Partial frames, their free frames and their congruence frames

John Frith and Anneliese Schauerte University of Cape Town

$\begin{array}{c} 9th \ ISDT \\ 4-6 \ July \ 2022 \end{array}$

We begin by introducing three objects that will repeatedly arise in this talk:

- \bullet a partial frame L
- its free frame $\mathcal{H}_{\mathcal{S}}L$
- its congruence frame $C_{\mathcal{S}}L$.

Partial frames are:

- meet-semilattices, where
- not all subsets need have joins.

A selection function, S, specifies, for all meet-semilattices, certain subsets under consideration, which we call the "designated" ones; an S-frame then must have joins of (at least) all such subsets and binary meet must distribute over these.

S-frame maps preserve finite meets and designated joins; and, in particular, the top and bottom elements.

Throughout this talk, L refers to an arbitrary S-frame.

We are indebted to earlier work by other authors in this field, for example:

• J. Paseka, Covers in Generalized Frames, in: General Algebra and Ordered Sets (Horni Lipova 1994), Palacky Univ. Olomouc, Olomouc pp. 84-99.

• E.R. Zenk, Categories of Partial Frames, Algebra Univers. 54 (2005) 213-235.

• D. Zhao, Nuclei on Z-Frames, Soochow J. Math. 22 (1) (1996) 59-74.

• D. Zhao, On Projective Z-frames, Canad. Math. Bull. 40(1) (1997) 39-46.

Examples Here are some examples of different selection functions and their corresponding S-frames.

1. If all joins are specified, we are have the notion of a frame.

2. If countable joins are specified, we have the notion of a σ -frame.

3. If joins of subsets with cardinality less than some (regular) cardinal κ are specified, we have the notion of a κ -frame.

4. If only finite joins are specified, we have the notion of a bounded distributive lattice.

The free frame over a partial frame

A subset J of L is an S-ideal of L if J is a non-empty downset closed under designated joins. The collection of all S-ideals of L is a full frame, denoted $\mathcal{H}_{S}L$.

For any $x \in L$, the principal downset, $\downarrow x = \{t \in L : t \leq x\}$, is an S-ideal.

The map $\downarrow : L \to \mathcal{H}_{\mathcal{S}}L$ is the embedding of L into the free frame over L, meaning that every \mathcal{S} -frame map f to a frame M factors via this map.

The congruence frame of a partial frame

We call $\theta \subseteq L \times L$ an *S*-congruence on *L* if it satisfies the following: (C1) θ is an equivalence relation on *L*. (C2) $(a, b), (c, d) \in \theta$ implies that $(a \land c, b \land d) \in \theta$. (C3) If $\{(a_{\alpha}, b_{\alpha}) : \alpha \in \mathcal{A}\} \subseteq \theta$ and $\{a_{\alpha} : \alpha \in \mathcal{A}\}$ and $\{b_{\alpha} : \alpha \in \mathcal{A}\}$ are designated subsets of *L*, then $(\bigvee_{\alpha \in \mathcal{A}} a_{\alpha}, \bigvee_{\alpha \in \mathcal{A}} b_{\alpha}) \in \theta$.

Using this, the standard quotient map $L \to L/\theta$ becomes an S-frame map.

The collection of all S-congruences on L is denoted by $C_{S}L$; it is a full frame.

We define $\nabla_a = \{(x, y) : x \lor a = y \lor a\}$ and $\Delta_a = \{(x, y) : x \land a = y \land a\}.$ These closed and open *S*-congruences together generate $\mathcal{C}_{\mathcal{S}}L$. $\nabla_1 = L \times L$ is the top element and $\nabla_0 = \{(x, x) : x \in L\}$ is the bottom element of $\mathcal{C}_{\mathcal{S}}L$. The map $\nabla : L \to C_{\mathcal{S}}L$ is an embedding of L into its congruence frame. It has the universal property that if $f : L \to M$ is an \mathcal{S} -frame map into a frame M with complemented image, then there exists a frame map $\bar{f} : C_{\mathcal{S}}L \to M$ such that $f = \bar{f} \circ \nabla$.

All three objects in one diagram

Definition For any S-frame L, define $e_L : \mathcal{H}_S L \to \mathcal{C}_S L$ to be the unique frame map such that $e_L(\downarrow a) = \nabla_a$ for all $a \in L$; that is, making the following diagram commute:

Further, the frame map e_L is one-one.

Booleanness conditions for partial frames

There are two relatively obvious options for the notion of Booleanness here:

First: Every element has a complement. We use this as our definition of a Boolean \mathcal{S} -frame.

Second: an analogue using the Booleanization, or least dense quotient, of a full frame. For this, we need the following *S*-congruence: For $x \in L$, set $P_x = \{t \in L : t \land x = 0\}$. Let $\pi_L = \{(x, y) : P_x = P_y\}$. We call π_L the Madden congruence of *L*. The quotient map induced by the Madden congruence, $p_L : L \to L/\pi_L$ is dense, onto and the universal such. We refer to this as the Madden quotient of *L*, and call *L* d-reduced if its Madden quotient is an isomorphism.

An S-frame map $h: L \to M$ is called skeletal if $(h \times h)[\pi_L] \subseteq \pi_M$.

Theorem In the following list of conditions, each one implies the succeeding one, but not conversely.

- (a) $\mathcal{H}_{\mathcal{S}}L$ is a Boolean frame.
- (b) L is a Boolean frame.
- (c) L is a Boolean \mathcal{S} -frame.
- (d) L is a d-reduced S-frame.

Theorem characterizing (a) The following are equivalent:

- (i) The frame $\mathcal{H}_{\mathcal{S}}L$ is Boolean.
- (ii) The S-frame embedding $\nabla : L \to C_S L$ is an isomorphism.
- (iii) Every $\theta \in \mathcal{C}_{\mathcal{S}}L$ has the form $\theta = \nabla_a$, for some $a \in L$.

Theorem characterizing (c) The following are equivalent:

(i) L is Boolean; that is, every element of L is complemented. (ii) The embedding $e : \mathcal{H}_{\mathcal{S}}L \to \mathcal{C}_{\mathcal{S}}L$ is an isomorphism. (iii) Every \mathcal{S} -congruence θ of L is an arbitrary join of \mathcal{S} -congruences of the form ∇_a , for some $a \in L$.

Closed and open maps

Definition Let $h: L \to M$ be an S-frame map. A function $r: M \to L$ is a *right adjoint* of h if

$$h(x) \le m \iff x \le r(m)$$
 for all $x \in L, m \in M$.

A function $\ell: M \to L$ is a *left adjoint* of h if

$$\ell(m) \le x \iff m \le h(x) \text{ for all } x \in L, m \in M.$$

Example This is an example of an (onto) S-frame map which has neither a right nor a left adjoint.

Let L be the σ -frame consisting of all countable and co-countable subsets of \mathbb{R} , and **2** denote the 2-element chain. Define $h: L \to \mathbf{2}$ by h(C) = 0 if C is countable and h(D) = 1 if D is co-countable. Then h is a σ -frame map. However it has no right adjoint since there is no largest $A \in L$ with h(A) = 0. Similarly it has no left adjoint. **Definition** Let $h: L \to M$ be an S-frame map. We call h closed if, for all $m \in M$, there exists $x \in L$ with

$$(h \times h)^{-1}(\nabla_m) = \nabla_x$$

We call h open if, for all $m \in M$, there exists $x \in L$ with

$$(h \times h)^{-1}(\Delta_m) = \Delta_x$$

Theorem Let $h: L \to M$ be an \mathcal{S} -frame map.

(a) The map h is closed iff h has a right adjoint, r, and for all $x \in L, m \in M$,

$$r(h(x) \lor m) = x \lor r(m).$$

(b) The map h is open iff h has a left adjoint, ℓ , and for all $x \in L, m \in M$,

$$\ell(h(x) \wedge m) = x \wedge \ell(m).$$

Note Any frame map with a Boolean domain is closed. The corresponding statement for S-frames is false, as our earlier example shows. However, if the domain has a Boolean free frame, the result does hold.

We also note that, as for full frames, every open map is skeletal, but not conversely.

The embedding of a partial frame into its free frame or its congruence frame

Theorem Let *L* be an *S*-frame and $\downarrow : L \to \mathcal{H}_S L$ the embedding into its free frame.

- (a) The map \downarrow has a right adjoint iff \downarrow is closed iff \downarrow is an isomorphism.
- (b) The map \downarrow has a left adjoint iff L is a complete lattice.
- (c) The map \downarrow is open iff L is a frame.
- (d) The map \downarrow is skeletal for any L.

Theorem Let *L* be an *S*-frame and $\nabla : L \to C_S L$ the embedding into its congruence frame.

- (a) The map ∇ is closed iff ∇ is an isomorphism.
- (b) The map ∇ is open iff L is a Boolean frame.
- (c) The map ∇ is skeletal iff L is a d-reduced S-frame.

THE END