— Scott-continuous.

❖ Let V(X) ≝ {continuous valuations on X}, 
       V≤1(X) ≝ {subprobability continuous valuations  on X (i.e., )}, 
       V1(X) ≝ {probability continuous valuations  on X (i.e., )}

❖ Theorem.  Every continuous valuation on a continuous complete quasi-metric space 
(with the d-Scott topology) extends to a (τ-smooth) Borel measure.

ν : 𝒪(X) → ℝ+
ν(∅) = 0

ν(U ∪ V) + ν(U ∩ V) = ν(U) + ν(V)

ν ν(X) ≤ 1
ν ν(X) = 1

V•(X), if I don’t want 
to be more specific

📖 M. de Brecht, JGL, X. Jia, Zh. Lyu (2019). Domain-complete and LCS-complete spaces. ISDT’19



Linear previsions

❖ For every V(X),  is: 

— linear:  ,  
— Scott-continuous.

❖ Thm (« baby Riesz »).   Continuous valuations ≅ linear previsions.

❖ Proof sketch.  Given any linear prevision , we retrieve  by 
                                   ≝ 

ν ∈ G : h ∈ ℒX → ∫ hdν

G(a . h) = aG(h) G(h1 + h2) = G(h1) + G(h2)

G ν
ν(U) G(χU)

what I call a linear 
prevision



Linear -previsionsℒ
❖ Linear previsions G are defined on the whole of 

❖ Given  standard, 
the restriction  is: 
— linear 
— continuous 

❖ Prop.  Linear prevision ≅ linear -prevision

❖ Proof sketch.  Given linear -prevision , define 
                       ≝      [recall  = Lipschitz approximation]

❖ Note.  Similar results with spaces of bounded Lipschitz maps.

ℒX

X, d
G|ℒ∞X

: ℒ∞X → ℝ+

ℒ

ℒ H
G(h) sup↑

a H(h(a)) h(a)

ℒX

 ≝ ℒ∞X ⋃
a

ℒaX

ℒ1X ℒ2X ℒ3Xwhat I call a linear 
-previsionℒ



The Kantorovich-Rubinstein quasi-metrics



The bounded KR quasi-metric

❖
Recall the classical definition:  ≝  

             where h ranges over the 1-bounded, 1-Lipschitz maps

❖ It is fitting to change this to the quasi-metric setting into: 

                                   ≝ 

❖ Fact.  The two definitions are equivalent 
           for continuous valuations on a metric space 

d1
KR(μ, ν) sup

h ∫ hdμ − ∫ hdν

d1
KR(μ, ν) sup

h∈ℒ1
1X

(∫ hdμ − ∫ hdν)
+

(X, d)

using   
instead of 

dℝ = (_ − _)+
|_ − _ |

ranging over 1-bounded, 
1-Lipschitz continuous 

maps

📖 JGL (2021) Kantorovich-Rubinstein quasi-metrics I: spaces of measures and of continuous valuations. T&A. 295



The unbounded KR quasi-metric
❖ I will concentrate on the unbounded variant: 

                                   ≝ dKR(μ, ν) sup
h∈ℒ1X

(∫ hdμ − ∫ hdν)
+

ranging over all 
1-Lipschitz continuous 

maps



Is V•(X),  complete?dKR

❖ We aim to show that  is a dcpo 
Hence we consider a monotone net  with  continuous valuations

❖ A formal ball  is an upper bound of that net iff 
                    for every  

iff                for all , 

❖ This suggests that the least upper bound is given by: 
—  ≝  

—  ≝  for every 

B(V∙(X), dKR)
(νi, ri)i∈I,⊑ νi

(ν, r)
dKR(νi, ν) ≤ ri − r i ∈ I

∫ hdνi ≤ ∫ hdν + ri − r i ∈ I h ∈ ℒ1X

r inf
i∈I

ri

∫ hdν sup
i∈I (∫ hdνi − ri + r) h ∈ ℒ1X

 ≝ dKR(μ, ν) sup
h∈ℒ1X

(∫ hdμ − ∫ hdν)
+



Is V•(X),  complete?dKR

❖ More generally (and multiplying by an arbitrary ),

❖ This suggests that the least upper bound is given by: 
—  ≝  

—  ≝  for every 

❖ Thm.   is a well-defined linear map from  to . 
If  is continuous, then: 
— it is a linear -prevision 
—  ≅ a unique continuous valuation , which is the desired -limit.

a

r inf
i∈I

ri

G(h) sup
i∈I (∫ hdνi − a . ri + a . r) h ∈ ℒaX

G ℒ∞X ℝ+
G

ℒ
G ν dKR

We will call this the 
naive supremum of 

(νi, ri)i∈I,⊑



❖ The only missing thing is to show that the naive supremum 

                  ≝  

is continuous from  to .

❖ Fact.   restricted to every subspace  is continuous.

❖ That is not enough to conclude 
— unless topology of  is 
     determined by those of 
     its subspaces   (=colimit) 
     [open problem!]

G(h) sup
i∈I (∫ hdνi − a . ri + a . r)

ℒ∞X ℝ+

G ℒaX

ℒ∞X

ℒaX

A frustrating situation

ℒX

 ≝ ℒ∞X ⋃
a

ℒaX

ℒ1X ℒ2X ℒ3X



Lipschitz-regular quasi-metric spaces



The assignment U ↦ Û
❖ Recall that the d-Scott topology on X is the subspace topology 

induced by the embedding 

❖ For every open subset  of X, let  be the 
largest Scott-open subset of  such that 

❖ The map  is right adjoint to , 
hence preserves arbitrary meets

❖ Defn.   is Lipschitz-regular iff  is Scott-continuous 
            (= if X is finitarily embedded into , see Escardó 98)

x ∈ X ↦ (x,0) ∈ B(X, d)

U Û
B(X, d) U = Û ∩ X

U ↦ Û V ↦ V ∩ X

X, d U ↦ Û
B(X, d)

x=(x,0)
X

B(X, d)

U

Û

📖 JGL (2020) Some topological properties of spaces of Lipschitz continuous maps on quasi-metric spaces.  T&A. 282

📖 M. H. Escardó (1998) Properly injective spaces and function spaces. T&A 89 (1–2). 



❖ Defn.   is Lipschitz-regular iff  is Scott-continuous

❖ Prop.  If  is Lipschitz-regular, then topology of  is 
     determined by those of its subspaces .

❖ Proof sketch.  The canonical injection  
and the a-Lipschitz approximation map  
                                                                               
form an embedding-projection pair.

X, d U ↦ Û

X, d ℒ∞X
ℒaX

ia : ℒaX → ℒX
ra : ℒX → ℒaX

h ↦ h(a)

Lipschitz-regular spaces

x=(x,0)
X

B(X, d)

U

Û



❖ Defn.   is Lipschitz-regular iff  is Scott-continuous

❖ Prop.  If  is Lipschitz-regular, then topology of  is 
     determined by those of its subspaces .

❖ As a corollary,

❖ Prop.  If  is Lipschitz-regular, then: 
— V•(X),  is complete 
— directed suprema of formal balls  are naive suprema: 

      ≝ , for every , 

X, d U ↦ Û

X, d ℒ∞X
ℒaX

X, d
dKR

(νi, ri)i∈I

G(h) sup
i∈I (∫ hdνi − a . ri + a . r) h ∈ ℒaX a > 0

Lipschitz-regular spaces and completeness

x=(x,0)
X

B(X, d)

U

Û



❖ Hmm … no.

❖ If  algebraic complete, then 
      Lipschitz-regular ⇔ has relatively compact open balls

❖ That is a pretty strong property — stronger than local compactness 
and remember that local compactness is not required in the metric case!

X, d

Is Lipschitz-regularity acceptable?



❖  itself is a quasi-metric space, with 
               ≝  
and -Scott topology = Scott topology

❖ Thm.  For every quasi-metric space ,  
            is Lipschitz-regular 
            [in fact,  preserves all unions].

❖ Let me only give a sketch of the argument… 
(assuming  standard, which will be enough for our purposes)

B(X, d)
d+((x, r), (y, s)) max(d(x, y) − r + s,0)

d+

X, d B(X, d), d+

U ↦ Û

X, d

A miracle

x=(x,0)
X

B(X, d)

U

Û



❖ Thm.  There is a monad  on the category of standard quasi-metric spaces 
where: 
—     [what I wrote  earlier on] 
—  
— 

❖ In fact a left KZ-monad: 
 ⇔  ⇔  

so we know what the -algebras are [but I won’t spell it out here]

❖ Prop.  For every -algebra , 
            we have ; in particular,  is Lipschitz-regular.

❖  is the free -algebra, hence is Lipschitz-regular.

(B, η, μ)

B( f ) : (x, r) ↦ ( f(x), r) B1
η : x ∈ X ↦ (x,0) ∈ B(X, d)
μ : ((x, r), s) ↦ (x, r + s)

Bη ≤ η μ ⊣ η Bη ⊣ μ
B

B α : B(X, d) → X
Û = α−1(U) X, d

B(X, d), d+ B

Formal ball monads

x=(x,0)
X

B(X, d)

U

Û

📖 JGL (2019) Formal ball monads.  Topology and its Applications 263:372-391

📖 M. H. Escardó (1998) Properly injective spaces 
    and function spaces. T&A 89 (1–2). 



Back to the completeness theorem



❖ Recall: 
Prop.  If  is Lipschitz-regular, then: 
— V•(X),  is complete 
— directed suprema of formal balls  are naive suprema: 

      ≝ , for every , 

❖ Since  is always Lipschitz-regular, for every space  we have: 
— V•( ) is complete 
— directed suprema of formal balls  are naive suprema 
                    [each  is a continuous valuation on ]

X, d
dKR

(νi, ri)i∈I

G(h) sup
i∈I (∫ hdνi − a . ri + a . r) h ∈ ℒaX a > 0

B(X, d), d+ X, d
B(X, d)

(ν̃i, ri)i∈I
ν̃i B(X, d)

Embedding into the formal ball model



❖ Recap. Directed suprema of formal balls  are naive suprema 
                    [each  is a continuous valuation on ]

❖ Now consider any directed family of formal balls  
                    [each  a continuous valuation on ]

❖ Let  ≝ , image valuation of  by 

❖ Lemma.  If  for some V•(X) 
                 then  is the (naive) supremum 
                 of 

(ν̃i, ri)i∈I
ν̃i B(X, d)

(νi, ri)i∈I
νi X

ν̃i η[νi] νi η : X → B(X, d)

ν̃ = η[ν] ν ∈
(ν, r)

(νi, ri)i∈I

Embedding into the formal ball model

(νi, ri)i∈I (η[νi], ri)i∈I

naive supremum (ν̃, r)(ν, r)

ν̃i≝



❖ Let  be an inclusion of spaces  
Defn.  A continuous valuation V•(B) is supported on  
            if and only if  for some V•(X)

❖ Lemma.  V•(B) is supported on  iff 
                for all open subsets V, W of B such that , 
                            

❖ Proof: Exercise.

❖ Almost there!  It remains to check that 
              the naive supremum V•( ) is supported on 

η X → B
ν̃ ∈ X

ν̃ = η[ν] ν ∈

ν̃ ∈ X
V ∩ X = W ∩ X

ν̃(V) = ν̃(W)

ν̃ ∈ B(X, d) X

Supports



❖ The best we can prove (for now) is that 
the naive supremum V•( ) is supported on  
       for every 

❖ Recall that 

❖ Does this imply that  is supported on X?

❖ Yes if  is continuous complete  
       and  is bounded ( ): see next slide

ν̃ ∈ B(X, d) Vϵ = {(x, r) ∣ r < ϵ}
ϵ > 0

X = ⋂
↓

n∈ℕ
V1/2n

ν̃

X, d
ν̃ ν̃(B(X, d)) < ∞

Another source of frustration

x=(x,0)
X

B(X, d)

Vϵ ϵ



the inf of a 
constant sequence

❖ If  is continuous complete, then  is a continuous dcpo 
and  is Gδ, hence Borel, in it.

❖ Thm. Every continuous valuation (e.g., ) 
           on a continuous dcpo 
                  (or even a locally compact sober space) 
            extends to a Borel measure.

❖ Since  supported on , for every open subset  of , 
                     [  and  have the same intersection with ]

❖
Then, if  is bounded,       

❖ In particular, if , then :  is supported on X.

X, d B(X, d)
X = ⋂

↓

n∈ℕ
V1/2n

ν̃

ν̃ Vϵ V B(X, d)
ν̃(V) = ν̃(V ∩ Vϵ) V V ∩ Vϵ Vϵ

ν̃ ν̃(V) = inf
n∈ℕ

ν̃(V ∩ V1/2n) = ν̃( ⋂
n∈ℕ

V ∩ V1/2n) = ν̃(V ∩ X)

V ∩ X = W ∩ X ν̃(V) = ν̃(W) ν̃

📖 J. D. Lawson (1982) Valuations on continuous lattices. Math. Arbeitspapiere 27:204–225 
📖 M. Alvarez-Manilla (2000) Measure theoretic results for continuous valuations 
     on partially ordered spaces. Ph.D. thesis, Imperial College, London 
📖 K. Keimel and J. Lawson (2005) Measure extension theorems for T0 spaces. 
     T&A 149(1–3):57–83

Invoking some measure theory

x=(x,0)
X

B(X, d)

Vϵ ϵ

a bounded measure commutes 
with infs of countable chains

 is Borel, and 
 is a measure

V ∩ X
ν̃



❖ Summing up:

❖ Thm.  For every continuous complete quasi-metric space , 
            V1(X) and V≤1(X) are complete under the  quasi-metric. 
              (And directed suprema of formal balls are computed as naive suprema.)

X, d
dKR

We are done!



Final remarks (a long list…)



❖ Summing up:

❖ Thm.  For every continuous complete quasi-metric space , 
            V1(X) and V≤1(X) are complete under the  quasi-metric. 
              (And directed suprema of formal balls are computed as naive suprema.)

❖ What about V(X) (unbounded valuations)?        — open problem

❖ In fact, V≤1(X) is even continuous complete 
       as well as V1(X) if  has a so-called root 
                                             [would need another talk] 
    Goes through preservation of algebraic completeness, 
    using the remarkable fact that for  continuous complete, 
           is stably compact, and topology=compact-open=pointwise

X, d
dKR

X, d

X, d
ℒaX

We are done! Are we, really?

📖 JGL (2020) Some topological properties of spaces of Lipschitz continuous maps on quasi-metric spaces.  T&A. 282



❖ Using the bounded version , we obtain:

❖ Thm.  For every continuous complete quasi-metric space , 
            V1(X) and V≤1(X) are continuous complete under . 
              (And directed suprema of formal balls are computed as naive suprema.)

❖ If  is algebraic complete, then so are V1(X) and V≤1(X), too.

❖ When  is an algebraic dcpo,  is Sünderhauf (1998)’s sup quasi-metric, 
and we retrieve his result that V≤1(X) is algebraic complete in that case.

d1
KR

X, d
d1

KR

X, d

X d1
KR

Are we done yet?



❖ Using the bounded version , we obtain the 

❖ Thm.  For every continuous complete quasi-metric space , 
            -Scott topology = weak topology on V1(X) and V≤1(X).

❖ Not true for -Scott topology, even when d metric (Kravchenko 2006).

d1
KR

X, d
d1

KR

dKR

The weak topology



❖ In general,  makes sense on any space of functionals , 
                    not just linear previsions (=continuous valuations)

❖ Defn.  A prevision is any Scott-continuous map  
            satisfying 

❖
Defn.   ≝ 

❖ We have similar theorems for discrete/sublinear/superlinear previsions

❖ In particular, discrete previsions ≅ Hoare/Smyth hyperspaces, 
                        with asymmetric variants of the Pompeiu-Hausdorff quasi-metric

dKR : ℒX → ℝ+

F : ℒX → ℝ+
F(a . h) = a . F(h)

dKR(F, F′ ) sup
h∈ℒ1X

(F(h) − F′ (h))+

Beyond continuous valuations: previsions

📖 JGL (2022) Kantorovich-Rubinstein quasi-metrics II: hyperspaces and powerdomains. Topology and its Applications 305
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Any questions? …meanwhile, a few references


