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Some History

1972 Continuous lattices by D. S. Scott, in which the injective T0-spaces X are characterized
as retracts of SO(X ) under maps preserving directed suprema, where S denotes Sierpinski
space.

• Implies continuous lattices are sober spaces in the Scott topology.
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Some History

1972 Continuous lattices by D. S. Scott, in which the injective T0-spaces X are characterized
as retracts of SO(X ) under maps preserving directed suprema, where S denotes Sierpinski
space.

1989 (M-) The sobrification of an algebraic poset is an algebraic domain which forms the
DCPO-completion of the underlying poset.

1992 (H. Zhang) Same result holds for continuous posets.

2008 (DCPO-completion of posets, Zhao & Fan) Described a DCPO-completion of a poset
that is finer than the sobrification.

2009 (D-completions and the d-topology, Keimel and Lawson) Gave topological account of
Zhao & Fan’s construction, and introduced K-categories, which provide further examples.

In this talk, we’ll apply these results to produce new commutative probabilistic monads
over DCPO.

We begin by explaining the problem that inspired our work.
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• The application of interest is statistical programming: functional languages that sample
from probability distributions.

These are viewed as the simply-typed lambda calculus extended with a probability monad.
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Scott-continuous valuations: maps µ : σ(P) → [0, 1] satisfying:
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• µ(
⋃

U∈D U) = supU∈D µ(U), if D ⊆ σ(P) is a directed family.



What’s the Problem?

• The application of interest is statistical programming: functional languages that sample
from probability distributions.

These are viewed as the simply-typed lambda calculus extended with a probability monad.

• Natural model: Sub-probabilistic power domain V≤1(P) over a dcpo P, the family of
Scott-continuous valuations: maps µ : σ(P) → [0, 1]

• V≤1 defines a monad over DOM – category of domains and Scott continuous maps. In
fact, V≤1 is commutative; i.e., the Fubini-like equation∫

x∈P

∫
y∈Q

χU(x , y)dµdν =

∫
y∈Q

∫
x∈P

χU(x , y)dνdµ,

holds, for domains P,Q, valuations µ ∈ V≤1(P), ν ∈ V≤1(Q) and U ⊆ P ×Q Scott open.
But, DOM is not Cartesian closed.

• Jung-Tix Problem: There is no known Cartesian closed category of domains on
which V≤1 defines a monad.



What’s the Problem?

• The application of interest is statistical programming: functional languages that sample
from probability distributions.

These are viewed as the simply-typed lambda calculus extended with a probability monad.

• Natural model: Sub-probabilistic power domain V≤1(P) over a dcpo P, the family of
Scott-continuous valuations: maps µ : σ(P) → [0, 1]

• However, V≤1 also defines a monad on DCPO, the category of dcpos and Scott
continuous maps, which is Cartesian closed.

• But: V≤1(P) is not known to be commutative over DCPO, so there is no proof that
Fubini holds.

• So we search for submonads of V≤1 that are commutative over DCPO.

• Xiaodong will describe some of the monads we found in his talk on Wednesday.
• I want to outline the mathematical results that underpin such monads.



The DCPO-completion of a Poset

• Zhao & Fan: Defined the d-topology on a poset and the associated d-completion.1

• A subset A ⊆ P is d-closed if A is closed under existing suprema of directed sets:
i.e., if D ⊆ A is directed and supD ∈ P exists, then supD ∈ A.

• This defines the closed sets of the d-topology: the union of finitely many d-closed
sets is d-closed (by short argument), and any intersection of d-closed sets is d-closed.

• Scott-closed subsets are d-closed, so the d-topology refines the Scott topology.

• The d-closed subsets of a dcpo are exactly the sub-dcpos.

• Any lower set is d-open, so ↓x is d-clopen for each x ∈ P.

1Zhao & Fan use the notation D-topology, etc., but that clashes with further results we discuss next.



The DCPO-completion of a Poset

• Zhao & Fan: Defined the d-topology on a poset and the associated d-completion.

• A dcpo Q is a d-completion of a poset P if there is η : P → Q Scott continuous satisfying

Q R

P

∃f

η
∀f

where R is a dcpo and f , f are Scott continuous.
Any two d-completions of P are isomorphic. Denote this by P.

• Can be formed as follows:
1) Embed (P, σ(P)) in a dcpo Q. E.g., take Q = Γ(P).

2) Take the intersection of all sub-dcpos of Q containing P. This is P.

Theorem: P is the smallest dcpo satisfying P ↪→ P is an embedding in the Scott
topology.



Monotone Convergence Spaces

2009 D-completions and the d-topology, Keimel and Lawson.

The d-topology is not order-theoretic: Id : S → {0, 1}♭ is d-continuous.
A monotone convergence space is a T0-space (X ,O(X )) in which each directed subset

D ⊆ X in the specialization order (x ≤s y iff x ∈ {y}) converges to its supremum, supD.

Equivalently, Ω(X ) = (X ,≤s) is a dcpo and O(X ) ⊆ σ(X ,≤s).

Examples: 1) Any sober space.

2) Σ(P) = (P, σ(P)) – Scott space of dcpo P.

Initially studied as d-spaces by Wyler (1981) and later by Ershov (1999).

D - category of monotone convergence spaces and continuous maps.

DCPO ⊢ D

Σ

Ω



Monotone Convergence Spaces

2009 D-completions and the d-topology, Keimel and Lawson.

D-completion of a T0-space X : a d-dense embedding X ↪→ X̃ into a monotone
convergence space X̃ . They exist because sober spaces are monotone convergence spaces.
(Topological version of Zhao & Fan’s d-completion.)

• D-completions are universal: for every η : X ↪→ X̃ , for every f : X → Y (∈ D):

X̃ Y

X

∃!f

η
∀f

This implies any two D-completions are homeomorphic. Dc denotes the D-completion.



Monotone Convergence Spaces

2009 D-completions and the d-topology, Keimel and Lawson.

• D-completions are universal: for every η : X ↪→ X̃ , for every f : X → Y (∈ D):

X̃ Y

X

∃!f

η
∀f

This implies any two D-completions are homeomorphic. Dc denotes the D-completion.

• D is a full reflective subcategory of TOP0 – T0-spaces and continuous maps:

TOP0 ⊢ D

Dc

incl

Dc defines an idempotent monad on TOP0:

f : X → Y 7→ Dc(f ) = ηY ◦ f : Dc(X ) → Dc(Y )



Monotone Convergence Spaces

2009 D-completions and the d-topology, Keimel and Lawson.

• The d-completion of a poset in D; POSd - posets and Scott continuous maps.

TOP0 D

POSd DCPO

Dc

ΩΣ

Ω◦Dc◦Σ

U

⊣

So, Ω ◦ Dc ◦ Σ(P) is the d-completion of a poset P in the Scott topology.



K-categories

2009 D-completions and the d-topology, Keimel and Lawson.

• K-category: a subcategory K of TOP0 (objects are called “K spaces”) satisfying

• SOB is a subcategory of K
• K is closed under homeomorphic images
• If X is a sober space, the intersection of any family of K-subspaces of X is a K-space
• If f : X → Y in SOB, then f is K-continuous:

i.e., if Z ⊆ Y is a K-subspace, then f −1(Z ) is a K-subspace of X ;
equivalently, if W ⊆ X is a subspace, then f (clK (W )) ⊆ clK (f (W )).

Example: D is a K-category.
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• K-category: a subcategory K of TOP0 (objects are called “K spaces”) satisfying

• SOB is a subcategory of K
• K is closed under homeomorphic images
• If X is a sober space, the intersection of any family of K-subspaces of X is a K-space
• If f : X → Y in SOB, then f is K-continuous:

i.e., if Z ⊆ Y is a K-subspace, then f −1(Z ) is a K-subspace of X ;
equivalently, if W ⊆ X is a subspace, then f (clK (W )) ⊆ clK (f (W )).

Example: D is a K-category.

We can form a K-completion Kc(X ) of any T0-space: use embedding η : X ↪→ X s into its
sobrification and then take

ηX : X ↪→ Kc(X ) =
⋂

{X ′ ⊆ X s | X ⊆ X ′ a K space}.

The conditions assure that Kc(X ) is a K-space and any continuous f : X → Y into a
K-space admits a unique f : Kc(X ) → Y with f ◦ ηX = f



K-categories

2009 D-completions and the d-topology, Keimel and Lawson.

Theorem: Each K-category is a full reflective subcategory of TOP0:

TOP0 ⊢ K

Kc

I

where Kc is the K-completion functor; this defines an idempotent monad on TOP0:

f : X → Y 7→ Kc(f ) = ηY ◦ f : Kc(X ) → Kc(Y )



K-categories

2009 D-completions and the d-topology, Keimel and Lawson.

Theorem: Each K-category is a full reflective subcategory of TOP0:

TOP0 ⊢ K

Kc

I

• If K ⊆ D, then Ω ◦Kc ◦Σ(P) defines the K-completion of a poset P in the Scott topology:

TOP0 K

POSd DCPO

Kc

ΩΣ

Ω◦Kc◦Σ

U

⊣



Topological View of Valuations

Definition The (extended) probabilistic power domain V(X ) over a topological space
(X ,O(X )), is the family of maps µ : O(X ) → R+ satisfying:

• µ(∅) = 0 • µ(U ∪ V ) + µ(U ∩ V ) = µ(U) + µ(V )

• µ(
⋃

U∈D U) = supU∈D µ(U), if D ⊆ O(X ) is directed.

We endow V(X ) with the stochastic order: µ ≤ ν iff µ(U) ≤ ν(U) (∀U ∈ O(X )).

• V(X ) is a DCPO – in fact, V : TOP0 → DCPO is a functor, where

f ∈ TOP0(X ,Y ) 7→ µ 7→ Vf (µ) = µ ◦ f −1 ∈ DCPO(V(X ),V(Y )).

(Jones) V ◦ Σ: DCPO → DCPO defines a strong monad;

(V ◦ Σ)|DOM : DOM → DOM is a commutative monad.



Topological View of Valuations

Definition The (extended) probabilistic power domain V(X ) over a topological space
(X ,O(X )), is the family of maps µ : O(X ) → R+ satisfying:

• µ(∅) = 0 • µ(U ∪ V ) + µ(U ∩ V ) = µ(U) + µ(V )
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We endow V(X ) with the stochastic order: µ ≤ ν iff µ(U) ≤ ν(U) (∀U ∈ O(X )).

VwX denotes VX in the weak topology: [U > r ] = {µ | µ(U) > r} = {µ | eval(µ,U) > r}
forms a sub-basis, where eval : VX ×O(X ) → R+. Heckmann showed Vw (X ) is sober.



Topological View of Valuations

Definition The (extended) probabilistic power domain V(X ) over a topological space
(X ,O(X )), is the family of maps µ : O(X ) → R+ satisfying:

• µ(∅) = 0 • µ(U ∪ V ) + µ(U ∩ V ) = µ(U) + µ(V )

• µ(
⋃

U∈D U) = supU∈D µ(U), if D ⊆ O(X ) is directed.

(Goubault-Larrecq & Jia) Vw defines a monad on TOP0:
Vw f : VwX → VwY is Vw f (µ) = µ ◦ f −1 is continuous, for f : X → Y .

The unit is the point valuation x 7→ δx = λU.

{
1 x ∈ U,

0 otherwise.

We can define the Choquet-like integral
∫
X
h(x)dµ =

∫∞
0

µ(h−1(r ,∞])dr (the Riemann

integral) for h : X → R+ lower semicontinuous and any space X .

Then the multiplication m : V2
wX → VwX is defined as

m(ω) = λU.

∫
VwX

µ(U)dω = λU.

∫ ∞

0

ω(eval(−,U)−1(r ,∞])dr = λU.

∫ ∞

0

ω([U > r ])dr .



Topological View of Valuations

Definition The (extended) probabilistic power domain V(X ) over a topological space
(X ,O(X )), is the family of maps µ : O(X ) → R+ satisfying:

• µ(∅) = 0 • µ(U ∪ V ) + µ(U ∩ V ) = µ(U) + µ(V )

• µ(
⋃

U∈D U) = supU∈D µ(U), if D ⊆ O(X ) is directed.

Theorem For any space X , VwX has a canonical cone structure making it a locally linear
topological cone. Moreover, Vw f : VwX → VwY is continuous and linear, for each f : X → Y .

+: VwX × VwX → VwX is (µ+ ν)(U) = µ(U) + ν(U) for each open set U ⊆ X ;
r · − : VwX → VwX is (r · µ)(U) = r · µ(U) for each r ∈ R+; and
U 7→ 0 ∈ R+ is the zero valuation.
The sub-basis [U > r ] consists of (open) half-spaces (i.e., convex subsets whose complement
also is convex), which is what locally linear means. The last claim is straightforward from the
definitions of Vw f (µ) = µ ◦ f −1 and of the sub-bases [U > r ] for VwX and VwY .



K-completions of Simple Valuations

Simple valuations over X : VsX = {
∑

x∈F rxδx | rx ∈ R+ & F ⊆ X finite} ⊆ VwX .

Vs is a submonad of Vw

• If f : X → Y , then Vs f (
∑

x∈F rx · δx) =
∑

x∈F rx · δf (x).
• The unit x 7→ δx : X → VwX is simple.

• The multiplication m : V2
wX → VwX restricts to VsX

2 → VsX via

m(
∑
x∈F

rx(
∑
y∈Gx

sx,yδx,y )) =
∑
x,y

rxsx,yδx,y .



K-completions of Simple Valuations

Simple valuations over X : VsX = {
∑

x∈F rxδx | rx ∈ R+ & F ⊆ X finite} ⊆ VwX .

Vs is a submonad of Vw

In particular, there is an embedding ηVsX : VsX ↪→ VwX , which is sober.

If K is a K-category, it follows that the K-completion VKX
def
= Kc(VsX ) is a sub-dcpo of VwX .

Theorem For each K-category K, VK is a monad on TOP0.

Proof: VKX is a subcone of VwX , so it is a locally linear topological cone, and

each continuous linear map f : VsX → VsY satisfies ηVK
◦ f (VsX ) ⊆ VKX , so

Kc(f ) : VKX → VKY . The linearity of Kc(f ) follows from the density of VsX in VKX and

the continuity of addition on VKY . This shows VK is an endofunctor on TOP0.

The unit is the point valuation x 7→ δx , and if f : X → VKY is continuous, then

Kc(f ) = µ 7→ (U 7→
∫
X

f (x)(U)dµ) : VKX → VKY

is well-defined and continuous. This shows VK defines a submonad of Vw .



K-completions of Simple Valuations

Simple valuations over X : VsX = {
∑

x∈F rxδx | rx ∈ R+ & F ⊆ X finite} ⊆ VwX .

Vs is a submonad of Vw

In particular, there is an embedding ηVsX : VsX ↪→ VwX , which is sober.

If K is a K-category, it follows that the K-completion VKX
def
= Kc(VsX ) is a sub-dcpo of VwX .

Theorem For each K-category K, VK is a monad on TOP0.

Theorem For each K-category K ⊆ D, VK,≤
def
= Ω ◦ VK ◦ Σ is a monad on DCPO.

Proof: VK is a monad on TOP0, and since K is a full subcategory of D, it follows that VK

restricts to a monad on D. Writing VK = U ◦ F , we have Ω ◦ VK ◦ Σ = (Ω ◦ U) ◦ (F ◦ Σ), and
adjoints compose:

DCPO D ⊢ DVK

Σ F
VK

Ω

⊣

U

It’s straightforward to see that the unit and multiplication of VK are transported to DCPO.



K-completions of Simple Valuations

Simple valuations over X : VsX = {
∑

x∈F rxδx | rx ∈ R+ & F ⊆ X finite} ⊆ VwX .

Vs is a submonad of Vw

Theorem For each K-category K ⊆ D, VK,≤
def
= Ω ◦ VK ◦ Σ is a monad on DCPO.

In particular, this applies to the D-completion VDX .

Theorem The monad M def
= VD,≤1 is commutative on DCPO.

Proof: If µ =
∑

x∈F rx · δx ∈ MX and ν ∈ MY , then∫
X

∫
Y

χU(x , y)dµdν =
∑
x∈F

rx ·
∫
Y

χU(x , y)dν =

∫
Y

∑
x∈F

rx ·χU(x , y)dν =

∫
Y

∫
X

χU(x , y)dµdν,

and since VsX is dense in MX and integration is continuous, the equation holds for all
µ ∈ MX .



K-completions of Simple Valuations

Simple valuations over X : VsX = {
∑

x∈F rxδx | rx ∈ R+ & F ⊆ X finite} ⊆ VwX .

Vs is a submonad of Vw In particular, this applies to the D-completion VDX .

Theorem The monad M def
= VD,≤1 is commutative on DCPO.

This also applies to any full K-subcategory K of D; in fact, for such a K, we have

Vs,≤1 ⊆ M ⊆ VK,≤ ⊆ P (but Vs,≤1 isn’t a subcategory of DCPO), where P = VSOB,≤1.

Heckmann showed that P consists of point continuous valuations; hence the name.

Another example we know of is the full K-subcategory W of D consisting of well-filtered spaces.
So the commutative monads we know so far are:

Vs,≤1 ⊆ M ⊆ W ⊆ P ⊆ Z
The last – Z – denotes the category of central valuations: those for which integration satisfies
the Fubini equation with any valuation in V for the other component. This category exists by
abstract reasoning, and doesn’t rely on Vs being a dense subcategory relative to some
completion operation. It also is the only one we know that contains the pushforward of
Lebesgue measure by a lower semicontinuous map to a DCPO.
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