A domain-theoretic generalisation of the
Henstock-Kurzweil integral for compact metric
spaces

Abbas Edalat
Department of Computing
Imperial College London
ISDT 2022

1/27



Two shortcomings of Lebesgue integration theory

» Motivation: Amap f: [0,1] — R is Lebesgue integrable iff
|f| is Lebesgue integrable.

> f(x) = (sin 1/x3)/x is not Lebesgue integrable but the
improper integral f; (sin1/x3)/x dx exists as 6 — 0.

» The HK-integral generalises the Lebesgue integral and the
improper Riemann integral.

> |t satisfies all the basic properties of an integral as well as
a monotone convergence theorem. Furthermore:

» If F: [a, b] - R and F’(x) exists for all x € [a, b], then:

b
HK/ F'(x) dx = F(b)—F(a) Fundamental Thm. of Calculus
a
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Gauge and tagged partition

» Any map v : [0,1] — R* is called a gauge. It generalises
the norm of a partition of [0, 1] to depend on x € [0, 1].

> A tagged partition P of [0, 1] is a finite collection (t;, )%,

where (1)K, is a partition of [0, 1] by closed intervals J; for
1<i<Kandtelforeach1 <i<K.

» The tagged partition P = (&, l,-)f‘:1 is said to be ~-fine
(denoted P < ) if [; C (& — (&), ti +~(t)) for 1 < i < K.
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Henstock-Kurzweil Integral

» Given a function f : [0,1] — R, the Riemann sum of the
tagged partition P = (t;, )X, for f is given by,

K
S(f,P) = > f(t) (U — 1)
i=1
» A function f : [0,1] — R, has HK-integral a € R if for each

e > 0, there exists a gauge ~ such that |a — S(f, P)| < e for
all y-fine tagged partitions of [0, 1].
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Partitionable families of crescents of a space X

» Need a family of subsets to define partitions of X.

» For BB any basis of open subsets of X closed under finite
intersections, define the crescents generated by B as:

Cs = {A1 ﬂA722A1,A2 EB}

» We always work with C that is partitionable, i.e.:
(i) Cp is closed under finite intersections.
(i) For any C, Cy € Cp, there exists a finite collection of
pairwise disjoint subsets S; € Cp, (1 < i < m), satisfying:

C\C():S1U32U---Usm.

» For basis B closed under finite unions and intersections
and closed under taking exterior, Cp is partitionable.
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Examples of partitionable collection of crescents

» Example X = [0, 1] and B = open intervals.
C3 is the family of all intervals and is partitionable.

> Example [[,.;.,[a;, b] C R, B = open hyper-rectangles.
C3 the family of all hyper-rectangles is partitionable.

» Example X a compact Riemannian manifold (eg S® ¢ R3)
B = open (geodisically) convex polyhedra.
Cg is the family of all convex polyhedra and is partitionable.

C
C\Cy

» Example X = {0, 1}* the Cantor space. Let B = clopens.
Cs = B is partitionable.
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Tagged partition for compact metric X
» P={R;:1<i<n}isapartition of C € Cp if R; € Cp are
pairwise disjoint for 1 </ < n, and C = J;<;<, Ai-
|P|| := max{diam(R;) : 1 <i < n}

> P’ refines P, written P C P’ if each crescent in P is the
union of some crescents in P'.

» If P={R;:1 < i< n}isa partition of C and t; € R;, for
1 < i < n, then the set of pairs

P={(R.t):1<i<n}

is called a tagged partition of C.
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Gauge and subordinate tagged partitions

» Definition
A gaugeon Cfor Cc Cgisamap~: C — R*.
> The tagged partition P is y-fine on X, written P < -, if
R C Oyp(t) for1<i<n,

where O;(x) is the open ball of radius r centred at x.

» Proposition If v is a gauge on C € Cg, then there exists a
~-fine tagged partition of C.

(Proof uses compactness of C.)
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Upper space of X and its probabilistic power domain

>

>

1> a normalised measure on compact metric space X.

Upper space UX: non-empty compact sets ordered with
reverse inclusion, a bounded complete domain.

X =~ Max(UX)

Normalised probabilistic power domain P'UX: normalised
valuations on UX.

M’ X: Normalised Borel measures with weak topology
M'X ~ Max(P'UX) (AE95, Lawson97, AE97)

Let PLD c P'D: poset of simple valuations of domainD.
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Partitions and simple valuations

> Partition P = {R;: 1 < i < n} of X induces pup € PLUX:
pp = Z“ )0 Wwith 4 : Point valuation on C € UX

» Let (P, C) be the poset of partitions of X.
» Proposition
(i) PCP = pupC pup in PTUX.

(i) If P;for i > 0 is an increasing sequence of partitions with
limj_ oo || Pi]l = O, then sup; pp, = p.

(i) p=sup{pp: P € P}.
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Integration of continuous versus unbounded functions

» IR: domain of compact intervals of R with reverse inclusion.

» Since X ~ Max(UX) is a dense subset of UX, any function
f: X — R C IR has a continuous envelope * : UX — IR:

f*(y) :=sup{inf f[ON X] : O C UX is Scott open, y € O}.
» For continuous f, get monotone map [ fd(:) : PsUX — IR:
n n n
/fd (Z fi5(y/‘)> => nf(y)=>_rflyl
i=1 i=1 i=1
» By continuity [ fdup =sup{/ fdup: P c P}.

» However if f is unbounded [ f d(-) is not monotone.
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Partition induced simple valuations way-below
» Get u by partition induced simple valuations way-below it.
» For a compact C C X and a > 0, the a-expansion of C is

Co={xeX:JyelC.dx,y)<a}l

» Given a partition P = {R;: 1 <i < n} of Xand a > 0, the
a-relaxation of up is the simple valuation defined as

nea = Y wR)gE).:

1<i<n

» upo T ppforany o > 0and pu = sup{pp, : P €P,a > 0}.

» However, up, < up does not hold.
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Partition induced simple valuations way-below

» For1> 3> 0,a> 0, define
ppas = Box+ (1 —B)upa.
» Theorem 1 The collection
S, ={ppas: PEP,a>0,1>p3>0}

is a directed set of normalised simple valuations way-below
w with supremum p. And if f: X — R is continuous

/fd,u:sup{/fdl/:l/e su} € R ~ Max(IR)

» The nagging problem for unbounded functions remains.
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Directed sets of tagged partitions

> Strategy: Develop a directed set of gauge/tagged partition
pairs to mirror that of simple valuations way-below .

» For partitions P¢ and P, of C € Cg, their lub in P¢ is
PcvP.={RNR :Re PR € Py}

> For tagged-partitions P¢ and P}, of C € Cp with sets of
tags T and T', respectively, define:

PcCP, if PcCP,&TCT

> Let P be the poset of tagged partitions of C.
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Directed sets of tagged partitions and gauge pairs

» Definition If 7¢ : C — R is a gauge on C and if Pg is
vc-fine, then we say (P¢,v¢) is a PG pair.

> For PG pairs (Pg,7¢), (Pp,75) define

(P, ve) E (Pgg) if Po T P & ve > g

> Let PG, be the poset of PG pairs for C.
» Proposition P; and PG, are directed sets for C € Cg.

» Proof uses some properties derived from partitionable Cp.
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Simple valuations induced by PG pairs

» For each PG pair (P,~), with P = {(R;, ;) : 1 < i < n}, the
normalised measure p induces a simple valuation

Hpy = > n(R)d € M'X ~ Max(P'UX)

1<i<n
> We have: pap E pp

» Theorem 2 (Using Portmanteau theorem) The net
{wp, - (P.y) € PG CM'X
converges in weak topology to y, i.e., ||m( )ePg Hpy = 1

And if f : X — R is continuous then

lim /fde /fdu
(Pr)EPG
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Integral of continuous functions
» For integration of continuous maps, get equivalence of
S, ={ppap:PeP,a>0,1>73>0}

and the simple measures induced by PG pairs

Mo, = D H(R)Y, with P ={(R.t):1<i<n)

1<i<n

» Theorem For continuous f : X — R, these are equivalent:

() [fdu=r.

(ii) For each e > 0, there exists a partition Pand 1 > o, 5 >0
suchthat r € [ fdup . 3 and diam( [ fdup.. ) <e.

(iii) For each e > 0, there exists a gauge v on X such that
| [ fdup ., — r| < efor any v-tagged partition P.
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Generalised HK-integral

> Definition Amap f : C — R has a D,-integral with
Jcfdu=reRifthere is a sub-net PG¢(f) C PG with

lim /fdu
(Py)EPGo(f) Py~

> Proposition
/ fdu=r <+
c

for all ¢ > 0 there exists a gauge v on C such that for any
tagged partition P < ~:

fus. —r|i<e
/C Py
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D, -integral by lower and upper integrals

» Lee-Jhao 96 get lower/upper HK-integrals via “contraction”.
» We can do this directly here:

S/(f’% ) = inf{/fd/,tpﬁ P < ’7}
SU(f”y,,u) = sup{/fd,u,b77 P < ’}/}

b b
L/ fdp = sup S(f,~, i) U/ fdu :=inf SY(f,~v, 1)
a Y a v
> Proposition

f:X—Ryis D,-integrableiff L [ fdu = U [ fdp.
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Properties of HK-integral extend to D,-integral (1)
» Null maps If f = 0 a.e. with respect to p then [ fdp = 0.

» Linearity If fi and £, are D,-integrable with ¢y, ¢, € R, then
[(eifi + ) du=cy [fidu+ca [fdpu.

> Positivity If f > 0 is D,-integrable then [ fdy > 0.

» Cauchy condition.

/fdu exists <«
c

for each € > 0 there exists a gauge vy on C such that for
any two PG pairs (Py,7), (P2,7) € PGc we have

<€
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Properties of HK-integral extend to D,-integral (II)

> Additivity
Let P={R;: 1 <i < n} be a partition of R € Cg.

Then f: R — Ris D,-integrable on R iff f is D,-integrable
on R; for 1 < < nand, in which case,

n
fdp = /fd.
/Ru;&u

> Measurable sets

The characteristic function x g of a measurable set E is
D,-integrable with [ xg du = p(E).

21/27



Saks-Henstock lemma

> Lemma Suppose f: X — R is Dy-integrable and, for e > 0,
let v be a gauge such that P < ~ implies:

)/fdu,-,ﬁ—/fcm‘ <e

Then for any ~-fine tagged sub-partition
Q={(R.t):1<i<n}

of X with R := (U<, Ri, we have:

‘/fd,uoﬁ—/ﬁfdu‘ge.
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Lebesgue integrable implies D,-integrable

» Monotone Convergence Theorem
Let (fn)n>0 be a monotone sequence of D,-integrable
functions on X and put f(x) = lim,_ fa(x) for x € X.

Then f is D,-integrable iff the sequence (| f, di)n>o is
bounded in R.

» Theorem If f : X — R is Lebesgue integrable wrt 4, then it
is D,-integrable and the two integrals coincide.
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Invariance of D,-integral wrt change of basis in [0, 1]

» Let u be a normalised measure on [0, 1].

> Let S1, S, C [0, 1] be two dense subsets and consider the
two basis By and B, generated by open intervals with
endpoints in Sy and S, respectively.

» We have two collections of crescents Cp, and Cg,.

» Proposition f : [0,1] — R is D,integrable wrt Cp, iff it is
D,.-integrable wrt C,, and if so the two integrals coincide.

» This extends to maps f : [0, 1]” — R with B either as open
hyper-rectangles or as open convex polyhedra.

» It also extends to any Riemannian surface with 5 as open
(geodisically) convex polyhedra.
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D,-integrable but non-Lebesgue integrable maps

» Let X = {0, 1}* the Cantor space with n as the product
uniform measure on {0, 1}.

> Letg: {0,1}* — [0, 1] be the continuous map
X = g(x) =Yy x;/21.

» Proposition Amap f: [0, 1] — R is HK-integrable iff
fog:{0,1}* = Ris D,-integrable.

25/27



A D,-integrable but non-Lebesgue integrable map

» The map f(x) = (sin 1/x%)/x is not Lebesgue integrable
but is HK-integrable:

» By the change of variable u = 1/x°:

1 7 1 [Vsinu
. ¢ o 1
él:mo/a (x)dx = 6 3/ u du

» Thus, the map fog: {0,1}* — R is D,-integrable but not
Lebesgue integrable.
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Some further work

» Finding simple partitionable collection of crescents in
concrete compact metric spaces.

» D, -integrable, but non-Lebesgue integrable maps on
Riemannian manifolds.

» Invariance of D,-integral under change of basis.

» Extension to o-compact spaces.
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