# On *k*-ranks of topological spaces Singapore

Mengjie Jin (joint with Qingguo Li)

Hunan University



July 6, 2022

Well-filtered spaces, well-filterifications and wf-ranks

k-well-filtered spaces, k-well-filterifications and k-ranks

Applications

A  $T_0$  space X is called a *d*-space (i.e., monotone convergence space) if

it is a *dcpo* with the specialization order;

• 
$$\mathcal{O}(X) \subseteq \sigma(X)$$
.

#### A description of *d*-spaces

A  $T_0$  space X is a *d*-space iff for each *directed set* D with respect to the specialization order, there exists  $x \in X$  such that  $cl(D) = cl(\{x\})$ .

For example, a *dcpo* with the Scott topology is a *d*-space.

A *d-completion* of X is a pair  $\langle \hat{X}, \mu \rangle$  comprising a *d*-space  $\hat{X}$  and a continuous mapping  $\mu: X \longrightarrow \hat{X}$  satisfying that for any continuous mapping  $f: X \longrightarrow Y$  to a *d*-space, there exists a unique continuous mapping  $f^*: \hat{X} \longrightarrow Y$  such that  $f^* \circ \mu = f$ , that is, the following diagram commutes.



We denote it by  $H_d(X)$  if the *d*-completion of X exists.

d-SPACES, d-COMPLETIONS AND D-RANKS Well-Filtered spaces, well-filterifications and wf-ranks k-well-filtered spaces, k-well-filterifications

d-spaces, d-completions and d-ranks

As shown by Ershov,

- the *d*-completion of X, can be obtained by *adding the closures of directed sets*, as points, to X (and then repeating this process).
- he called it *d-rank* which is an ordinal that measures how many steps from a T<sub>0</sub> space to a *d*-space.
- for any given ordinal α, he proven that there exists a T<sub>0</sub> space X whose d-rank equals to α.

We denote the *d*-rank of X by  $\operatorname{rank}_d(X)$ .

Y. Ershov, On *d*-spaces, Theoretical Computer Science, 224 (1999) 59-72.
Y. Ershov, The *d*-rank of a topological space, Algebra and Logic, 56 (2017) 98-107.

The topological construction in Ershov's paper is called *fibred sum*.

For topological spaces X and  $Y_x$ ,  $x \in X$ , let

$$Z = \bigcup_{x \in X} Y_x \times \{x\},$$

 $\tau = \{ U \subseteq Z \mid (U)_x \in \tau(Y_x) \text{ for any } x \in X \text{ and } (U)_X \in \tau(X) \}$ where  $U_x = \{ y \in Y_x \mid (y, x) \in U \}$  for any  $x \in X$  and  $(U)_X = \{ x \in X \mid (U)_x \neq \emptyset \}.$ 

The space  $(Z, \tau)$  is also denoted by  $\sum_{X} Y_{X}$ .

d-spaces, d-completions and d-ranks

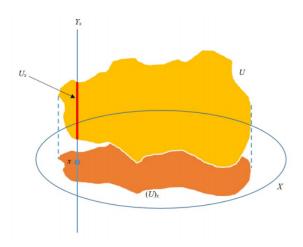


Figure: Fibred sum of  $(Y_x)_{x \in X} : \sum_X Y_x$ 

The specialization order on  $Z = \sum_{X} Y_{X}$  is described as follows.

#### Lemma (Ershov)

Let X be a  $T_0$  space,  $Y_x$  an irreducible  $T_0$  space for any  $x \in X$ , and  $Z = \sum_X Y_x$ . For all  $(y_0, x_0)$ ,  $(y_1, x_1) \in Z$ , we have  $(y_0, x_0) \leq (y_1, x_1)$  if and only if the following two alternatives hold: (1)  $x_0 = x_1$  and  $y_0 \leq_{Y_{x_0}} y_1$ ; (2)  $x_0 <_X x_1$  and  $y_1 = \top_{x_1}$  is the greatest element in  $Y_{x_1}$ .

 $H_d(Z)$ 

÷

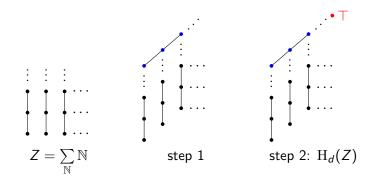
• 2

 $H_d(Z)$ 

d-spaces, d-completions and d-ranks For  $\alpha = 0$ ,  $Z = (\{\top\}, \{\emptyset, \{\top\}\})$  $\operatorname{rank}_{\mathrm{d}}(Z) = 0.$ For  $\alpha = 1$ . <sup>2</sup>  $Z = \mathbb{N}$  $\operatorname{rank}_{d}(Z) = 1.$ 

d-spaces, d-completions and d-ranks

For  $\alpha = 2$ ,



 $\operatorname{rank}_{d}(Z) = 2.$ 

For 
$$\alpha = 3$$
,  $Z = \sum_{\mathbb{N}} (\sum_{\mathbb{N}} \mathbb{N}) \cdots \cdots$ 

```
d-spaces, d-completions and d-ranks
```

By induction on  $\alpha$ ,

Theorem (Ershov)

For any ordinal  $\alpha$ , there exists an irreducible  $T_0$  space X whose d-rank is equal to  $\alpha$ .

A  $T_0$  space X is called *well-filtered* if for any open subset U and any filtered family  $\mathcal{K}$  in Q(X),  $\bigcap \mathcal{K} \subseteq U$  implies  $\mathcal{K} \subseteq U$  for some  $\mathcal{K} \in \mathcal{K}$ .

Definition (Shen, Xi, Xu and Zhao)

Let X be a  $T_0$  space. A nonempty subset A is said to have *Rudin* property (i.e., KF property), if there exists  $\mathcal{K} \subseteq_{filt} Q(X)$  such that A is a minimal closed set that intersects all members of  $\mathcal{K}$ .

We call such a set *Rudin* or *Rudin set*. The set of all Rudin sets of X is denoted by  $\overline{KF}(X)$ .

C. Shen, X. Xi, X. Xu, D. Zhao, On well-filtered reflections of  $T_0$  spaces, Topology and its Applications, 267 (2019) 106869.

It turns out that

directed sets  $\Rightarrow$  Rudin sets

A description of well-filtered spaces (Shen, Xi, Xu and Zhao)
Let X be a T<sub>0</sub> space. TFAE:
(1) X is a well-filtered space.
(2) for each *Rudin set A*, there exists x ∈ X such that cl(A) = cl({x}).

Therefore,

well-filtered spaces  $\Rightarrow$  *d*-spaces

A well-filterification or well-filtered reflection of X is a pair  $\langle \hat{X}, \mu \rangle$  comprising a well-filtered space  $\hat{X}$  and a continuous mapping  $\mu$ :  $X \longrightarrow \hat{X}$  satisfying that for any continuous mapping  $f: X \longrightarrow Y$  to a well-filtered space, there exists a unique continuous mapping  $f^*: \hat{X} \longrightarrow Y$  such that  $f^* \circ \mu = f$ , that is, the following diagram commutes.



We denote it by  $H_{wf}(X)$  if the well-filterification of X exists.

Recently, various researchers shown that the category of all well-filtered spaces is reflective in the category of all  $T_0$  spaces.

- ► Wu, Xi, Xu and Zhao proven it by *Keimel-Lawson category*.
- ► Shen, Xi, Xu and Zhao obtained it by *adding the closures of Rudin sets*, as points, to a T<sub>0</sub> space (and then repeating this process).

G. Wu, X. Xi, X. Xu, D. Zhao, Existence of well-filterifications of  $T_0$  topological spaces, Topology and its Applications, 270 (2019), 107044. C. Shen, X. Xi, X. Xu, D. Zhao, On well-filtered reflections of  $T_0$  spaces, Topology and its Applications, 267 (2019) 106869.

#### wf-rank (Liu, Li and Wu)

It is an ordinal that measures how far a  $T_0$  space is from being a well-filtered space.

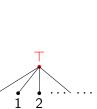
```
Theorem (Liu, Li and Ho)
```

For any given ordinal  $\alpha$ , there exists a  $T_0$  space whose *wf*-rank equals to  $\alpha$ .

We denote the *wf*-rank of X by  $\operatorname{rank}_{wf}(X)$ .

B. Liu, Q. Li, G. Wu, Well-filterifications of topological spaces, Topology and its Applications, 279 (2020) 107245.B. Liu, Q. Li, W. Ho, The *wf*-rank of topological spaces, accepted for publication.

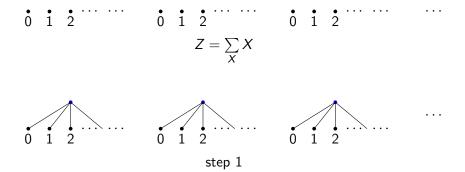
For  $\alpha = 0$ .  $Z = (\{\top\}, \{\emptyset, \{\top\}\})$  $\operatorname{rank}_{\mathrm{wf}}(Z) = 0.$ For  $\alpha = 1$ . 0 1 2 7 = X $\operatorname{rank}_{wf}(Z) = 1.$ 

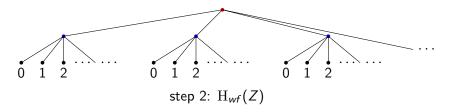


 $H_{wf}(Z)$ 

 $H_{wf}(Z)$ 

For  $\alpha = 2$ ,





 $\operatorname{rank}_{\mathrm{wf}}(Z) = 2.$ 

For 
$$\alpha = 3$$
,  $Z = \sum_{X} (\sum_{X} X) \cdots \cdots$ 

By induction on  $\alpha$ ,

Theorem (Liu, Li and Ho)

For any ordinal  $\alpha$ , there exists an irreducible  $T_0$  space X whose wf-rank is equal to  $\alpha$ .

### Questions

#### Question 1

Whether there is a uniform approach to *d*-spaces and well-filtered spaces and develop a general framework for dealing with all these spaces.

#### Answer: Yes! We call it *k*-well-filtered space.

#### Question 2

For any given ordinal  $\alpha$  as to whether there exists a  $T_0$  space X whose k-rank equals to  $\alpha$ .

Answer: Yes!

k-well-filtered spaces, k-well-filterifications and k-ranks

#### Definition

 $Q_k$ : **Top**<sub>0</sub>  $\longrightarrow$  **Set** is called a *C*-subset system if  $S^u(X) \subseteq Q_k(X) \subseteq Q(X)$  for all  $X \in ob($ **Top**<sub>0</sub>), where  $S^u(X) = \{\uparrow x \mid x \in X\}$ .

- A nonempty subset A is said to have k-Rudin property, if there exists K ⊆<sub>filt</sub> Q<sub>k</sub>(X) such that A is a minimal closed set that intersects all members of K. We call such a set k-Rudin or k-Rudin set. We denote it by K<sup>R</sup>(X).
- ▶  $\overline{D}(X) \subseteq K^R(X) \subseteq \overline{KF}(X)$ , where  $\overline{D}(X) = \{A \subseteq X\}$  that there exists a directed subset D such that  $\overline{A} = \overline{D}$ .

# k-well-filtered spaces, k-well-filterifications and k-ranks

#### Definition

A *C*-subset system is called a *K*-subset system provided that for  $T_0$  spaces X, Y and any continuous mapping  $f : X \longrightarrow Y$ ,  $f(A) \in K^R(Y)$  for all  $A \in K^R(X)$ .

#### Definition

Let  $Q_k : \operatorname{Top}_0 \longrightarrow \operatorname{Set}$  be a *K*-subset system and *X* a  $T_0$  space. *X* is called *k*-well-filtered if for any open set *U* and  $\mathcal{K} \subseteq_{filt} Q_k(X), \bigcap \mathcal{K} \subseteq U$  implies  $K \subseteq U$  for some  $K \in \mathcal{K}$ .

k-well-filtered spaces, k-well-filterifications and k-ranks

```
For a K-subset system Q_k : Top<sub>0</sub> \longrightarrow Set,
```

A description of k-well-filtered spaces
Let X be a T<sub>0</sub> space. TFAE:
(1) X is a k-well-filtered space.
(2) for each k-Rudin set A, there exists x ∈ X such that cl(A) = cl({x}).

Therefore,

well-filtered spaces  $\Rightarrow$  *k*-well-filtered spaces  $\Rightarrow$  *d*-spaces

We denote it by  $H_k(X)$  if the k-well-filterification of X exists.

We get that:

- the k-well-filterification of X, can be obtained by the equivalent classes of k-Rudin subsets (i.e., adding the closure of k-Rudin sets, as points, to X and repeat this process until it stabilizes).
- For k-ranks, given an ordinal α, the structure of Q<sub>k</sub>(X) for any T<sub>0</sub> space X is indeterminate, where S<sup>u</sup>(X) ⊆ Q<sub>k</sub>(X) ⊆ Q(X). So the question is:

What conditions should the  ${\rm T_0}$  space satisfy such that its \$k\$-rank equals to  $\alpha?$ 

k-well-filtered spaces, k-well-filterifications and k-ranks

For 
$$\alpha = 0$$
,  

$$T$$

$$Z = (\{\top\}, \{\emptyset, \{\top\}\})$$

$$H_{wf}(Z) = H_d(Z)$$

$$Thus, H_{wf}(Z) = H_k(Z) = H_d(Z) \text{ and } \operatorname{rank}_k(Z) = 0.$$

### k-well-filtered spaces, k-well-filterifications and k-ranks

For  $\alpha = 1$ ,

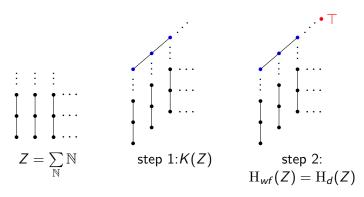


• 
$$\overline{D}(Z) = \overline{KF}(Z).$$
  
•  $\operatorname{rank}_{wf}(Z) = \operatorname{rank}_{d}(Z) = 1.$ 

Thus,  $\operatorname{H}_{wf}(Z) = \operatorname{H}_k(Z) = \operatorname{H}_d(Z)$  and  $\operatorname{rank}_k(Z) = 1$ .

### k-well-filtered spaces, k-well-filterifications and k-ranks

For  $\alpha = 2$ ,



Thus,  $\operatorname{H}_{wf}(Z) = \operatorname{H}_k(Z) = \operatorname{H}_d(Z)$  and  $\operatorname{rank}_k(Z) = 2$ .

For a given ordinal  $\alpha$ , the  $T_0$  space X satisfies:

(1) 
$$\operatorname{rank}_{wf}(X) = \operatorname{rank}_{d}(X) = \alpha$$
.  
(2)  $\overline{D}(K_m(X)) = \overline{KF}(K_m(X))$  for  $0 \le m < \alpha$ , where  $K_m(X)$  denotes the topological space of X after m steps.

#### Theorem

For any ordinal  $\alpha$ , there exists an irreducible  $T_0$  space X whose k-rank is equal to  $\alpha$ .

# Applications

Let  $Q_s(X)$  denote the set of all nonempty strongly compact saturated subsets of a topological space X.

#### Definition (Heckmann)

A  $T_0$  space X is called  $\mathcal{U}_S$ -admitting if for any open subset U and  $\mathcal{K} \subseteq_{filt} Q_s(X)$ ,  $\bigcap \mathcal{K} \subseteq U$  implies  $K \subseteq U$  for some  $K \in \mathcal{K}$ .

well-filtered spaces  $\Rightarrow \mathcal{U}_S$ -admitting spaces  $\Rightarrow d$ -spaces

From our results,  $U_S$ -admitting spaces is a special case of k-well-filtered spaces.

R. Heckmann, An upper power domain construction in terms of strongly compact sets, Lecture Notes in Comput. Sci., 598 (1992) 272-293.

Thank you !