Weakly meet s_Z -continuity and δ_Z -continuity Singapore

Huijun Hou (joint with Qingguo Li)

Hunan University

July 4, 2022

Contents

- Background and Motivation
- ▶ Weak meet *s*_Z-continuous posets
- Posets with lower hereditary Z-Scott topology
- A monad on **POSET** $_{\delta}$

Let P be a poset.

Definition

A subset D of P is directed provided it is nonempty and every finite subset of D has an upper bound in D.

Let P be a poset.

Definition

A subset D of P is directed provided it is nonempty and every finite subset of D has an upper bound in D.

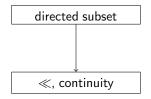
Definition

For any $x, y \in P$, we say that x is way-below y, in symbols $x \ll y$, iff for all directed subset D of P for which sup D exists, the relation $y \leq \sup D$ always implies the existence of a $d \in D$ with $x \leq d$.

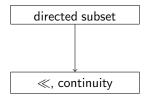
Definition

P is called continuous if for all $x \in P$, the set $\downarrow x = \{u \in P : u \ll x\}$ is directed and $x = \sup \downarrow x$.

Let P be a poset.



Let P be a poset.



 \ll_2 , *s*₂-continuity

Let P be a poset.

Definition [Erné]

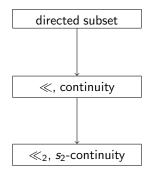
For any $x, y \in P$, we say that $x \ll_2 y$, iff for all directed subset D of P, the relation $y \in D^{\delta}$ always implies the existence of a $d \in D$ with $x \leq d$.

Definition[Erné]

P is called *s*₂-continuous if for all $x \in P$, the set $\downarrow_2 x = \{u \in P : u \ll_2 x\}$ is directed and $x = \sup \downarrow_2 x$.

M. Erné, Scott convergence and Scott topology in partially ordered sets II, Continuous lattices. Springer, Berlin, Heidelberg, (1981).

Let P be a poset.



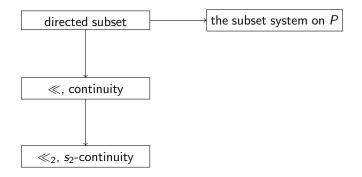
Definition [Wright]

A subset system on **POSET** is a function Z which assigns to each poset, a set Z(P) of subsets of P such that (1) $\{x\} \in Z(P)$ for any $x \in P$;

(2) if
$$f : P \to Q$$
 in **POSET** and $S \in Z(P)$, then $f(S) \in Z(Q)$.

J.B. Wright, E.G. Wagner, J.W. Thatcher, A uniform approach to inductive posets and inductive closure, *Theoretical Computer Science*, 7 (1978).

Let P be a poset.



Let P be a poset.

Definition [Baranga]

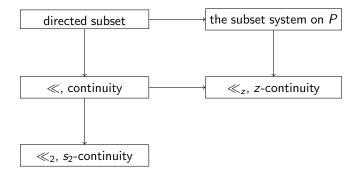
For any $x, y \in P$, we say $x \ll_Z y$ if for any $S \in Z(P)$ such that sup S exists, the relation $y \leq \sup S$ implies the existence of an element $s \in S$ with $x \leq s$.

Definition [Baranga]

P is called *Z*-continuous if for every $p \in P$, the set $\downarrow_Z p = \{x \in P, x \ll_Z p\} \in Z(P)$ and $p = \sup \downarrow_Z p$.

A. Baranga, Z-continuous posets, Journal of Pure and Applied Algebra, 30 (1983): 219-226.

Let P be a poset.



Let P be a poset.

Definition [Ruan, Xu]

For any $A, B \subseteq P$, A is called Z-way below B, denoted by $A \ll_Z B$, if for any $S \in Z(P), S^{\delta} \cap \uparrow B \neq \emptyset$ implies $S \cap \uparrow A \neq \emptyset$.

Specially, x is called Z-way below y, if for any $S \in Z(P)$, $y \in S^{\delta}$ implies that $x \in \downarrow S$, and we write $\downarrow_z x = \{y \in P, y \ll_z x\}$.

Let P be a poset.

Definition [Ruan, Xu]

For any $A, B \subseteq P$, A is called Z-way below B, denoted by $A \ll_Z B$, if for any $S \in Z(P), S^{\delta} \cap \uparrow B \neq \emptyset$ implies $S \cap \uparrow A \neq \emptyset$.

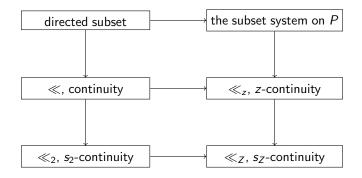
Specially, x is called Z-way below y, if for any $S \in Z(P)$, $y \in S^{\delta}$ implies that $x \in \downarrow S$, and we write $\downarrow_z x = \{y \in P, y \ll_z x\}$.

Definition [Ruan, Xu]

P is called a s_Z -continuous poset, if for any $x \in P$, $\downarrow_Z x \in I_Z(P) = \{\downarrow S : S \in Z(P)\}$ and $x \in (\downarrow_Z x)^{\delta}$.

X. Ruan, X. Xu, s_Z -quasicontinuous posets and meet s_Z -continuous posets, *Topology and its applications*, 230 (2017): 295-307.

Let P be a poset.



Motivation

Let P be a poset.

Definition[Ruan, Xu]

P is called meet s_{Z} -continuous if for all $x \in P$ and all $D \in Z(P)$ with $x \in D^{\delta}$, $x \in cl_{\sigma_{Z}(P)}(\downarrow x \cap \downarrow D)$.

Where $\sigma_Z(P)$ is the Z-Scott topology on P generated by the subbasic open subsets

$$\sigma^{Z}(P) = \{ U \subseteq P : \text{for all } S \in Z(P), S^{\delta} \cap U \neq \emptyset \Rightarrow S \cap U \neq \emptyset \}.$$

Motivation

Let P be a poset.

Definition[Ruan, Xu]

P is called meet s_{Z} -continuous if for all $x \in P$ and all $D \in Z(P)$ with $x \in D^{\delta}$, $x \in cl_{\sigma_{Z(P)}}(\downarrow x \cap \downarrow D)$.

Where $\sigma_Z(P)$ is the Z-Scott topology on P generated by the subbasic open subsets

$$\sigma^{Z}(P) = \{ U \subseteq P : \text{for all } S \in Z(P), S^{\delta} \cap U \neq \emptyset \Rightarrow S \cap U \neq \emptyset \}.$$

Definition[Ruan, Xu]

P is called an *s*_Z-quasicontinuous poset, if for all $p \in P$, { $\uparrow F : F \in \omega_Z(P)$ } $\in Z(\operatorname{Fin} P)$ and $\uparrow p = \bigcap {\uparrow F : F \in \omega_Z(P)}.$

Motivation

Let P be a poset.

Theorem[Ruan, Xu]

If Z is a Rudin subset system which possesses the finite family union property and M property and $\sigma^{Z}(P) = \sigma_{Z}(P)$, $\downarrow_{Z} x \in I_{Z}(P)$ for all $x \in P$. Then the following conditions are equivalent:

(1) P is s_Z -continuous.

(2) *P* is meet s_Z -continuous and s_Z -quasicontinuous.

Weak meet *s*_{*Z*}-continuous posets

Let P be a poset.

Definition[Ruan, Xu]

P is called weakly meet s_Z -continuous if for all $x \in P$ and all $D \in Z(P)$ with $x \in D^{\delta}$, we have $x \in cl_{\sigma^Z(P)}(\downarrow x \cap \downarrow D)$.

Proposition

Let *P* be a weakly meet s_Z -continuous poset. If for any $x, y \in P$, $x \nleq y$, there are $U \in \sigma^Z(P)$, $V \in \omega(P)$ such that $x \in U$, $y \in V$ and $U \cap V = \emptyset$, then *P* is weak s_Z -continuous.

Weak meet *s*_{*Z*}-continuous posets

Lemma[Ruan, Xu]

If P is an s_Z -continuous poset, then P is weakly meet s_Z -continuous.

Lemma[Xu]

Let Z be a Rudin subset system which possesses M property. If P is an s_Z -continuous poset, then P is s_Z -quasicontinuous.

X. Xu, M. Luo, Y. Huang, Quasi Z-continuous domains and Z-meet continuous domains, Acta Mathematica Sinica. Chinese Series, 48 (2005): 221-234.

Weak meet s_Z -continuous posets

Theorem

Let P be a poset and Z a Rudin subset system which possesses the finite family union property and M property. If $\downarrow_Z x \in I_Z(P)$ for each $x \in P$, then the following conditions are equivalent:

(1) P is s_Z -continuous;

(2) P is weakly meet s_Z -continuous and s_Z -quasicontinuous;

(3) P is weakly meet s_Z -continuous, and for any $x \leq y$ in P, there are $U \in \sigma^Z(P)$, $V \in \omega(P)$ such that $x \in U$, $y \in V$ and $U \cap V = \emptyset$.

 $\Gamma_Z(P)$ denotes the family consists of all closed subsets of the Z-Scott topology on P, generated by the subbasic closed subsets

 $\Gamma^{Z}(P) = \{A \subseteq P : \text{for all } S \in Z(P), S \subseteq A \Rightarrow S^{\delta} \subseteq A\}.$

 $\Gamma_Z(P)$ denotes the family consists of all closed subsets of the Z-Scott topology on P, generated by the subbasic closed subsets

 $\Gamma^{Z}(P) = \{A \subseteq P : \text{for all } S \in Z(P), S \subseteq A \Rightarrow S^{\delta} \subseteq A\}.$

Definition

Let *P* be a poset. The *Z*-Scott topology on *P* is called lower hereditary if for each closed subbasis *A* of *P*, the *Z*-Scott topology of poset *A* is precisely generated by the subbasic closed subsets of the form $B \cap A$, where $B \in \Gamma^{Z}(P)$, that is, $\Gamma^{Z}(A) = \{B \cap A : B \in \Gamma^{Z}(P)\}$.

Lemma

Let P be a poset and Z a subset hereditary subset system. Consider the following conditions:

(1) The Z-Scott topology on P is lower hereditary.

(2) For any
$$x \in P$$
 and $D \in Z(\downarrow x)$, $D^{\delta}|_{x} = D^{\delta}$.

(3) For any $D \in Z(P)$, D^u is filtered.

Then we have $(3) \Rightarrow (1) \Leftrightarrow (2)$.

Lemma

Let P be a poset and Z a subset hereditary subset system. Consider the following conditions:

(1) The Z-Scott topology on P is lower hereditary.

(2) For any
$$x \in P$$
 and $D \in Z(\downarrow x)$, $D^{\delta}|_{x} = D^{\delta}$.

(3) For any $D \in Z(P)$, D^u is filtered.

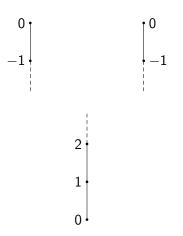
Then we have $(3) \Rightarrow (1) \Leftrightarrow (2)$.

Corollary

Every zcpo P has a lower hereditary Z-Scott topology.

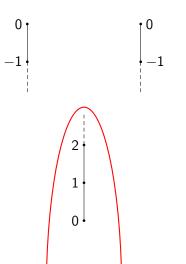
Note: The above three conditions are not equivalent.

Example:



Note: The above three conditions are not equivalent.

Example:



Theorem

Let P be a poset with a lower hereditary Z-Scott topology and Z be subset hereditary. Then the following conditions are equivalent:

(1) *P* is s_Z -continuous and $\downarrow_Z^x y \in Z(\downarrow x)$ for any $x \in P$ and $y \in \downarrow x$;

(2) $\downarrow x$ is s_Z -continuous and $\downarrow_Z x \in Z(P)$ for any $x \in P$.

Let \mathbf{POS}_d denote the category which consists of posets and Scott continuous mappings and $\Gamma(P)$ be the set of all Scott closed subsets of the poset P.

Let \mathbf{POS}_d denote the category which consists of posets and Scott continuous mappings and $\Gamma(P)$ be the set of all Scott closed subsets of the poset P.

Problem

Which subcategories of \mathbf{POS}_d are Γ -faithful?

Theorem [Ho, Zhao]

Let P and Q be complete semilattices. The following statements are equivalent:

(i)
$$P \cong Q$$
.
(ii) $\Gamma(P) \cong \Gamma(Q)$.

W. Ho, D. Zhao, Lattices of Scott-closed sets, Commentationes Mathematicae Universitatis Carolinae, 50 (2009).

Definition [Ho, Zhao]

Let P be a poset and $x, y \in P$.

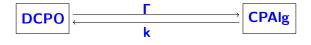
- (1) We say that x is beneath y, denoted by $x \prec y$, if for every nonempty Scott closed set $C \subseteq P$ for which sup C exists, $y \leq \sup C$ implies that $x \in C$.
- (2) *P* is said to be *C*-prealgebraic if for each $a \in P$,

$$a = \sup\{x \in k(P), x \leq a\},\$$

where $k(P) = \{x \in P, x \prec x\}.$

Let **CPAIg** be the category whose objects are *C*-prealgebraic lattices and morphisms the lower adjoints which preserve the relation \prec .

Let **CPAIg** be the category whose objects are C-prealgebraic lattices and morphisms the lower adjoints which preserve the relation \prec .



$POSET_{\delta}$

Definition

Let P, Q be two posets. A mapping $f : P \to Q$ is called σ^{Z} continuous if for any $A \in \Gamma^{Z}(Q)$, $f^{-1}(A) \in \Gamma^{Z}(P)$.

POSET_δ

Definition

Let P, Q be two posets. A mapping $f : P \to Q$ is called σ^{Z} continuous if for any $A \in \Gamma^{Z}(Q)$, $f^{-1}(A) \in \Gamma^{Z}(P)$.

Let **POSET**_{δ} denote the category whose objects are all posets and morphisms are σ^{Z} -continuous mappings.

$\delta_z PALG$

Definition

Let P be a poset and x, y ∈ P.
(1) x is called Z-beneath y, denoted by x ≺_Z y, if for any A ∈ Γ^Z(P) with y ∈ A^δ, x ∈ A.
(2) P is called δ_Z-prealgebraic if for each x ∈ P, x ∈ {y ∈ k_Z(P) : y ≤ x}^δ, where k_Z(P) = {a ∈ P : a is Z-compact, i.e., a ≺_Z a}.

$\delta_{\mathsf{Z}}\mathsf{PALG}$

Definition

Let P be a poset and x, y ∈ P.
(1) x is called Z-beneath y, denoted by x ≺_Z y, if for any A ∈ Γ^Z(P) with y ∈ A^δ, x ∈ A.
(2) P is called δ_Z-prealgebraic if for each x ∈ P, x ∈ {y ∈ k_Z(P) : y ≤ x}^δ, where k_Z(P) = {a ∈ P : a is Z-compact, i.e., a ≺_Z a}.

Call a δ_Z -prealgebraic complete lattice δ_Z -prealgebraic lattice for short. Clearly, $\Gamma^Z(P)$ is a δ_Z -prealgebraic lattice for any poset P.

$\delta_{\mathsf{Z}}\mathsf{PALG}$

Definition

Let P be a poset and x, y ∈ P.
(1) x is called Z-beneath y, denoted by x ≺_Z y, if for any A ∈ Γ^Z(P) with y ∈ A^δ, x ∈ A.
(2) P is called δ_Z-prealgebraic if for each x ∈ P, x ∈ {y ∈ k_Z(P) : y ≤ x}^δ, where k_Z(P) = {a ∈ P : a is Z-compact, i.e., a ≺_Z a}.

Call a δ_Z -prealgebraic complete lattice δ_Z -prealgebraic lattice for short. Clearly, $\Gamma^Z(P)$ is a δ_Z -prealgebraic lattice for any poset P.

Denote by $\delta_{\mathbf{Z}}$ **PALG** the category which has all $\delta_{\mathbf{Z}}$ -prealgebraic lattices as objects and maps that have an upper adjoint and preserve the relation $\prec_{\mathbf{Z}}$ as morphisms.

CONTENTS BACKGROUND AND

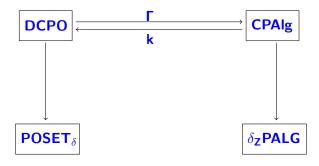
(ground and Motivation

VEAK MEET 57-CONTINUOUS POSETS

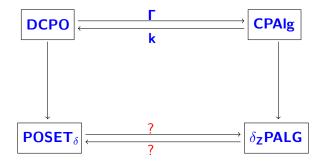
Posets with lower hereditary Z-Scott topology

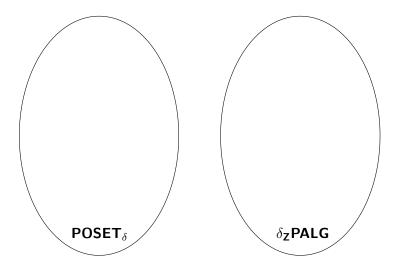
A monad on $POSET_{\delta}$

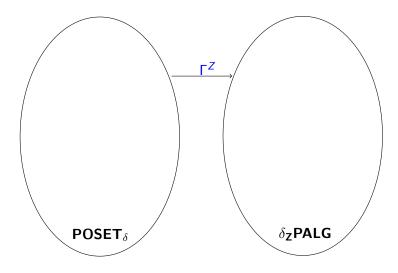
Motivation



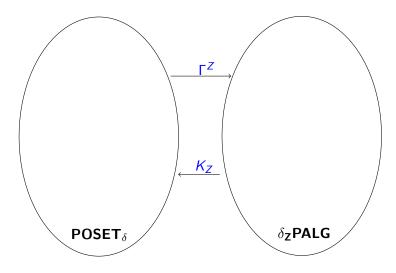
Motivation

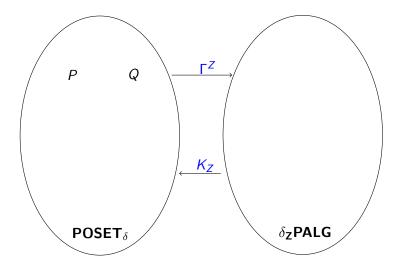


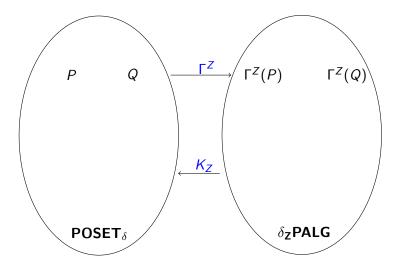




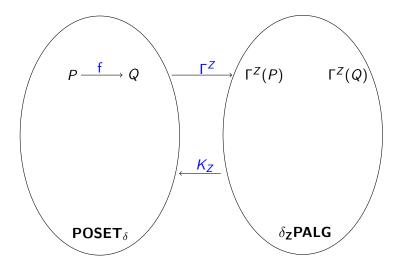
Construct a pair of adjoints between **POSET** $_{\delta}$ and δ_{z} **PALG**

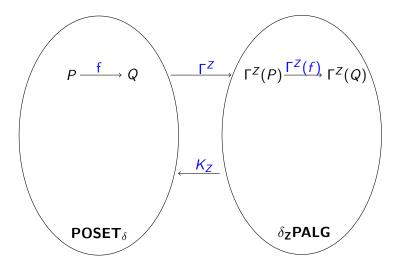




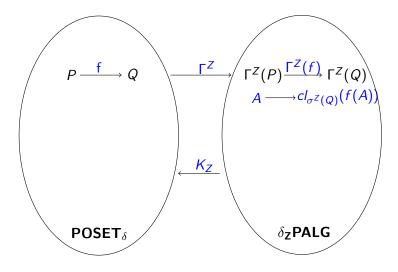


Construct a pair of adjoints between **POSET** $_{\delta}$ and δ_{z} **PALG**





Construct a pair of adjoints between **POSET** $_{\delta}$ and δ_{z} **PALG**



Lemma

Let (g, d) be a Galois connection between two posets P and Q, where $g : P \to Q$, $d : Q \to P$. If for any $A \in \Gamma^{Z}(P)$, $g(A^{\delta}) \subseteq g(A)^{\delta}$, then d preserves the relation \prec_{Z} .

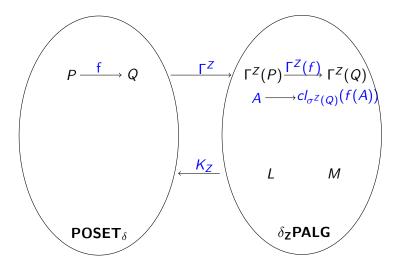
Lemma

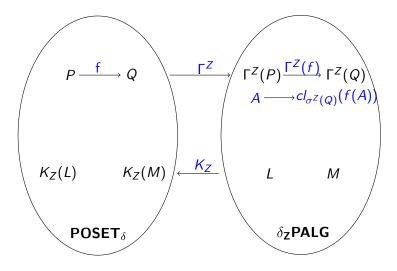
Let (g, d) be a Galois connection between two posets P and Q, where $g : P \to Q$, $d : Q \to P$. If for any $A \in \Gamma^{Z}(P)$, $g(A^{\delta}) \subseteq g(A)^{\delta}$, then d preserves the relation \prec_{Z} .

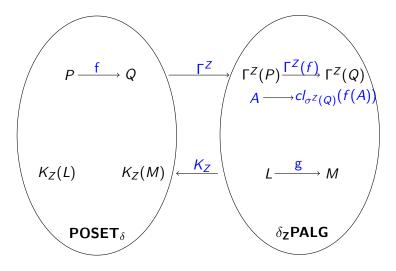
 $\Gamma^{Z}(f)$ has an upper adjoint

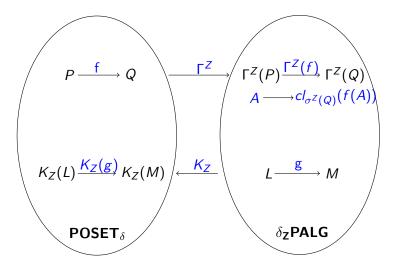
$$h: \Gamma^{Z}(Q) \rightarrow \Gamma^{Z}(P): C \longmapsto f^{-1}(C),$$

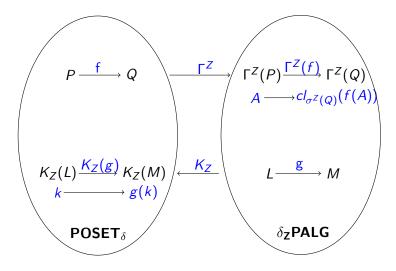
and $h(C^{\delta}) \subseteq h(C)^{\delta}$ for each $C \in \Gamma^{Z}(Q)$ holds.











$K_Z(g)$ is σ^Z -continuous

$\mathcal{K}_Z(g)$ is σ^Z -continuous \uparrow $\forall D \in Z(k_Z(L)), \ \mathcal{K}_Z(f)(D^{\delta} \mid_{k_Z(L)}) \subseteq (\mathcal{K}_Z(f)(D))^{\delta} \mid_{k_Z(M)}$

A MONAD ON $POSET_{\delta}$

Construct a pair of adjoints between \textbf{POSET}_{δ} and $\delta_{\textbf{Z}}\textbf{PALG}$

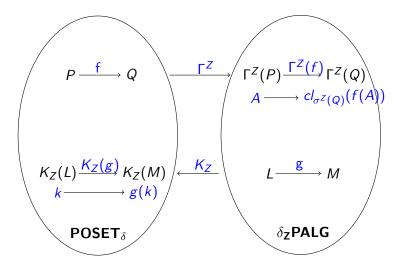
Lemma

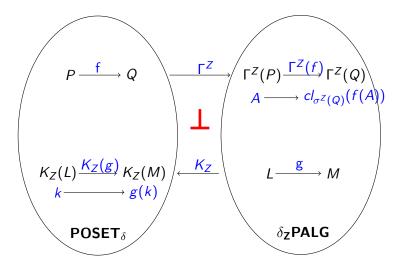
If L is a zcpo, then $k_Z(L)$ is also a zcpo.

 $\mathcal{K}_Z(g)$ is σ^Z -continuous

 $\forall D \in Z(k_Z(L)), \ K_Z(f)(D^{\delta} \mid_{k_Z(L)}) \subseteq (K_Z(f)(D))^{\delta} \mid_{k_Z(M)}$ \uparrow $K_Z(f)(\downarrow_{k_Z(L)} \sup_{k_Z(L)} D) \subseteq \downarrow_{k_Z(M)} \sup_{k_Z(M)} K_Z(f)(D)$

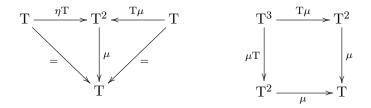
 $K_Z(g)$ is σ^Z -continuous ≙ $\forall D \in Z(k_Z(L)), \ K_Z(f)(D^{\delta}|_{k_Z(L)}) \subseteq (K_Z(f)(D))^{\delta}|_{k_Z(M)}$ ≙ $K_Z(f)(\downarrow_{k_Z(L)} \sup_{k_Z(L)} D) \subseteq \downarrow_{k_Z(M)} \sup_{k_Z(M)} K_Z(f)(D)$ ≙ $K_Z(f)(\downarrow \sup D \cap k_Z(L)) \subseteq \downarrow \sup K_Z(f)(D) \cap k_Z(M)$





Monad

A monad on a category \mathcal{A} is a triple $\mathbf{T} = (T, \eta, \mu)$ consists of a functor $T : \mathcal{A} \to \mathcal{A}$, together with two natural transformations $\eta : id \to T$ and $\mu : T^2 \to T$ for which the following diagrams commute:



The relation between monad and adjoints

Proposition

Let $U : \mathcal{B} \to \mathcal{A}$ and $F : \mathcal{A} \to \mathcal{B}$ be functors such that $F \dashv U$ with $\eta : id \to UF$ and $\epsilon : FU \to id$ the unit and counit, respectively. Then $(UF, \eta, U\epsilon F)$ is a monad on \mathcal{A} .

A monad on \textbf{POSET}_{δ}

Theorem

The endofunctor $\delta = K_Z \circ \Gamma^Z$ together with two natural transformation $\eta : id \to \delta$ and $\mu = \Gamma^Z \epsilon K_Z : \delta^2 \to \delta$ is a monad on the category **POSET** $_{\delta}$. More precisely, for each $P \in \textbf{POSET}_{\delta}$, $\eta_P : P \to \delta(P)$ and $\mu_P : \delta^2(P) \to \delta(P)$ are defined as:

 $\forall p \in P, \eta(p) = \downarrow p,$

$$orall \mathcal{A} \in \delta^2(\mathcal{P}), \mu(\mathcal{A}) = \sup \mathcal{A},$$

respectively.

Characterize the Eilenberg-Moore algebra of the monad $\boldsymbol{\delta}$

We call the poset $P \ \delta cpo$ if for each $A \in \delta(P)$, sup A exists.

Theorem

There exists a structure map $\xi : \delta(P) \to P$ in **POSET**_{δ} such that (P, ξ) is an *Eilenberg-Moore* algebra of the monad (δ, η, μ) if and only if P is a δcpo .

The Eilenberg-Moore algebra

Definition

Let $\mathbf{T} = (T, \eta, \mu)$ be a monad. A **T-algebra** of the monad **T** over the category C is an object A (the *underlying object*) together with an arrow α : TA \rightarrow A (the *structure mapping*) satisfying the following conditions:

(Associativity) $\alpha \circ \mu_A = \alpha \circ T\alpha$, (Unit law) $\alpha \circ \eta_A = id_A$.

Thank you !