Lattice-Free and Point-Free: Vickers Duality for Subbases of Stably Locally Compact Spaces

Tristan Bice

Institute of Mathematics of the Czech Academy of Sciences

9th International Symposium of Domain Theory Nanyang Technological University, Singapore July 5th 2022

Classic Stone Duality

Stone space = compact Hausdorff 0-dimensional space X.
 Order clopens CO(X) by inclusion, i.e.

$$O \leq N \quad \Leftrightarrow \quad O \subseteq N.$$

- ▶ Note $(CO(X), \subseteq)$ is a Boolean algebra:

Theorem (Stone 1936)

Every Boolean algebra arises this way. Moreover,

Boolean Homomorphisms \leftrightarrow Continuous Maps.

Classic Wallman Duality

- Can extend this to compact T_1 spaces X as follows.
- ▶ Take any \cap - \cup -basis (= closed under \cap and \cup) $B \subseteq O(X)$.
- Again B is a distributive lattice with maximum 1 = X. Also

$$p \nleq q \quad \Rightarrow \quad \exists r \ge q \ (r \ne 1 = p \lor r).$$
 (Subfit)

Theorem (Wallman 1938)

Every subfit unital distributive lattice arises in this way.

- ▶ Can even take a more general \cup -subbasis $S \subseteq O(X)$.
- ► Then *S* is a subfit unital ∨-semilattice.

Theorem (B.-Kubiś 2020)

Every subfit unital $\lor\mbox{-semilattice}$ arises in this way. Moreover,

 $\label{eq:Relational Homomorphisms} \qquad \leftrightarrow \qquad \mbox{Continuous Maps}.$

Another Wallman Duality

- ▶ What about general subbases *S* of compact *T*₁ spaces?
- Then the inclusion ordering might collapse to equality.
 - ► E.g. take a compact subset of R of measure 1 and take S to be the subbasis of all regular open subsets of measure 1/2.
- Instead we can consider subbasic (non-)covers of X, i.e.

$$C = \{F \subseteq S : F \text{ is finite and } X \neq \bigcup F\}.$$

Then C is an abstract simplicial complex, i.e.

$$F \subseteq G \in \mathcal{C} \quad \Rightarrow \quad F \in \mathcal{C}.$$

- ▶ Define $p \leq q$ when $\{q\} \cup F \in C \Rightarrow \{p\} \cup F \in C$, for all $F \subseteq S$.
- ▶ ≤ is a preorder. Call C proper if $p \le q \le p \implies p = q$.

Theorem (Wallman 1938)

Every proper abstract simplicial complex arises in this way.

Related Dualities

Other dualities focus on locally compact sober (LCS) spaces. Theorem (Hofmann-Lawson 1978) Every continuous frame arises as $\mathcal{O}(X)$ for LCS space X. Also, Frame Homomorphisms \leftrightarrow Continuous Maps. Generalisations to (semi)lattice bases of LCS spaces: Compact Hausdorff: Shirota (1952), De Vries (1962). Stably Compact: Jung-Sünderhauf (1996), van Gool (2012). General Locally Compact Sober: B. (2021), Kawai (2021). \blacktriangleright Key feature of above: replacing \subseteq with \in , i.e. $O \subseteq N \quad \Leftrightarrow \quad \exists \text{ compact } K \ (O \subset K \subset N).$ \blacktriangleright So abstractly we have a set B with an idempotent relation \prec (i.e. $p \prec q \Leftrightarrow \exists r \ (p \prec r \prec q)$) satisfying various properties.

The Compact Cover Relation

- What about arbitrary subbases S of stably locally compact X? (= LCS and K ∩ L compact for compact saturated K, L ⊆ X)
- ► Wallman suggests we should again consider covers.
- However, covers of the entirety of X may no longer suffice.
 - ► E.g. take X to be any space with a dense point x (e.g. {0} is dense in [0, 1] or [0, 1] ∪ [2, 3] etc. with the upper topology).
 - Then X = ∪ F precisely when x ∈ s, for some s ∈ F, which gives no information about the topology on X \ {x}.
- Instead we must consider (compact) covers of smaller subsets, e.g. formed from finite subbasic intersections.
- ▶ Specifically, define \vdash on FS = { $F \subseteq S : |F| < \infty$ } by

$$F \vdash G \quad \Leftrightarrow \quad \bigcap F \Subset \bigcup G.$$

What properties does ⊢ possess? Can we use ⊢ to recover X? Can these unify previous dualities for stably compact X?

The Compact Cover Relation

► Take a subbasis *S* of a LCS space *X* and define ⊢ on F*S* by

$$F \vdash G \quad \Leftrightarrow \quad \bigcap F \Subset \bigcup G.$$

We immediately see that ⊢ is monotone, i.e.

$$F \vdash G \quad \Rightarrow \quad \{s\} \cup F \vdash G \text{ and } F \vdash G \cup \{s\}.$$

► Conversely, ⊢ also satisfies Gentzen's cut rule, i.e.

$$F \vdash G \quad \Leftarrow \quad \{s\} \cup F \vdash G \text{ and } F \vdash G \cup \{s\}.$$

Proof.

Say {s} ∪ F ⊢ G and F ⊢ G ∪ {s}, i.e. we have compact K, L with s ∩ ∩ F ⊆ K ⊆ ∪ G and ∩ F ⊆ L ⊆ ∪ G ∪ s.
Then K ∪ (L \ s) is compact and ∩ F ⊆ K ∪ (L \ s) ⊆ ∪ G.

Entailments

So the compact cover relation \vdash is an entailment, i.e.

 $F \vdash G \quad \Leftrightarrow \quad \{s\} \cup F \vdash G \text{ and } F \vdash G \cup \{s\}.$

Entailments are always transitive on singletons, i.e.

$$p\vdash q\vdash s \Rightarrow p\vdash s.$$

Proof.

▶ If $p \vdash q \vdash s$ then $p \vdash \{q, s\}$ and $\{p, q\} \vdash s$, by monotonicity.

• Then Gentzen's cut rule yields $p \vdash s$.

The obvious extension to larger subsets can fail, e.g.

$$p \Subset q \cup r$$
 and $q \cap r \Subset s$ \Rightarrow $p \Subset s$

But other extensions do hold, e.g.

$$p \Subset q, \quad p \Subset r \quad \text{and} \quad q \cap r \Subset s \quad \Rightarrow \quad p \Subset s$$

$$p \Subset q \cup r, \quad q \Subset s \quad \text{and} \quad r \Subset s \quad \Rightarrow \quad p \Subset s.$$

This leads us to consider a certain 'diagonal' relation on FFS.

The Diagonal Relation

For any set *S*, define the overlap relation on F*S* by

$$F \circlearrowright G \quad \Leftrightarrow \quad F \cap G \neq \emptyset.$$

• The selections any $Q \subseteq FS$ are given by

$$\mathcal{Q}_{\check{0}} = \{ G \in \mathsf{F}S : \forall F \in \mathcal{Q} \ (F \check{0} \ G) \}.$$

▶ If $S \subseteq PX = \{Y : Y \subseteq X\}$ then, for any $Q \in FFS$,

$$\bigcap_{F\in\mathcal{Q}}\bigcup F=\bigcup_{F\in\mathcal{Q}_{\emptyset}}\bigcap F.$$

The diagonal relation on FFS is defined by

$$\mathcal{Q} \Join \mathcal{R} \quad \Leftrightarrow \quad \mathcal{Q}_{\emptyset} \ \emptyset \ \mathcal{R}_{\emptyset},$$

i.e. every selection of Q overlaps every selection of \mathcal{R} .

Diagonal Transitivity

▶ If $S \subseteq PX$ then

$$\mathcal{Q} \bowtie \mathcal{R} \quad \Rightarrow \quad \bigcap_{H \in \mathcal{Q}} \bigcup_{H \subseteq \mathcal{U}} H \subseteq \bigcup_{H \in \mathcal{R}} \bigcap_{H \in \mathcal{R}} H.$$

Thus if S is a subbasis of an LCS space X and Q ⋈ R then
∀H ∈ Q (∩ F ∈ ∪ H) and ∀H ∈ R (∩ H ∈ ∪ G) ⇒ ∩ F ∈ ∪ G.
This kind of 'diagonal transitivity' applies to all entailments.
Theorem (Jung-Kegelmann-Moshier 1999) (Vickers 2004)
If ⊢ is an entailment on FS, for any F, G ∈ FS and Q, R ∈ FFS,

$$F \vdash \mathcal{Q} \bowtie \mathcal{R} \vdash G \quad \Rightarrow \quad F \vdash G.$$

• Note singleton transitivity is the case $Q = \mathcal{R} = \{\{s\}\}$.

Diagonal Interpolation vs Divisibility

The compact cover relation ⊢ on FS, for a subbasis S of LCS X, is also diagonally interpolative, i.e. conversely

$$F \vdash G \quad \Rightarrow \quad \exists Q, R \in \mathsf{FFS} \ (F \vdash Q \bowtie R \vdash G).$$

- Proved by refining G to obtain \mathcal{R} and taking $\mathcal{Q} = \mathcal{R}_{\delta}$.
- Actually this shows $F \vdash Q \bowtie \mathcal{R} \vdash_{1\exists} G$ where

$$\mathcal{R} \vdash_{1\exists} G \qquad \Leftrightarrow \qquad \forall H \in \mathcal{R} \ \exists s \in G \ (H \vdash s).$$

• Thus the compact cover relation \vdash is divisible.

 ${\sf Diagonal \ Idempotents} \rightarrow {\sf Stably \ Locally \ Compact \ Spaces}$

• Given \vdash on FS, we call $Q \subseteq$ FS a quasi-ideal if

 $F \in \mathcal{Q} \quad \Leftrightarrow \quad \exists \mathcal{G} \in \mathsf{F}\mathcal{Q} \ (F \vdash \mathcal{G}_{\check{0}}).$

- If ⊢ is monotone and diagonally idempotent then the quasi-ideals form a stably continuous frame (≈ Vickers 2004).
- Hofmann-Lawson duality then yields an SLC space X where the elements of S can be identified with certain open subsets.
- ► However, these will not always form a subbasis of *X*:
 - E.g. let S be the collection of open subintervals of (0, 1) formed from consecutive dyadic rationals, i.e.

$$S = \{((k-1)/2^n, k/2^n) : 1 \le k \le 2^n\}.$$

▶ Define ⊢ on FS by

$$F \vdash G \quad \Leftrightarrow \quad \bigcap F \subseteq \operatorname{int}(\operatorname{cl}(\bigcup G)). \quad (*)$$

- Then ⊢ is monotone, diagonally idempotent and the spectrum of the quasi-ideals can be identified with (0, 1).
- However, S is certainly not a subbasis for (0, 1).
- Crucially, the relation ⊢ given in (*) is not divisible.

Tight Subsets

- To unify previous dualities, we would also need to obtain the space X directly from filter-like subsets of S.
- ▶ Accordingly, given \vdash on FS, we call $T \subseteq S$ tight if

$$\exists F \in \mathsf{FS} \ (T \supseteq F \vdash G) \qquad \Leftrightarrow \qquad T \cap G \neq \emptyset$$

► As long as ⊢ is monotone, this splits into

$$T \supseteq F \vdash G \qquad \Rightarrow \qquad T \cap G \neq \emptyset. \qquad (Prime)$$
$$\exists F \in \mathsf{FT} \ (F \vdash s) \qquad \Leftarrow \qquad s \in T. \qquad (Round)$$

• Motivation: take a subbasis S of LCS X. Given $x \in X$, let

$$S_x = \{t \in S : x \in t\}.$$

Then S_x tight w.r.t. the compact cover relation ⊢ on FS.
If X is stable, every tight subset is of the form S_x for some x.

The Tight Spectrum

► Given ⊢ on FS, let $TS = \{T \subseteq S : T \text{ is tight}\}$. For $p \in S$, let $T_p = \{T \in TS : p \in T\}$

The tight spectrum is the space TS with the topology generated by (T_p)_{p∈S} (i.e. (T_p)_{p∈S} is a subbasis of TS).
 Theorem (B.-Kubiś 2021)

If \vdash is a monotone, diagonally transitive and divisible relation on FS then the tight spectrum is a stably locally compact space and

$$F \vdash G \quad \Rightarrow \quad \bigcap_{p \in F} \mathsf{T}_p \Subset \bigcup_{p \in G} \mathsf{T}_p.$$

► ⇐ will also hold when ⊢ satisfies 'strong transitivity', i.e.

$$F \Vdash \mathcal{Q} \bowtie \mathcal{R} \vdash G \qquad \Rightarrow \qquad F \vdash G,$$

where $F \Vdash G$ means $H \vdash G$ whenever $H \vdash f$, for all $f \in F$.

A Unifying Duality

- In this way, we obtain a duality between subbases of stably locally compact spaces and abstract 'cover relations'.
- Can also show that continuous maps between the spaces correspond to certain relations between the subbases.
- Can also use this to obtain various previous dualities for bases of SLC spaces (by De Vries, Jung-Sünderhauf, etc.)
- General procedure: Given a distributive lattice S and some 'compatible' idempotent ≺, define a cover relation by

$$F \vdash G \quad \Leftrightarrow \quad \exists H \in \mathsf{FS} \ (\bigwedge F \leq \bigvee H \text{ and } H \prec G),$$

where $H \prec G$ means $\forall h \in H \exists g \in G \ (h \prec g)$.

- Then tight subsets are precisely the round prime filters.
- \blacktriangleright \Rightarrow round prime filters form a stably locally compact space.
- Can also be used to obtain new dualities...

A New Duality

- ► Grätzer (1978) extended Stone duality to distributive ∨-semilattices and compactly based sober spaces.
- Recently, Celani-González (2020) extended Grätzer's duality to even non-distributive V-semilattices.
- Hansoul-Poussart (2009) and Bezhanishvili-Jansana (2011) obtained an analog of Grätzer's duality for distributive V-semilattices and but with spectral spaces instead (i.e. stably compact compactly based spaces).
- ► Can we likewise extend this to non-distributive ∨-semilattices?
- ▶ Yes can define a cover relation \vdash on any \lor -semilattice S by

$$egin{aligned} \mathcal{F}dash \ \mathcal{G} & \Leftrightarrow & orall p,q\in \mathcal{S}\left(orall f\in \mathcal{F}\left(p\leq fee q
ight) \Rightarrow \ p\leq \bigvee Gee q
ight) \end{aligned}$$

(intuitively () part is saying $p \setminus q \subseteq \bigcap F$ implies $p \setminus q \subseteq \bigcup G$).

Future Work: Generalise to (non compactly based) stably locally compact spaces using an idempotent relation ≺ on S.