The d^* -space

Xiangping Chu Qingguo Li

Hunan University

6th July 2022

Well-filtered space

A T_0 space is called well-filtered if for any open subset U and any filtered family \mathcal{K} in Q(X), $\bigcap \mathcal{K} \subseteq U$ implies $\mathcal{K} \subseteq U$ for some $\mathcal{K} \in \mathcal{K}$.

In [1], Jia, Jung and Li give an equivalent condition on well-filtered dcpo L for coherence is the compactness of $\uparrow x \cap \uparrow y$ for any $x, y \in L$.

¹X.Jia, A.Jung, Q.Li, A note on coherence of dcpos, Topology and its Applications, 209 (2016) 235=238. (😑 👘 🚊 🗠 🔍 🔍

The Johnstone space $\mathbb J$

Figure: The Johnstone space \mathbb{J}

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Weak well-filtered space

Recently, Lu and Li find that all open subsets except the empty subset are true for the definition of well-filtered in the johnstone space. Then they introduced the concept of weak well-filtered space and prove that the result of Jia, Jung and Li is also true on weak well-filtered posets.

Definition

A topological space (X, τ) is called *weak well-filtered* if for any nonempty open subset U and any filtered family \mathcal{K} in Q(X), $\bigcap \mathcal{K} \subseteq U$ implies $\mathcal{K} \subseteq U$ for some $\mathcal{K} \in \mathcal{K}$.

²X.Lu Q.Li, Weak well-filtered spaces and coherence, Topology and its Applications, 230 (2017) 273-380.4 😇 🕨 🚊 🚽 🔍 🔍

Strong *d*-space

In[3], Xu and Zhao introduce the concept of strong d-space when they study the relation of well-filtered and sober.

Definition

A T_0 space X is called a *strong* d-space if for any directed subset D of X, x in X and any open subset U, $\bigcap_{d \in D} \uparrow d \cap \uparrow x \subseteq U$ implies $\uparrow d \cap \uparrow x \subseteq U$ for some $d \in D$.

Xiangping Chu Qingguo Li (HNU)

³X.Xu, D.Zhao, *On Topological Rudin's Lemma, well-filtered Spaces and sober Spaces*, Topology and its Applications, **272** (2020) 107080.

The following picture is given by Xu and Zhao.

Figure: Relations of some spaces lying between d-spaces and T_2 space

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Well-filtered space $\xrightarrow{}$ Weak well-filtered space

strong *d*-space
$$\xrightarrow{}$$
 ?

Naturally, whether we can propose a space weaker than a strong d space, and then study whether some properties in a strong d-space can be preserved and what properties of a weak space have?

We also find that all open sets except the empty set are true for the definition of the strong d-space in the Johnstone space.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Based on the idea of Lu and Li, we give the concept of the d^* -space.

Definition

A T_0 space X is called a d^* -space if for any directed subset D of X, x in X and any nonempty open subset U, $\bigcap_{d \in D} \uparrow d \cap \uparrow x \subseteq U$ implies $\uparrow d \cap \uparrow x \subseteq U$ for some $d \in D$.

Example

 $(N, \sigma(N))$ is not a strong *d*-space, but it is a *d*^{*}-space.

Remark

Every coherent weak well-filtered space is a d^* -space.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

The strong *d*-space with respect to the specialization order is a dcpo. But the d^* -space with respect to the specialization order may not be a dcpo. We find the d^* -space with respect to the specialization order is a consistent dcpo.

Definition

A poset *L* is called a *consistent dcpo* if for any directed subset *D* of *L* with $\bigcap_{d \in D} \uparrow d \neq \emptyset$, the sup of *D* exists in *L*.

Proposition

Let (X, τ) be a d^* -space. Then $\Omega(X) = (X, \leq_{\tau})$ is a consistent dcpo and $\tau \subseteq \sigma(\Omega(X))$.

< □ > < □ > < □ > < □ > < □ > < □ >

Dcpo with the scott topology may not be a strong d-space. The Johnstone space is not a strong d-space.

A consistent dcpo with the scott topology may not be a d^* -space. $N \cup \{a\}$ with the order as shown in the picture is a consistent dcpo, but it with the scott topology is not a d^* -space.

In[4], Xu and Zhao find that a poset with the scott topology is a well-filtered space while it is a stong d-space.

In this paper we consider that a dcpo with the scott topology is a weak well-filtered space while it is a d^* -space.

proposition

Let L be a dcpo. If $(L, \sigma(L))$ is a d^* -space, then $(L, \sigma(L))$ is weak well-filtered.

• • = • • = •

There is a question whether a poset with the scott topology is a weak well-filtered space while it is a d^* -space.

Problem

In the above theorem, if dcpo is replaced by poset, does the conclusion still holds?

3

⁴X.Xu, D.Zhao, Some open problems on well-filtered spaces and sober spaces, Topology and its Applications, 301 (2021) 107540. (□) (∂) (≥) (≡) (≡) (≡)

э

< □ > < 同 > < 回 > < 回 > < 回 >

Some properties of the d^* -space

	d-space	strong <i>d</i> -space	d*-space
the saturated subspace	\checkmark	√ in[4]	\checkmark
the closed subspace	\checkmark	√ in[4]	\checkmark
the product space	\checkmark	\times in[5]	×
the retract	\checkmark	in[4]	\checkmark
the funtion space	\checkmark	? in[4]	×
the upper space	\checkmark	?	×

⁵Q.Li, M.Jin, H.Miao, S.Chen, On some results related to sober spaces, (preprint). $\square \rightarrow \langle \square \rangle \rightarrow \langle \square \rangle \rightarrow \langle \square \rangle \rightarrow \langle \square \rangle$

 ΣN and $\Sigma 2$ (the Sierpinski space) are d^* -spaces. But the product space $\Sigma N \times \Sigma 2$ is not a d^* -space.

Figure: $\Sigma N \times \Sigma 2$ is not a d^* -space

[X, Y] denotes that the set of all continuous functions from X to Y with the lsbell topology.

It is known that a topological space Y is a retract of the function space [X, Y]. And if [X, Y] is a *d*-space (resp. strong *d*-space), then Y is a *d*-space (resp. strong *d*-space). Similarly, we have:

Corollary

If [X, Y] is a d^* -space, then Y is a d^* -space.

 ΣN and the $\Sigma 2$ in the above picture are d^* -spaces. But $[\Sigma 2, \Sigma N]$ is not a d^* -space.

 $Q_{\upsilon}(X)$ denotes the set of all nonempty compact saturated subsets of X with the *upper Vietoris topology*.

Let X be a topological space. If $Q_{\upsilon}(X)$ is a d-space, then X is a d-space.

Theorem

Let X be a topological space. If $Q_{\upsilon}(X)$ is a d^* -space, then X is a d^* -space.

• • = • • = •

Example

Natural number N with the co-finite topology $\tau_1 = \{U \mid N \setminus U \text{ is finite}\} \cup \{\emptyset\}$ and a single point set $\{a\}$ with the discrete topology $\tau_2 = \{\emptyset, \{a\}\}$. The topology on $N \cup \{a\}$ is generated by the refinement of $\tau_1 \vee \tau_2$. Obviously, it is a T_1 space because every single point set is the closed set. Thus it is a d^* space. But $Q(X) = 2^{N \cup \{a\}} \setminus \{\emptyset\}$ with the *upper Vietoris topology* is not a d^* space.

Thank you!

2

< □ > < □ > < □ > < □ > < □ >