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1. Introduction

The results presented here are obtained by a

joint work with D. N. Georgiou, A. C. Megaritis

and F. Sereti.

A.V. Arhangelskii introduced the dimension Dind

and some properties of this dimension have

been studied by several authors, say W. Kulpa

(1971/72) and V. Chatyrko and B. Pasynkov

(2002) for normal Hausdorff spaces.

In this talk, we will consider on the relations

between Dind and the fundamental dimensions

ind, Ind and dim for finite T0-spaces.

Several open questions for further investiga-

tions on Dind in the classes of Alexandroff and

finite spaces are also asked.



2. Preliminaries

First, we remind the fundamental concepts of

dimension of topological spaces.

Definition 1 The covering dimension of a topo-

logical space X, denoted by dimX, is defined

as follows:

1. dimX = −1 iff X = ∅.

2. For k ∈ {0,1, . . .}, dimX ⩽ k if for every

finite open cover U of X, there exists a

finite open cover V of X such that V is

a refinement of U and ord(V) ⩽ k, where

ord(V) ≤ k if |{V ∈ V : x ∈ V }| ≤ k + 1 for

every x ∈ X.

Definition 2 The small inductive dimension of

a topological space X, denoted by indX, is

defined as follows:



1. indX = −1 iff X = ∅.

2. For k ∈ {0,1, . . .}, indX ⩽ k if for every

point x ∈ X and for every nbd U of x, there

exists a nbd V of x such that V ⊂ U and

indBdV ⩽ k − 1.

Definition 3 The large inductive dimension of

a topological space X, denoted by IndX, is

defined as follows:

1. IndX = −1 iff X = ∅.

2. For k ∈ {0,1, . . .}, IndX ⩽ k if for every

closed set F of X and for every open set U

of X with F ⊂ U , there exists an open set

V of X such that F ⊂ V ⊂ U and IndBdV ⩽
k − 1.



A. V. Arhangelskii introduced the dimension

Dind.

Definition 4 The dimension Dind is defined

as follows:

1. DindX = −1 iff X = ∅.

2. DindX ⩽ k, where k ∈ {0,1, . . .}, if for

any finite open cover U of X there ex-

ists a finite family V of pairwise disjoint

open subsets of X such that V ≺ U and

Dind (X \
∪
{V : V ∈ V}) ⩽ k − 1.



3. Fundamental properties on Dind for fi-

nite T0-spaces

We begin with some fundamental properties

on Dind for finite T0-spaces.

Proposition 1 Let X be a finite T0-space and

A a closed subset of X. Then we have

DindA ⩽ DindX.

Proposition 2 Let X be a finite T0-space and

Ux the minimal nbd of x for each x ∈ X. Then

DindX ⩽ k iff there exists a family {Vi}mi=1 of

open sets of X such that:

(1) {Vi}mi=1 ≺ {Ux : x ∈ X},

(2) Vi ∩ Vj = ∅ if i ̸= j and

(3) Dind (X \
∪m
i=1 Vi) ⩽ k − 1. □



Proposition 3 If X is the sum ⊕s∈SXs of finite

T0-spaces Xs, s ∈ S, then we have that

DindX = sup{DindXs : s ∈ S}.

We show the following theorem by use of the

above Propositions 1-3.

Theorem 1 For every k ∈ {0,1, . . .}, there ex-

ists a finite T0-space X such that DindX = k.

Proof. We shall prove the theorem by induc-

tion on k. Let X0 be a one point space. Then

DindX0 = 0. (Moreover, for every discrete

finite space X we have DindX = 0.)

Let k ≥ 1, we assume that there exists a finite

T0-space (Y0, τY0) such that Dind (Y0) = k− 1.



We consider the space X = {w}∪Y0∪Y1, where
(Y1, τY1) is a space which is homeomorphic to
(Y0, τY0), Y0 ∩ Y1 = ∅ and w /∈ Y0 ∪ Y1. We
consider the topology τ on X, which has as a
basis the family

β = {∅}∪{{w}∪U : U ∈ τY0}∪{{w}∪U : U ∈ τY1}.

We have that Uw = {w}, Uy = {w} ∪ Ui
y for

y ∈ Yi, where Ui
y is the minimal nbd of y ∈ Yi

in Yi for i = 0,1.

We shall show that DindX = k.

We observe that a family V of pairwise disjoint
open subsets of X which refines the family of
minimal open nbds are exactly one of the fol-
lowing three cases:

1. V = {{w}},

2. V = {{w} ∪U0
y} for y ∈ Y0, and



3. V = {{w} ∪U1
y} for y ∈ Y1.

For the first case, by Proposition 3, we have

Dind (X \ {w}) = Dind (Y0 ⊕ Y1)

= max{Dind (Y0),Dind (Y1)}
= k − 1.

For the second case, by Proposition 1, we have

that for every U0
y ∈ τY0,

k − 1 = Dind (Y1) = Dind (X \ ({w} ∪ Y0)) ⩽
Dind (X \ ({w}∪U0

x)) ⩽ Dind (X \ {w}) = k−1.

Similarly, for every U1
x ∈ τY1, we have that

Dind (X \({w}∪U1
x)) = k−1. Thus, by Propo-

sition 2, we have that DindX = k. □



We recall that a pairwise disjoint cover U of X

is called a partition of X.

The notion of the partition gives the follow-

ing characterization of zero dimensional spaces

with respect to Dind.

Proposition 4 DindX = 0 iff there exists a

partition of X consisting of minimal open nbds.

□



4. Relations between Dind and other di-

mensions for finite T0-spaces

We study relations between the dimension Dind

and the dimensions Ind, ind and dim.

First, we notice that for any Alexandroff space

X, we have

1. R. Berghammer and M. Winter showed that

IndX ≤ indX holds ( [2019]).

2. D. W. Bass showed that IndX ≤ dimX

holds ( [1969]).

Lemma 1 Let X be a finite T0-space. Then

there exists a cover {Ux1, . . . ,Uxs} of X con-

sisting of minimal open nbds such that for each

k ∈ {1, . . . , s}, there exists a closed subset Fk

of X such that xk ∈ Fk and UFk
= Uxk, where

UFk
is the smallest open set containing Fk.



Theorem 2 For a finite T0-space X, we have

DindX ⩽ IndX.

Proof. We shall prove the theorem by induc-

tion on IndX = n.

Let n = 0. Then by Lemma 1, there ex-

ists a cover C = {Ux1, . . . ,Uxs} of X consist-

ing of minimal open nbds such that for each

k ∈ {1, . . . , s}, there exists a closed subset Fk

of X such that xk ∈ Fk and UFk
= Uxk. Since

IndX = 0, we have BdUxk = ∅ for each k ∈
{1, . . . , s}.

Then we may assume that Uxj ∩ Uxk = ∅ for

each j ̸= k ∈ {1, . . . , s}.

Indeed, let Uxj∩Uxk ̸= ∅. Then xj ∈ ClUxk and

xk ∈ ClUxj. Now, we suppose that xj /∈ Uxk,

then xj ∈ BdUxk, a contradiction.



Thus xj ∈ Uxk, and hence Uxj ⊂ Uxk. Similarly,

we have that Uxk ⊂ Uxj. Therefore, Uxj =

Uxk.

Let C′ = C − {Uxk}. We continue the similar

process, we can have a partition C∗ of X by

minimal open nbds of X. Hence, we have that

DindX = 0.

Let n ≥ 1, and we assume that the theorem is

true for all finite T0-spaces with IndY ⩽ n− 1.

Let IndX = n. We shall prove that DindX ⩽ n.

It suffices to construct a family V of open sets

of X which satifies the conditions (1)-(3) of

Proposition 2.



By Lemma 1, there exists a cover

C = {Ux1, . . . ,Uxs}

of X consisting of minimal open nbds such that

for each k ∈ {1, . . . , s}, there exists a closed

subset Fk of X such that xk ∈ Fk and UFk
=

Uxk. We consider the family V = {V1, . . . , Vs}
of pairwise disjoint open subsets of X, where

V1 = Ux1 \
(
ClUx2 ∪ . . . ∪ClUxs)

)
,

V2 = Ux2 \
(
ClUx3) ∪ . . . ∪ClUxs

)
,

...

Vs = Uxs.

Then V ≺ C. We prove that

X \ (V1 ∪ . . . ∪ Vs) ⊆
s∪

k=1

BdUxk.



Let x ∈ X \(V1 ∪ . . . ∪ Vs). Since C is a cover of
X, there is k ∈ {1, . . . , s−1} such that x ∈ Uxk.
Let

k0 = max{k : x ∈ Uxk}.

Then, we have that x ∈ ClUxk0+1 ∪ . . .∪ClUxs

(otherwise, x ∈ Vk0). Hence, x ∈ ClUxℓ \Uxℓ =
BdUxℓ for some ℓ > k0.

By subspace theorem for Ind, we have

Ind (X \ (V1 ∪ . . . ∪ Vs)) ⩽ Ind (
s∪

k=1

BdUxk).

Since IndX = n,

IndBdUxk = IndBdUFk
⩽ n− 1,

k = 1, . . . , s, and therefore, we have

Ind (
s∪

k=1

BdUxk) ⩽ n− 1.

Hence, by inductive assumption, we conclude
that

Dind (X \ (V1 ∪ . . . ∪ Vs)) ⩽ n− 1.



Thus, by Proposition 2, DindX ⩽ n. □

The following is a direct consequence of the

results presented above and Theorem 2.

Corollary 1 Let X be a finite T0-space. Then

we have that

DindX ⩽ indX and Dind (X) ⩽ dimX.

We shall find a finite T0-space X for which the

converse of Theorem 2 does not hold.

Example 1 For each natural number n ⩾ 1

there is a finite T0-space Xn such that

DindXn = 1 and IndXn = indXn = n.



Proof. Let n ⩾ 1 be a natural number, and

Xn = {x0, x1, . . . , x2n−1, x2n}.

We induce a topology on Xn by defining the

minimal nbd Ui of a point xi ∈ Xn for each

i = 0,1,2, . . . ,2n− 1,2n. Let

U0 = {x0},U1 = {x0, x1} and U2 = {x0, x2}.

Let i be a natural number with 1 ⩽ i ⩽ n − 1,

and we suppose that U2i−1 and U2i are de-

fined. Then we define

U2i+1 = U2i−1 ∪ {x2i+1}

and

U2i+2 = U2i−1 ∪ {x2i+2}.

It is obvious that Xn is a finite T0-space.



Since Xn \ U2n−1 = {x2, x4, . . . , x2n} is a dis-

crete subspace of Xn, we have Dind (Xn\U2n−1) =

0. Thus we have Dind (Xn) ⩽ 1.

On the other hand, since every nbd of a point

in Xn contains x0, every disjoint family of the

minimal nbds is a singleton. Obviously, Uk ̸=
Xn for each k with 0 ⩽ k ⩽ 2n. Hence, we have

that DindXn ⩾ 1 and hence DindXn = 1.

Next, we show that IndXn = n.

(1) We show that IndXn ⩾ n by induction on

n.

Let n = 1. Then F = {x2} be a closed set

of X1 = {x0, x1, x2}, and U2 = {x0, x2} is the

minimal open set containing F . It follows that

BdU2 = {x1} and Ind (BdU2) = 0. Hence

IndX1 ⩾ 1.



Let n ⩾ 2 and we suppose that IndXn−1 ⩾
n−1. We consider on the closed set F = {x2}
of Xn. Then U2 = {x0, x2} is the minimal open
set containing F . It follows that BdU2 = Xn \
{x0, x2} = {x1, x3, x4, . . . , x2n−1, x2n} is home-
morphic to Xn−1. Hence, by the inductive as-
sumption, we have that Ind(BdU2) ⩾ n − 1.
Hence indXn ≥ IndXn ⩾ n.

(2) Next, we show that indXn ⩽ n by induction
on n.

To show that indX1 ⩽ 1, let U be a non-empty
open set of X1. Since x0 ∈ U , it follows that
BdU ⊆ {x1, x2}. Since {x1, x2} is discrete, we
have indBdU ≤ 0. Thus, indX1 ⩽ 1.

Let n ≥ 2 and we suppose that indXn−1 ⩽
n − 1. Let U be a non-empty open set of
Xn. Since x0 ∈ U , it follows that BdU ⊆
{x1, x2, . . . , x2n−1, x2n}. We put

Y = {x1, x2, . . . , x2n−1, x2n}.



Since {x2} is an isolated point of Y , Y is a dis-

joint sum of {x2} and {x1, x3, x4, . . . , x2n−1, x2n}.
It is easy to show that {x1, x3, x4, . . . , x2n−1, x2n}
is homeomorphic to Xn−1. Thus, we have that

ind {x1, x3, x4, . . . , x2n−1, x2n} ⩽ n− 1.

Hence indY ⩽ n − 1, and thus ind (BdU) ⩽
n− 1. Therefore, IndXn ≤ indXn ⩽ n. □

Furthermore, we can extend Example 1 as fol-

lows.

Example 2 For each pair of natural numbers

m ⩽ n, there is a finite T0-space Xmn such that

DindXmn = m and IndXmn = indXmn = n.

In order to construct the space of Example 2,

we need a further consideration on the proof

of Theorem 1.



Lemma 2 Let Y0 and Y1 be finite T0-spaces

with Y0 ∩ Y1 = ∅ and X = {w} ∪ Y0 ∪ Y1 be

the space described in the proof of Theorem

1. Then we have the following:

(1) max{DindY0,DindY1} ≤ DindX

≤ max{DindY0,DindY1}+1, and

if DindY0 = DindY1, then

DindX = DindY0 +1.

(2) indX = max{indY0, indY1}+1.

(3) IndX = max{IndY0, IndY1}+1.

Proof. (1) Since Y0 and Y1 are closed in X, it

is clear that max{DindY0,DindY1} ⩽ DindX.



Further, we can show that

DindX ≤ max{DindY0,DindY1}+1

by a similar argument in the proof of Theorem

1.

Now, we suppose that DindY0 = DindY1 = m

and we will show that Dind (X \
∪
V) ⩾ m for

every family V of open sets of X which satisfies

the conditions (1)-(3) in Proposition 2.

Since every non-empty open set of X contains

the point w, we can assume that V = {Ux},
where Ux is the minimal nbd of some point

x ∈ X.

Case 1. x = w. We notice that V = {Uw} =

{w}. Since X \{w} is a topological sum Y0⊕Y1,

it follows from Proposition 3 that Dind (X \
{w}) = m.



Case 2. x ∈ Y0. We notice that X \ Ux ⊇ Y1.

Hence, Dind (X \Ux) ⩾ DindY1 = m.

Case 3. x ∈ Y1. As exactly the same as Case

2, we can show that Dind (X \Ux) ⩾ m.

It follows that DindX ⩾ m + 1, and hence

DindX = m+1.

(2) Let m = max{indY0, indY1}. Notice that

{w} is the minimal nbd of w in X and BdX{w} =

Y0∪Y1 is a topological sum of Y0 and Y1. Then

indBdX{w} = m. Hence indwX = m + 1, and

hence indX ≥ m+1.

Next, we take a point y in Y0. Let U0
y be the

minimal nbd of y in Y0. Then Uy = {w}∪U0
y is

the minimal nbd of y in X. Since BdX(Uy) ⊆
Y0 ∪ Y1, it follows that

ind (BdX(Uy)) ⩽ ind(Y0 ∪ Y1) = m.



Hence indyX ⩽ m+1. Similarly, we have that

indyX ⩽ m+1

for each y ∈ Y1.

It follows that indX = m+1.

(3) Let max{IndY0, IndY1} = m, F be a closed

set of X and U an open set of X such that

F ⊆ U . Since every non-empty open set of X

contains w, we have that w /∈ BdXU . Hence,

BdXU ⊆ Y0 ∪ Y1, and Y0 ∪ Y1 is a topological

sum of Y0 and Y1. Hence, IndBdX(U) ≤ m,

and hence IndX ⩽ m+1.

We will show that IndX ⩾ m+1.

Let IndY1 = m, F = Y0 and U = {w} ∪ Y0.

Then F is a closed set of X and U is an open

set of X with F ⊆ U . We notice that U is the

minimal nbd of F .



It is easy to show that BdX(U) = Y1, and

hence Ind(BdX(U)) = IndY1 = m. Hence IndX ⩾
m+1, and thus, IndX = m+1. □

Remark 1 We notice that Lemma 2 does not

hold for dim, i.e.,

dimX ̸= max{dimY0,dimY1}+1.

In fact, let Y = {1,2} be the two points set

with the discrete topology and X = {w} ∪ Y0 ∪
Y1. Then dimY = 0, but since every minimal

nbd contains the point w, we have that

dimX = 3 > max{dimY0,dimY1}+1 = 1.□

The following is a direct consequence of The-

orem 1 and Lemma 2.

Corollary 2 For each natural number n, there

is a finite T0-space Xn such that

DindXn = indXn = IndXn = n.



Proof. Let n be a natural number. By Theo-

rem 1, there is a finite T0-space Yn such that

DindYn = n.

By use of Lemma 2, we have a finite T0-space

Zn such that DindXn ≤ indXn = IndXn = n.

Then, Xn = Yn ⊕ Zn is desired. □

Proof of Example 2. Let m,n be natural

numbers with m ⩽ n. By Example 1, there is

a finite T0-space Xn such that

DindXn = 1 and IndXn = indXn = n.

On the other hand, by Corollary 2, we have a

finite T0-space Xm such that

DindXm = IndXm = indXm = m.

Then

Ymn = Xm ⊕Xn

is desired. □



As we mentioned above, we have that DindX ⩽
dimX. Similar to Example 2, we have the fol-

lowing.

Example 3 For each pair of natural numbers

m ⩽ n, there is a finite T0-space Zmn such that

DindZmn = m and dimZmn = n.

To show Example 3, we need one more con-

struction of spaces.

Let Y be a finite T0-space and Y0 and Y1 copies

of Y with Y0 ∩ Y1 = ∅. Let w be a point with

w /∈ Y0 ∩ Y1. We put X = {w} ∪ Y0 ∪ Y1 and we

induce a topology τ on X defining the minimal

nbd Ux for x ∈ X as follows:



Let Uw = {w} ∪ Y1. For each y ∈ Y , we de-

note copies of y in Y0 and Y1 by y0 and y1,

respectively. For each y ∈ Y , let

Uy0 = U0
y ∪U1

y and Uy1 = U1
y ,

where Ui
y is the minimal nbd of yi in Yi for

i = 0,1. Then X is a finite T0-space, and we

say that X is the finite T0-space constructed

by a base space Y .

Then, we have the following.

Proposition 5 Let Y be a finite T0-space and

X the finite T0-space constructed by a base

space Y . Then we have that

d(X) = d(Y ) + 1,

where d is any of the dimensions Dind , dim,

ind and Ind.



Proof (1) First, we show that

DindX = DindY +1.

Let V = {Uw} = {{w}∪Y1}. Then X\
∪
V = Y0.

Hence,

Dind (X \
∪

V) = DindY0 = DindY,

and hence, by Proposition 2, we have

DindX ⩽ DindY +1.

Next, we show that DindX ⩾ DindY + 1 by

induction on DindY .

If DindY = −1, then X = {w} and hence

DindX = 0.



Let n ⩾ 0 and we assume the proposition holds

for every finite T0-space X constructed by a

base space Y with DindY ⩽ n− 1.

Let X be the space constructed by a base

space Y with DindY = n.

Let V be a disjoint family of X consisting of

the minimal nbds in X.

(i) If Uw ∈ V, then it follows that V = {Uw}.
Hence, we have that

Dind (X \
∪

V) = DindY0 = DindY = n.

(ii) If Uw /∈ V, then for i = 0,1, we put

Vi = {V ∈ V :

V is the minimal nbd of a point in Yi}.



Then V = V0∪V1. For each V ∈ V1 there is y ∈
Y such that V = U1

y . We put W (V ) = V ∪U0
y .

Then W (V ) is the minimal nbd of y0 in X and

W (V ) ∩ V ′ = ∅ for each V ′ ∈ V \ {V }. Hence

V ′ = V0 ∪ {W (V ) : V ∈ V1}

is a disjoint family by the minimal nbds of

points in Y0, and
∪
V ⊂

∪
V ′. Thus, we may

assume that V = V0.

Then X \
∪
V = {w} ∪ Y ′

0 ∪ Y ′
1, where Y ′

0 and

Y ′
1 are copies of a subspace Y ′ ⊂ Y in Y0 and

Y1, respectively. Hence X \
∪
V can be con-

sidered as the finite T0-space constructed by a

base space Y ′. Since Y ′ is a complement of a

union of a disjoint family of open sets of Y and

DindY = n, it follows that DindY ′ ⩾ n− 1.

If DindY ′ = n − 1, then by the inductive as-

sumption, we have

Dind (X \
∪
V) ⩾ DindY ′ +1 ⩾ (n− 1)+1 = n.



If DindY ′ = n, then

Dind (X \
∪
V) ⩾ DindY ′

0 = DindY ′ = n.

Hence, we have that DindX ⩾ n+1, and hence

DindX = DindY +1.

(2) Second, we show dimX = dimY +1.

Let dimY = n.

First, we show that dimX ⩽ n+1.

Let V be a finite open cover of X. There is

Vw ∈ V such that w ∈ Vw. Since, {w} ∪ Y1 ⊂
Vw, we may assume that for each V ∈ V with

V ̸= Vw, V is the minimal nbd of a point of Y0.

Since {V ∩ Y0 : V ∈ V} is a finite open cover of

Y0 and Y0 is homeomorphic to Y , there is an

open refinement W of {V ∩ Y0 : V ∈ V} such

that ord(W) ⩽ n.



For each W ∈ W we put

WX = W ∪W1,

where W1 is a copy of W in Y1, and

WX = {Uw} ∪ {WX : W ∈ W}.

It is easy to see that WX is a refinement of V,
and ord(WX) = ord(W) + 1 ⩽ n + 1. Hence

dimX ⩽ n+1.

Next, we show that dimX ⩾ n + 1. Since

dimY = n, there is a finite open cover V of

Y such that ord(W) ⩾ n for each open refine-

ment W of V. We put

VX = {Uw} ∪ {V 0 ∪ V 1 : V ∈ V},

where V i is a copy of V in Yi for i = 0,1. Let

WX be an open refinement of VX. There is

Ww ∈ WX such that w ∈ Ww. Then Ww = Uw

and hence Ww ∩ Y0 = ∅.



It follows that {W ∩ Y0 : W ∈ WX \ {Ww}} is

an open cover of Y0 and refines {V 0 : V ∈ V}.
Hence

ord{W ∩ Y0 : W ∈ WX \ {Ww}} ⩾ n.

Since W ∩ Ww = W ∩ Uw ̸= ∅ for each non-

empty element W ∈ WX, it follows that ord(WX) ⩾
n+1. Hence dimX ⩾ n+1.

(3) Third, we show indX = indY +1.

We show the equality by induction on indY . If

indY = −1, then X = {w} and hence indX =

0.

Let n ⩾ 0 and we assume that indX = indY +1

holds for every finite T0-space X constructed

by a base space Y with indY ⩽ n− 1.

Let X be the space constructed by a base

space Y with indY = n.



We show that

ind(BdX(Ux)) ⩽ n

for every x ∈ X, where Ux is the minimal nbd

of x ∈ X.

(i) First, we show that ind(BdX(Uw)) = n.

Note that BdX(Uw) = Y0, therefore

ind(BdX(Uw)) = indY0 = n.

(ii) Let x ∈ X with x ̸= w. Then x = y0 or

x = y1 for some y ∈ Y . Then

BdX(Uy0) = {w} ∪BdY0(U
0
y) ∪BdY1(U

1
y)

and

BdX(Uy1) = {w} ∪ClY0(U
0
y) ∪BdY1(U

1
y)

=
(
{w} ∪BdY0(U

0
y) ∪BdY1(U

1
y)

)
∪ClY0(U

0
y).



Since for the copies BdY0(U
0
y) and BdY1(U

1
y)

of the same subspace of Y , and

ind(BdY0(U
0
y)) = ind(BdY1(U

1
y)) ⩽ n− 1.

Since BdX(Uy0) is the finite T0-space constru-

acted by a base space homeomorphic to BdY0(U
0
y),

by the inductive assumption, it follows that

ind(BdX(Uy0)) ⩽ n.

Moreover, since ind(ClY0(U
0
y)) ⩽ ind(Y0) = n,

by the sum theorem for ind, we have

ind(BdX(Uy1)) ⩽ n.

This implies the equality ind(X) = ind(Y )+1.

(4) Finally, we show IndX = IndY +1.

We show the equality by induction on IndY .

If IndY = −1, then X = {w} and hence IndX =

0.



Let n ⩾ 0 and we assume that IndX = IndY+1

holds for every finite T0-space X constructed

by a base space Y with IndY ⩽ n− 1.

Let X be the space constructed by a base

space Y with IndY = n.

We show that Ind(BdX(UF )) ⩽ n for every

closed set F of X, where UF is the minimal

open set containing F .

Let F be an arbitrary closed subset of X.

(i) First, we consider on the closed set F =

{w}. Then we have BdX(U{w}) = BdX(Uw) =

Y0 and therefore, Ind(BdX(U{w})) = n.

(ii) We suppose that w ∈ F . Then BdX(UF ) ⊆
Y0. Therefore,

Ind(BdX(UF )) ⩽ Ind(Y0) = n.



(iii) We assume that w /∈ F . Observe that

F ⊆ Y0. The copy of F in Y1 we will denote

also by F . Then for the minimal open set UF

in X containing F we have UF = U0
F ∪U1

F and

BdX(UF ) = {w} ∪BdY0(U
0
F ) ∪BdY1(U

1
F ),

where Ui
F is the minimal open set in Yi con-

taining F for i = 0,1. Since for the copies

BdY0(U
0
F ) and BdY1(U

1
F ) of the same subspace

of Y we have

Ind(BdY0(U
0
F )) = Ind(BdY1(U

1
F )) ⩽ n− 1,

By the inductive assumption, it follows that

Ind(BdX(UF )) ⩽ n.

This implies the equality IndX = IndY +1. □



Example 4 For each natural number n, there

is a finite T0-space Xn such that

DindXn = dimXn = indXn = IndXn = n.

Proof We construct the finite T0-space Xn by

induction on n. Let X0 = {0}. It is obvious

that

DindX0 = dimX0 = indX0 = IndX0 = 0.

Let X1 = {0,1,2} and

τ = {∅, {0}, {0,1}, {0,2}, X1}.

It is obvious that (X1, τ) is a finite T0-space.

Furthermore, it is easy to see that

DindX1 = dimX1 = indX1 = IndX1 = 1.

Let n ⩾ 1 and we assume that Xn is con-

structed. Let Xn+1 be the finite T0-space con-

structed by a base space Xn.



Then, it follows from Proposition 6 that

DindXn+1 = dimXn+1 = indXn+1
= IndXn+1 = n+1. □

Example 5 We consider the finite T0-space
X = {x1, . . . , xn}, where n ⩾ 4, which has as a
basis the family β = {∅, {xk}}∪{{xk, xi} : i ̸= k},
for some fixed k. Then

DindX = IndX = indX = 1, and

dimX = n− 2.

Proof of Example 3 Let m,n be natural num-
bers with m ⩽ n. By Example 5, there is a
finite T0-space Xn such that

Dind (Xn) = 1 and dimXn = n.

On the other hand, by Example 4, we have a
finite T0-space Xm such that

DindXm = dimXm = m.

Then Zmn = Xn⊕Xm is a finite T0-space such
that DindZmn = m and dimZmn = n. □



5. Open questions

Question 1 Is there a characterization of Dind

of a finite T0-space by using matrices?

Question 2 Is there an algorithm for the com-

putation of Dind of a finite T0-space?

Question 3 Let d be one the dimensions ind,

Ind and dim. What conditions must an Alexan-

droff T0-space X satisfy so that DindX = d(X)?

Question 4 What conditions must an Alexan-

droff T0-space X satisfy so that

ind(X) = dim(X) = Ind(X) = Dind (X)?

Question 5 Let k ∈ {0,1, . . .}. Is there a uni-

versal space in the class of all Alexandroff T0-

spaces X of weight ⩽ τ , where τ is an infinite

cardinal, such that DindX ⩽ k?
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