A domain-theoretic generalisation of the Henstock-Kurzweil integral for compact metric spaces

Abbas Edalat Department of Computing Imperial College London ISDT 2022

Two shortcomings of Lebesgue integration theory

- ▶ Motivation: A map $f : [0, 1] \rightarrow \mathbb{R}$ is Lebesgue integrable iff |f| is Lebesgue integrable.
- ► $f(x) = (\sin 1/x^3)/x$ is not Lebesgue integrable but the improper integral $\int_{\delta}^{1} (\sin 1/x^3)/x \, dx$ exists as $\delta \to 0^+$.
- The HK-integral generalises the Lebesgue integral and the improper Riemann integral.
- It satisfies all the basic properties of an integral as well as a monotone convergence theorem. Furthermore:

▶ If
$$F : [a, b] \rightarrow \mathbb{R}$$
 and $F'(x)$ exists for all $x \in [a, b]$, then:

 $HK \int_{a}^{b} F'(x) dx = F(b) - F(a)$ Fundamental Thm. of Calculus

Gauge and tagged partition

- Any map γ : [0, 1] → ℝ⁺ is called a gauge. It generalises the norm of a partition of [0, 1] to depend on x ∈ [0, 1].
- ▶ A tagged partition *P* of [0, 1] is a finite collection $(t_i, I_i)_{i=1}^K$ where $(I_i)_{i=1}^K$ is a partition of [0, 1] by closed intervals I_i for $1 \le i \le K$ and $t_i \in I_i$ for each $1 \le i \le K$.
- ► The tagged partition $\dot{P} = (t_i, I_i)_{i=1}^{K}$ is said to be γ -fine (denoted $\dot{P} \prec \gamma$) if $I_i \subset (t_i \gamma(t_i), t_i + \gamma(t_i))$ for $1 \le i \le K$.

Henstock-Kurzweil Integral

Given a function *f* : [0, 1] → ℝ_⊥, the **Riemann sum** of the tagged partition *P* = (*t_i*, *l_i*)^K_{i=1} for *f* is given by,

$$S(f, P) = \sum_{i=1}^{K} f(t_k)(I_k^+ - I_k^-)$$

A function *f* : [0, 1] → ℝ_⊥ has HK-integral *a* ∈ ℝ if for each *ε* > 0, there exists a gauge *γ* such that |*a* − *S*(*f*, *P*)| < *ε* for all *γ*-fine tagged partitions of [0, 1].

Partitionable families of crescents of a space *X*

- Need a family of subsets to define partitions of X.
- For B any basis of open subsets of X closed under finite intersections, define the crescents generated by B as:

$$\mathbf{C}_{\mathcal{B}} := \{ A_1 \cap \overline{A_2} : A_1, A_2 \in \mathcal{B} \}$$

We always work with C_B that is partitionable, i.e.:
 (i) C_B is closed under finite intersections.
 (ii) For any C, C₀ ∈ C_B, there exists a finite collection of pairwise disjoint subsets S_i ∈ C_B, (1 ≤ i ≤ m), satisfying:

$$C \setminus C_0 = S_1 \cup S_2 \cup \cdots \cup S_m.$$

For basis B closed under finite unions and intersections and closed under taking exterior, C_B is partitionable.

Examples of partitionable collection of crescents

- Example X = [0, 1] and B = open intervals.
 C_B is the family of all intervals and is partitionable.
- ▶ **Example** $\prod_{1 \le i \le n} [a_i, b_i] \subset \mathbb{R}^n$, \mathcal{B} = open hyper-rectangles. $C_{\mathcal{B}}$ the family of all hyper-rectangles is partitionable.
- Example X a compact Riemannian manifold (eg S² ⊂ ℝ³) B = open (geodisically) convex polyhedra.

 $\boldsymbol{C}_{\mathcal{B}}$ is the family of all convex polyhedra and is partitionable.

• **Example** $X = \{0, 1\}^{\omega}$ the Cantor space. Let $\mathcal{B} = \text{clopens.}$ $\mathbf{C}_{\mathcal{B}} = \mathcal{B}$ is partitionable. Tagged partition for compact metric X

▶ $P = \{R_i : 1 \le i \le n\}$ is a **partition** of $C \in C_B$ if $R_i \in C_B$ are pairwise disjoint for $1 \le i \le n$, and $C = \bigcup_{1 \le i \le n} R_i$.

 $\|\boldsymbol{P}\| := \max\{\textit{diam}(\boldsymbol{R}_i) : 1 \le i \le n\}$

- P' refines P, written P ⊑ P' if each crescent in P is the union of some crescents in P'.
- ▶ If $P = \{R_i : 1 \le i \le n\}$ is a partition of *C* and $t_i \in \overline{R_i}$, for $1 \le i \le n$, then the set of pairs

$$\dot{P} = \{(R_i, t_i) : 1 \leq i \leq n\}$$

is called a tagged partition of C.

Gauge and subordinate tagged partitions

Definition

A gauge on \overline{C} for $C \in \mathbf{C}_{\mathcal{B}}$ is a map $\gamma : \overline{C} \to \mathbb{R}^+$.

• The tagged partition \dot{P} is γ -fine on X, written $\dot{P} \prec \gamma$, if

$$\overline{R_i} \subset \mathcal{O}_{\gamma(t_i)}(t_i) \qquad ext{for } 1 \leq i \leq n,$$

where $O_r(x)$ is the open ball of radius *r* centred at *x*.

Proposition If γ is a gauge on $C \in C_{\mathcal{B}}$, then there exists a γ -fine tagged partition of C.

(Proof uses compactness of \overline{C} .)

Upper space of X and its probabilistic power domain

- μ : a normalised measure on compact metric space *X*.
- Upper space UX: non-empty compact sets ordered with reverse inclusion, a bounded complete domain.

 $X \simeq Max(\mathbf{U}X)$

- Normalised probabilistic power domain P¹UX: normalised valuations on UX.
- ► **M**¹*X*: Normalised Borel measures with weak topology

 $\mathbf{M}^{1}X \simeq \operatorname{Max}(\mathbf{P}^{1}\mathbf{U}X)$ (AE95, Lawson97, AE97)

• Let $\mathbf{P}_s^1 D \subset \mathbf{P}^1 D$: poset of simple valuations of domain D.

Partitions and simple valuations

▶ Partition $P = \{R_i : 1 \le i \le n\}$ of X induces $\mu_P \in \mathbf{P}_s^1 \mathbf{U} X$:

 $\mu_P = \sum_{i=1}^{n} \mu(R_i) \delta_{\overline{R_i}}$ with δ_C : Point valuation on $C \in \mathbf{U}X$

• Let $(\mathcal{P}, \sqsubseteq)$ be the **poset of partitions** of *X*.

Proposition

(i)
$$P \sqsubseteq P' \Rightarrow \mu_P \sqsubseteq \mu_{P'}$$
 in $\mathbf{P}^1 \mathbf{U} X$.

(ii) If P_i for i ≥ 0 is an increasing sequence of partitions with lim_{i→∞} ||P_i|| = 0, then sup_i μ_{Pi} = μ.

(ii)
$$\mu = \sup\{\mu_{\boldsymbol{P}} : \boldsymbol{P} \in \mathcal{P}\}.$$

Integration of continuous versus unbounded functions

- ▶ I \mathbb{R} : domain of compact intervals of \mathbb{R} with reverse inclusion.
- Since X ≃ Max(UX) is a dense subset of UX, any function f : X → ℝ ⊂ Iℝ has a continuous envelope f* : UX → Iℝ:

$$f^*(y) := \sup\{\inf f[O \cap X] : O \subset \mathbf{U}X \text{ is Scott open, } y \in O\}.$$

► For continuous *f*, get monotone map $\int f d(\cdot) : \mathbf{P}_s \mathbf{U} X \to \mathbf{I} \mathbb{R}$:

$$\int f d\left(\sum_{i=1}^n r_i \delta(y_i)\right) = \sum_{i=1}^n r_i f^*(y_i) = \sum_{i=1}^n r_i f[y_i]$$

• By continuity $\int f d\mu = \sup\{\int f d\mu_P : P \in \mathcal{P}\}.$

• However if *f* is unbounded $\int f d(\cdot)$ is not monotone.

Partition induced simple valuations way-below μ

- Get µ by partition induced simple valuations way-below it.
- For a compact $C \subset X$ and $\alpha > 0$, the α -expansion of C is

$$C_{\alpha} = \{ x \in X : \exists y \in C. d(x, y) \leq \alpha \}.$$

• Given a partition $P = \{R_i : 1 \le i \le n\}$ of X and $\alpha > 0$, the α -relaxation of μ_P is the simple valuation defined as

$$\mu_{\boldsymbol{P},\alpha} := \sum_{1 \leq i \leq n} \mu(\boldsymbol{R}_i) \delta_{(\overline{\boldsymbol{R}_i})_{\alpha}},$$

▶ $\mu_{P,\alpha} \sqsubseteq \mu_P$ for any $\alpha > 0$ and $\mu = \sup\{\mu_{P,\alpha} : P \in \mathcal{P}, \alpha > 0\}.$

• However, $\mu_{P,\alpha} \ll \mu_P$ does **not** hold.

Partition induced simple valuations way-below μ

For
$$1 > \beta > 0, \alpha > 0$$
, define

$$\mu_{P,\alpha,\beta} = \beta \delta_X + (1-\beta)\mu_{P,\alpha}.$$

$$S_{\mu} := \{\mu_{\mathcal{P}, \alpha, \beta} : \mathcal{P} \in \mathcal{P}, \alpha > 0, 1 > \beta > 0\}$$

is a directed set of normalised simple valuations way-below μ with supremum μ . And if $f : X \to \mathbb{R}$ is continuous

$$\int f \, d\mu = \sup \left\{ \int f \, d
u :
u \in \mathcal{S}_{\mu}
ight\} \in \mathbb{R} \simeq \mathsf{Max}(\mathsf{I}\mathbb{R})$$

The nagging problem for unbounded functions remains.

Directed sets of tagged partitions

- Strategy: Develop a directed set of gauge/tagged partition pairs to mirror that of simple valuations way-below μ.
- For partitions P_C and P'_C of $C \in \mathbf{C}_{\mathcal{B}}$, their lub in \mathcal{P}_C is

$$P_C \vee P'_C = \{R \cap R' : R \in P_C, R' \in P'_C\}.$$

For tagged-partitions P_C and P'_C of C ∈ C_B with sets of tags T and T', respectively, define:

$$\dot{P}_C \sqsubseteq \dot{P}'_C$$
 if $P_C \sqsubseteq P'_C \And T \subset T'$

• Let $\dot{\mathcal{P}}_C$ be the poset of tagged partitions of *C*.

Directed sets of tagged partitions and gauge pairs

▶ **Definition** If $\gamma_C : \overline{C} \to \mathbb{R}^+$ is a gauge on *C* and if P_C is γ_C -fine, then we say (P_C, γ_C) is a **PG** pair.

For PG pairs
$$(\dot{P}_C, \gamma_C)$$
, (\dot{P}'_C, γ'_C) define

$$(\dot{P}_{\mathcal{C}}, \gamma_{\mathcal{C}}) \sqsubseteq (\dot{P}_{\mathcal{C}}', \gamma_{\mathcal{C}}')$$
 if $\dot{P}_{\mathcal{C}} \sqsubseteq \dot{P}_{\mathcal{C}}' \& \gamma_{\mathcal{C}} \ge \gamma_{\mathcal{C}}'$

- Let $\dot{\mathcal{P}}\mathcal{G}_{\mathcal{C}}$ be the poset of PG pairs for \mathcal{C} .
- **Proposition** $\dot{\mathcal{P}}_{\mathcal{C}}$ and $\dot{\mathcal{P}}_{\mathcal{G}_{\mathcal{C}}}$ are directed sets for $\mathcal{C} \in \mathbf{C}_{\mathcal{B}}$.
- Proof uses some properties derived from partitionable C_B.

Simple valuations induced by PG pairs

For each PG pair (\dot{P}, γ) , with $\dot{P} = \{(R_i, t_i) : 1 \le i \le n\}$, the normalised measure μ induces a simple valuation

$$\mu_{\dot{P},\gamma} = \sum_{1 \le i \le n} \mu(R_i) \delta_{t_i} \in \mathsf{M}^1 X \simeq \mathsf{Max}(\mathsf{P}^1 \mathsf{U} X)$$

• We have:
$$\mu_{P,\alpha,\beta} \sqsubseteq \mu_{\dot{P},\gamma}$$

Theorem 2 (Using Portmanteau theorem) The net

$$\{\mu_{\dot{P},\gamma}: (\dot{P},\gamma) \in \dot{\mathcal{P}}\mathcal{G}\} \subset \mathbf{M}^1 X$$

converges in weak topology to μ , i.e., $\lim_{(\dot{P},\gamma)\in\dot{\mathcal{P}G}}\mu_{\dot{P},\gamma}=\mu$.

And if $f: X \to \mathbb{R}$ is continuous then

$$\lim_{(\dot{P},\gamma)\in\dot{\mathcal{P}G}}\int f\,d\mu_{\dot{P},\gamma}=\int f\,d\mu.$$

16/27

イロン 不良 とくほど 不良 とうほう

Integral of continuous functions

For integration of continuous maps, get equivalence of

$$S_{\mu} := \{ \mu_{\boldsymbol{P},\alpha,\beta} : \boldsymbol{P} \in \mathcal{P}, \alpha > \boldsymbol{0}, \boldsymbol{1} > \beta > \boldsymbol{0} \}$$

and the simple measures induced by PG pairs

$$\mu_{\dot{P},\gamma} = \sum_{1 \le i \le n} \mu(R_i) \delta_{t_i} \quad \text{with} \quad \dot{P} = \{(R_i, t_i) : 1 \le i \le n\}$$

Theorem For continuous $f : X \to \mathbb{R}$, these are equivalent:

(i)
$$\int f d\mu = r$$
.

(ii) For each $\epsilon > 0$, there exists a partition *P* and $1 > \alpha, \beta > 0$ such that $r \in \int f d\mu_{P,\alpha,\beta}$ and diam $(\int f d\mu_{P,\alpha,\beta}) < \epsilon$.

(iii) For each $\epsilon > 0$, there exists a gauge γ on X such that $|\int f d\mu_{\dot{P},\gamma} - r| < \epsilon$ for any γ -tagged partition \dot{P} .

Generalised HK-integral

▶ Definition A map $f : \overline{C} \to \mathbb{R}$ has a D_{μ} -integral with $\int_{C} f d\mu = r \in \mathbb{R}$ if there is a sub-net $\dot{\mathcal{P}G}_{\mathcal{C}}(f) \subset \dot{\mathcal{P}G}_{\mathcal{C}}$ with

$$\lim_{(\dot{P},\gamma)\in\dot{\mathcal{P}G}_{\mathcal{C}}(f)}\int f\,d\mu_{\dot{P},\gamma}=r.$$

Proposition

$$\int_{C} f \, d\mu = r \quad \iff \quad$$

for all $\epsilon > 0$ there exists a gauge γ on \overline{C} such that for any tagged partition $\dot{P} \prec \gamma$:

$$\left|\int_{C}f\mu_{\dot{P},\gamma}-r\right|<\epsilon.$$

 D_{μ} -integral by lower and upper integrals

- Lee-Jhao 96 get lower/upper HK-integrals via "contraction".
- We can do this directly here:

$$S^{\ell}(f,\gamma,\mu) = \inf \left\{ \int f \, d\mu_{\dot{P},\gamma} : \dot{P} \prec \gamma \right\}$$
$$S^{u}(f,\gamma,\mu) = \sup \left\{ \int f \, d\mu_{\dot{P},\gamma} : \dot{P} \prec \gamma \right\}$$
$$\int_{a}^{b} f \, d\mu := \sup_{\gamma} S^{\ell}(f,\gamma,\mu) \qquad U \int_{a}^{b} f \, d\mu := \inf_{\gamma} S^{u}(f,\gamma,\mu)$$

Proposition

1

 $f: X \to \mathbb{R}_{\perp}$ is D_{μ} -integrable iff $L \int f d\mu = U \int f d\mu$.

Properties of HK-integral extend to D_{μ} -integral (I)

- **Null maps** If f = 0 a.e. with respect to μ then $\int f d\mu = 0$.
- ▶ Linearity If f_1 and f_2 are D_μ -integrable with $c_1, c_2 \in \mathbb{R}$, then $\int (c_1 f_1 + c_2 f_2) d\mu = c_1 \int f_1 d\mu + c_2 \int f_2 d\mu$.
- **Positivity** If $f \ge 0$ is D_{μ} -integrable then $\int f d\mu \ge 0$.
- Cauchy condition.

$$\int_{\mathcal{C}} f \, d\mu \text{ exists } \iff$$

for each $\epsilon > 0$ there exists a gauge γ on \overline{C} such that for any two PG pairs $(\dot{P_1}, \gamma), (\dot{P_2}, \gamma) \in \dot{\mathcal{P}G_C}$ we have

$$\left|\int f\,d\mu_{\dot{P}_{1},\gamma}-\int f\,d\mu_{\dot{P}_{2},\gamma}\right|<\epsilon$$

イロン スピン スピン スピン 一日

Properties of HK-integral extend to D_{μ} -integral (II)

Additivity

Let $P = \{R_i : 1 \le i \le n\}$ be a partition of $R \in \mathbf{C}_{\mathcal{B}}$. Then $f : R \to \mathbb{R}$ is D_{μ} -integrable on R iff f is D_{μ} -integrable on R_i for $1 \le i \le n$ and, in which case,

$$\int_{R} f \, d\mu = \sum_{i=1}^{n} \int_{R_{i}} f \, d\mu.$$

Measurable sets

The characteristic function χ_E of a measurable set *E* is D_{μ} -integrable with $\int \chi_E d\mu = \mu(E)$.

Saks-Henstock lemma

• Lemma Suppose $f : X \to \mathbb{R}$ is D_{μ} -integrable and, for $\epsilon > 0$, let γ be a gauge such that $\dot{P} \prec \gamma$ implies:

$$\left|\int f\, d\mu_{\dot{P},\gamma} - \int f\, d\mu\right| \leq \epsilon.$$

Then for any γ -fine tagged sub-partition

$$\dot{Q} = \{(R_i, t_i) : 1 \leq i \leq n\}$$

of X with $R := \bigcup_{1 \le i \le n} R_i$, we have:

$$\left|\int f\,d\mu_{\dot{Q},\gamma}-\int_{R}f\,d\mu\right|\leq\epsilon.$$

Lebesgue integrable implies D_{μ} -integrable

Monotone Convergence Theorem

Let $(f_n)_{n\geq 0}$ be a monotone sequence of D_{μ} -integrable functions on X and put $f(x) = \lim_{n \to \infty} f_n(x)$ for $x \in X$.

Then *f* is D_{μ} -integrable iff the sequence $(\int f_n d\mu)_{n\geq 0}$ is bounded in \mathbb{R} .

▶ **Theorem** If $f : X \to \mathbb{R}$ is Lebesgue integrable wrt μ , then it is D_{μ} -integrable and the two integrals coincide.

Invariance of D_{μ} -integral wrt change of basis in [0, 1]

- Let μ be a normalised measure on [0, 1].
- Let S₁, S₂ ⊂ [0, 1] be two dense subsets and consider the two basis B₁ and B₂ generated by open intervals with endpoints in S₁ and S₂ respectively.
- We have two collections of crescents C_{B_1} and C_{B_2} .
- ▶ **Proposition** $f : [0, 1] \to \mathbb{R}$ is D_{μ} integrable wrt $C_{\mathcal{B}_1}$ iff it is D_{μ} -integrable wrt $C_{\mathcal{B}_2}$, and if so the two integrals coincide.
- This extends to maps f : [0, 1]ⁿ → ℝ with B either as open hyper-rectangles or as open convex polyhedra.
- It also extends to any Riemannian surface with B as open (geodisically) convex polyhedra.

 D_{μ} -integrable but non-Lebesgue integrable maps

- Let X = {0,1}^ω the Cantor space with μ as the product uniform measure on {0,1}.
- ► Let $g: \{0,1\}^{\omega} \to [0,1]$ be the continuous map $x \mapsto g(x) = \sum_{i=0}^{\infty} x_i/2^{i+1}$.
- ▶ **Proposition** A map $f : [0, 1] \to \mathbb{R}$ is HK-integrable iff $f \circ g : \{0, 1\}^{\omega} \to \mathbb{R}$ is D_{μ} -integrable.

A D_{μ} -integrable but non-Lebesgue integrable map

The map f(x) = (sin 1/x³)/x is not Lebesgue integrable but is HK-integrable:

• By the change of variable $u = 1/x^3$:

$$\lim_{a \to 0} \int_{a}^{1} f(x) \, dx = \frac{\pi}{6} - \frac{1}{3} \int_{0}^{1} \frac{\sin u}{u} \, du$$

Thus, the map f ∘ g : {0, 1}^ω → ℝ is D_µ-integrable but not Lebesgue integrable.

Some further work

- Finding simple partitionable collection of crescents in concrete compact metric spaces.
- D_u-integrable, but non-Lebesgue integrable maps on Riemannian manifolds.
- linvariance of D_{μ} -integral under change of basis.
- Extension to σ -compact spaces.