G. J. Wu, L. S. Xu

Introduction

Preliminaries

CF-approximation Spaces and CF-closed Sets

Representations of some special domains

CF-approximation Relations and Equivalence of Categories

Representations of Domains via CF-approximation Spaces

G. J. Wu, L. S. Xu Math. Dept., Yangzhou University

2022-7-4 Nanyang Technological University

G. J. Wu, L. S. Xu lath. Dent., Yangzho

Introduction

Preliminaries

CF-approximation Spaces and CF-closed Sets

Representations of some special domains

CF-approximation Relations and Equivalence of Categories

Contents

1 Introduction

2 Preliminaries

3 CF-approximation Spaces and CF-closed Sets

A Representations of some special domains

2/32

G. J. Wu, L. S. Xu ath. Dept., Yangzho

Introduction

Preliminaries

CF-approximation Spaces and CF-closed Sets

Representations of some special domains

CF-approximation Relations and Equivalence of Categories

Introduction: Representation of Domains

The representation of domains, we mean:

- some general way
- one can characterize a domain.
- use a suitable family of a mathematical structure.

3/32

• equipped with set-inclusion order.

G. J. Wu, L. S. Xu ath. Dept., Yangzho

Introduction

Preliminaries

CF-approximation Spaces and CF-closed Sets

Representations of some special domains

CF-approximation Relations and Equivalence of Categories

Examples

Continuous domain can be represented

- Abstract bases (B, \prec) : using round ideals.([2,3])
- c-infs (C, Con, \vdash) : using states;([7])
- Formal topology: using (psudo)-formal points in suitable topological spaces.([9])
- (\mathbb{F} -augmented generalized) closure spaces; ([12])

4/32

• (Attribute continuous) formal contexts $(P_o, P_a, \models, \mathcal{F}_{\tau})$. ([8])

G. J. Wu, L. S. Xu ath. Dent., Yangzho

Introduction

Preliminaries

CF-approximation Spaces and CF-closed Sets

Representations of some special domains

CF-approximation Relations and Equivalence of Categories

Observations

Clearly,

- Representation via abstract bases is most natural due to its simplicity;
- The study scope of abstract bases is little narrow;
- Abstract bases (B, ≺) are special generalized approximation spaces (U, R)(GA-space, for short).

5/32

G. J. Wu, L. S. Xu ath. Dent., Yangzho

Introduction

Preliminaries

CF-approximation Spaces and CF-closed Sets

Representations of some special domains

CF-approximation Relations and Equivalence of Categories

Our Intend

And we intend to

- generalize an abstract base to a CF-approximation space (U, R, F), a GA-space (U, R), with some consistent family F of some finite sets.
- hope that continuous domains can be represented via CF-approximation spaces.

6/32

G. J. Wu, L. S. Xu ath. Dept., Yangzho

Introduction

Preliminaries

CF-approximation Spaces and CF-closed Sets

Representations of some special domains

CF-approximation Relations and Equivalence of Categories

Basic notions

Definition

Let (U, \prec) be a set equipped with a binary relation \prec . We say \prec fully transitive if it is transitive and satisfies the strong interpolation property:

$$\forall |F| < \infty, F \prec z \Rightarrow \exists y \prec z \text{ such that } F \prec y,$$

where $F \prec y$ means for all $t \in F$, $t \prec y$. We call (B, \prec) an abstract basis if \prec is fully transitive.

7/32

G. J. Wu, L. S. Xu

Introduction

Preliminaries

CF-approximation Spaces and CF-closed Sets

Representations of some special domains

CF-approximation Relations and Equivalence of Categories

Let (B, \prec) be an abstract basis. A non-empty subset I of B is a round ideal if (1) $\forall y \in I, x \prec y \Rightarrow x \in I$; (2) $\forall x, y \in I, \exists z \in I$ such that $x \prec z$ and $y \prec z$. All the round ideals of B in set-inclusion order is called the round ideal completion of B, denoted by RI(B).

Theorem

Definition

For all abstract basis (B, \prec) , RI(B) is a continuous domain. Conversely, if P is a continuous domain with a base B, then (B, \ll) with \ll be the restriction of the way-below relation to B, is an abstract basis and $RI(B, \ll) \cong (P, \leqslant)$.

8/32

Representations of Domains via CF-approximation Spaces

Forward

G. J. Wu, L. S. Xu lath. Dept., Yangzho

Introduction

Preliminaries

CF-approximation Spaces and CF-closed Sets

Representations of some special domains

CF-approximation Relations and Equivalence of Categories

- A generalized approximation space (GA-space, for short) is a pair (U, R), where U is a set, R is a binary relation on U.
- Define $R_s, R_p : U \to \mathcal{P}(U)$ such that for all $x \in U$, $R_s(x) = \{y \in U \mid xRy\}, R_p(x) = \{y \in U \mid yRx\}.$

Definition

Let (U, R) be a GA-space. For $A \subseteq U$, define $\underline{R}(A) = \{x \in U \mid R_s(x) \subseteq A\},$ $\overline{R}(A) = \{x \in U \mid R_s(x) \cap A \neq \emptyset\}.$ The operators $\underline{R}, \overline{R} : \mathcal{P}(U) \rightarrow \mathcal{P}(U)$ are respectively called the lower and upper approximation operators in (U, R), which are key notions in GA-spaces.

9/32

Lemma

G. J. Wu, L. S. Xu ath. Dept., Yangzho

Introduction

Preliminaries

CF-approximation Spaces and CF-closed Sets

Representations of some special domains

CF-approximation Relations and Equivalence of Categories

Let (U, R) be a GA-space. Then the lower and upper approximation operators <u>R</u> and \overline{R} have the following properties.

(1) $\underline{R}(A^c) = (\overline{R}(A))^c$, $\overline{R}(A^c) = (\underline{R}(A))^c$, where A^c is the complement of $A \subseteq U$. (2) $\underline{R}(U) = U$, $\overline{R}(\emptyset) = \emptyset$. (3) Let $\{A_i \mid i \in I\} \subseteq \mathcal{P}(U)$. Then $\underline{R}(\bigcap_{i \in I} A_i) = \bigcap_{i \in I} \underline{R}(A_i)$, $\overline{R}(\bigcup_{i \in I} A_i) = \bigcup_{i \in I} \overline{R}(A_i)$. (4) If $A \subseteq B \subseteq U$, then $\underline{R}(A) \subseteq \underline{R}(B)$, $\overline{R}(A) \subseteq \overline{R}(B)$. (5) For all $x \in U$, $\overline{R}(\{x\}) = R_p(x)$.

10/32

G. J. Wu, L. S. Xu ath. Dept., Yangzho

Proposition

Introduction

Preliminaries

CF-approximation Spaces and CF-closed Sets

Representations of some special domains

CF-approximation Relations and Equivalence of Categories

Let (U, R) be a GA-space. Then $\mathcal{T}_R = \{A \subseteq U \mid A \subseteq \underline{R}(A)\}$ is an Alexandrov topology.

Topology \mathcal{T}_R is called a *topology induced by relation* R. And a set A in (U, \mathcal{T}_R) is closed iff $\overline{R}(A) \subseteq A$.

11/32

G. J. Wu, L. S. Xu

Introduction

Preliminaries

CF-approximation Spaces and CF-closed Sets

Representations of some special domains

CF-approximation Relations and Equivalence of Categories

Abstract base to CF-approximation space

- Change an abstract base (B, ≺) to the triple (B, ≺, {{b} | b ∈ B}).
- { $\downarrow^{\prec} b \mid b \in B$ } is a base of RI(B), where $\downarrow^{\prec} b = \{c \in B \mid c \prec b\}$.
- Change an abstract base (B, ≺) to a GA-space
 (U, R) with R being transitive.

12/32

G. J. Wu, L. S. Xu

Introduction

Preliminaries

CF-approximation Spaces and CF-closed Sets

Representations of some special domains

CF-approximation Relations and Equivalence of Categories

Abstract base to CF-approximation space

- Change an abstract base (B, ≺) to the triple (B, ≺, {{b} | b ∈ B}).
- { $\downarrow \prec b \mid b \in B$ } is a base of RI(B), where $\downarrow \prec b = \{c \in B \mid c \prec b\}$.
- Change an abstract base (B, ≺) to a GA-space
 (U, R) with R being transitive.
- Change the family {{b} | b ∈ B} to a suitable family *F* of some finite subsets of *U*.
- The family \mathcal{F} can also induce a base of a continuous domain.

12/32

G. J. Wu, L. S. Xu

Introduction

Preliminaries

CF-approximation Spaces and CF-closed Sets

Representations of some special domains

CF-approximation Relations and Equivalence of Categories

CF-approximation spaces

Definition

Let (U, R) be a GA-space, R a transitive relation and $\mathcal{F} \subseteq \mathcal{P}_{fin}(U) \cup \{\emptyset\}$. If for all $F \in \mathcal{F}$, whenever $K \subseteq_{fin} \overline{R}(F)$, there always exists $G \in \mathcal{F}$ such that

 $K \subseteq \overline{R}(G), G \subseteq \overline{R}(F),$

then (U, R, \mathcal{F}) is called a generalized approximation space with consistent family of finite subsets, or a *CF*-approximation space, for short.

G. J. Wu, L. S. Xu

Introduction

Preliminaries

CF-approximation Spaces and CF-closed Sets

Representations of some special domains

CF-approximation Relations and Equivalence of Categories

CF-closed sets

Definition

Let (U, R, \mathcal{F}) be a CF-approximation space, $E \subseteq U$. If for all $K \subseteq_{fin} E$, there always exists $F \in \mathcal{F}$ such that $K \subseteq \overline{R}(F) \subseteq E$ and $F \subseteq E$, then E is called a CF-closed set of (U, R, \mathcal{F}) . The collection of all CF-closed sets of (U, R, \mathcal{F}) is denoted by $\mathfrak{C}(U, R, \mathcal{F})$.

Remark

(1) If $\emptyset \in \mathfrak{C}(U, R, \mathcal{F})$, then $\emptyset \in \mathcal{F}$ by $\overline{R}(\emptyset) = \emptyset$. (2) For CF-approximation space (U, R, \mathcal{F}) , if $\mathcal{F} = \{\{x\} \mid x \in U\}$, then (U, R) is an abstract base, and all the CF-closed sets of (U, R, \mathcal{F}) are precisely all the round ideals of (U, R).

G. J. Wu, L. S. Xu

Introduction

Preliminaries

CF-approximation Spaces and CF-closed Sets

Representations of some special domains

CF-approximation Relations and Equivalence of Categories

Properties of CF-closed sets

Proposition

Let (U, R, \mathcal{F}) be a CF-approximation space. If $E \in \mathfrak{C}(U, R, \mathcal{F})$, then E is a closed set in \mathcal{T}_R .

Proposition

Let (U, R, \mathcal{F}) be a CF-approximation space, then (1) for any $F \in \mathcal{F}$, $\overline{R}(F) \in \mathfrak{C}(U, R, \mathcal{F})$; (2) if $E \in \mathfrak{C}(U, R, \mathcal{F})$, $A \subseteq E$, then $\overline{R}(A) \subseteq E$; (3) if $\{E_i\}_{i \in I} \subseteq \mathfrak{C}(U, R, \mathcal{F})$ is a directed family, then $\bigcup_{i \in I} E_i \in \mathfrak{C}(U, R, \mathcal{F})$.

The above proposition above shows that $(\mathfrak{C}(U, R, \mathcal{F}), \subseteq)$ is a dcpo.

G. J. Wu, L. S. Xu

Introduction

Preliminaries

CF-approximation Spaces and CF-closed Sets

Representations of some special domains

CF-approximation Relations and Equivalence of Categories

Characterizations of CF-closed sets

Proposition

Let (U, R, \mathcal{F}) be a CF-approximation space. Then the following statements are equivalent: (1) $E \in \mathfrak{C}(U, R, \mathcal{F})$; (2) The family $\mathcal{A} = \{\overline{R}(F) \mid F \in \mathcal{F}, F \subseteq E\}$ is directed and $E = \bigcup \mathcal{A}$; (3) There exists a family $\{F_i\}_{i \in I} \subseteq \mathcal{F}$ such that $\{\overline{R}(F_i)\}_{i \in I}$ is directed, and $E = \bigcup_{i \in I} \overline{R}(F_i)$; (4) There always exists $F \in \mathcal{F}$ such that $K \subseteq \overline{R}(F) \subseteq E$ whenever $K \subset_{fin} E$.

6/32

G. J. Wu, L. S. Xu

Introduction

Preliminaries

CF-approximation Spaces and CF-closed Sets

Representations of some special domains

CF-approximation Relations and Equivalence of Categories

Way-below relation \ll in $(\mathfrak{C}(U, R, \mathcal{F}), \subseteq)$

Theorem

```
Let (U, R, \mathcal{F}) be a CF-approximation space,
E_1, E_2 \in \mathfrak{C}(U, R, \mathcal{F}). Then E_1 \ll E_2 if and only if there exists F \in \mathcal{F} such that E_1 \subseteq \overline{R}(F) and F \subseteq E_2.
```

Corollary

Let (U, R, \mathcal{F}) be a CF-approximation space, $E \in \mathfrak{C}(U, R, \mathcal{F}), F \in \mathcal{F}$. The following statements hold: (1) If $F \subseteq E$, then $\overline{R}(F) \ll E$; (2) $\overline{R}(F) \ll \overline{R}(F)$ if and only if there exists $G \in \mathcal{F}$, such that $G \subseteq \overline{R}(G) = \overline{R}(F)$.

G. J. Wu, L. S. Xu

Introduction

Preliminaries

CF-approximation Spaces and CF-closed Sets

Representations of some special domains

CF-approximation Relations and Equivalence of Categories

Representation Theorem

Theorem

Let (U, R, \mathcal{F}) be a CF-approximation space. Then $(\mathfrak{C}(U, R, \mathcal{F}), \subseteq)$ is a continuous domain.

Theorem

Let L be a cont. domain, $\mathcal{F}_L = \{F \subseteq_{fin} L \mid Fhas \ a \ top\}$ and $R_L = \ll$. Then $\mathfrak{C}(L, R_L, \mathcal{F}_L) = \{ \downarrow x \mid x \in L \}$.

G. J. Wu, L. S. Xu

Introduction

Preliminaries

CF-approximation Spaces and CF-closed Sets

Representations of some special domains

CF-approximation Relations and Equivalence of Categories

Representation Theorem

Theorem

Let (U, R, \mathcal{F}) be a CF-approximation space. Then $(\mathfrak{C}(U, R, \mathcal{F}), \subseteq)$ is a continuous domain.

Theorem

Let *L* be a cont. domain, $\mathcal{F}_L = \{F \subseteq_{fin} L \mid Fhas a top\}$ and $R_L = \ll$. Then $\mathfrak{C}(L, R_L, \mathcal{F}_L) = \{\downarrow x \mid x \in L\}$.

Theorem

(Representation Theorem) A poset L is a continuous domain iff there is a CF-approximation space (U, R, \mathcal{F}) such that $L \cong (\mathfrak{C}(U, R, \mathcal{F}), \subseteq))$.

G. J. Wu, L. S. Xu

Introduction

Preliminaries

CF-approximation Spaces and CF-closed Sets

Representations of some special domains

CF-approximation Relations and Equivalence of Categories

Representations of some special domains

We have some special cases of representation theorem.

Theorem

Let (U, R, \mathcal{F}) be a CF-approximation space. If $(\{\overline{R}(F) \mid F \in \mathcal{F}\}, \subseteq)$ is a cusl (resp., sup-semilattice with bottom element), then $\mathfrak{C}(U, R, \mathcal{F})$ is a bc-domain(resp., continuous lattice). Conversely, above types of domains can be respectively represented in this way.

G. J. Wu, L. S. Xu ath. Dept., Yangzho

Introduction

Preliminaries

CF-approximation Spaces and CF-closed Sets

Representations of some special domains

CF-approximation Relations and Equivalence of Categories

Topological F-approximation spaces

Definition

Let R be a preorder, $\mathcal{F} \subseteq \mathcal{P}_{fin}(U) \cup \{\emptyset\}$. Then (U, R, \mathcal{F}) is called a topological F-approximation space.

Remark

A topological F-approximation space must be a CF-approximation space.

G. J. Wu, L. S. Xu

Introduction

Preliminaries

CF-approximation Spaces and CF-closed Sets

Representations of some special domains

CF-approximation Relations and Equivalence of Categories

Representations of Algebraic domains

Theorem

Let (U, R, \mathcal{F}) be a topological F-approximation space. Then $(\mathfrak{C}(U, R, \mathcal{F}), \subseteq)$ is an algebraic domain. Conversely, any algebraic domain can be represented by some topological F-approximation space.

let (L, \leq) be an algebraic domain. Set a topological F-approximation space $(K(L), R_{K(L)}, \mathcal{F}_{K(L)})$, where $\mathcal{F}_{K(L)} = \{F \subseteq_{fin} K(L) \mid F \text{ has top element}\},\$ $R_{K(L)} = \leq$ is a partial order. Then we have that $\mathfrak{C}(K(L), R_{K(L)}, \mathcal{F}_{K(L)}) = \{\downarrow x \cap K(L) \mid x \in L\}.$ Since *L* is an algebraic domain, we know that $(\{\downarrow x \cap K(L) \mid x \in L\}, \subseteq) \cong (L, \leq).$

G. J. Wu, L. S. Xu

Introduction

Preliminaries

CF-approximation Spaces and CF-closed Sets

Representations of some special domains

CF-approximation Relations and Equivalence of Categories

CF-approximation relations

Definition

Let $(U_1, R_1, \mathcal{F}_1)$, $(U_2, R_2, \mathcal{F}_2)$ be CF-approximation spaces, and $\Theta \subset \mathcal{F}_1 \times \mathcal{F}_2$ a binary relation. If 1. for all $F \in \mathcal{F}$, there is $G \in \mathcal{F}_2$ such that $F \Theta G$: 2. $(\forall F, F' \in \mathcal{F}_1, G \in \mathcal{F}_2)$ $(F \subseteq \overline{R_1}(F'), F \ominus G) \Rightarrow (F' \ominus G);$ 3. $(\forall F \in \mathcal{F}_1, G, G' \in \mathcal{F}_2)(F \ominus G, G' \subseteq \overline{R_2}(G)) \Rightarrow (F \ominus G');$ 4. for all $F \in \mathcal{F}_1$, $G \in \mathcal{F}_2$, if $F \Theta G$, then there are $F' \in \mathcal{F}_1$, $G' \in \mathcal{F}_2$ s. t. $F' \subseteq \overline{R_1}(F)$, $G \subseteq \overline{R_2}(G')$ and $F' \Theta G'$; and 5. for all $F \in \mathcal{F}_1$, $G_1, G_2 \in \mathcal{F}_2$, if $F \ominus G_1$ and $F \ominus G_2$, then there is $G_3 \in \mathcal{F}_2$ s. t. $G_1 \cup G_2 \subseteq \overline{R_2}(G_3)$ and $F \ominus G_3$. then Θ is called a CF-approximation relation from $(U_1, R_1, \mathcal{F}_1)$ to $(U_2, R_2, \mathcal{F}_2)$.

G. J. Wu, L. S. Xu ath. Dept., Yangzho

Introduction

Preliminaries

CF-approximation Spaces and CF-closed Sets

Representations of some special domains

CF-approximation Relations and Equivalence of Categories

Identities and compsitions

- Given a CF-approximation space (U, R, F), define a binary relation Id_(U,R,F) ⊆ F × F such that for all F, G ∈ F, (F, G) ∈ Id_(U,R,F) ⇔ G ⊆ R(F).
- Let $(U_1, R_1, \mathcal{F}_1)$, $(U_2, R_2, \mathcal{F}_2)$, $(U_3, R_3, \mathcal{F}_3)$ be CF-approximation spaces, $\Theta \subseteq \mathcal{F}_1 \times \mathcal{F}_2$,

 $\Upsilon \subseteq \mathcal{F}_2 \times \mathcal{F}_3$ be CF-approximation relations. Define $\Upsilon \circ \Theta \subseteq \mathcal{F}_1 \times \mathcal{F}_3$, the composition of Υ and Θ by that for any $F_1 \in \mathcal{F}_1, F_3 \in \mathcal{F}_3$, $(F_1, F_3) \in \Upsilon \circ \Theta$ iff there exists $F_2 \in \mathcal{F}_2$ satisfying $(F_1, F_2) \in \Theta$ and $(F_2, F_3) \in \Upsilon$.

G. J. Wu, L. S. Xu ath. Dent., Yangzho

Introduction

Preliminaries

CF-approximation Spaces and CF-closed Sets

Representations of some special domains

CF-approximation Relations and Equivalence of Categories

Categories CF-GA and CDOM

 CF-GA objects: CF-approximation spaces; morphisms: CF-approximation relations. The identities are defined above.
 Compositions are compositions of binary relations

24/32

 CDOM objects: continuous domains; morphisms: Scott continuous maps.
 Identity map and compositions of maps

G. J. Wu, L. S. Xu

Introduction

Preliminaries

CF-approximation Spaces and CF-closed Sets

Representations of some special domains

CF-approximation Relations and Equivalence of Categories

Induced Scott continuous maps

Let Θ be a CF-approximation relation from $(U_1, R_1, \mathcal{F}_1)$ to $(U_2, R_2, \mathcal{F}_2)$. For all $F \in \mathcal{F}_1$, set $\widetilde{\Theta}(F) = \bigcup \{\overline{R_2}(G) \mid F \Theta G \text{ and } G \in \mathcal{F}_2\}$. Define a map $f_{\Theta} : \mathfrak{C}(U_1, R_1, \mathcal{F}_1) \longrightarrow \mathcal{P}(U_2)$ such that for all $E \in \mathfrak{C}(U_1, R_1, \mathcal{F}_1)$, $f_{\Theta}(E) = \bigcup \{\widetilde{\Theta}(F) \mid F \subseteq E \text{ and } F \in \mathcal{F}_1\}$.

Theorem

Let Θ be a CF-approximation relation from $(U_1, R_1, \mathcal{F}_1)$ to $(U_2, R_2, \mathcal{F}_2)$. Then f_{Θ} is a Scott continuous map from $\mathfrak{C}(U_1, R_1, \mathcal{F}_1)$ to $\mathfrak{C}(U_2, R_2, \mathcal{F}_2)$.

G. J. Wu, L. S. Xu ath. Dept., Yangzho

Introduction

Preliminaries

CF-approximation Spaces and CF-closed Sets

Representations of some special domains

CF-approximation Relations and Equivalence of Categories

Induced CF-approximation relations

Theorem

Let $f : \mathfrak{C}(U_1, R_1, \mathcal{F}_1) \longrightarrow \mathfrak{C}(U_2, R_2, \mathcal{F}_2)$ be a Scott continuous map. Define $\Theta_f \subseteq \mathcal{F}_1 \times \mathcal{F}_2$ such that $\forall F \in \mathcal{F}_1, G \in \mathcal{F}_2, F \Theta_f G \Leftrightarrow G \subseteq f(\overline{R_1}(F)).$ Then Θ_f is a CF-approximation relation from $(U_1, R_1, \mathcal{F}_1)$ to $(U_2, R_2, \mathcal{F}_2).$

e Back

Forward

G. J. Wu, L. S. Xu ath. Dept., Yangzho

Introduction

Preliminaries

CF-approximation Spaces and CF-closed Sets

Representations of some special domains

CF-approximation Relations and Equivalence of Categories

Equivalence of CF-GA and CDOM

Theorem

Let $f : \mathfrak{C}(U_1, R_1, \mathcal{F}_1) \longrightarrow \mathfrak{C}(U_2, R_2, \mathcal{F}_2)$ be a Scott continuous map, Θ a CF-approximation relation from $(U_1, R_1, \mathcal{F}_1)$ to $(U_2, R_2, \mathcal{F}_2)$. Then $\Theta_{f_\Theta} = \Theta$ and $f_{\Theta_f} = f$.

Theorem

The categories CF-GA and CDOM are equivalent.

G. J. Wu, L. S. Xu

Introduction

Preliminaries

CF-approximation Spaces and CF-closed Sets

Representations of some special domains

CF-approximation Relations and Equivalence of Categories

References

- S. Abramsky, A. Jung, Domain theory, In: S. Abramsky, et al. (editors), Handbook of Logic in Computer Science (Volume 3), Clarendon Press, 1995, 1-168
- [2] G. Gierz, et al. Continuous Lattices and Domains. Cambridge University Press 2003.
- [3] J. Goubault-Larrecq. Non-Hausdorff Topology and Domain Theory. Cambridge University Press 2013.

e Back

Forward

G. J. Wu, L. S. Xu lath. Dent., Yangzho

Introduction

Preliminaries

CF-approximation Spaces and CF-closed Sets

Representations of some special domains

CF-approximation Relations and Equivalence of Categories

- [4] L. C. Wang, L. K. Guo, Q. G. Li. Continuous Domains in Formal Concept Analysis. Fundamenta Informaticae 179 (2021) 295-319.
- J. Järvinen. Lattice theory for rough sets.
 Transactions on Rough Sets VI, LNCS 4374.
 Springer-Verlag, Berlin Heidelberg 2007, 400-498.
- [6] G. L. Liu, W. Zhu. The algebraic structures of generalized rough set theory. Information Sciences 178 (2008). 4105-4113.

G. J. Wu, L. S. Xu ath. Dept., Yangzho

Introduction

Preliminaries

CF-approximation Spaces and CF-closed Sets

Representations of some special domains

CF-approximation Relations and Equivalence of Categories

 [7] D. Spreen, L. S. Xu, X. X. Mao. Information systems revisited-the general continuous case. Theoret. Comput. Sci. 405 (2008) 176-187.

[8] L. C. Wang, L. K. Guo, Q. G. Li. Continuous Domains in Formal Concept Analysis. Fundamenta Informaticae 179 (2021) 295-319.

[9] L. S. Xu, and X. X. Mao. Formal topological characterizations of various continuous domains. Comput. Math. Appl. 56 (2008) 444-452.

G. J. Wu, L. S. Xu ath. Dent., Yangzho

Introduction

Preliminaries

CF-approximation Spaces and CF-closed Sets

Representations of some special domains

CF-approximation Relations and Equivalence of Categories

[10] L. Y. Yang, L. S. Xu. Algebraic aspects of generalized approximation spaces. Internat. J. Approx. Reason., 2009, 51: 151-161.

- [11] Z. Pawlak, Rough sets, International Journal of Computer and Information Sciences 11 (1982) 341-356.
- [12] L. C. Wang, Q. G. Li, L. K. Guo. Representations of continuous Domains and continuous L-Domains based on Closure Spaces. Logic in Comp. Sci. 2018.

G. J. Wu, L. S. Xu ath. Dept., Yangzho

Introduction

Preliminaries

CF-approximation Spaces and CF-closed Sets

Representations of some special domains

CF-approximation Relations and Equivalence of Categories

Thank You!

32/32

