# The dimension Dind of finite topological $T_{0}$-spaces 

Yasunao Hattori

Shimane University, Matsue, Japan

> at
> 9th International Symposium on Domain Theory,
> July $4-6,2022$

## 1. Introduction

The results presented here are obtained by a joint work with D. N. Georgiou, A. C. Megaritis and F. Sereti.
A.V. Arhangelskii introduced the dimension Dind and some properties of this dimension have been studied by several authors, say W. Kulpa (1971/72) and V. Chatyrko and B. Pasynkov (2002) for normal Hausdorff spaces.

In this talk, we will consider on the relations between Dind and the fundamental dimensions ind, Ind and dim for finite $T_{0}$-spaces.

Several open questions for further investigations on Dind in the classes of Alexandroff and finite spaces are also asked.

## 2. Preliminaries

First, we remind the fundamental concepts of dimension of topological spaces.

Definition 1 The covering dimension of a topological space $X$, denoted by $\operatorname{dim} X$, is defined as follows:

1. $\operatorname{dim} X=-1$ iff $X=\emptyset$.
2. For $k \in\{0,1, \ldots\}$, $\operatorname{dim} X \leqslant k$ if for every finite open cover $\mathcal{U}$ of $X$, there exists a finite open cover $\mathcal{V}$ of $X$ such that $\mathcal{V}$ is a refinement of $\mathcal{U}$ and $\operatorname{ord}(\mathcal{V}) \leqslant k$, where $\operatorname{ord}(\mathcal{V}) \leq k$ if $|\{V \in \mathcal{V}: x \in V\}| \leq k+1$ for every $x \in X$.

Definition 2 The small inductive dimension of a topological space $X$, denoted by ind $X$, is defined as follows:

1. ind $X=-1$ iff $X=\emptyset$.
2. For $k \in\{0,1, \ldots\}$, ind $X \leqslant k$ if for every point $x \in X$ and for every nbd $U$ of $x$, there exists a nbd $V$ of $x$ such that $V \subset U$ and ind $\mathrm{Bd} V \leqslant k-1$.

Definition 3 The large inductive dimension of a topological space $X$, denoted by $\operatorname{Ind} X$, is defined as follows:

1. Ind $X=-1$ iff $X=\emptyset$.
2. For $k \in\{0,1, \ldots\}$, Ind $X \leqslant k$ if for every closed set $F$ of $X$ and for every open set $U$ of $X$ with $F \subset U$, there exists an open set $V$ of $X$ such that $F \subset V \subset U$ and Ind $\mathrm{Bd} V \leqslant$ $k-1$.
A. V. Arhangelskii introduced the dimension Dind.

Definition 4 The dimension Dind is defined as follows:

1. Dind $X=-1$ iff $X=\emptyset$.
2. Dind $X \leqslant k$, where $k \in\{0,1, \ldots\}$, if for any finite open cover $\mathcal{U}$ of $X$ there exists a finite family $\mathcal{V}$ of pairwise disjoint open subsets of $X$ such that $\mathcal{V} \prec \mathcal{U}$ and Dind $(X \backslash \cup\{V: V \in \mathcal{V}\}) \leqslant k-1$.
3. Fundamental properties on Dind for finite $T_{0}$-spaces

We begin with some fundamental properties on Dind for finite $T_{0}$-spaces.

Proposition 1 Let $X$ be a finite $T_{0}$-space and $A$ a closed subset of $X$. Then we have

Dind $A \leqslant$ Dind $X$.
Proposition 2 Let $X$ be a finite $T_{0}$-space and $\mathrm{U}_{x}$ the minimal nbd of $x$ for each $x \in X$. Then Dind $X \leqslant k$ iff there exists a family $\left\{V_{i}\right\}_{i=1}^{m}$ of open sets of $X$ such that:
(1) $\left\{V_{i}\right\}_{i=1}^{m} \prec\left\{\mathbf{U}_{x}: x \in X\right\}$,
(2) $V_{i} \cap V_{j}=\emptyset$ if $i \neq j$ and
(3) Dind $\left(X \backslash \cup_{i=1}^{m} V_{i}\right) \leqslant k-1$. $\square$

Proposition 3 If $X$ is the sum $\oplus_{s \in S} X_{s}$ of finite $T_{0}$-spaces $X_{s}, s \in S$, then we have that

$$
\text { Dind } X=\sup \left\{\text { Dind } X_{s}: s \in S\right\}
$$

We show the following theorem by use of the above Propositions 1-3.

Theorem 1 For every $k \in\{0,1, \ldots\}$, there exists a finite $T_{0}$-space $X$ such that Dind $X=k$.

Proof. We shall prove the theorem by induction on $k$. Let $X_{0}$ be a one point space. Then Dind $X_{0}=0$. (Moreover, for every discrete finite space $X$ we have Dind $X=0$.)

Let $k \geq 1$, we assume that there exists a finite $T_{0}$-space $\left(Y_{0}, \tau_{Y_{0}}\right)$ such that Dind $\left(Y_{0}\right)=k-1$.

We consider the space $X=\{w\} \cup Y_{0} \cup Y_{1}$, where $\left(Y_{1}, \tau_{Y_{1}}\right)$ is a space which is homeomorphic to $\left(Y_{0}, \tau_{Y_{0}}\right), \quad Y_{0} \cap Y_{1}=\emptyset$ and $w \notin Y_{0} \cup Y_{1}$. We consider the topology $\tau$ on $X$, which has as a basis the family
$\beta=\{\emptyset\} \cup\left\{\{w\} \cup U: U \in \tau_{Y_{0}}\right\} \cup\left\{\{w\} \cup U: U \in \tau_{Y_{1}}\right\}$.
We have that $\mathbf{U}_{w}=\{w\}, \mathbf{U}_{y}=\{w\} \cup \mathbf{U}_{y}^{i}$ for $y \in Y_{i}$, where $\mathbf{U}_{y}^{i}$ is the minimal nbd of $y \in Y_{i}$ in $Y_{i}$ for $i=0,1$.

We shall show that Dind $X=k$.

We observe that a family $\mathcal{V}$ of pairwise disjoint open subsets of $X$ which refines the family of minimal open nbds are exactly one of the following three cases:

1. $\mathcal{V}=\{\{w\}\}$,
2. $\mathcal{V}=\left\{\{w\} \cup \mathbf{U}_{y}^{0}\right\}$ for $y \in Y_{0}$, and

$$
\text { 3. } \mathcal{V}=\left\{\{w\} \cup \mathbf{U}_{y}^{1}\right\} \text { for } y \in Y_{1} \text {. }
$$

For the first case, by Proposition 3, we have Dind $(X \backslash\{w\})=\operatorname{Dind}\left(Y_{0} \oplus Y_{1}\right)$

$$
\begin{aligned}
& =\max \left\{\operatorname{Dind}\left(Y_{0}\right), \operatorname{Dind}\left(Y_{1}\right)\right\} \\
& =k-1 .
\end{aligned}
$$

For the second case, by Proposition 1, we have that for every $\mathbf{U}_{y}^{0} \in \tau_{Y_{0}}$,
$k-1=\operatorname{Dind}\left(Y_{1}\right)=\operatorname{Dind}\left(X \backslash\left(\{w\} \cup Y_{0}\right)\right) \leqslant$ Dind $\left(X \backslash\left(\{w\} \cup \mathbf{U}_{x}^{0}\right)\right) \leqslant \operatorname{Dind}(X \backslash\{w\})=k-1$.

Similarly, for every $\mathbf{U}_{x}^{1} \in \tau_{Y_{1}}$, we have that Dind $\left(X \backslash\left(\{w\} \cup \mathbf{U}_{x}^{1}\right)\right)=k-1$. Thus, by Proposition 2, we have that Dind $X=k$. $\square$

We recall that a pairwise disjoint $\operatorname{cover} \mathcal{U}$ of $X$ is called a partition of $X$.

The notion of the partition gives the following characterization of zero dimensional spaces with respect to Dind.

Proposition 4 Dind $X=0$ iff there exists a partition of $X$ consisting of minimal open nbds. $\square$

# 4. Relations between Dind and other dimensions for finite $T_{0}$-spaces 

We study relations between the dimension Dind and the dimensions Ind, ind and dim.

First, we notice that for any Alexandroff space $X$, we have

1. R. Berghammer and M. Winter showed that Ind $X \leq$ ind $X$ holds ( [2019]).
2. D. W. Bass showed that $\operatorname{Ind} X \leq \operatorname{dim} X$ holds ( [1969]).

Lemma 1 Let $X$ be a finite $T_{0}$-space. Then there exists a cover $\left\{\mathbf{U}_{x_{1}}, \ldots, \mathbf{U}_{x_{s}}\right\}$ of $X$ consisting of minimal open nbds such that for each $k \in\{1, \ldots, s\}$, there exists a closed subset $F_{k}$ of $X$ such that $x_{k} \in F_{k}$ and $\mathbf{U}_{F_{k}}=\mathbf{U}_{x_{k}}$, where $\mathrm{U}_{F_{k}}$ is the smallest open set containing $F_{k}$.

Theorem 2 For a finite $T_{0}$-space $X$, we have Dind $X \leqslant$ Ind $X$.

Proof. We shall prove the theorem by induction on Ind $X=n$.

Let $n=0$. Then by Lemma 1 , there exists a cover $\mathcal{C}=\left\{\mathbf{U}_{x_{1}}, \ldots, \mathbf{U}_{x_{s}}\right\}$ of $X$ consisting of minimal open nbds such that for each $k \in\{1, \ldots, s\}$, there exists a closed subset $F_{k}$ of $X$ such that $x_{k} \in F_{k}$ and $\mathbf{U}_{F_{k}}=\mathbf{U}_{x_{k}}$. Since Ind $X=0$, we have $\mathrm{Bd} \mathbf{U}_{x_{k}}=\emptyset$ for each $k \in$ $\{1, \ldots, s\}$.

Then we may assume that $\mathbf{U}_{x_{j}} \cap \mathbf{U}_{x_{k}}=\emptyset$ for each $j \neq k \in\{1, \ldots, s\}$.

Indeed, let $\mathbf{U}_{x_{j}} \cap \mathbf{U}_{x_{k}} \neq \emptyset$. Then $x_{j} \in \mathrm{Cl} \mathrm{U}_{x_{k}}$ and $x_{k} \in \mathrm{Cl} \mathrm{U}_{x_{j}}$. Now, we suppose that $x_{j} \notin \mathbf{U}_{x_{k}}$, then $x_{j} \in \mathrm{Bd} \mathrm{U}_{x_{k}}$, a contradiction.

Thus $x_{j} \in \mathbf{U}_{x_{k}}$, and hence $\mathbf{U}_{x_{j}} \subset \mathbf{U}_{x_{k}}$. Similarly, we have that $\mathrm{U}_{x_{k}} \subset \mathrm{U}_{x_{j}}$. Therefore, $\mathbf{U}_{x_{j}}=$ $\mathrm{U}_{x_{k}}$.

Let $\mathcal{C}^{\prime}=\mathcal{C}-\left\{\mathbf{U}_{x_{k}}\right\}$. We continue the similar process, we can have a partition $\mathcal{C}^{*}$ of $X$ by minimal open nbds of $X$. Hence, we have that Dind $X=0$.

Let $n \geq 1$, and we assume that the theorem is true for all finite $T_{0}$-spaces with Ind $Y \leqslant n-1$.

Let Ind $X=n$. We shall prove that Dind $X \leqslant n$. It suffices to construct a family $\mathcal{V}$ of open sets of $X$ which satifies the conditions (1)-(3) of Proposition 2.

By Lemma 1, there exists a cover

$$
\mathcal{C}=\left\{\mathbf{U}_{x_{1}}, \ldots, \mathbf{U}_{x_{s}}\right\}
$$

of $X$ consisting of minimal open nbds such that for each $k \in\{1, \ldots, s\}$, there exists a closed subset $F_{k}$ of $X$ such that $x_{k} \in F_{k}$ and $\mathbf{U}_{F_{k}}=$ $\mathrm{U}_{x_{k}}$. We consider the family $\mathcal{V}=\left\{V_{1}, \ldots, V_{s}\right\}$ of pairwise disjoint open subsets of $X$, where

$$
\begin{aligned}
& \left.V_{1}=\mathrm{U}_{x_{1}} \backslash\left(\mathrm{Cl} \mathrm{U}_{x_{2}} \cup \ldots \cup \mathrm{Cl} \mathrm{U}_{x_{s}}\right)\right), \\
& \left.V_{2}=\mathrm{U}_{x_{2}} \backslash\left(\mathrm{Cl} \mathrm{U}_{x_{3}}\right) \cup \ldots \cup \mathrm{Cl} \mathrm{U}_{x_{s}}\right),
\end{aligned}
$$

$$
V_{s}=\mathbf{U}_{x_{s}}
$$

Then $\mathcal{V} \prec \mathcal{C}$. We prove that

$$
X \backslash\left(V_{1} \cup \ldots \cup V_{s}\right) \subseteq \bigcup_{k=1}^{s} \mathrm{Bd} \mathbf{U}_{x_{k}}
$$

Let $x \in X \backslash\left(V_{1} \cup \ldots \cup V_{s}\right)$. Since $\mathcal{C}$ is a cover of $X$, there is $k \in\{1, \ldots, s-1\}$ such that $x \in \mathbf{U}_{x_{k}}$. Let

$$
k_{0}=\max \left\{k: x \in \mathbf{U}_{x_{k}}\right\} .
$$

Then, we have that $x \in \mathrm{Cl} \mathrm{U}_{x_{k_{0}+1}} \cup \ldots \cup \mathrm{Cl} \mathrm{U}_{x_{s}}$ (otherwise, $x \in V_{k_{0}}$ ). Hence, $x \in \mathrm{Cl} \mathbf{U}_{x_{\ell}} \backslash \mathbf{U}_{x_{\ell}}=$ $\mathrm{Bd} \mathbf{U}_{x_{\ell}}$ for some $\ell>k_{0}$.

By subspace theorem for Ind, we have

$$
\operatorname{Ind}\left(X \backslash\left(V_{1} \cup \ldots \cup V_{s}\right)\right) \leqslant \operatorname{Ind}\left(\bigcup_{k=1}^{s} \operatorname{Bd} \mathbf{U}_{x_{k}}\right) .
$$

Since Ind $X=n$,

$$
\text { Ind } \mathrm{Bd} \mathbf{U}_{x_{k}}=\operatorname{Ind} \mathrm{Bd} \mathbf{U}_{F_{k}} \leqslant n-1,
$$

$k=1, \ldots, s$, and therefore, we have

$$
\text { Ind }\left(\bigcup_{k=1}^{s} \operatorname{Bd} \mathbf{U}_{x_{k}}\right) \leqslant n-1 .
$$

Hence, by inductive assumption, we conclude that

$$
\operatorname{Dind}\left(X \backslash\left(V_{1} \cup \ldots \cup V_{s}\right)\right) \leqslant n-1
$$

Thus, by Proposition 2, Dind $X \leqslant n . \square$

The following is a direct consequence of the results presented above and Theorem 2.

Corollary 1 Let $X$ be a finite $T_{0}$-space. Then we have that

Dind $X \leqslant \operatorname{ind} X$ and $\operatorname{Dind}(X) \leqslant \operatorname{dim} X$.

We shall find a finite $T_{0}$-space $X$ for which the converse of Theorem 2 does not hold.

Example 1 For each natural number $n \geqslant 1$ there is a finite $T_{0}$-space $X_{n}$ such that

Dind $X_{n}=1$ and Ind $X_{n}=$ ind $X_{n}=n$.

Proof. Let $n \geqslant 1$ be a natural number, and

$$
X_{n}=\left\{x_{0}, x_{1}, \ldots, x_{2 n-1}, x_{2 n}\right\}
$$

We induce a topology on $X_{n}$ by defining the minimal nbd $\mathrm{U}_{i}$ of a point $x_{i} \in X_{n}$ for each $i=0,1,2, \ldots, 2 n-1,2 n$. Let

$$
\mathbf{U}_{0}=\left\{x_{0}\right\}, \mathbf{U}_{1}=\left\{x_{0}, x_{1}\right\} \text { and } \mathbf{U}_{2}=\left\{x_{0}, x_{2}\right\} .
$$

Let $i$ be a natural number with $1 \leqslant i \leqslant n-1$, and we suppose that $\mathrm{U}_{2 i-1}$ and $\mathrm{U}_{2 i}$ are defined. Then we define

$$
\mathbf{U}_{2 i+1}=\mathbf{U}_{2 i-1} \cup\left\{x_{2 i+1}\right\}
$$

and

$$
\mathbf{U}_{2 i+2}=\mathbf{U}_{2 i-1} \cup\left\{x_{2 i+2}\right\} .
$$

It is obvious that $X_{n}$ is a finite $T_{0}$-space.

Since $X_{n} \backslash \mathbf{U}_{2 n-1}=\left\{x_{2}, x_{4}, \ldots, x_{2 n}\right\}$ is a discrete subspace of $X_{n}$, we have Dind $\left(X_{n} \backslash U_{2 n-1}\right)=$ 0 . Thus we have Dind $\left(X_{n}\right) \leqslant 1$.

On the other hand, since every nbd of a point in $X_{n}$ contains $x_{0}$, every disjoint family of the minimal nbds is a singleton. Obviously, $\mathrm{U}_{k} \neq$ $X_{n}$ for each $k$ with $0 \leqslant k \leqslant 2 n$. Hence, we have that Dind $X_{n} \geqslant 1$ and hence Dind $X_{n}=1$.

Next, we show that Ind $X_{n}=n$.
(1) We show that Ind $X_{n} \geqslant n$ by induction on $n$.

Let $n=1$. Then $F=\left\{x_{2}\right\}$ be a closed set of $X_{1}=\left\{x_{0}, x_{1}, x_{2}\right\}$, and $\mathrm{U}_{2}=\left\{x_{0}, x_{2}\right\}$ is the minimal open set containing $F$. It follows that $B d \mathbf{U}_{2}=\left\{x_{1}\right\}$ and Ind $\left(B d \mathbf{U}_{2}\right)=0$. Hence Ind $X_{1} \geqslant 1$.

Let $n \geqslant 2$ and we suppose that Ind $X_{n-1} \geqslant$ $n-1$. We consider on the closed set $F=\left\{x_{2}\right\}$ of $X_{n}$. Then $\mathrm{U}_{2}=\left\{x_{0}, x_{2}\right\}$ is the minimal open set containing $F$. It follows that $\mathrm{Bd} \mathrm{U}_{2}=X_{n} \backslash$ $\left\{x_{0}, x_{2}\right\}=\left\{x_{1}, x_{3}, x_{4}, \ldots, x_{2 n-1}, x_{2 n}\right\}$ is homemorphic to $X_{n-1}$. Hence, by the inductive assumption, we have that $\operatorname{Ind}\left(\mathrm{BdU}_{2}\right) \geqslant n-1$. Hence ind $X_{n} \geq$ Ind $X_{n} \geqslant n$.
(2) Next, we show that ind $X_{n} \leqslant n$ by induction on $n$.

To show that ind $X_{1} \leqslant 1$, let $U$ be a non-empty open set of $X_{1}$. Since $x_{0} \in U$, it follows that $\mathrm{Bd} U \subseteq\left\{x_{1}, x_{2}\right\}$. Since $\left\{x_{1}, x_{2}\right\}$ is discrete, we have ind $\operatorname{Bd} U \leq 0$. Thus, ind $X_{1} \leqslant 1$.

Let $n \geq 2$ and we suppose that ind $X_{n-1} \leqslant$ $n-1$. Let $U$ be a non-empty open set of $X_{n}$. Since $x_{0} \in U$, it follows that $\operatorname{Bd} U \subseteq$ $\left\{x_{1}, x_{2}, \ldots, x_{2 n-1}, x_{2 n}\right\}$. We put

$$
Y=\left\{x_{1}, x_{2}, \ldots, x_{2 n-1}, x_{2 n}\right\}
$$

Since $\left\{x_{2}\right\}$ is an isolated point of $Y, Y$ is a disjoint sum of $\left\{x_{2}\right\}$ and $\left\{x_{1}, x_{3}, x_{4}, \ldots, x_{2 n-1}, x_{2 n}\right\}$. It is easy to show that $\left\{x_{1}, x_{3}, x_{4}, \ldots, x_{2 n-1}, x_{2 n}\right\}$ is homeomorphic to $X_{n-1}$. Thus, we have that

$$
\text { ind }\left\{x_{1}, x_{3}, x_{4}, \ldots, x_{2 n-1}, x_{2 n}\right\} \leqslant n-1 .
$$

Hence ind $Y \leqslant n-1$, and thus ind $(\operatorname{Bd} U) \leqslant$ $n-1$. Therefore, Ind $X_{n} \leq$ ind $X_{n} \leqslant n$. $\square$

Furthermore, we can extend Example 1 as follows.

Example 2 For each pair of natural numbers $m \leqslant n$, there is a finite $T_{0}$-space $X_{m n}$ such that Dind $X_{m n}=m$ and Ind $X_{m n}=$ ind $X_{m n}=n$.

In order to construct the space of Example 2, we need a further consideration on the proof of Theorem 1.

Lemma 2 Let $Y_{0}$ and $Y_{1}$ be finite $T_{0}$-spaces with $Y_{0} \cap Y_{1}=\emptyset$ and $X=\{w\} \cup Y_{0} \cup Y_{1}$ be the space described in the proof of Theorem 1. Then we have the following:
(1) $\max \left\{\right.$ Dind $Y_{0}$, Dind $\left.Y_{1}\right\} \leq \operatorname{Dind} X$ $\leq \max \left\{\right.$ Dind $Y_{0}$, Dind $\left.Y_{1}\right\}+1$, and if Dind $Y_{0}=$ Dind $Y_{1}$, then

$$
\text { Dind } X=\operatorname{Dind} Y_{0}+1
$$

(2) ind $X=\max \left\{\right.$ ind $Y_{0}$, ind $\left.Y_{1}\right\}+1$.
(3) Ind $X=\max \left\{\right.$ Ind $Y_{0}$, Ind $\left.Y_{1}\right\}+1$.

Proof. (1) Since $Y_{0}$ and $Y_{1}$ are closed in $X$, it is clear that $\max \left\{\operatorname{Dind} Y_{0}\right.$, Dind $\left.Y_{1}\right\} \leqslant \operatorname{Dind} X$.

Further, we can show that

$$
\text { Dind } X \leq \max \left\{\text { Dind } Y_{0}, \text { Dind } Y_{1}\right\}+1
$$

by a similar argument in the proof of Theorem 1.

Now, we suppose that Dind $Y_{0}=\operatorname{Dind} Y_{1}=m$ and we will show that Dind $(X \backslash \cup \mathcal{V}) \geqslant m$ for every family $\mathcal{V}$ of open sets of $X$ which satisfies the conditions (1)-(3) in Proposition 2.

Since every non-empty open set of $X$ contains the point $w$, we can assume that $\mathcal{V}=\left\{\mathbf{U}_{x}\right\}$, where $\mathbf{U}_{x}$ is the minimal nbd of some point $x \in X$.

Case 1. $x=w$. We notice that $\mathcal{V}=\left\{\mathbf{U}_{w}\right\}=$ $\{w\}$. Since $X \backslash\{w\}$ is a topological sum $Y_{0} \oplus Y_{1}$, it follows from Proposition 3 that Dind ( $X$ \} $\{w\})=m$.

Case 2. $x \in Y_{0}$. We notice that $X \backslash \mathbf{U}_{x} \supseteq Y_{1}$. Hence, Dind $\left(X \backslash \mathbf{U}_{x}\right) \geqslant$ Dind $Y_{1}=m$.

Case 3. $x \in Y_{1}$. As exactly the same as Case 2, we can show that Dind $\left(X \backslash \mathbf{U}_{x}\right) \geqslant m$.

It follows that Dind $X \geqslant m+1$, and hence Dind $X=m+1$.
(2) Let $m=\max \left\{\right.$ ind $Y_{0}$, ind $\left.Y_{1}\right\}$. Notice that $\{w\}$ is the minimal nbd of $w$ in $X$ and $\mathrm{Bd}_{X}\{w\}=$ $Y_{0} \cup Y_{1}$ is a topological sum of $Y_{0}$ and $Y_{1}$. Then ind $\mathrm{Bd}_{X}\{w\}=m$. Hence $\operatorname{ind}_{w} X=m+1$, and hence ind $X \geq m+1$.

Next, we take a point $y$ in $Y_{0}$. Let $\mathbf{U}_{y}^{0}$ be the minimal nbd of $y$ in $Y_{0}$. Then $\mathbf{U}_{y}=\{w\} \cup \mathbf{U}_{y}^{0}$ is the minimal nbd of $y$ in $X$. Since $\operatorname{Bd}_{X}\left(\mathrm{U}_{y}\right) \subseteq$ $Y_{0} \cup Y_{1}$, it follows that

$$
\text { ind }\left(\operatorname{Bd}_{X}\left(\mathrm{U}_{y}\right)\right) \leqslant \operatorname{ind}\left(Y_{0} \cup Y_{1}\right)=m .
$$

Hence $\operatorname{ind}_{y} X \leqslant m+1$. Similarly, we have that

$$
\operatorname{ind}_{y} X \leqslant m+1
$$

for each $y \in Y_{1}$.

It follows that ind $X=m+1$.
(3) Let $\max \left\{\right.$ Ind $Y_{0}$, Ind $\left.Y_{1}\right\}=m, F$ be a closed set of $X$ and $U$ an open set of $X$ such that $F \subseteq U$. Since every non-empty open set of $X$ contains $w$, we have that $w \notin \mathrm{Bd}_{X} U$. Hence, $\mathrm{Bd}_{X} U \subseteq Y_{0} \cup Y_{1}$, and $Y_{0} \cup Y_{1}$ is a topological sum of $Y_{0}$ and $Y_{1}$. Hence, Ind $\mathrm{Bd}_{X}(U) \leq m$, and hence Ind $X \leqslant m+1$.

We will show that Ind $X \geqslant m+1$.

Let Ind $Y_{1}=m, F=Y_{0}$ and $U=\{w\} \cup Y_{0}$. Then $F$ is a closed set of $X$ and $U$ is an open set of $X$ with $F \subseteq U$. We notice that $U$ is the minimal nbd of $F$.

It is easy to show that $\operatorname{Bd}_{X}(U)=Y_{1}$, and hence Ind $\left(\operatorname{Bd}_{X}(U)\right)=$ Ind $Y_{1}=m$. Hence Ind $X \geqslant$ $m+1$, and thus, Ind $X=m+1 . \square$

Remark 1 We notice that Lemma 2 does not hold for dim, i.e.,

$$
\operatorname{dim} X \neq \max \left\{\operatorname{dim} Y_{0}, \operatorname{dim} Y_{1}\right\}+1
$$

In fact, let $Y=\{1,2\}$ be the two points set with the discrete topology and $X=\{w\} \cup Y_{0} \cup$ $Y_{1}$. Then $\operatorname{dim} Y=0$, but since every minimal nbd contains the point $w$, we have that $\operatorname{dim} X=3>\max \left\{\operatorname{dim} Y_{0}, \operatorname{dim} Y_{1}\right\}+1=1 . \square$

The following is a direct consequence of Theorem 1 and Lemma 2.

Corollary 2 For each natural number $n$, there is a finite $T_{0}$-space $X_{n}$ such that

$$
\text { Dind } X_{n}=\operatorname{ind} X_{n}=\text { Ind } X_{n}=n
$$

Proof. Let $n$ be a natural number. By Theorem 1, there is a finite $T_{0}$-space $Y_{n}$ such that Dind $Y_{n}=n$.

By use of Lemma 2, we have a finite $T_{0}$-space $Z_{n}$ such that Dind $X_{n} \leq$ ind $X_{n}=$ Ind $X_{n}=n$. Then, $X_{n}=Y_{n} \oplus Z_{n}$ is desired. $\square$

Proof of Example 2. Let $m, n$ be natural numbers with $m \leqslant n$. By Example 1, there is a finite $T_{0}$-space $X_{n}$ such that

$$
\text { Dind } X_{n}=1 \text { and Ind } X_{n}=\operatorname{ind} X_{n}=n .
$$

On the other hand, by Corollary 2, we have a finite $T_{0}$-space $X_{m}$ such that

$$
\text { Dind } X_{m}=\text { Ind } X_{m}=\text { ind } X_{m}=m .
$$

Then

$$
Y_{m n}=X_{m} \oplus X_{n}
$$

is desired. $\square$

As we mentioned above, we have that Dind $X \leqslant$ $\operatorname{dim} X$. Similar to Example 2, we have the following.

Example 3 For each pair of natural numbers $m \leqslant n$, there is a finite $T_{0}$-space $Z_{m n}$ such that Dind $Z_{m n}=m$ and $\operatorname{dim} Z_{m n}=n$.

To show Example 3, we need one more construction of spaces.

Let $Y$ be a finite $T_{0}$-space and $Y_{0}$ and $Y_{1}$ copies of $Y$ with $Y_{0} \cap Y_{1}=\emptyset$. Let $w$ be a point with $w \notin Y_{0} \cap Y_{1}$. We put $X=\{w\} \cup Y_{0} \cup Y_{1}$ and we induce a topology $\tau$ on $X$ defining the minimal $\mathrm{nbd} \mathrm{U}_{x}$ for $x \in X$ as follows:

Let $\mathbf{U}_{w}=\{w\} \cup Y_{1}$. For each $y \in Y$, we denote copies of $y$ in $Y_{0}$ and $Y_{1}$ by $y^{0}$ and $y^{1}$, respectively. For each $y \in Y$, let

$$
\mathbf{U}_{y^{0}}=\mathbf{U}_{y}^{0} \cup \mathbf{U}_{y}^{1} \text { and } \mathbf{U}_{y^{1}}=\mathbf{U}_{y}^{1}
$$

where $\mathbf{U}_{y}^{i}$ is the minimal nbd of $y^{i}$ in $Y_{i}$ for $i=0,1$. Then $X$ is a finite $T_{0}$-space, and we say that $X$ is the finite $T_{0}$-space constructed by a base space $Y$.

Then, we have the following.
Proposition 5 Let $Y$ be a finite $T_{0}$-space and $X$ the finite $T_{0}$-space constructed by a base space $Y$. Then we have that

$$
\mathrm{d}(X)=\mathrm{d}(Y)+1,
$$

where d is any of the dimensions Dind, dim, ind and Ind.

Proof (1) First, we show that

$$
\text { Dind } X=\text { Dind } Y+1
$$

Let $\mathcal{V}=\left\{\mathbf{U}_{w}\right\}=\left\{\{w\} \cup Y_{1}\right\}$. Then $X \backslash \cup \mathcal{V}=Y_{0}$. Hence,

$$
\text { Dind }(X \backslash \bigcup \mathcal{V})=\text { Dind } Y_{0}=\operatorname{Dind} Y
$$

and hence, by Proposition 2, we have

$$
\text { Dind } X \leqslant \operatorname{Dind} Y+1
$$

Next, we show that Dind $X \geqslant$ Dind $Y+1$ by induction on Dind $Y$.

If Dind $Y=-1$, then $X=\{w\}$ and hence Dind $X=0$.

Let $n \geqslant 0$ and we assume the proposition holds for every finite $T_{0}$-space $X$ constructed by a base space $Y$ with Dind $Y \leqslant n-1$.

Let $X$ be the space constructed by a base space $Y$ with Dind $Y=n$.

Let $\mathcal{V}$ be a disjoint family of $X$ consisting of the minimal nbds in $X$.
(i) If $\mathbf{U}_{w} \in \mathcal{V}$, then it follows that $\mathcal{V}=\left\{\mathbf{U}_{w}\right\}$. Hence, we have that

$$
\text { Dind }(X \backslash \bigcup \mathcal{V})=\text { Dind } Y_{0}=\text { Dind } Y=n
$$

(ii) If $\mathrm{U}_{w} \notin \mathcal{V}$, then for $i=0,1$, we put
$\mathcal{V}_{i}=\{V \in \mathcal{V}:$
$V$ is the minimal nbd of a point in $\left.Y_{i}\right\}$.

Then $\mathcal{V}=\mathcal{V}_{0} \cup \mathcal{V}_{1}$. For each $V \in \mathcal{V}_{1}$ there is $y \in$ $Y$ such that $V=\mathbf{U}_{y}^{1}$. We put $W(V)=V \cup \mathbf{U}_{y}^{0}$. Then $W(V)$ is the minimal nbd of $y^{0}$ in $X$ and $W(V) \cap V^{\prime}=\emptyset$ for each $V^{\prime} \in \mathcal{V} \backslash\{V\}$. Hence

$$
\mathcal{V}^{\prime}=\mathcal{V}_{0} \cup\left\{W(V): V \in \mathcal{V}_{1}\right\}
$$

is a disjoint family by the minimal nbds of points in $Y_{0}$, and $\cup \mathcal{V} \subset \cup \mathcal{V}^{\prime}$. Thus, we may assume that $\mathcal{V}=\mathcal{V}_{0}$.

Then $X \backslash \cup \mathcal{V}=\{w\} \cup Y_{0}^{\prime} \cup Y_{1}^{\prime}$, where $Y_{0}^{\prime}$ and $Y_{1}^{\prime}$ are copies of a subspace $Y^{\prime} \subset Y$ in $Y_{0}$ and $Y_{1}$, respectively. Hence $X \backslash \cup \mathcal{V}$ can be considered as the finite $T_{0}$-space constructed by a base space $Y^{\prime}$. Since $Y^{\prime}$ is a complement of a union of a disjoint family of open sets of $Y$ and Dind $Y=n$, it follows that Dind $Y^{\prime} \geqslant n-1$.

If Dind $Y^{\prime}=n-1$, then by the inductive assumption, we have

$$
\operatorname{Dind}(X \backslash \cup \mathcal{V}) \geqslant \operatorname{Dind} Y^{\prime}+1 \geqslant(n-1)+1=n
$$

If Dind $Y^{\prime}=n$, then Dind $(X \backslash \cup \mathcal{V}) \geqslant \operatorname{Dind} Y_{0}^{\prime}=\operatorname{Dind} Y^{\prime}=n$.
Hence, we have that Dind $X \geqslant n+1$, and hence Dind $X=$ Dind $Y+1$.
(2) Second, we show $\operatorname{dim} X=\operatorname{dim} Y+1$.

Let $\operatorname{dim} Y=n$.
First, we show that $\operatorname{dim} X \leqslant n+1$.

Let $\mathcal{V}$ be a finite open cover of $X$. There is $V_{w} \in \mathcal{V}$ such that $w \in V_{w}$. Since, $\{w\} \cup Y_{1} \subset$ $V_{w}$, we may assume that for each $V \in \mathcal{V}$ with $V \neq V_{w}, V$ is the minimal nbd of a point of $Y_{0}$. Since $\left\{V \cap Y_{0}: V \in \mathcal{V}\right\}$ is a finite open cover of $Y_{0}$ and $Y_{0}$ is homeomorphic to $Y$, there is an open refinement $\mathcal{W}$ of $\left\{V \cap Y_{0}: V \in \mathcal{V}\right\}$ such that $\operatorname{ord}(\mathcal{W}) \leqslant n$.

For each $W \in \mathcal{W}$ we put

$$
W^{X}=W \cup W^{1}
$$

where $W^{1}$ is a copy of $W$ in $Y_{1}$, and

$$
\mathcal{W}^{X}=\left\{\mathbf{U}_{w}\right\} \cup\left\{W^{X}: W \in \mathcal{W}\right\}
$$

It is easy to see that $\mathcal{W}^{X}$ is a refinement of $\mathcal{V}$, and $\operatorname{ord}\left(\mathcal{W}^{X}\right)=\operatorname{ord}(\mathcal{W})+1 \leqslant n+1$. Hence $\operatorname{dim} X \leqslant n+1$.

Next, we show that $\operatorname{dim} X \geqslant n+1$. Since $\operatorname{dim} Y=n$, there is a finite open cover $\mathcal{V}$ of $Y$ such that $\operatorname{ord}(\mathcal{W}) \geqslant n$ for each open refinement $\mathcal{W}$ of $\mathcal{V}$. We put

$$
\mathcal{V}^{X}=\left\{\mathbf{U}_{w}\right\} \cup\left\{V^{0} \cup V^{1}: V \in \mathcal{V}\right\}
$$

where $V^{i}$ is a copy of $V$ in $Y_{i}$ for $i=0,1$. Let $\mathcal{W}^{X}$ be an open refinement of $\mathcal{V}^{X}$. There is $W_{w} \in \mathcal{W}^{X}$ such that $w \in W_{w}$. Then $W_{w}=\mathbf{U}_{w}$ and hence $W_{w} \cap Y_{0}=\emptyset$.

It follows that $\left\{W \cap Y_{0}: W \in \mathcal{W}^{X} \backslash\left\{W_{w}\right\}\right\}$ is an open cover of $Y_{0}$ and refines $\left\{V^{0}: V \in \mathcal{V}\right\}$. Hence

$$
\operatorname{ord}\left\{W \cap Y_{0}: W \in \mathcal{W}^{X} \backslash\left\{W_{w}\right\}\right\} \geqslant n
$$

Since $W \cap W_{w}=W \cap \mathbf{U}_{w} \neq \emptyset$ for each nonempty element $W \in \mathcal{W}^{X}$, it follows that $\operatorname{ord}\left(\mathcal{W}^{X}\right) \geqslant$ $n+1$. Hence $\operatorname{dim} X \geqslant n+1$.
(3) Third, we show ind $X=$ ind $Y+1$.

We show the equality by induction on ind $Y$. If ind $Y=-1$, then $X=\{w\}$ and hence ind $X=$ 0 .

Let $n \geqslant 0$ and we assume that ind $X=$ ind $Y+1$ holds for every finite $T_{0}$-space $X$ constructed by a base space $Y$ with ind $Y \leqslant n-1$.

Let $X$ be the space constructed by a base space $Y$ with ind $Y=n$.

We show that

$$
\operatorname{ind}\left(\operatorname{Bd}_{X}\left(\mathrm{U}_{x}\right)\right) \leqslant n
$$

for every $x \in X$, where $\mathrm{U}_{x}$ is the minimal nbd of $x \in X$.
(i) First, we show that ind $\left(\operatorname{Bd}_{X}\left(\mathrm{U}_{w}\right)\right)=n$. Note that $\mathrm{Bd}_{X}\left(\mathrm{U}_{w}\right)=Y_{0}$, therefore

$$
\operatorname{ind}\left(\operatorname{Bd}_{X}\left(\mathbf{U}_{w}\right)\right)=\operatorname{ind} Y_{0}=n
$$

(ii) Let $x \in X$ with $x \neq w$. Then $x=y^{0}$ or $x=y^{1}$ for some $y \in Y$. Then

$$
\mathrm{Bd}_{X}\left(\mathbf{U}_{y^{0}}\right)=\{w\} \cup \mathrm{Bd}_{Y_{0}}\left(\mathbf{U}_{y}^{0}\right) \cup \mathrm{Bd}_{Y_{1}}\left(\mathbf{U}_{y}^{1}\right)
$$

and

$$
\begin{aligned}
& \mathrm{Bd}_{X}\left(\mathrm{U}_{y^{1}}\right)=\{w\} \cup \mathrm{Cl}_{Y_{0}}\left(\mathrm{U}_{y}^{0}\right) \cup \mathrm{Bd}_{Y_{1}}\left(\mathbf{U}_{y}^{1}\right) \\
= & \left(\{w\} \cup \mathrm{Bd}_{Y_{0}}\left(\mathrm{U}_{y}^{0}\right) \cup \mathrm{Bd}_{Y_{1}}\left(\mathbf{U}_{y}^{1}\right)\right) \cup \mathrm{Cl}_{Y_{0}}\left(\mathbf{U}_{y}^{0}\right)
\end{aligned}
$$

Since for the copies $\mathrm{Bd}_{Y_{0}}\left(\mathrm{U}_{y}^{0}\right)$ and $\mathrm{Bd}_{Y_{1}}\left(\mathrm{U}_{y}^{1}\right)$ of the same subspace of $Y$, and

$$
\operatorname{ind}\left(\operatorname{Bd}_{Y_{0}}\left(\mathbf{U}_{y}^{0}\right)\right)=\operatorname{ind}\left(\operatorname{Bd}_{Y_{1}}\left(\mathbf{U}_{y}^{1}\right)\right) \leqslant n-1 .
$$

Since $\mathrm{Bd}_{X}\left(\mathrm{U}_{y^{0}}\right)$ is the finite $T_{0}$-space construacted by a base space homeomorphic to $\mathrm{Bd}_{Y_{0}}\left(\mathbf{U}_{y}^{0}\right)$, by the inductive assumption, it follows that

$$
\operatorname{ind}\left(\operatorname{Bd}_{X}\left(\mathbf{U}_{y^{0}}\right)\right) \leqslant n
$$

Moreover, since $\operatorname{ind}\left(\mathrm{Cl}_{Y_{0}}\left(\mathrm{U}_{y}^{0}\right)\right) \leqslant \operatorname{ind}\left(Y_{0}\right)=n$, by the sum theorem for ind, we have

$$
\operatorname{ind}\left(\operatorname{Bd}_{X}\left(\mathbf{U}_{y^{1}}\right)\right) \leqslant n
$$

This implies the equality $\operatorname{ind}(X)=\operatorname{ind}(Y)+1$.
(4) Finally, we show $\operatorname{Ind} X=\operatorname{Ind} Y+1$.

We show the equality by induction on Ind $Y$.
If Ind $Y=-1$, then $X=\{w\}$ and hence Ind $X=$ 0 .

Let $n \geqslant 0$ and we assume that Ind $X=$ Ind $Y+1$ holds for every finite $T_{0}$-space $X$ constructed by a base space $Y$ with Ind $Y \leqslant n-1$.

Let $X$ be the space constructed by a base space $Y$ with Ind $Y=n$.

We show that $\operatorname{Ind}\left(\operatorname{Bd}_{X}\left(\mathrm{U}_{F}\right)\right) \leqslant n$ for every closed set $F$ of $X$, where $\mathrm{U}_{F}$ is the minimal open set containing $F$.

Let $F$ be an arbitrary closed subset of $X$.
(i) First, we consider on the closed set $F=$ $\{w\}$. Then we have $\mathrm{Bd}_{X}\left(\mathrm{U}_{\{w\}}\right)=\mathrm{Bd}_{X}\left(\mathrm{U}_{w}\right)=$ $Y_{0}$ and therefore, $\operatorname{Ind}\left(\operatorname{Bd}_{X}\left(\mathrm{U}_{\{w\}}\right)\right)=n$.
(ii) We suppose that $w \in F$. Then $\mathrm{Bd}_{X}\left(\mathrm{U}_{F}\right) \subseteq$ $Y_{0}$. Therefore,

$$
\operatorname{Ind}\left(\mathrm{Bd}_{X}\left(\mathrm{U}_{F}\right)\right) \leqslant \operatorname{Ind}\left(Y_{0}\right)=n
$$

(iii) We assume that $w \notin F$. Observe that $F \subseteq Y_{0}$. The copy of $F$ in $Y_{1}$ we will denote also by $F$. Then for the minimal open set $\mathbf{U}_{F}$ in $X$ containing $F$ we have $\mathbf{U}_{F}=\mathbf{U}_{F}^{0} \cup \mathbf{U}_{F}^{1}$ and

$$
\operatorname{Bd}_{X}\left(\mathbf{U}_{F}\right)=\{w\} \cup \operatorname{Bd}_{Y_{0}}\left(\mathbf{U}_{F}^{0}\right) \cup \operatorname{Bd}_{Y_{1}}\left(\mathbf{U}_{F}^{1}\right),
$$

where $\mathbf{U}_{F}^{i}$ is the minimal open set in $Y_{i}$ containing $F$ for $i=0,1$. Since for the copies $\mathrm{Bd}_{Y_{0}}\left(\mathrm{U}_{F}^{0}\right)$ and $\mathrm{Bd}_{Y_{1}}\left(\mathrm{U}_{F}^{1}\right)$ of the same subspace of $Y$ we have

$$
\operatorname{Ind}\left(\operatorname{Bd}_{Y_{0}}\left(\mathrm{U}_{F}^{0}\right)\right)=\operatorname{Ind}\left(\operatorname{Bd}_{Y_{1}}\left(\mathrm{U}_{F}^{1}\right)\right) \leqslant n-1,
$$

By the inductive assumption, it follows that

$$
\operatorname{Ind}\left(\operatorname{Bd}_{X}\left(\mathbf{U}_{F}\right)\right) \leqslant n .
$$

This implies the equality Ind $X=\operatorname{Ind} Y+1 . \square$

Example 4 For each natural number $n$, there is a finite $T_{0}$-space $X_{n}$ such that

Dind $X_{n}=\operatorname{dim} X_{n}=\operatorname{ind} X_{n}=\operatorname{Ind} X_{n}=n$.

Proof We construct the finite $T_{0}$-space $X_{n}$ by induction on $n$. Let $X_{0}=\{0\}$. It is obvious that

Dind $X_{0}=\operatorname{dim} X_{0}=$ ind $X_{0}=$ Ind $X_{0}=0$. Let $X_{1}=\{0,1,2\}$ and

$$
\tau=\left\{\emptyset,\{0\},\{0,1\},\{0,2\}, X_{1}\right\} .
$$

It is obvious that $\left(X_{1}, \tau\right)$ is a finite $T_{0}$-space. Furthermore, it is easy to see that

$$
\text { Dind } X_{1}=\operatorname{dim} X_{1}=\operatorname{ind} X_{1}=\operatorname{Ind} X_{1}=1
$$

Let $n \geqslant 1$ and we assume that $X_{n}$ is constructed. Let $X_{n+1}$ be the finite $T_{0}$-space constructed by a base space $X_{n}$.

Then, it follows from Proposition 6 that

$$
\begin{array}{r}
\text { Dind } X_{n+1}=\operatorname{dim} X_{n+1}=\text { ind } X_{n+1} \\
=\text { Ind } X_{n+1}=n+1
\end{array}
$$

Example 5 We consider the finite $T_{0}$-space $X=\left\{x_{1}, \ldots, x_{n}\right\}$, where $n \geqslant 4$, which has as a basis the family $\beta=\left\{\emptyset,\left\{x_{k}\right\}\right\} \cup\left\{\left\{x_{k}, x_{i}\right\}: i \neq k\right\}$, for some fixed $k$. Then

$$
\begin{gathered}
\text { Dind } X=\text { Ind } X=\text { ind } X=1, \text { and } \\
\qquad \operatorname{dim} X=n-2
\end{gathered}
$$

Proof of Example 3 Let $m, n$ be natural numbers with $m \leqslant n$. By Example 5, there is a finite $T_{0}$-space $X_{n}$ such that

Dind $\left(X_{n}\right)=1$ and $\operatorname{dim} X_{n}=n$.
On the other hand, by Example 4, we have a finite $T_{0}$-space $X_{m}$ such that

$$
\text { Dind } X_{m}=\operatorname{dim} X_{m}=m
$$

Then $Z_{m n}=X_{n} \oplus X_{m}$ is a finite $T_{0}$-space such that Dind $Z_{m n}=m$ and $\operatorname{dim} Z_{m n}=n . \square$

## 5. Open questions

Question 1 Is there a characterization of Dind of a finite $T_{0}$-space by using matrices?

Question 2 Is there an algorithm for the computation of Dind of a finite $T_{0}$-space?

Question 3 Let d be one the dimensions ind, Ind and dim. What conditions must an Alexandroff $T_{0}$-space $X$ satisfy so that Dind $X=\mathrm{d}(X)$ ?

Question 4 What conditions must an Alexandroff $T_{0}$-space $X$ satisfy so that

$$
\operatorname{ind}(X)=\operatorname{dim}(X)=\operatorname{Ind}(X)=\operatorname{Dind}(X) ?
$$

Question 5 Let $k \in\{0,1, \ldots\}$. Is there a universal space in the class of all Alexandroff $T_{0^{-}}$ spaces $X$ of weight $\leqslant \tau$, where $\tau$ is an infinite cardinal, such that Dind $X \leqslant k$ ?

## References

[B1] Bass, D. W., Covering dimension and quasiorder spaces, J. London Math. Soc. (2) 1 (1969), 505-508.
[B2] Bass, D. W., Dimension and finite spaces, J. London Math. Soc. 44 (1969), 159-162.
[BW] Berghammer, R. and Winter, M., Orderand graph-theoretic investigation of dimensions of finite topological spaces and Alexandroff spaces, Monatsh. Math. 90 (2019), no. 1, 33-78.
[CP] Chatyrko, V. A. and Pasynkov, B. A., On sum and product theorems for dimension Dind, Houston J. Math. 28 (2002), no. 1, 119-131.
[CHH] Chatyrko, V. A., Han, Sang-Eon and Hattori, Y., The small inductive dimension of Alexandroff spaces, Filomat 30 (2016), no. 11, 3007-3014.
[GHMS] Georgiou, D. N., Hattori Y., Megaritis, A. C. and Sereti, F. The dimension Dind of finite topological $T_{0}$-spaces, Math. Slovaca 72 (2022) 813-829.
[GM] Georgiou, D. N., and Megaritis, A. C., Covering dimension and finite spaces, Appl. Math. Comput. 218 (2011), no. 7, 31223130.
[GMM] Georgiou, D. N., Megaritis, A. C. and Moshokoa, S. P., Small inductive dimension and Alexandroff topological spaces, Topology Appl. 168 (2014), 103-119.

