On open well-filtered spaces and \mathcal{U}_s -admitting spaces

Chong Shen joint work with Qingyu He, Xiaoyong Xi, Dongsheng Zhao

6th July 2022

(日)、

э

1. Backgroud 2. Preliminary 3. Open well-filtered spaces and its properties 4. Some new results on U_s -admitting space 5. Refe

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Overview

- 1. Backgroud
- 2. Preliminary
- 3. Open well-filtered spaces and its properties
- 4. Some new results on \mathcal{U}_s -admitting space
- 5. References

- Heckmann introduced the well-filtered spaces, and asked whether every well-filtered Scott space of a dcpo is sober? [1];
- Kou provides a negative answer for Heckmann's question. Moreover, he proved that locally compact well-filtered space is sober [2];
- X. Jia in his PhD thesis asked whether every core-compact wellfiltered space is sober? (usually called Jia-Jung problem) [3];
- Jia-Jung problem was first solved positively by J. Lawson, G. Wu and X. Xi [4].

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Some more results on well-filtered results are shown as follows:

- core-compact $+ \omega$ -well-filtered \Rightarrow sober [5, 6];
- first-countable + well-filtered \Rightarrow sober [5, 6];

the category of well-filtered spaces is reflective in T₀ spaces [7, 8];

In this presentation, we introduce a new class of T_0 spaces, called **open well-filtered spaces**, and show some results on such spaces. In addition, we will show some new results on U_s -admitting spaces.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition (sober space, well-filtered space, *d*-space)

- A nonempty subset C of a T_0 space X is called irreducible if for any closed sets C_1, C_2 in $X, C \subseteq C_1 \cup C_2$ implies $C \subseteq C_1$ or $C \subseteq C_2$. A T_0 space X is sober if for every irreducible closed set C, there is $x \in X$ such that $C = cl(\{x\})$.
- A T_0 space X is called well-filtered if for any filtered family \mathcal{F} of compact saturated sets and any open set U, $\bigcap \mathcal{F} \subseteq U$ implies that $K \subseteq U$ for some $K \in \mathcal{F}$.
- A T₀ space X is called a *d*-space if X is a dcpo and every open set is Scott open with respect to the specialization order.

Definition (locally compact, core-compact)

Let X be a T_0 space, $\mathcal{O}(X)$ be the set of all open subsets of X. Then, X is called

locally compact, if for $x \in U \in \mathcal{O}(X)$, there is compact saturated set K such that $x \in K^o \subseteq K \subseteq U$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

core-compact, if $(\mathcal{O}(X), \subseteq)$ is continuous.

Now the following relations are clear:

- locally compact \Rightarrow core-compact;
- sober space \Rightarrow well-filtered space \Rightarrow d-space;
- core-compact + well-filtered \Rightarrow sober.

Definition (open well-filtered space)

Let X be a T_0 space, and $\mathcal{O}(X)$ be the family of all open subsets of X.

- For $U, V \in \mathcal{O}(X)$, use $U \ll V$ to denote that U is way-below V in poset $(\mathcal{O}(X), \subseteq)$;
- A family \mathcal{F} of $\mathcal{O}(X)$ is called \ll -filtered if for any $U_1, U_2 \in \mathcal{F}$, there is $U \in \mathcal{F}$ such that $U \ll U_1$ and $U \ll U_2$;
- A T_0 space X is called open well-filtered if for each \ll -family $\mathcal{F} \subseteq \mathcal{O}(X)$ and each $U \in \mathcal{O}(X)$, $\bigcap \mathcal{F} \subseteq U$ implies $V \subseteq U$ for some $V \in \mathcal{F}$.

Theorem (Shen-Xi-Xu-Zhao-2020)

Every core-compact open well-filtered space is sober.

Proof.

- 1. Take a closed irreducible set A, let $\mathcal{F}=\{U\in\mathcal{O}(X):U\cap A\neq\emptyset\};$
- 2. core-compact $\Rightarrow \mathcal{F}$ is \ll -filtered;
- 3. open well-filtered $\Rightarrow \exists x \in A \cap \bigcap \mathcal{F} \neq \emptyset$;
- 4. easy to show $A = \operatorname{cl}(\{x\})$.

Completing the proof.

Proposition (Shen-Xi-Xu-Zhao-2020)

Every well-filtered space is open well-filtered.

Corollary

Every core-compact well-filtered space is sober.

Definition (OWF-set)

A nonempty subset A of a T_0 space X is called an open well-filtered set, or OWF-set for short, if there exists a \ll -filtered family $\mathcal{F} \subseteq \mathcal{O}(X)$ such that

 $\operatorname{cl}(A) \in \min\{C \in \mathcal{C}(X) : \forall U \in \mathcal{F}, C \cap U \neq \emptyset\}.$

Theorem

Let X be a T_0 space. TFAE:

- (1) X is open well-filtered;
- (2) for any closed OWF-set A, there exists a unique $x \in X$ such that $A = cl(\{x\})$.

Proposition

Every open subspace of an open well-filtered space is also open well-filtered.

Example

- Neither the cofinite topology nor the Alexandorff topology on the natural numbers is open well-filtered;
- The Scott space of the Johnstone's dcpo J is open well-filtered, but the maximal point space of J is not open well-filtered.

Corollary

The saturated subspace of an open well-filtered space need **not** be open well-filtered.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example

Let J is the Johnstone's dcpo and \mathbb{N}^+ the positive integers with the usual order. Let $P = J \cup \mathbb{N}^+$, and for any $x, y \in P$, $x \leq y$ iff one of the following conditions holds: (i) $x, y \in \mathbb{N}^+$ and $x \leq y$ in \mathbb{N}^+ :

(ii)
$$x, y \in \mathbb{N}^+$$
 and $x \leq y$ in \mathbb{N}^+ ,
(iii) $x, y \in J$ and $x \leq y$ in J ;
(iii) $x \in \mathbb{N}^+$ and $y \in J$ and $y = (x, \omega)$.

Figure 1: The poset ${\cal P}$

Then, (1) the Scott space of P is open well-filtered, and clearly not a *d*-space; (2) the (closed) subspace \mathbb{N}^+ (homeomoprhic to the Alexandroff space of \mathbb{N}^+) is a retract of P.

Corollary

- 1. An open well-filtered space need **not** be a *d*-space.
- 2. A retract or closed subspace of an open well-filtered space need **not** be open well-filtered.

Proposition

For each T_0 space X, the product $X \times \Sigma J$ is open well-filterd.

The above result indicates that

I the product is open well-filtered \Rightarrow the factor spaces are.

Theorem

If the product of finite T_0 spaces is open well-filtered, then one of its factor spaces is also open well-filtered.

The following question is still open:

Whether the product of two open well-filtered spaces is also open well-filtered?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

For any topological space X, we use $\mathcal{D}(X)$ to denote the set of all nonempty compact saturated subsets of X. The upper Vietoris topology on $\mathcal{D}(X)$ is the topology that has $\{\Box U : U \in \mathcal{O}(X)\}$ as a base, where $\Box U = \{K \in \mathcal{D}(X) : K \subseteq U\}$. The set $\mathcal{D}(X)$ equipped with the upper Vietoris topology is called the upper space or Smyth power space of X.

Theorem

For any open well-filtered space X, the upper space $\mathcal{D}(X)$ is open well-filtered.

The following question is open:

■ Whether the open well-filteredness of $\mathcal{D}(X)$ implies that X is open well-filtered?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition (*b*-topology¹)

Let X be a T_0 space, the *b*-topology is generated by the family $\{ \downarrow x \cap U : x \in U \in \mathcal{O}(X) \}.$

Definition (reflection)

A subcategory \mathbf{K} of $\mathbf{Top_0}$ is called reflective, if $\forall X \in \mathbf{Top_0}$, $\exists X^k \in \mathbf{K}$ and a continuous map $\mu_X : X \longrightarrow X^k$ s.t. for any continuous map $f : X \longrightarrow Z \in \mathbf{K}$, \exists a unique continuous map $g : X^k \longrightarrow Z$ such that $g \circ \mu_X = f$:

¹L. Skula, On a reflective subcategory of the category of all topological spaces, Trans. Amer. Math. Soc. 142 (1969) 37–41. In 2009, Keimel and Lawson ² showed that a subcategory \mathbf{K} of T_0 spaces is reflective in the category \mathbf{Top}_0 of all T_0 spaces if it satisfies the following **four conditions**:

- (K1) K contains all sober spaces;
- (K2) If $X \in \mathbf{K}$ and Y is homeomorphic to X, then $Y \in \mathbf{K}$;
- (K3) If $\{X_i : i \in I\} \subseteq \mathbf{K}$ is a family of subspaces of a sober space, then the subspace $\bigcap_{i \in I} X_i \in \mathbf{K}$.
- (K4) If $f: X \longrightarrow Y$ is a continuous map from a sober space X to a sober space Y, then for any subspace Z of Y, $Z \in \mathbf{K}$ implies that $f^{-1}(Z) \in \mathbf{K}$.

²K. Keimel, J.D. Lawson, *D*-completions and the *d*-topology, Ann. Pure Appl. Logic 159 (2009) 292–306.

1. Backgroud 2. Preliminary 3. Open well-filtered spaces and its properties 4. Some new results on U_s -admitting space 5. Refe

Theorem

Let K be a subcategory of Top_0 such that $K \nsubseteq T_1$. Then the following statements are equivalent:

- (1) **K** is reflective in \mathbf{Top}_0 ;
- (2) **K** satisfies conditions (K1)–(K4);
- (3) **K** is productive and *b*-closed-hereditary;
- (4) **K** is productive and has equalizers.

1. Backgroud 2. Preliminary 3. Open well-filtered spaces and its properties 4. Some new results on U_s -admitting space 5. Refe

Example

Let J be the Johnstone's dcpo, Then,

- $\Box \Sigma J$ is open well-filtered;
- the maximal point space Max(J) is b-closed, which is not open well-filtered.

Therefore, the category of open well-filtered spaces is not *b*-closed-hereditary.

Corollary

The category of open well-filtered spaces is **not** reflective in Top_0 .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The U_s -admitting spaces ³ were introduced by Heckmann to provide a novel and succinct upper power domain construction of the Scott space on dcpos, which is defined by means of **strongly compact** sets.

Definition (strongly compact)

Let X be a T_0 space. A subset S of X is strongly compact iff for all open sets O with $S \subseteq O$ there is a finite set F such that $S \subseteq \uparrow F \subseteq O$.

Definition (U_s -admitting space)

A T_0 space is called \mathcal{U}_s -admitting if for any filtered family \mathcal{F} of strongly compact saturated sets and any open set U in X, $\bigcap \mathcal{F} \subseteq U$ implies $K \subseteq U$ for some $K \in \mathcal{F}$.

³Heckmann, R.: An upper power domain construction in terms of strongly compact sets. In: Brookes, S., Main, M., Melton, A., Mislove, M., Schmidt, D. (eds.) Mathematical Foundations of Programming Semantics, pp. 272–293. Springer, Berlin (1992).

Definition (\mathcal{U}_s -set)

Let X be a T_0 space. A nonempty subset A of X is called an \mathcal{U}_s -set, if there is a filtered family \mathcal{F} of stronlgy compact saturated sets such that (under the inclusion order)

$$cl(A) \in min\{C \in \mathcal{C}(X) : \forall K \in \mathcal{F}, C \cap K \neq \emptyset\}.$$

Theorem (Characterization for U_s -admitting space) Let X be a T_0 space. The following conditions are equivalent:

- (1) X is U_s -admitting;
- (2) for each closed U_s -set $A \subseteq X$, there exists $x \in X$ such that $A = \operatorname{cl}(\{x\});$
- (3) for each closed \mathcal{U}_s -set $A \subseteq X$ and $U \in \mathcal{O}(X)$, $\bigcap_{a \in A} \uparrow a \subseteq U$ implies $\uparrow a \subseteq U$ for some $a \in A$;

With "compact" replacing "strongly compact", we can obtain the notion of KF-set and the Characterization for well-filtered spaces.

Directed set
$$\Rightarrow \mathcal{U}_s$$
-set $\Rightarrow \mathsf{KF}$ -set

In T_1 space, strongly compact sets \Leftrightarrow finite sets.

From the above, the following relations hold:

Denote **Us-Admitting** be the category of all U_s -admitting spaces with continuous mappings. Using the characterization theorem of U_s -admitting space (in terms of U_s -set), we can prove that

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Lemma

Us-Admitting satisfies (K1)–(K4) in the sense of Keimel and Lawson.

Corollary

Us-Admitting is reflective in Top_0 .

For any topological space X, we use $P_s(X)$ to denote the set of all nonempty **strongly compact** saturated subsets of X. The upper Vietoris topology on $P_s(X)$ is the topology that has $\{\Box U : U \in \mathcal{O}(X)\}$ as a base, where $\Box U = \{K \in P_s(X) : K \subseteq U\}$. The set $P_s(X)$ equipped with the upper Vietoris topology is called the upper space or Smyth power space of X.

Remark

Let X be a T_0 space. The following results hold trivially.

- (1) The specialization order of $P_s(X)$ is \supseteq .
- (2) The mapping $\xi: X \longrightarrow P_s(X)$, $x \mapsto \uparrow x$ is continuous.
- (3) Let $\mathcal{A} \subseteq P_s(X)$. Then $\bigcap \operatorname{cl}_{P_s(X)}(\mathcal{A}) = \bigcap \mathcal{A}$.
- (4) If \mathcal{K} is a strongly compact saturated set in $P_s(X)$, then so is $\bigcup \mathcal{K}$ in X.

In the paper⁴, Heckmann asked

whether the upper space preserves \mathcal{U}_s -admitting property?

Theorem

Let X be a T_0 space. Then the following conditions are equivalent:

- 1. X is U_s -admitting;
- 2. $P_s(X)$ is U_s -admitting;
- 3. $P_s(X)$ is a *d*-space;
- 4. for each (closed) \mathcal{U}_s -set \mathcal{A} in $P_s(X)$ and each $U \in \mathcal{O}(X)$, $\bigcap \mathcal{A} \subseteq U$ implies $K \subseteq U$ for some $K \in \mathcal{A}$.

⁴Heckmann, R.: An upper power domain construction in terms of strongly compact sets. In: Brookes, S., Main, M., Melton, A., Mislove, M., Schmidt, D. (eds.) Mathematical Foundations of Programming Semantics, pp. 272–293. Springer, Berlin (1992).

Definition (poset model)

A poset model of a topological space X is a poset P such that the set Max(P) of all maximal points of P with the relative Scott topology is homeomorphic to X.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Remark

Topological spaces that has a poset model must be T_1 .

Theorem (Zhao-2009, Zhao-Xi-2018)

Every T_1 space X has a dcpo model, denoted by D(X).

Procedures of the proof:

(i) Construct a bounded complete algebraic poset model (P, \leq_P) of X;

(ii) From (P, \leq_P) , construct a dcpo \widehat{P} as follows:

$$\widehat{P} = \{(x, e) : x \in P, e \in \operatorname{Max}(P) \text{ and } x \leq_P e\},\$$

and $(x,e) \leq (y,d)$ in \widehat{P} iff either e = d and $x \leq_P y$, or y = d and $x \leq_P d$.

(iii) Then, $\operatorname{Max}(\widehat{P}) = \{(e, e) : e \in \operatorname{Max}(P)\}\)$ and the mapping $h : \operatorname{Max}_{\sigma}(P) \longrightarrow \operatorname{Max}_{\sigma}(\widehat{P})$, where h(e) = (e, e) for each $e \in \operatorname{Max}(P)$, is a homeomorphism.

D(X) is a weak domain, and X is sober (resp., well-filtered, Baire, Choquet complete, weak sober, Rudin space) iff the Scott space of D(X) is so (see Shen-Wu-Zhao-2019, Zhao-Xi-2018, Xi-Zhao-2017, He-Xi-Zhao-2019, Chen-Li-2022).

Recently, Chen and Li proved that

■ $D(\mathbb{N}_{cof})$ is not \mathcal{U}_s -admitting, where \mathbb{N}_{cof} is the natural numbers with the cofinite topology.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Since T_1 implies \mathcal{U}_s -admitting, the result can be restated as

Proposition (Chen-Li-2022)

The Xi-Zhao dcpo model D(X) need not be \mathcal{U}_s -admitting.

Then one can naturally ask:

when D(X) is \mathcal{U}_s -admitting?

Lemma

For a bounded complete algebraic poset P, $\Sigma \widehat{P}$ is \mathcal{U}_s -admitting iff it is well-filtered.

A sufficient and necessary condition for above question is as follows:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem

For a T_1 space X, the following statements are equivalent:

- 1. X is well-filtered;
- 2. D(X) is well-filtered;
- 3. D(X) is \mathcal{U}_s -admitting.

1. Backgroud 2. Preliminary 3. Open well-filtered spaces and its properties 4. Some new results on U_s -admitting space 5. Refe

Thanks !!!

References

- 1 R. Heckmann, Power Domain Constructions, PhD thesis, Universitat des Saarlandes, 1990.
- 2 H. Kou. Uk-admitting dcpos need not be sober. In K. Keimel, G.-Q. Zhang, Y.-M. Liu, and Y.-X. Chen, editors, Domain and Processes, volume 1 of Semantic Structures in Computation, pages 41–50. Kluwer Academic Publishers, 2001.
- 3 X. Jia. Meet-continuity and locally compact sober dcpos, PhD thesis. University of Birmingham, 2018.
- 4 J. Lawson, G. Wu and X. Xi. Well-filtered spaces, compactness, and the lower topology. Houston J. Math., 46(2020), 1:283–294.
- 5 X. Xu, C. Shen, X. Xi, D. Zhao. On T0 spaces determined by well-filtered spaces. Topo. Appl., 282(15): 107323, 2020.

- 6 X. Xu, C. Shen, X. Xi, D. Zhao. First countability, ω-wellfiltered spaces and reflections, Topo. Appl., 279(15): 107255, 2020.
- 7 G. Wu, X. Xi, X. Xu, D. Zhao, Existence of well-filterification, Topol. Appl. 267 (2019) 107044.
- 8 C. Shen, X. Xi, X. Xu, D. Zhao, On well-filtered reflections of T_0 spaces, Topol. Appl. 267 (2019) 106869.
- 9 C. Shen, X. Xi, X. Xu, D. Zhao, On open well-filtered spaces, Logical Methods in Computer Science, 16 (4) 1-10, 2020.
- 10 Zhao, D.: Poset models of topological spaces. In: Proceeding of International Conference on Quantitative Logic and Quantification of Software, pp. 229–238. Global-Link Publisher (2009).
- 11 Zhao, D., Xi, X.: Directed complete poset models of T_1 spaces. Math. Proc. Camb. Phil. Soc. **164**(1), 125–134 (2018).

- 12 Xi, X., Zhao, D.: Well-filtered space spaces and dcpo models. Math. Struct. Comp. Sci. 4(27), 507–515 (2017).
- 13 Shen, C., Wu, G., Zhao, D.: Weak domain models of T_1 spaces. Electron. Notes Theor. Comp. Sci. **345**, 219–232 (2019).
- 14 He, Q., Xi, X., Zhao D.: Dcpo models of Choquet complete and Baire spaces. Results Math. **74**(3), 74–87 (2019).
- 15 Chen, S., Li, Q.: On some topological properties of dcpo models of T₁ topological spaces. Resuls Math. **77**(2), 77–92 (2022).