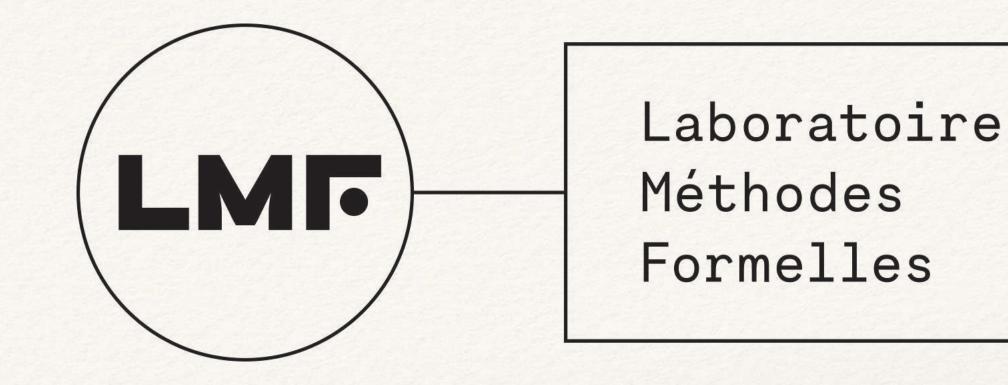
Jean Goubault-Larrecq

On completeness for Kantorovich-Rubinstein quasi-metrics



ISDT 2022 Singapore (virtual)

universite **PARIS-SACLAY**

écolenormale —— supérieure — paris — saclay — —

Outline

- * The classical setting: complete metric spaces of probability measures
- * Extending this to quasi-metric spaces through domain theory
- * Warning. There is way too much to be explained here. Please forgive me for skipping a lot of details (while giving a pretty technical talk altogether, still ((())))
- * Main reference: **I** JGL (2021) Kantorovich-Rubinstein quasi-metrics I: spaces of measures and of continuous valuations. Topology and its Applications 295

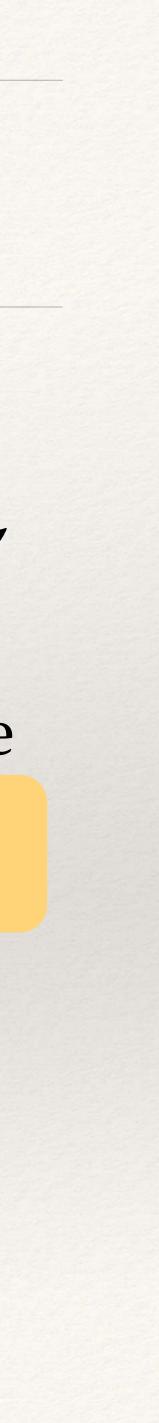
The classical setting

A theorem of Prohorov's

* Let $\mathbf{P}(X) \triangleq \{\text{Borel probability measures on } X\}$ where $U \in \mathcal{O}(X), r \in \mathbb{R}_+$

* Recall that a **Polish space** is a second-countable, completely metrizable space * **Theorem (Prohorov 1956).** For every Polish space X, P(X) is Polish.

We give it the weak topology, generated by $[U > r] \triangleq \{\mu \in \mathbf{P}(X) \mid \mu(U) > r\},\$



A theorem of Prohorov's

* **Theorem (Prohorov 1956).** For every Polish space X, P(X) is Polish.

* Crux of the argument: given a metric *d* on *X*,

- * lift d to a metric d_{LP} on $\mathbf{P}(X)$
- * show that, if *d* is complete, then *d*_{LP} is **complete**

* show that, if X is second-countable, then the open ball topology of d_{LP} coincides with the weak topology

* Prohorov invented, and used the Levy-Prohorov metric d_{LP} for that task

The Kantorovich-Rubinstein metric

* **Theorem (Prohorov 1956).** For every Polish space X, $\mathbf{P}(X)$ is Polish.

 $d_{\rm KR}^{\rm I}$

$$d_{\rm KR}^1(\mu,\nu) \stackrel{\text{\tiny def}}{=} \sup_h$$

- * I will present quasi-metric extensions of this result
- * We will proceed through **domain theory**

* Instead of *d*_{LP}, we may use the **1-bounded Kantorovich-Rubinstein** metric

$$\int hd\mu - \int hd\nu$$

... a kind of L¹ metric, where *h* ranges over the 1-bounded 1-Lipschitz maps

Quasi-metrics and formal balls

Quasi-metrics

* A quasi-metric *d* on *X* is an asymmetric form of a metric: • d(x, y) = d(y, x)[no symmetry required] • $d(x, z) \le d(x, y) + d(y, z)$ [triangular inequality] • d(x, x)=0• if d(x, y) = 0 and d(y, x) = 0 then x = y* **Specialization ordering** $x \le y$ iff d(x, y) = 0[I'll tell you later what topology I prefer; for now, think open ball topology]

Fundamental examples of quasi-metrics

* Any metric is a quasi-metric [with equality as specialization ordering] * Any **poset** (X, \leq) gives rise to a quasi-metric $d_{\leq}(x, y) \triangleq 0$ if $x \leq y$, [and its specialization ordering is \leq] * On $\mathbb{R}, \mathbb{R}_+, \mathbb{R}_+: d_{\mathbb{R}}(s, t) \triangleq (s - t)_+$, namely 0 if $s \le t$, s - t otherwise [specialization ordering is \leq , but $d_{\mathbb{R}} \neq d_{\leq}$]

Hence quasi-metrics unify classical metric topology and order theory

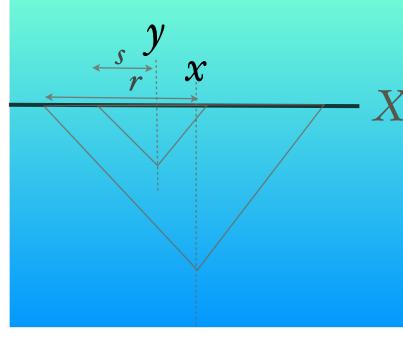
 ∞ otherwise

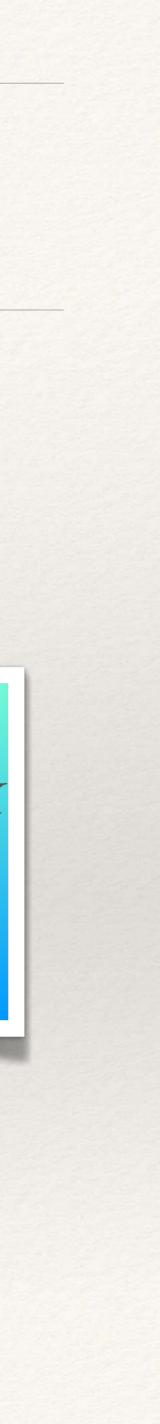
Completeness

- * A metric is complete iff every Cauchy net converges
- * Similarly, one can define a quasi-metric *d* as being (Yoneda-)complete iff every (forward) Cauchy net has a so-called *d*-limit
- * Instead of using this definition, I will use an equivalent one based on formal balls (Weihrauch&Schreiber81, Edalat&Heckmann98, Kostanek&Waszkiewicz10)

Formal balls

- * Let (X, d) be a quasi-metric space. A formal ball is a pair (x, r) of: — a point *x* of *X* [the center] — a number $r \in \mathbb{R}_+$ [the radius]
- * This is **syntax** for an actual (closed) ball
- * Formal balls are ordered by: $(x, r) \leq^{d^+} (y, s)$ iff $d(x, y) \leq r s$ [in particular, $r \ge s$]
- * This implies $B_{x,< r}^d \supseteq B_{v,< s}^d$ (reverse inclusion of formal balls), but is not equivalent to it



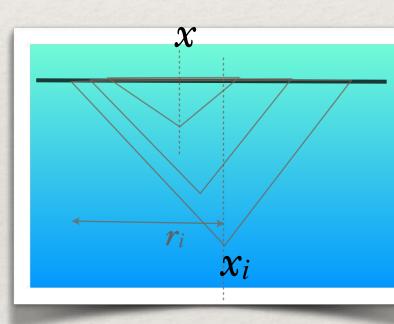


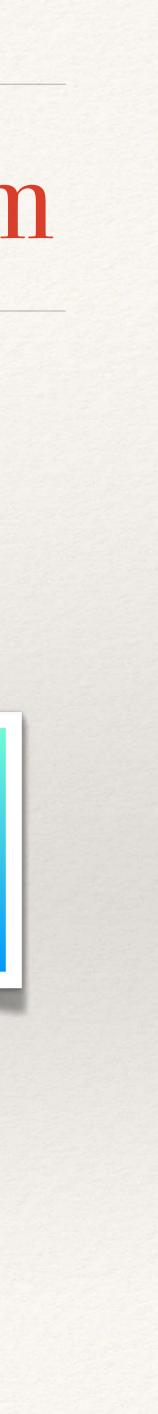
The Kostanek-Waszkiewicz theorem

- * There is a **poset** B(X, d) of formal balls, ordered by $(x, r) \leq^{d^+} (y, s)$ iff $d(x, y) \leq r - s$
- * We take the following theorem as a definition (Kostanek&Waszkiewicz10)
- * **Defn.** The quasi-metric space (X, d) is:
 - * complete iff $\mathbf{B}(X, d)$ is a dcpo
 - * continuous complete iff $\mathbf{B}(X, d)$ is a continuous dcpo.

The idea behind the Kostanek-Waszkiewicz theorem

- ∗ Consider any monotone net of formal balls $(x_i, r_i)_{i \in I, \sqsubseteq}$ such that $\inf_{i \in I} r_i = 0$
- * Then $(x_i)_{i \in I, \sqsubseteq}$ is a (forward) Cauchy net whose speed of convergence is controlled by the radii r_i — I call $(x_i, r_i)_{i \in I, \sqsubseteq}$ a Cauchy-weighted net, $(x_i)_{i \in I, \sqsubset}$ a Cauchy-weightable net
- A supremum (*x*, *r*) of the net (*x_i*, *r_i*)_{*i*∈*I*,⊑} must have *r* = 0, and *x* must be the so-called *d*-limit of (*x_i*)<sub>*i*∈*I*,⊑
 I will take that as definition of a *d*-limit
 </sub>





Examples of continuous complete quasi-metrics

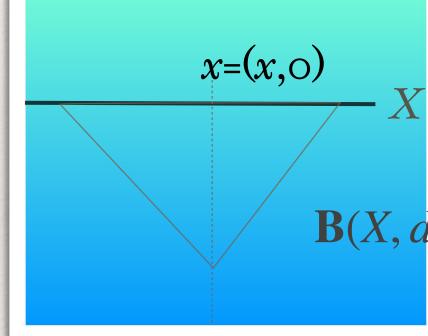
- * (X, d) is [continuous] complete iff $\mathbf{B}(X, d)$ is a [continuous] dcpo
- * For *d* metric, complete iff complete in the usual sense
- * For $d=d_{<}$ (arising from a **poset**), $-(X, d_{\leq})$ complete iff (X, \leq) dcpo $-(X, d_{\leq})$ continuous complete iff (X, \leq) continuous dcpo
- * Recall $d_{\mathbb{R}}(s,t) \triangleq (s-t)_+$: continuous complete on $\overline{\mathbb{R}}_+$, not even complete on \mathbb{R} , \mathbb{R}_+ (missing ∞)

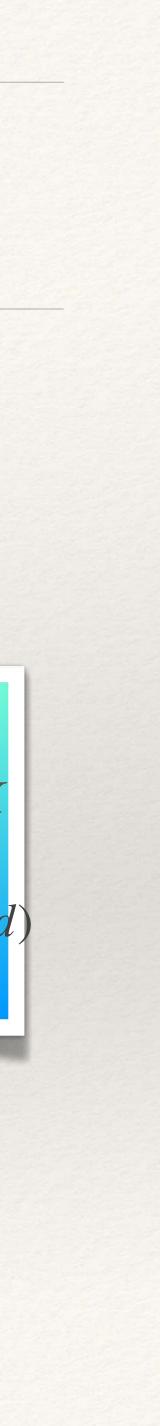
and this implies continuity (Edalat&Heckmann96)



- * The usual topology on a quasi-metric space (*X*, *d*) is the **open ball** topology * Let me instead consider the *d*-Scott topology, defined below
- * Inject X into $\mathbf{B}(X, d)$ by equating x with (x, 0)
 - * Give **B**(*X*, *d*) the Scott topology of \leq^{d^+}
 - * The *d*-Scott topology on X is the subspace topology induced by the embedding into $\mathbf{B}(X, d)$
- * Note. *d*-Scott=open ball on metric spaces *d*-Scott=Scott on **posets** $d_{\mathbb{R}}$ -Scott=Scott on $\mathbb{R}, \mathbb{R}_+, \overline{\mathbb{R}}_+$

The *a*-Scott topology





A nagging point: standardness

- * X, d is standard iff for every directed family $(x_i, r_i)_{i \in I}$ of formal balls, for every shift $s \ge -\inf r_i$, $(x_i, r_i)_{i \in I}$ has a supremum $\Leftrightarrow (x_i, r_i + s)_{i \in I}$ has a supremum
- * It is unfortunate that not all quasi-metric spaces are standard
- * If *X*, *d* is standard, then lots of nice things happen: — the radius map $(x, r) \mapsto r$ is **Scott-continuous** from **B**(X, d) to \mathbb{R}^{op}_+ $-V_{\epsilon} \triangleq \{(x,r) \in \mathbf{B}(X,d) \mid r < \epsilon\}$ is Scott-open in $\mathbf{B}(X,d)$ $-X = \bigcap_{n \in \mathbb{N}}^{\downarrow} V_{1/2^n} \text{ is } G_{\delta} \text{ in } \mathbf{B}(X, d)$
- * Fortunately: Thm. Every complete quasi-metric space is standard.

JGL & K.M. Ng (2017) *A few notes on formal balls*. LMCS 13(4:18)1–34

Lipschitz maps

- * $f: X, d \to Y, \partial$ is *a*-Lipschitz iff for all $x, y \in X, \partial(f(x), f(y)) \le a \cdot d(x, y)$
- * This entails continuity wrt. the underlying open ball topologies, **not** wrt. the underlying *d*-Scott topologies
- * The domain-theoretic view: let $\mathbf{B}_{a}(f)$ map $(x, r) \in \mathbf{B}(X, d)$ to (f(x), d)
- * Fact. f is a-Lipschitz iff $\mathbf{B}_{a}(f)$ is monotonic
- * Defn. f is a-Lipschitz continuous iff $\mathbf{B}_{a}(f)$ is Scott-continuous
- * Between metric spaces, Lipschitzianity implies continuity

$$a.r) \in \mathbf{B}(Y,\partial)$$

Between posets, *a*-Lipschitz=monotonic, *a*-Lipschitz continuous=Scott-continuous

Spaces of Lipschitz continuous maps

When the target space is \mathbb{R}_+

- * Special case $Y = \overline{\mathbb{R}}_+, \partial = d_{\mathbb{R}}$
- * $h: X, d \to \overline{\mathbb{R}}_+$ is *a*-Lipschitz iff for all $x, y \in X$, $h(x) \le h(y) + a \cdot d(x, y)$
- * *h* is *a*-Lipschitz continuous iff $h': \mathbf{B}(X, d) \to \mathbb{R} \cup \{\infty\}$, $h'(x, r) \triangleq h(x) - a \cdot r$ is **Scott-continuous** [provided *X*, *d* is standard]
- * I will write $\mathscr{L}_a X$ for the set of *a*-Lipschitz continuous maps from *X* to \mathbb{R}_+ * and also $\mathscr{L}_a^1 X$ for those bounded from above by *a*

* Let $\mathscr{L}X \cong \{\text{continuous maps} : X \to \mathbb{R}_+\}$ with the Scott topology where *X* has the *d*-Scott topology and \mathbb{R}_+ has the $d_{\mathbb{R}}$ -Scott = Scott topology

* **Fact.** If *X*, *d* is standard, then $\mathscr{L}_{a}X \subseteq \mathscr{L}X$.

- * *Proof.* For every $h \in \mathscr{L}_{a}X$, $h: X \to \mathbf{B}(X, d) \to \mathbb{R} \cup \{\infty\}$ $x \cong (x,0) \mapsto h'(x,0) \quad [h'(x,r) \stackrel{\text{\tiny def}}{=} h(x) - a \cdot r]$
- * Hence I will equip $\mathscr{L}_{a}X$ with the **subspace topology** from $\mathscr{L}X$ (this is **not** the Scott topology on $\mathscr{L}_a X$ in general!)

$\mathscr{L}_{\alpha}X \subseteq \mathscr{L}X$

(Assuming X standard.)

 $\mathscr{L}_{1}X\mathscr{L}_{2}X\mathscr{L}_{3}X$ a

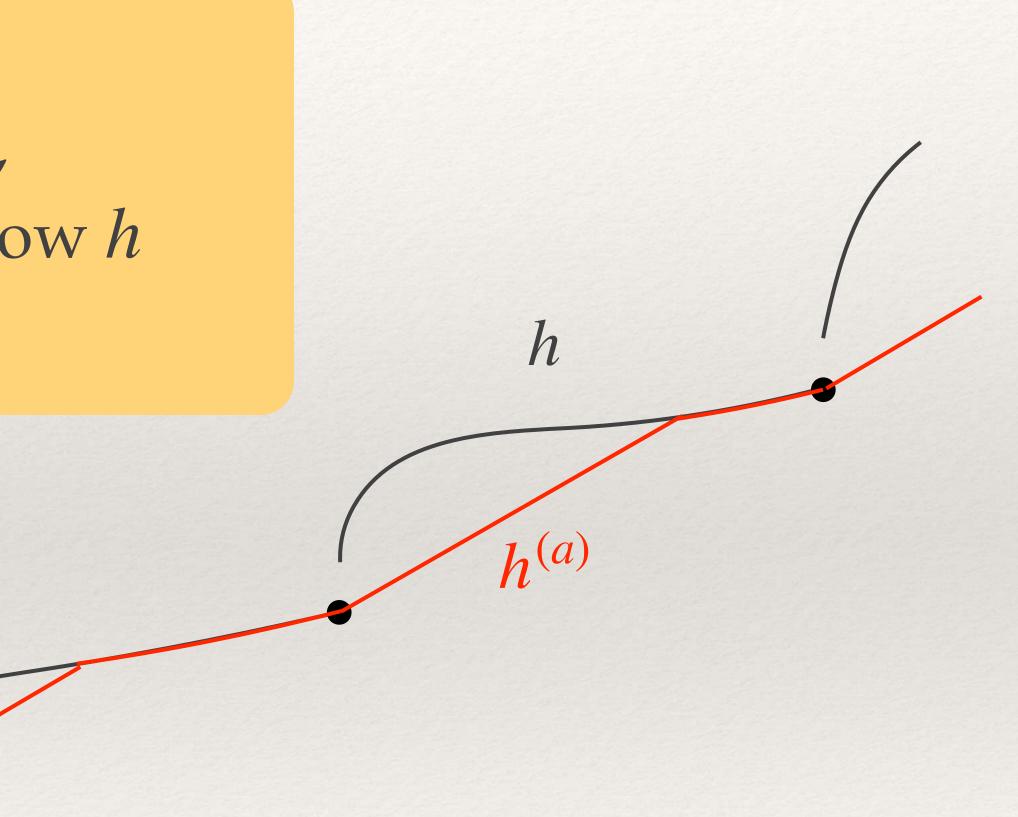
$\mathscr{L}_{\alpha}X\subseteq\ldots\subseteq\mathscr{L}_{\alpha}X\subseteq\mathscr{L}X$

 $\mathscr{L}X$ (continuous maps)

 $\mathscr{L}_{\infty}X \cong \bigcup \mathscr{L}_{a}X$ (Lipschitz cont. maps)

Lipschitz approximation

★ Thm. Let X, d be standard.
For every h ∈ LX, for every a > 0,
— there is a largest h^(a) ∈ L_aX below h
— h = sup[↑]_a h^(a)



Continuous valuations

Continuous valuations

- * Instead of working with measures, let me consider continuous valuations = maps $\nu : \mathcal{O}(X) \to \overline{\mathbb{R}}_+$ that are:
 - strict: $\nu(\emptyset) = 0$
 - modular: $\nu(U \cup V) + \nu(U \cap V) = \nu(U) + \nu(V)$ - Scott-continuous.
- * Let $V(X) \triangleq \{\text{continuous valuations on } X\},\$ $V_{\leq 1}(X) \triangleq \{$ **subprobability** continuous valuations ν on X (i.e., $\nu(X) \leq 1$) $\}$, $V_1(X) \triangleq \{ \text{probability continuous valuations } \nu \text{ on } X \text{ (i.e., } \nu(X) = 1) \}$
- (with the *d*-Scott topology) extends to a (τ -smooth) Borel measure.

I M. de Brecht, JGL, X. Jia, Zh. Lyu (2019). *Domain-complete and LCS-complete spaces*. ISDT'19

 $V_{\bullet}(X)$, if I don't want to be more specific

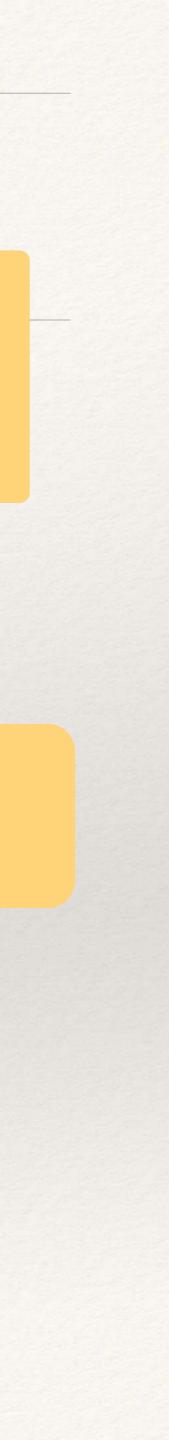
* Theorem. Every continuous valuation on a continuous complete quasi-metric space

* For every $\nu \in \mathbf{V}(X), G: h \in \mathscr{L}X \to hd\nu$ is: -linear: $G(a \cdot h) = aG(h), G(h_1 + h_2) = G(h_1) + G(h_2)$ - Scott-continuous. * Thm (« baby Riesz »). Continuous valuations \cong linear previsions. * *Proof sketch*. Given any linear prevision G, we retrieve ν by

 $\nu(U) \stackrel{\text{\tiny def}}{=} G(\chi_{II})$

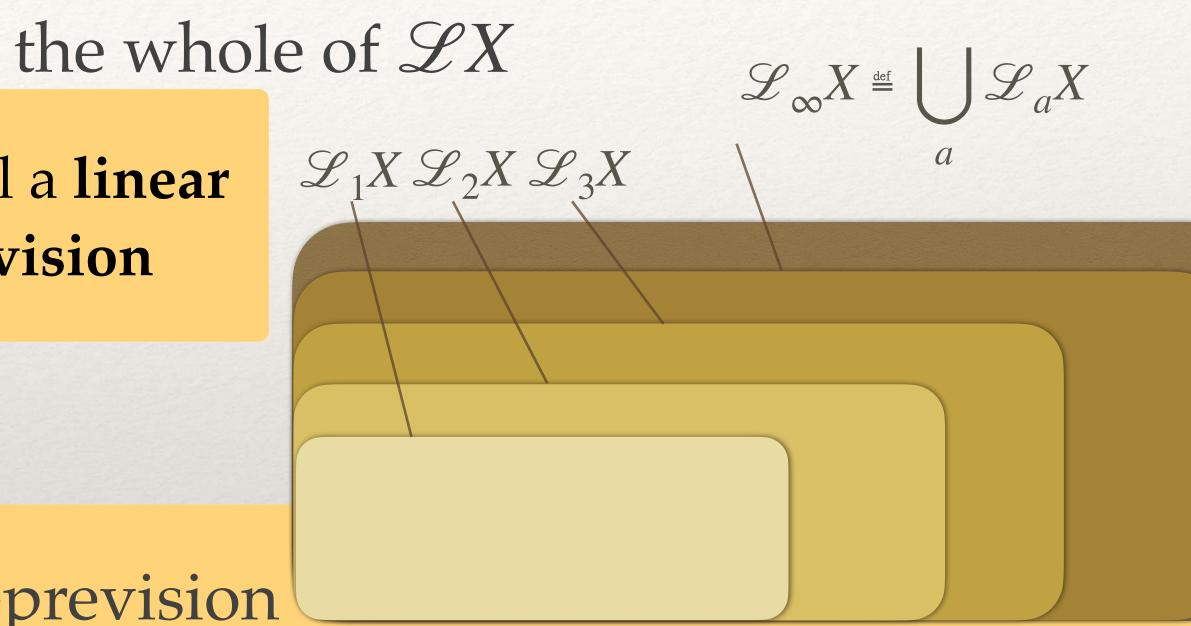
Linear previsions

what I call a **linear** prevision



- * Linear previsions *G* are defined on the whole of $\mathscr{L}X$
- * Given *X*, *d* standard, the restriction $G_{|\mathscr{L}_X}$ is:
- what I call a **linear** \mathscr{L} -prevision
- linear — continuous : $\mathscr{L}_{\infty}X \to \overline{\mathbb{R}}_+$
- * **Prop.** Linear prevision \cong linear \mathscr{L} -prevision
- * Proof sketch. Given linear \mathscr{L} -prevision H, define
- * Note. Similar results with spaces of bounded Lipschitz maps.

Linear L-previsions



 $G(h) \triangleq \sup_{a}^{\uparrow} H(h^{(a)})$ [recall $h^{(a)} = \text{Lipschitz approximation}$]

The Kantorovich-Rubinstein quasi-metrics

The bounded KR quasi-metric

JGL (2021) Kantorovich-Rubinstein quasi-metrics I: spaces of measures and of continuous valuations. T&A. 295

Recall the classical definition: $d_{\rm KR}^1(\mu)$

where *h* ranges over the 1-bounded, 1-Lipschitz maps

* It is fitting to change this to the qua

ranging over 1-bounded, 1-Lipschitz continuous $d_{\text{KR}}^{1}(\mu,\nu) \stackrel{\text{\tiny def}}{=} \sup_{h \in \mathscr{L}_{1}^{1}} h \in \mathscr{L}_{1}^{1}$

maps

* Fact. The two definitions are equivalent for continuous valuations on a **metric** space (*X*, *d*)

$$(u, v) \stackrel{\text{def}}{=} \sup_{h} \left| \int h d\mu - \int h d\nu \right|$$

si-metric setting into:

$$\int_{X} \left(\int h d\mu - \int h d\nu \right)_{+}$$

using $d_{\mathbb{R}} = (_ - _)_+$ instead of |_ - _|

The unbounded KR quasi-metric

* I will concentrate on the **unbounded** variant:

ranging over all 1-Lipschitz continuous maps

 $d_{\mathrm{KR}}(\mu,\nu) \stackrel{\text{\tiny def}}{=} \sup_{h \in \mathcal{L}_1 X} \left(\int h d\mu - \int h d\nu \right)_{+}$

Is V (X), $d_{\rm KR}$ complete?

- * We aim to show that $\mathbf{B}(\mathbf{V}_{\bullet}(X), d_{\mathrm{KR}})$ is a dcpo Hence we consider a monotone net $(\nu_i, r_i)_{i \in I, \subseteq}$ with ν_i continuous valuations
- * A formal ball (ν, r) is an upper bound of that net iff $d_{\mathrm{KR}}(\nu_i, \nu) \leq r_i - r$ for every $i \in I$ iff $\int h d\nu_i \leq \int h d\nu + r_i - r$ for all $i \in I, h \in \mathcal{L}_1 X$
- * This suggests that the least upper bound is given by: $-r = \inf_{i \in I} r_i$

$$-\int h d\nu \stackrel{\text{\tiny def}}{=} \sup_{i \in I} \left(\int h d\nu_i - r_i + r \right) \text{ for every } h \in \mathcal{L}_1 X$$

$$d_{\mathrm{KR}}(\mu,\nu) \stackrel{\text{\tiny def}}{=} \sup_{h \in \mathscr{L}_1 X} \left(\int h d\mu - \int h d\mu \right)$$

- * More generally (and multiplying by an arbitrary *a*),
- * This suggests that the least upper bound is given by: $-r \stackrel{\text{\tiny def}}{=} \inf r_i$ i∈I 1 0

$$-G(h) \stackrel{\text{\tiny def}}{=} \sup_{i \in I} \left(\int h d\nu_i - a \cdot r_i + a \cdot r_i \right)$$

* **Thm.** *G* is a well-defined linear map from $\mathscr{L}_{\infty}X$ to \mathbb{R}_{+} . If *G* is **continuous**, then: — it is a linear \mathscr{L} -prevision

Is $V_{\bullet}(X)$, d_{KR} complete?

We will call this the naive supremum of $(\nu_i, r_i)_{i \in I, \sqsubseteq}$

for every $h \in \mathscr{L}_a X$

— $G \cong$ a unique continuous valuation ν , which is the **desired** d_{KR} -limit.

A frustrating situation

* The only missing thing is to show that the naive supremum $G(h) \stackrel{\text{\tiny def}}{=} \sup_{i \in I} \left(\int h d\nu_i - a \cdot r_i + a \cdot r \right)$ is continuous from $\mathscr{L}_{\infty}X$ to $\overline{\mathbb{R}}_+$.

* **Fact.** *G* restricted to every subspace $\mathscr{L}_{a}X$ is continuous.

* That is not enough to conclude — unless topology of $\mathscr{L}_{\infty}X$ is determined by those of its subspaces $\mathscr{L}_{a}X$ (=colimit) [open problem!]

 $\mathscr{L}_{\infty}X \cong \bigcup \mathscr{L}_{a}X$ $\mathscr{L}_1 X \mathscr{L}_2 X \mathscr{L}_3 X$

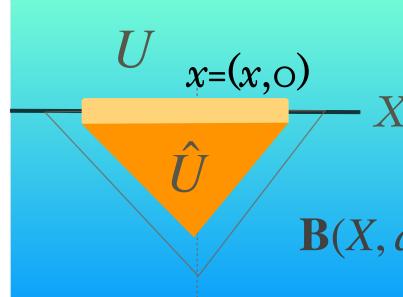
Lipschitz-regular quasi-metric spaces

The assignment $U \mapsto U$

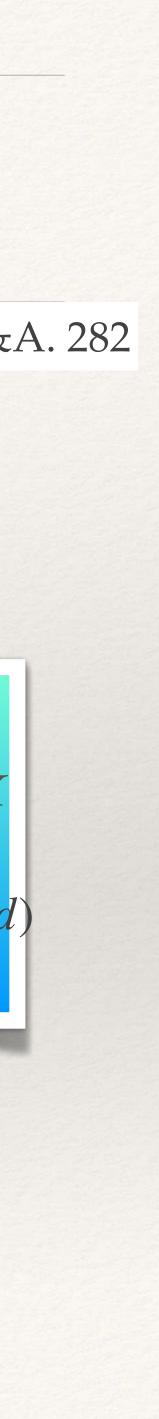
JGL (2020) Some topological properties of spaces of Lipschitz continuous maps on quasi-metric spaces. T&A. 282

- * Recall that the *d*-Scott topology on X is the subspace topology induced by the embedding $x \in X \mapsto (x,0) \in \mathbf{B}(X,d)$
- * For every open subset U of X, let \hat{U} be the **largest Scott-open** subset of $\mathbf{B}(X, d)$ such that $U = \hat{U} \cap X$
- * The map $U \mapsto \hat{U}$ is right adjoint to $V \mapsto V \cap X$, hence preserves arbitrary meets
- * **Defn.** *X*, *d* is **Lipschitz-regular** iff $U \mapsto \hat{U}$ is Scott-continuous

□ M. H. Escardó (1998) *Properly injective spaces and function spaces*. T&A 89 (1–2).



(= if X is finitarily embedded into B(X, d), see Escardó 98)

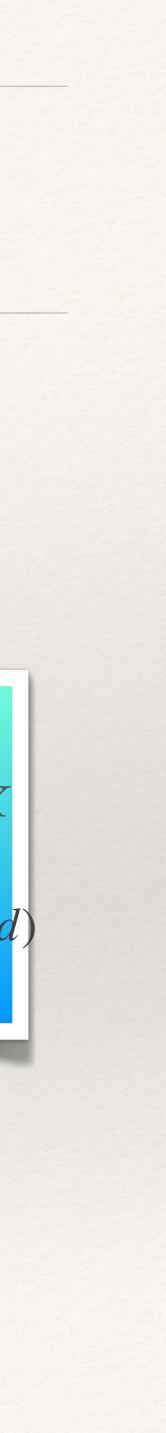


Lipschitz-regular spaces

- * **Defn.** *X*, *d* is **Lipschitz-regular** iff $U \mapsto \hat{U}$ is Scott-continuous
- * **Prop.** If *X*, *d* is Lipschitz-regular, then topology of $\mathscr{L}_{\infty}X$ is determined by those of its subspaces $\mathscr{L}_{a}X$.
- * *Proof sketch*. The canonical injection $i_a: \mathscr{L}_a X \to \mathscr{L} X$ and the *a*-Lipschitz approximation map $r_a: \mathscr{L}X \to \mathscr{L}_aX$
 - form an embedding-projection pair.

 $h \mapsto h^{(a)}$

x=(x,0) $\mathbf{B}(X, \alpha)$



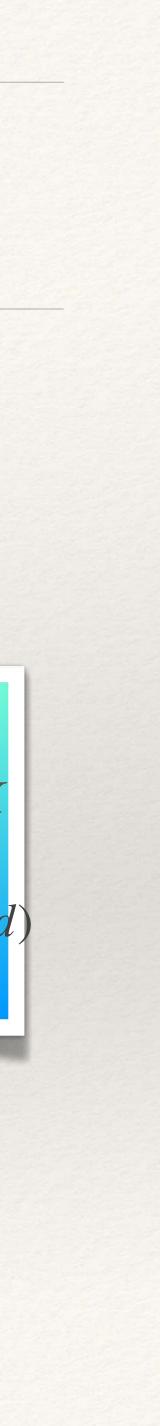
Lipschitz-regular spaces and completeness

- * **Defn.** *X*, *d* is **Lipschitz-regular** iff $U \mapsto \hat{U}$ is Scott-continuous
- * **Prop.** If *X*, *d* is Lipschitz-regular, then topology of $\mathscr{L}_{\infty}X$ is determined by those of its subspaces $\mathscr{L}_{a}X$.
- * As a corollary,
- Prop. If X, d is Lipschitz-regular, then: $-\mathbf{V}\cdot(X), d_{\mathbf{KR}}$ is complete — directed suprema of formal balls $(\nu_i, r_i)_{i \in I}$ are **naive suprema**: $G(h) \stackrel{\text{\tiny def}}{=} \sup_{i \in I} \left(\int h d\nu_i - a \cdot r_i + a \cdot r \right), \text{ for every } h \in \mathcal{L}_a X, a > 0$

$$U_{x=(x,0)} X$$

$$\hat{U}$$

$$B(X, C)$$



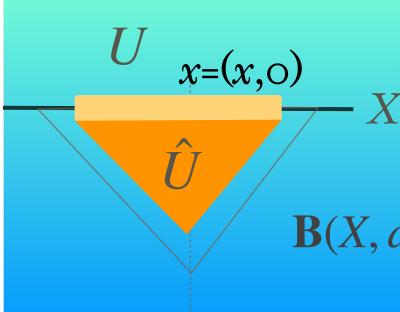
Is Lipschitz-regularity acceptable?

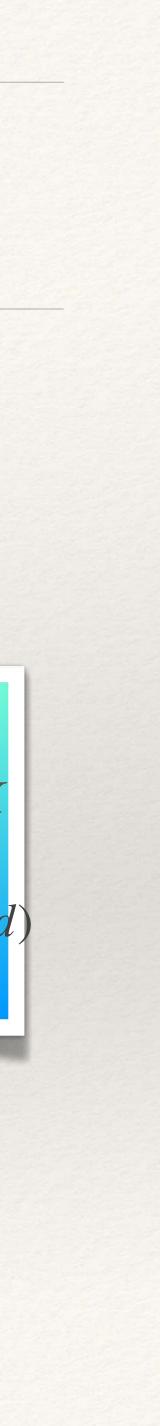
- * Hmm ... no.
- * If *X*, *d* algebraic complete, then Lipschitz-regular ⇔ has relatively compact open balls
- * That is a pretty strong property stronger than local compactness

and remember that local compactness is not required in the metric case!

Amiracle

- * **B**(*X*, *d*) itself is a quasi-metric space, with $d^+((x,r),(y,s)) \stackrel{\text{\tiny def}}{=} \max(d(x,y) - r + s,0)$ and d^+ -Scott topology = Scott topology
- * **Thm.** For every quasi-metric space $X, d, \mathbf{B}(X, d), d^+$ is Lipschitz-regular [in fact, $U \mapsto \hat{U}$ preserves all unions].
- * Let me only give a sketch of the argument... (assuming *X*, *d* standard, which will be enough for our purposes)





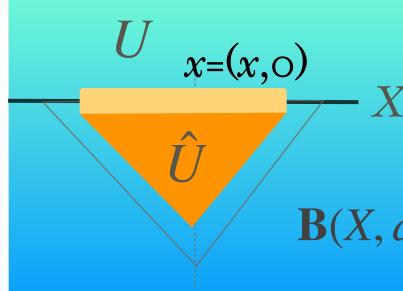
Formal ball monads

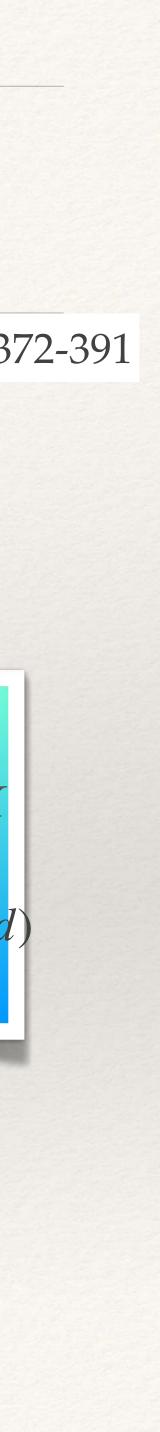
- where:
 - $-\mathbf{B}(f): (x, r) \mapsto (f(x), r)$ [what I wrote \mathbf{B}_1 earlier on] $-\eta$: $x \in X \mapsto (x,0) \in \mathbf{B}(X,d)$ $-\mu$: $((x, r), s) \mapsto (x, r+s)$
- * In fact a left KZ-monad: $\mathbf{B}\eta \leq \eta \Leftrightarrow \mu \dashv \eta \Leftrightarrow \mathbf{B}\eta \dashv \mu$ so we know what the B-algebras are [but I won't spell it out here]
- * **Prop.** For every **B**-algebra α : **B**(*X*, *d*) \rightarrow *X*, we have $\hat{U} = \alpha^{-1}(U)$; in particular, *X*, *d* is Lipschitz-regular.

* $\mathbf{B}(X, d), d^+$ is the free B-algebra, hence is Lipschitz-regular.

JGL (2019) *Formal ball monads*. Topology and its Applications 263:372-391 * **Thm.** There is a monad (\mathbf{B}, η, μ) on the category of standard quasi-metric spaces

L M. H. Escardó (1998) Properly injective spaces and function spaces. T&A 89 (1–2).





Back to the completeness theorem

Embedding into the formal ball model

* Recall:

Prop. If *X*, *d* is Lipschitz-regular, then: $-\mathbf{V}_{\bullet}(X), d_{\mathbf{KR}}$ is complete — directed suprema of formal balls $G(h) \stackrel{\text{\tiny def}}{=} \sup_{i \in I} \left(\int h d\nu_i - a \cdot r_i + a \cdot r \right)$

 $-\mathbf{V}\cdot(\mathbf{B}(X,d))$ is complete — directed suprema of formal balls $(\tilde{\nu}_i, r_i)_{i \in I}$ are naive suprema [each $\tilde{\nu}_i$ is a continuous valuation on **B**(*X*, *d*)]

(
$$\nu_i, r_i$$
) $_{i \in I}$ are naive suprema:
, for every $h \in \mathscr{L}_a X$, $a > 0$

* Since $\mathbf{B}(X, d), d^+$ is always Lipschitz-regular, for every space X, d we have:

Embedding into the formal ball model

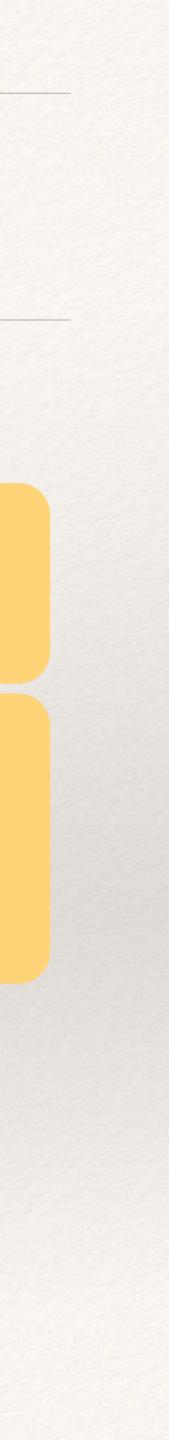
- * **Recap.** Directed suprema of formal balls $(\tilde{\nu}_i, r_i)_{i \in I}$ are naive suprema [each $\tilde{\nu}_i$ is a continuous valuation on **B**(*X*, *d*)]
- * Now consider any directed family of formal balls $(\nu_i, r_i)_{i \in I}$ [each ν_i a continuous valuation on X]
- * Let $\tilde{\nu}_i \triangleq \eta[\nu_i]$, image valuation of ν_i by $\eta: X \to \mathbf{B}(X, d)$ $\tilde{\nu}_i$ def $(\eta[\nu_i], r_i)_{i \in I}$ $(\nu_i, r_i)_{i \in I}$ — * Lemma. If $\tilde{\nu} = \eta[\nu]$ for some $\nu \in \mathbf{V} \cdot (X)$ then (ν, r) is the (naive) supremum naive supremum $(\tilde{\nu}, r)$ (ν, r)
- of $(\nu_i, r_i)_{i \in I}$

Supports

- * Let η be an inclusion of spaces $X \to B$ **Defn.** A continuous valuation $\tilde{\nu} \in V_{\bullet}(B)$ is supported on X if and only if $\tilde{\nu} = \eta[\nu]$ for some $\nu \in \mathbf{V}_{\bullet}(X)$
- * Lemma. $\tilde{\nu} \in V \cdot (B)$ is supported on X iff $\tilde{\nu}(V) = \tilde{\nu}(W)$
- * *Proof:* Exercise.
- * Almost there! It remains to check that

for all open subsets *V*, *W* of *B* such that $V \cap X = W \cap X$,

the naive supremum $\tilde{\nu} \in V \cdot (B(X, d))$ is supported on X



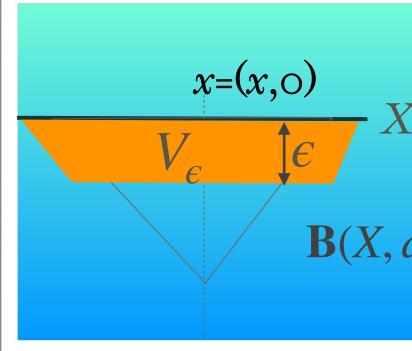
Another source of frustration

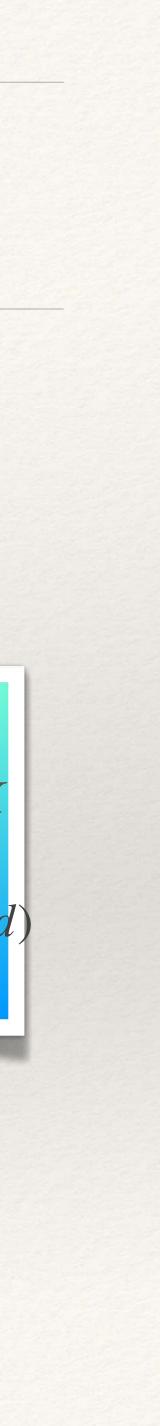
* The best we can prove (for now) is that for every $\epsilon > 0$

Recall that
$$X = \bigcap_{n \in \mathbb{N}}^{\downarrow} V_{1/2^n}$$

- * Does this imply that $\tilde{\nu}$ is supported on X?
- * Yes if X, d is continuous complete and $\tilde{\nu}$ is **bounded** ($\tilde{\nu}(\mathbf{B}(X, d)) < \infty$): see next slide

the naive supremum $\tilde{\nu} \in V_{\bullet}(B(X, d))$ is supported on $V_{\epsilon} = \{(x, r) \mid r < \epsilon\}$





Invoking some measure theory

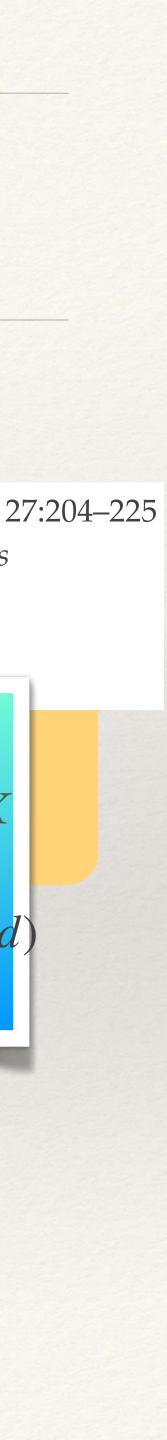
* If *X*, *d* is continuous complete, then $\mathbf{B}(X, d)$ is a **continuous dcpo** and $X = \bigcap_{n \in \mathbb{N}}^{\downarrow} V_{1/2^n}$ is G_{δ} , hence Borel, in it.

Thm. Every continuous valuation (e.g., $\tilde{\nu}$) * on a continuous dcpo (or even a locally compact sober space) extends to a **Borel measure**.

* Since $\tilde{\nu}$ supported on $V_{\epsilon'}$, for ev a bounded measure commutes, d), $\tilde{\nu}(V) = \tilde{\nu}(V \cap V_{c})$ [V with infs of countable chains tersection with V_{c}]

Then, if $\tilde{\nu}$ is **bounded**, $\tilde{\nu}(V) = \inf_{n \in \mathbb{N}} \tilde{\nu}(V \cap V_{1/2^n}) = \tilde{\nu}(\bigcap_{n \in \mathbb{N}} V \cap V_{1/2^n}) = \tilde{\nu}(V \cap X)$ constant sequence * In particular, if $V \cap X = W \cap X$, then $\tilde{\nu}(V) = \tilde{\nu}(W)$: $\tilde{\nu}$ is **supported on** *X*.

J. D. Lawson (1982) Valuations on continuous lattices. Math. Arbeitspapiere 27:204–225 III M. Alvarez-Manilla (2000) *Measure theoretic results for continuous valuations* on partially ordered spaces. Ph.D. thesis, Imperial College, London I K. Keimel and J. Lawson (2005) *Measure extension theorems for* T_0 *spaces.* T&A 149(1-3):57-83 x=(x,o) $\mathbf{B}(X, \alpha)$ $n \in \mathbb{N}$ $V \cap X$ is Borel, and $\tilde{\nu}$ is a measure

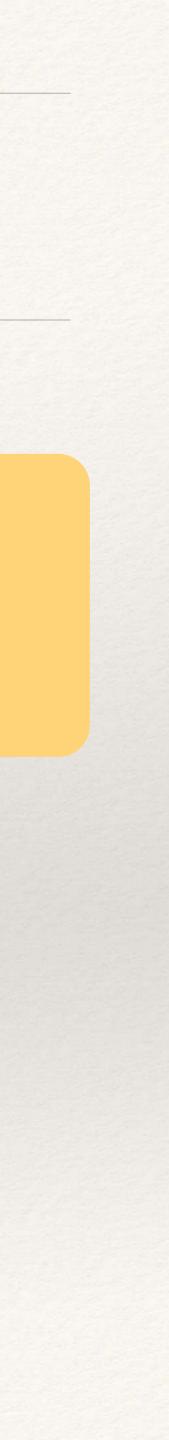


We are done!

* Summing up:

* **Thm.** For every continuous complete quasi-metric space X, d,

 $V_1(X)$ and $V_{\leq 1}(X)$ are complete under the d_{KR} quasi-metric. (And directed suprema of formal balls are computed as naive suprema.)



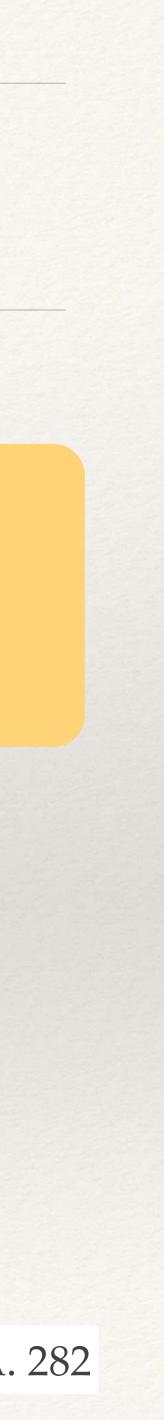
Final remarks (a long list...)

We are done!

* Summing up:

- * Thm. For every continuous complete quasi-metric space X, d, $V_1(X)$ and $V_{\leq 1}(X)$ are complete under the d_{KR} quasi-metric. (And directed suprema of formal balls are computed as naive suprema.)
- * What about V(X) (unbounded valuations)? open problem
- * In fact, $V_{\leq 1}(X)$ is even **continuous** complete as well as $V_1(X)$ if *X*, *d* has a so-called root [would need another talk]
 - Goes through preservation of algebraic completeness, using the remarkable fact that for X, d continuous complete, $\mathscr{L}_a X$ is stably compact, and topology=compact-open=pointwise \square JGL (2020) Some topological properties of spaces of Lipschitz continuous maps on quasi-metric spaces. T&A. 282

Are we, really?

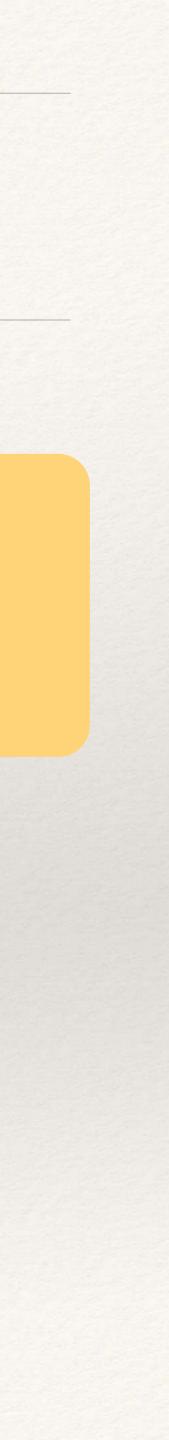


- * Using the **bounded** version d_{KR}^{1} , we obtain:
- * **Thm.** For every **continuous complete** quasi-metric space *X*, *d*, $V_1(X)$ and $V_{\leq 1}(X)$ are continuous complete under d_{KR}^1 .
- * If *X*, *d* is algebraic complete, then so are $V_1(X)$ and $V_{\leq 1}(X)$, too.

Are we done yet?

(And directed suprema of formal balls are computed as naive suprema.)

* When X is an algebraic dcpo, d_{KR}^1 is Sünderhauf (1998)'s sup quasi-metric, and we retrieve his result that $V_{\leq 1}(X)$ is algebraic complete in that case.

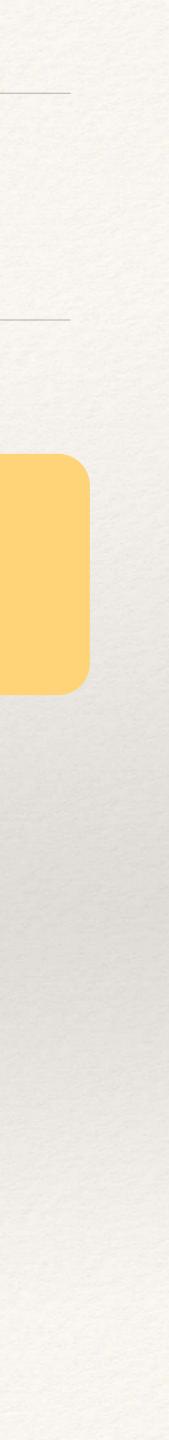


* Using the **bounded** version d_{KR}^{1} , we obtain the

* **Thm.** For every continuous complete quasi-metric space X, d, d_{KR}^{1} -Scott topology = weak topology on $V_{1}(X)$ and $V_{\leq 1}(X)$.

* Not true for d_{KR} -Scott topology, even when d metric (Kravchenko 2006).

The weak topology



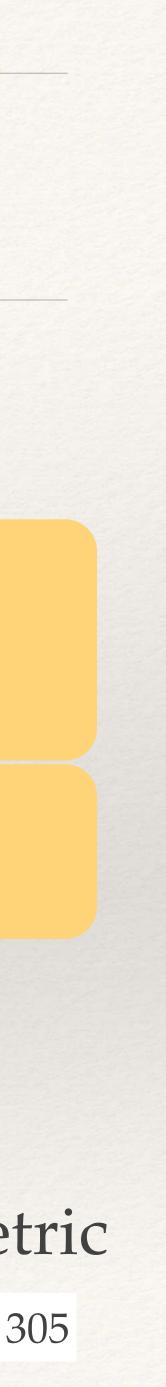
Beyond continuous valuations: previsions

- * In general, d_{KR} makes sense on any space of functionals : $\mathscr{L}X \to \overline{\mathbb{R}}_+$, not just **linear** previsions (=continuous valuations)
- * **Defn.** A **prevision** is any Scott-continuous map $F: \mathscr{L}X \to \overline{\mathbb{R}}_+$ satisfying $F(a \cdot h) = a \cdot F(h)$

 → Defn. $d_{KR}(F, F') = \sup (F(h) - F'(h))_+$ $h \in \mathcal{L}_1 X$

- * We have similar theorems for discrete/sublinear/superlinear previsions
- * In particular, **discrete** previsions \cong Hoare/Smyth hyperspaces, with asymmetric variants of the Pompeiu-Hausdorff quasi-metric

IJGL (2022) Kantorovich-Rubinstein quasi-metrics II: hyperspaces and powerdomains. Topology and its Applications 305



Any questions? ... meanwhile, a few references

- A. 💷 M. H. Escardó (1998) Properly injective spaces and function spaces. Topology and Its Applications 89 (1–2).
- B. IJGL & K.M. Ng (2017) A few notes on formal balls. Logical Methods in Comp. Sci. 13(4:18)1–34
- C. 💷 M. de Brecht, JGL, X. Jia, Zh. Lyu (2019). Domain-complete and LCS-complete spaces. ISDT'19
- D. UJGL (2019) Formal ball monads. Topology and its Applications 263:372-391
- E. IJGL (2020) Some topological properties of spaces of Lipschitz continuous maps on quasi-metric spaces. Topology and its Applications 282
- F. IJGL (2021) *Kantorovich-Rubinstein quasi-metrics I: spaces of measures and of continuous valuations*. Topology and its Applications 295
- G. III JGL (2022) Kantorovich-Rubinstein quasi-metrics II: hyperspaces and powerdomains. Topology and its Applications 305
- H. JGL (2017) Complete quasi-metrics for hyperspaces, continuous valuations, and previsions. arXiv 1707.03784 [the whole shebang, 190 pages]

