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Two shortcomings of Lebesgue integration theory
I Motivation: A map f : [0,1]→ R is Lebesgue integrable iff
|f | is Lebesgue integrable.

I f (x) = (sin1/x3)/x is not Lebesgue integrable but the
improper integral

∫ 1
δ (sin1/x3)/x dx exists as δ → 0+.

I The HK-integral generalises the Lebesgue integral and the
improper Riemann integral.

I It satisfies all the basic properties of an integral as well as
a monotone convergence theorem. Furthermore:

I If F : [a,b]→ R and F ′(x) exists for all x ∈ [a,b], then:

HK
∫ b

a
F ′(x)dx = F (b)−F (a) Fundamental Thm. of Calculus
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Gauge and tagged partition

I Any map γ : [0,1]→ R+ is called a gauge. It generalises
the norm of a partition of [0,1] to depend on x ∈ [0,1].

I A tagged partition P of [0,1] is a finite collection (ti , Ii)K
i=1

where (Ii)K
i=1 is a partition of [0,1] by closed intervals Ii for

1 ≤ i ≤ K and ti ∈ Ii for each 1 ≤ i ≤ K .

I The tagged partition Ṗ = (ti , Ii)K
i=1 is said to be γ-fine

(denoted Ṗ ≺ γ) if Ii ⊂ (ti − γ(ti), ti + γ(ti)) for 1 ≤ i ≤ K .

0 1
γ (τ )ττ − γ (τ ) +τ

I
( )
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Henstock-Kurzweil Integral

I Given a function f : [0,1]→ R⊥, the Riemann sum of the
tagged partition Ṗ = (ti , Ii)K

i=1 for f is given by,

S(f ,P) =
K∑

i=1

f (tk )(I+k − I−k )

I A function f : [0,1]→ R⊥ has HK-integral a ∈ R if for each
ε > 0, there exists a gauge γ such that |a− S(f ,P)| < ε for
all γ-fine tagged partitions of [0,1].
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Partitionable families of crescents of a space X

I Need a family of subsets to define partitions of X .
I For B any basis of open subsets of X closed under finite

intersections, define the crescents generated by B as:

CB := {A1 ∩ A2 : A1,A2 ∈ B}

I We always work with CB that is partitionable, i.e.:
(i) CB is closed under finite intersections.
(ii) For any C,C0 ∈ CB, there exists a finite collection of
pairwise disjoint subsets Si ∈ CB, (1 ≤ i ≤ m), satisfying:

C \ C0 = S1 ∪ S2 ∪ · · · ∪ Sm.

I For basis B closed under finite unions and intersections
and closed under taking exterior, CB is partitionable.
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Examples of partitionable collection of crescents

I Example X = [0,1] and B = open intervals.
CB is the family of all intervals and is partitionable.

I Example
∏

1≤i≤n[ai ,bi ] ⊂ Rn, B = open hyper-rectangles.
CB the family of all hyper-rectangles is partitionable.

I Example X a compact Riemannian manifold (eg S2 ⊂ R3)
B = open (geodisically) convex polyhedra.
CB is the family of all convex polyhedra and is partitionable.

C

C 0 0C \ C

I Example X = {0,1}ω the Cantor space. Let B = clopens.
CB = B is partitionable.
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Tagged partition for compact metric X

I P = {Ri : 1 ≤ i ≤ n} is a partition of C ∈ CB if Ri ∈ CB are
pairwise disjoint for 1 ≤ i ≤ n, and C =

⋃
1≤i≤n Ri .

‖P‖ := max{diam(Ri) : 1 ≤ i ≤ n}

I P ′ refines P, written P v P ′ if each crescent in P is the
union of some crescents in P ′.

I If P = {Ri : 1 ≤ i ≤ n} is a partition of C and ti ∈ Ri , for
1 ≤ i ≤ n, then the set of pairs

Ṗ = {(Ri , ti) : 1 ≤ i ≤ n}

is called a tagged partition of C.
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Gauge and subordinate tagged partitions

I Definition

A gauge on C for C ∈ CB is a map γ : C → R+.

I The tagged partition Ṗ is γ-fine on X , written Ṗ ≺ γ, if

Ri ⊂ Oγ(ti )(ti) for 1 ≤ i ≤ n,

where Or (x) is the open ball of radius r centred at x .

I Proposition If γ is a gauge on C ∈ CB, then there exists a
γ-fine tagged partition of C.

(Proof uses compactness of C.)
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Upper space of X and its probabilistic power domain

I µ: a normalised measure on compact metric space X .

I Upper space UX : non-empty compact sets ordered with
reverse inclusion, a bounded complete domain.

X ' Max(UX )

I Normalised probabilistic power domain P1UX : normalised
valuations on UX .

I M1X : Normalised Borel measures with weak topology

M1X ' Max(P1UX ) (AE95, Lawson97, AE97)

I Let P1
sD ⊂ P1D: poset of simple valuations of domainD.
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Partitions and simple valuations

I Partition P = {Ri : 1 ≤ i ≤ n} of X induces µP ∈ P1
sUX :

µP =
n∑

i=1

µ(Ri)δRi
with δC : Point valuation on C ∈ UX

I Let (P,v) be the poset of partitions of X .

I Proposition

(i) P v P ′ ⇒ µP v µP′ in P1UX .

(ii) If Pi for i ≥ 0 is an increasing sequence of partitions with
limi→∞ ‖Pi‖ = 0, then supi µPi = µ.

(ii) µ = sup{µP : P ∈ P}.
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Integration of continuous versus unbounded functions

I IR: domain of compact intervals of R with reverse inclusion.

I Since X ' Max(UX ) is a dense subset of UX , any function
f : X → R ⊂ IR has a continuous envelope f ∗ : UX → IR:

f ∗(y) := sup{inf f [O ∩ X ] : O ⊂ UX is Scott open, y ∈ O}.

I For continuous f , get monotone map
∫

f d(·) : PsUX → IR:∫
f d

(
n∑

i=1

riδ(yi)

)
=

n∑
i=1

ri f ∗(yi) =
n∑

i=1

ri f [yi ]

I By continuity
∫

f dµ = sup{
∫

f dµP : P ∈ P}.

I However if f is unbounded
∫

f d(·) is not monotone.
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Partition induced simple valuations way-below µ

I Get µ by partition induced simple valuations way-below it.

I For a compact C ⊂ X and α > 0, the α-expansion of C is

Cα = {x ∈ X : ∃y ∈ C.d(x , y) ≤ α}.

I Given a partition P = {Ri : 1 ≤ i ≤ n} of X and α > 0, the
α-relaxation of µP is the simple valuation defined as

µP,α :=
∑

1≤i≤n

µ(Ri)δ(Ri )α
,

I µP,α v µP for any α > 0 and µ = sup{µP,α : P ∈ P, α > 0}.

I However, µP,α � µP does not hold.

12 / 27



Partition induced simple valuations way-below µ

I For 1 > β > 0, α > 0, define

µP,α,β = βδX + (1− β)µP,α.

I Theorem 1 The collection

Sµ := {µP,α,β : P ∈ P, α > 0,1 > β > 0}

is a directed set of normalised simple valuations way-below
µ with supremum µ. And if f : X → R is continuous∫

f dµ = sup

{∫
f dν : ν ∈ Sµ

}
∈ R ' Max(IR)

I The nagging problem for unbounded functions remains.
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Directed sets of tagged partitions

I Strategy: Develop a directed set of gauge/tagged partition
pairs to mirror that of simple valuations way-below µ.

I For partitions PC and P ′C of C ∈ CB, their lub in PC is

PC ∨ P ′C = {R ∩ R′ : R ∈ PC ,R′ ∈ P ′C}.

I For tagged-partitions ṖC and Ṗ ′C of C ∈ CB with sets of
tags T and T ′, respectively, define:

ṖC v Ṗ ′C if PC v P ′C & T ⊂ T ′

I Let ṖC be the poset of tagged partitions of C.
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Directed sets of tagged partitions and gauge pairs

I Definition If γC : C → R+ is a gauge on C and if ṖC is
γC-fine, then we say (ṖC , γC) is a PG pair.

I For PG pairs (ṖC , γC), (Ṗ ′C , γ
′
C) define

(ṖC , γC) v (Ṗ ′C , γ
′
C) if ṖC v Ṗ ′C & γC ≥ γ′C

I Let ṖGC be the poset of PG pairs for C.

I Proposition ṖC and ṖGC are directed sets for C ∈ CB.

I Proof uses some properties derived from partitionable CB.
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Simple valuations induced by PG pairs
I For each PG pair (Ṗ, γ), with Ṗ = {(Ri , ti) : 1 ≤ i ≤ n}, the

normalised measure µ induces a simple valuation

µṖ,γ =
∑

1≤i≤n

µ(Ri)δti ∈ M1X ' Max(P1UX )

I We have: µP,α,β v µṖ,γ

I Theorem 2 (Using Portmanteau theorem) The net

{µṖ,γ : (Ṗ, γ) ∈ ṖG} ⊂ M1X

converges in weak topology to µ, i.e., lim(Ṗ,γ)∈ṖG µṖ,γ = µ.

And if f : X → R is continuous then

lim
(Ṗ,γ)∈ṖG

∫
f dµṖ,γ =

∫
f dµ.
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Integral of continuous functions
I For integration of continuous maps, get equivalence of

Sµ := {µP,α,β : P ∈ P, α > 0,1 > β > 0}

and the simple measures induced by PG pairs

µṖ,γ =
∑

1≤i≤n

µ(Ri)δti with Ṗ = {(Ri , ti) : 1 ≤ i ≤ n}

I Theorem For continuous f : X → R, these are equivalent:

(i)
∫

f dµ = r .

(ii) For each ε > 0, there exists a partition P and 1 > α, β > 0
such that r ∈

∫
f dµP,α,β and diam(

∫
f dµP,α,β) < ε.

(iii) For each ε > 0, there exists a gauge γ on X such that
|
∫

f dµṖ,γ − r | < ε for any γ-tagged partition Ṗ.
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Generalised HK-integral

I Definition A map f : C → R has a Dµ-integral with∫
C f dµ = r ∈ R if there is a sub-net ṖGC(f ) ⊂ ṖGC with

lim
(Ṗ,γ)∈ṖGC(f )

∫
f dµṖ,γ = r .

I Proposition ∫
C

f dµ = r ⇐⇒

for all ε > 0 there exists a gauge γ on C such that for any
tagged partition Ṗ ≺ γ:∣∣∣∣∫

C
f µṖ,γ − r

∣∣∣∣ < ε.
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Dµ-integral by lower and upper integrals

I Lee-Jhao 96 get lower/upper HK-integrals via “contraction”.
I We can do this directly here:

Sl(f , γ, µ) = inf

{∫
f dµṖ,γ : Ṗ ≺ γ

}

Su(f , γ, µ) = sup

{∫
f dµṖ,γ : Ṗ ≺ γ

}
L
∫ b

a
f dµ := sup

γ
S`(f , γ, µ) U

∫ b

a
f dµ := inf

γ
Su(f , γ, µ)

I Proposition

f : X → R⊥ is Dµ-integrable iff L
∫

f dµ = U
∫

f dµ.
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Properties of HK-integral extend to Dµ-integral (I)
I Null maps If f = 0 a.e. with respect to µ then

∫
f dµ = 0.

I Linearity If f1 and f2 are Dµ-integrable with c1, c2 ∈ R, then∫
(c1f1 + c2f2)dµ = c1

∫
f1 dµ+ c2

∫
f2 dµ.

I Positivity If f ≥ 0 is Dµ-integrable then
∫

f dµ ≥ 0.

I Cauchy condition.∫
C

f dµ exists ⇐⇒

for each ε > 0 there exists a gauge γ on C such that for
any two PG pairs (Ṗ1, γ), (Ṗ2, γ) ∈ ṖGC we have∣∣∣∣∫ f dµṖ1,γ

−
∫

f dµṖ2,γ

∣∣∣∣ < ε

20 / 27



Properties of HK-integral extend to Dµ-integral (II)

I Additivity

Let P = {Ri : 1 ≤ i ≤ n} be a partition of R ∈ CB.
Then f : R → R is Dµ-integrable on R iff f is Dµ-integrable
on Ri for 1 ≤ i ≤ n and, in which case,∫

R
f dµ =

n∑
i=1

∫
Ri

f dµ.

I Measurable sets

The characteristic function χE of a measurable set E is
Dµ-integrable with

∫
χE dµ = µ(E).
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Saks-Henstock lemma

I Lemma Suppose f : X → R is Dµ-integrable and, for ε > 0,
let γ be a gauge such that Ṗ ≺ γ implies:∣∣∣∣∫ f dµṖ,γ −

∫
f dµ

∣∣∣∣ ≤ ε.
Then for any γ-fine tagged sub-partition

Q̇ = {(Ri , ti) : 1 ≤ i ≤ n}

of X with R :=
⋃

1≤i≤n Ri , we have:∣∣∣∣∫ f dµQ̇,γ −
∫

R
f dµ

∣∣∣∣ ≤ ε.
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Lebesgue integrable implies Dµ-integrable

I Monotone Convergence Theorem
Let (fn)n≥0 be a monotone sequence of Dµ-integrable
functions on X and put f (x) = limn→∞ fn(x) for x ∈ X .

Then f is Dµ-integrable iff the sequence (
∫

fn dµ)n≥0 is
bounded in R.

I Theorem If f : X → R is Lebesgue integrable wrt µ, then it
is Dµ-integrable and the two integrals coincide.
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Invariance of Dµ-integral wrt change of basis in [0,1]

I Let µ be a normalised measure on [0,1].

I Let S1,S2 ⊂ [0,1] be two dense subsets and consider the
two basis B1 and B2 generated by open intervals with
endpoints in S1 and S2 respectively.

I We have two collections of crescents CB1 and CB2 .

I Proposition f : [0,1]→ R is Dµintegrable wrt CB1 iff it is
Dµ-integrable wrt CB2 , and if so the two integrals coincide.

I This extends to maps f : [0,1]n → R with B either as open
hyper-rectangles or as open convex polyhedra.

I It also extends to any Riemannian surface with B as open
(geodisically) convex polyhedra.
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Dµ-integrable but non-Lebesgue integrable maps

I Let X = {0,1}ω the Cantor space with µ as the product
uniform measure on {0,1}.

I Let g : {0,1}ω → [0,1] be the continuous map
x 7→ g(x) =

∑∞
i=0 xi/2i+1.

I Proposition A map f : [0,1]→ R is HK-integrable iff
f ◦ g : {0,1}ω → R is Dµ-integrable.
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A Dµ-integrable but non-Lebesgue integrable map

I The map f (x) = (sin1/x3)/x is not Lebesgue integrable
but is HK-integrable:

I By the change of variable u = 1/x3:

lim
a→0

∫ 1

a
f (x)dx =

π

6
− 1

3

∫ 1

0

sinu
u

du

I Thus, the map f ◦ g : {0,1}ω → R is Dµ-integrable but not
Lebesgue integrable.
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Some further work

I Finding simple partitionable collection of crescents in
concrete compact metric spaces.

I Du-integrable, but non-Lebesgue integrable maps on
Riemannian manifolds.

I Invariance of Dµ-integral under change of basis.

I Extension to σ-compact spaces.
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