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Classic Stone Duality

Stone Spaces Boolean Algebras

I Stone space = compact Hausdorff 0-dimensional space X .
I Order clopens CO(X ) by inclusion, i.e.

O ≤ N ⇔ O ⊆ N.

I Note (CO(X ),⊆) is a Boolean algebra:

∅ ⊆ O ⊆ X . (bounded)

O ∧ N = O ∩ N. (∧-semilattice)

O ∨ N = O ∪ N. (∨-semilattice)

Oc = X \ O. (complemented)

M ∧ (N ∨ O) = (M ∧ N) ∨ (M ∧ O). (distributive)

Theorem (Stone 1936)

Every Boolean algebra arises this way. Moreover,

Boolean Homomorphisms ↔ Continuous Maps.



Classic Wallman Duality

I Can extend this to compact T1 spaces X as follows.

I Take any ∩-∪-basis (= closed under ∩ and ∪) B ⊆ O(X ).

I Again B is a distributive lattice with maximum 1 = X . Also

p � q ⇒ ∃r ≥ q (r 6= 1 = p ∨ r). (Subfit)

Theorem (Wallman 1938)

Every subfit unital distributive lattice arises in this way.

I Can even take a more general ∪-subbasis S ⊆ O(X ).

I Then S is a subfit unital ∨-semilattice.

Theorem (B.-Kubís 2020)

Every subfit unital ∨-semilattice arises in this way. Moreover,

Relational Homomorphisms ↔ Continuous Maps.



Another Wallman Duality

I What about general subbases S of compact T1 spaces?
I Then the inclusion ordering might collapse to equality.

I E.g. take a compact subset of R of measure 1 and take S to
be the subbasis of all regular open subsets of measure 1/2.

I Instead we can consider subbasic (non-)covers of X , i.e.

C = {F ⊆ S : F is finite and X 6=
⋃

F}.

I Then C is an abstract simplicial complex, i.e.

F ⊆ G ∈ C ⇒ F ∈ C.

I Define p ≤ q when {q}∪F ∈ C ⇒ {p}∪F ∈ C, for all F ⊆ S .

I ≤ is a preorder. Call C proper if p ≤ q ≤ p ⇒ p = q.

Theorem (Wallman 1938)

Every proper abstract simplicial complex arises in this way.



Related Dualities

I Other dualities focus on locally compact sober (LCS) spaces.

Theorem (Hofmann-Lawson 1978)

Every continuous frame arises as O(X ) for LCS space X . Also,

Frame Homomorphisms ↔ Continuous Maps.

I Generalisations to (semi)lattice bases of LCS spaces:
I Compact Hausdorff: Shirota (1952), De Vries (1962).
I Stably Compact: Jung-Sünderhauf (1996), van Gool (2012).
I General Locally Compact Sober: B. (2021), Kawai (2021).

I Key feature of above: replacing ⊆ with b, i.e.

O b N ⇔ ∃ compact K (O ⊆ K ⊆ N).

I So abstractly we have a set B with an idempotent relation ≺
(i.e. p ≺ q ⇔ ∃r (p ≺ r ≺ q)) satisfying various properties.



The Compact Cover Relation

I What about arbitrary subbases S of stably locally compact X?
(= LCS and K ∩ L compact for compact saturated K , L ⊆ X )

I Wallman suggests we should again consider covers.
I However, covers of the entirety of X may no longer suffice.

I E.g. take X to be any space with a dense point x (e.g. {0} is
dense in [0, 1] or [0, 1] ∪ [2, 3] etc. with the upper topology).

I Then X =
⋃

F precisely when x ∈ s, for some s ∈ F , which
gives no information about the topology on X \ {x}.

I Instead we must consider (compact) covers of smaller subsets,
e.g. formed from finite subbasic intersections.

I Specifically, define ` on FS = {F ⊆ S : |F | <∞} by

F ` G ⇔
⋂

F b
⋃

G .

I What properties does ` possess? Can we use ` to recover X?
Can these unify previous dualities for stably compact X?



The Compact Cover Relation

I Take a subbasis S of a LCS space X and define ` on FS by

F ` G ⇔
⋂

F b
⋃

G .

I We immediately see that ` is monotone, i.e.

F ` G ⇒ {s} ∪ F ` G and F ` G ∪ {s}.

I Conversely, ` also satisfies Gentzen’s cut rule, i.e.

F ` G ⇐ {s} ∪ F ` G and F ` G ∪ {s}.

Proof.

I Say {s} ∪ F ` G and F ` G ∪ {s}, i.e. we have compact K , L with

s ∩
⋂

F ⊆ K ⊆
⋃

G and
⋂

F ⊆ L ⊆
⋃

G ∪ s.

I Then K ∪ (L \ s) is compact and
⋂
F ⊆ K ∪ (L \ s) ⊆

⋃
G .



Entailments
I So the compact cover relation ` is an entailment, i.e.

F ` G ⇔ {s} ∪ F ` G and F ` G ∪ {s}.
I Entailments are always transitive on singletons, i.e.

p ` q ` s ⇒ p ` s.

Proof.

I If p ` q ` s then p ` {q, s} and {p, q} ` s, by monotonicity.
I Then Gentzen’s cut rule yields p ` s.

I The obvious extension to larger subsets can fail, e.g.

p b q ∪ r and q ∩ r b s 6⇒ p b s

I But other extensions do hold, e.g.

p b q, p b r and q ∩ r b s ⇒ p b s.

p b q ∪ r , q b s and r b s ⇒ p b s.

I This leads us to consider a certain ‘diagonal’ relation on FFS .



The Diagonal Relation

I For any set S , define the overlap relation on FS by

F G G ⇔ F ∩ G 6= ∅.

I The selections any Q ⊆ FS are given by

QG = {G ∈ FS : ∀F ∈ Q (F G G )}.

I If S ⊆ PX = {Y : Y ⊆ X} then, for any Q ∈ FFS ,⋂
F∈Q

⋃
F =

⋃
F∈QG

⋂
F .

I The diagonal relation on FFS is defined by

Q ./ R ⇔ QG G RG,

i.e. every selection of Q overlaps every selection of R.



Diagonal Transitivity

I If S ⊆ PX then

Q ./ R ⇒
⋂
H∈Q

⋃
H ⊆

⋃
H∈R

⋂
H.

I Thus if S is a subbasis of an LCS space X and Q ./ R then

∀H ∈ Q (
⋂

F b
⋃

H) and ∀H ∈ R (
⋂

H b
⋃

G ) ⇒
⋂

F b
⋃

G .

I This kind of ‘diagonal transitivity’ applies to all entailments.

Theorem (Jung-Kegelmann-Moshier 1999) (Vickers 2004)

If ` is an entailment on FS , for any F ,G ∈ FS and Q,R ∈ FFS ,

F ` Q ./ R ` G ⇒ F ` G .

I Note singleton transitivity is the case Q = R = {{s}}.



Diagonal Interpolation vs Divisibility

I The compact cover relation ` on FS , for a subbasis S of LCS
X , is also diagonally interpolative, i.e. conversely

F ` G ⇒ ∃Q,R ∈ FFS (F ` Q ./ R ` G ).

I Proved by refining G to obtain R and taking Q = RG.
I Actually this shows F ` Q ./ R `1∃ G where

R `1∃ G ⇔ ∀H ∈ R ∃s ∈ G (H ` s).

I Thus the compact cover relation ` is divisible.



Diagonal Idempotents → Stably Locally Compact Spaces
I Given ` on FS , we call Q ⊆ FS a quasi-ideal if

F ∈ Q ⇔ ∃G ∈ FQ (F ` GG).

I If ` is monotone and diagonally idempotent then the
quasi-ideals form a stably continuous frame (≈ Vickers 2004).

I Hofmann-Lawson duality then yields an SLC space X where
the elements of S can be identified with certain open subsets.

I However, these will not always form a subbasis of X :
I E.g. let S be the collection of open subintervals of (0, 1)

formed from consecutive dyadic rationals, i.e.

S = {((k − 1)/2n, k/2n) : 1 ≤ k ≤ 2n}.
I Define ` on FS by

F ` G ⇔
⋂

F b int(cl(
⋃

G )). (∗)
I Then ` is monotone, diagonally idempotent and the spectrum

of the quasi-ideals can be identified with (0, 1).
I However, S is certainly not a subbasis for (0, 1).

I Crucially, the relation ` given in (∗) is not divisible.



Tight Subsets

I To unify previous dualities, we would also need to obtain the
space X directly from filter-like subsets of S .

I Accordingly, given ` on FS , we call T ⊆ S tight if

∃F ∈ FS (T ⊇ F ` G ) ⇔ T ∩ G 6= ∅

I As long as ` is monotone, this splits into

T ⊇ F ` G ⇒ T ∩ G 6= ∅. (Prime)

∃F ∈ FT (F ` s) ⇐ s ∈ T . (Round)

I Motivation: take a subbasis S of LCS X . Given x ∈ X , let

Sx = {t ∈ S : x ∈ t}.

I Then Sx tight w.r.t. the compact cover relation ` on FS .

I If X is stable, every tight subset is of the form Sx for some x .



The Tight Spectrum

I Given ` on FS , let TS = {T ⊆ S : T is tight}. For p ∈ S , let

Tp = {T ∈ TS : p ∈ T}

I The tight spectrum is the space TS with the topology
generated by (Tp)p∈S (i.e. (Tp)p∈S is a subbasis of TS).

Theorem (B.-Kubís 2021)

If ` is a monotone, diagonally transitive and divisible relation on
FS then the tight spectrum is a stably locally compact space and

F ` G ⇒
⋂
p∈F

Tp b
⋃
p∈G

Tp.

I ⇐ will also hold when ` satisfies ‘strong transitivity’, i.e.

F  Q ./ R ` G ⇒ F ` G ,

where F  G means H ` G whenever H ` f , for all f ∈ F .



A Unifying Duality

I In this way, we obtain a duality between subbases of stably
locally compact spaces and abstract ‘cover relations’.

I Can also show that continuous maps between the spaces
correspond to certain relations between the subbases.

I Can also use this to obtain various previous dualities for bases
of SLC spaces (by De Vries, Jung-Sünderhauf, etc.)

I General procedure: Given a distributive lattice S and some
‘compatible’ idempotent ≺, define a cover relation by

F ` G ⇔ ∃H ∈ FS (
∧

F ≤
∨

H and H ≺ G ),

where H ≺ G means ∀h ∈ H ∃g ∈ G (h ≺ g).

I Then tight subsets are precisely the round prime filters.

I ⇒ round prime filters form a stably locally compact space.

I Can also be used to obtain new dualities...



A New Duality

I Grätzer (1978) extended Stone duality to distributive
∨-semilattices and compactly based sober spaces.

I Recently, Celani-González (2020) extended Grätzer’s duality
to even non-distributive ∨-semilattices.

I Hansoul-Poussart (2009) and Bezhanishvili-Jansana (2011)
obtained an analog of Grätzer’s duality for distributive
∨-semilattices and but with spectral spaces instead
(i.e. stably compact compactly based spaces).

I Can we likewise extend this to non-distributive ∨-semilattices?

I Yes – can define a cover relation ` on any ∨-semilattice S by

F ` G ⇔ ∀p, q ∈ S
(
∀f ∈ F (p ≤ f ∨q) ⇒ p ≤

∨
G∨q

)
(intuitively () part is saying p \ q ⊆

⋂
F implies p \ q ⊆

⋃
G ).

I Future Work: Generalise to (non compactly based) stably
locally compact spaces using an idempotent relation ≺ on S .


