# A Hofmann-Mislove theorem for *c*-well-filtered spaces

# Liping Zhang (Joint with Xiangnan Zhou, Qingguo Li)

Hunan University



The 9th ISDT, Singapore, July 5, 2022

# Background

- c-well-filtered spaces
- A Hofmann-Mislove theorem

In 1981, Hofmann and Mislove proved that there exists a bijection between the nonempty Scott open filters on the open set lattice and the compact saturated subsets in a sober space X.

This result is known as the Hofmann-Mislove Theorem I.

In 1981, Hofmann and Mislove proved that there exists a bijection between the nonempty Scott open filters on the open set lattice and the compact saturated subsets in a sober space X.

This result is known as the Hofmann-Mislove Theorem I.

Moreover, they also showed that for a locally compact sober space X, there is a bijection between the family of nonempty Scott open filters of the compact saturated sets and the open set lattice.

This result is known as the Hofmann-Mislove Theorem II.

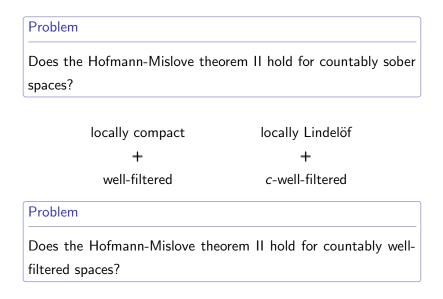
# The Hofmann-Mislove Theorem plays an important role in domain theory.

The Hofmann-Mislove Theorem plays an important role in domain theory.

In 2017, Yang and Shi proved that the compact saturated subsets of a countably sober space correspond bijectively to the Scott open countable filters of its open-set lattice.

# Problem

Does the Hofmann-Mislove theorem II hold for countably sober spaces?



c-well-filtered spaces

Let X be a topological space. A subset A of X is a Lindelöf set if each open cover  $\mathcal{U}$  of A has a countable subcover.

#### *c*-well-filtered spaces

Let X be a topological space. A subset A of X is a Lindelöf set if each open cover  $\mathcal{U}$  of A has a countable subcover.

#### Definition

A  $T_0$  space X is *c*-well-filtered if for every countably filtered family  $\{K_i\}_{i \in I}$  of saturated Lindelöf subsets of X and each open subset U with  $\bigcap_{i \in I} K_i \subseteq U$ , there is a  $K_{i_0} \subseteq U$  for some  $i_0 \in I$ .

#### *c*-well-filtered spaces

Let X be a topological space. A subset A of X is a Lindelöf set if each open cover  $\mathcal{U}$  of A has a countable subcover.

#### Definition

A  $T_0$  space X is *c*-well-filtered if for every countably filtered family  $\{K_i\}_{i \in I}$  of saturated Lindelöf subsets of X and each open subset U with  $\bigcap_{i \in I} K_i \subseteq U$ , there is a  $K_{i_0} \subseteq U$  for some  $i_0 \in I$ .

#### Proposition

Suppose that X is a countable set. Then topological space  $(X, \tau)$  is *c*-well-filtered.

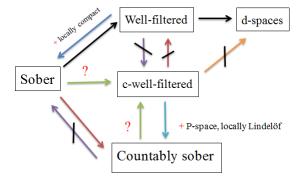


Figure: The relationship between several types of topological spaces

#### well-filtered $\Rightarrow$ *c*-well-filtered

#### Example

Consider the real number set  $\mathbb{R}$  with the co-countable topology  $\tau_{coc}$ , where  $\tau_{coc} = \{U \subseteq \mathbb{R} : \mathbb{R} \setminus U \text{ is countable}\} \bigcup \{\emptyset\}$ . It is known that the topological space  $(\mathbb{R}, \tau_{coc})$  is a well-filtered space, but not *c*-well-filtered.

# *c*-well-filtered $\Rightarrow$ well-filtered

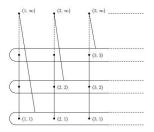


Figure: Johnstone's dcpo  $\mathbb{J}$ 

It is easy to see that  $\mathbb{J}$  is countable. So,  $\Sigma \mathbb{J}$  is a *c*-well-filtered space. But  $\Sigma \mathbb{J}$  is not a well-filtered space.

#### *c*-well-filtered $\Rightarrow$ d-spaces

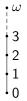


Figure: dcpo  $\mathbb{N}_{\omega}$ 

Let  $L = \mathbb{N}_{\omega}$  with the Alexandroff topology a(L). It is clear that  $\{\omega\} \in a(L)$ , but  $\{\omega\}$  is not a Scott open subset. Therefore, the Alexandroff space  $\Gamma L = (L, a(L))$  is a *c*-well-filtered space but not a *d*-space.

Let X be a topological space. The set of all saturated Lindelöf subsets of X is denoted by  $\mathcal{LQ}(X)$ .

Let X be a topological space. The set of all saturated Lindelöf subsets of X is denoted by  $\mathcal{LQ}(X)$ .

 A topological space X is locally Lindelöf if for every open subset U of X and for every point x ∈ U, there exists K ∈ LQ(X) such that x ∈ int(K) ⊆ K ⊆ U.

Let X be a topological space. The set of all saturated Lindelöf subsets of X is denoted by  $\mathcal{LQ}(X)$ .

- A topological space X is locally Lindelöf if for every open subset U of X and for every point x ∈ U, there exists K ∈ LQ(X) such that x ∈ int(K) ⊆ K ⊆ U.
- 2. A topological space X is called a *P*-space if and only if the intersection of any countable open sets in X is an open set.

We denote that  $\mathbb{Z}_+$  represents a countable set.

- A subset C of a topological space X is countably irreducible if C is nonempty and if for any closed subsets {B<sub>i</sub> : i ∈ Z<sub>+</sub>}, C ⊆ ⋃<sub>i∈Z<sub>+</sub></sub> B<sub>i</sub> implies that C ⊆ B<sub>i</sub> for some i ∈ Z<sub>+</sub>.
- A topological space X is countably sober if and only if for every countably irreducible closed subset A of X, there exists a unique element x ∈ X such that A = ↓x.

We denote that  $\mathbb{Z}_+$  represents a countable set.

- A subset C of a topological space X is countably irreducible if C is nonempty and if for any closed subsets {B<sub>i</sub> : i ∈ Z<sub>+</sub>}, C ⊆ ⋃<sub>i∈Z<sub>+</sub></sub> B<sub>i</sub> implies that C ⊆ B<sub>i</sub> for some i ∈ Z<sub>+</sub>.
- A topological space X is countably sober if and only if for every countably irreducible closed subset A of X, there exists a unique element x ∈ X such that A = ↓x.

#### Proposition

Let X be a P-space. If X is a locally Lindelöf and c-well-filtered space, then X is countably sober.

# Problems

There are still two problems.

Question 1

Sober  $\Rightarrow$  *c*-well-filtered?

Question 2

Countably sober  $\Rightarrow$  *c*-well-filtered?

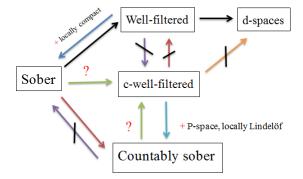


Figure: The relationship between several types of topological spaces

Let L be a poset.

 A nonempty subset D ⊆ L is countably directed if for every E ∈ CountD, there exists d ∈ D such that E ⊆ ↓d.
 Countably filtered is defined dually.

Let L be a poset.

- A nonempty subset D ⊆ L is countably directed if for every E ∈ CountD, there exists d ∈ D such that E ⊆ ↓d.
   Countably filtered is defined dually.
- A poset L is called a countably directed complete poset if every countably directed subset D ⊆ L has a least upper bound sup D in L.

Let L be a poset.

- A nonempty subset D ⊆ L is countably directed if for every E ∈ CountD, there exists d ∈ D such that E ⊆ ↓d.
   Countably filtered is defined dually.
- A poset L is called a countably directed complete poset if every countably directed subset D ⊆ L has a least upper bound sup D in L.
- 3. An upper set U of L is  $\sigma$ -Scott open if for every countably directed subset  $D \subseteq L$ , sup  $D \in U$  implies  $D \cap U \neq \emptyset$ .

Let L be a poset.

- A nonempty subset D ⊆ L is countably directed if for every E ∈ CountD, there exists d ∈ D such that E ⊆ ↓d.
   Countably filtered is defined dually.
- A poset L is called a countably directed complete poset if every countably directed subset D ⊆ L has a least upper bound sup D in L.
- 3. An upper set U of L is  $\sigma$ -Scott open if for every countably directed subset  $D \subseteq L$ , sup  $D \in U$  implies  $D \cap U \neq \emptyset$ .

All  $\sigma$ -Scott open subsets of L form a topology, called the  $\sigma$ -Scott topology and denoted as  $\sigma_c(L)$ .

Similar to well-filtered spaces, *c*-well-filtered spaces have some similar results too.

Proposition

A topological space X is c-well-filtered if and only if for every closed subset C of X and each countably filtered family  $\{K_i\}_{i \in I}$ of saturated Lindelöf subsets, if  $C \cap K_i \neq \emptyset$  for all  $i \in I$ , then  $\bigcap_{i \in I} K_i \cap C \neq \emptyset$ .

#### Proposition

Let  $(X, \tau)$  be a *c*-well-filtered  $T_0$ -space. Then  $\Omega(X)$  is a countably directed complete poset and  $\tau \subseteq \sigma_c(\Omega(X))$ , where  $\Omega(X) = (X, \leq_{\tau}), \leq_{\tau}$  is the specialization order of  $(X, \tau)$ .

#### Proposition

Let 
$$(X, \tau)$$
 be a *c*-well-filtered  $T_0$ -space. Then  $\Omega(X)$  is a countably directed complete poset and  $\tau \subseteq \sigma_c(\Omega(X))$ , where  $\Omega(X) = (X, \leq_{\tau}), \leq_{\tau}$  is the specialization order of  $(X, \tau)$ .

#### Proposition

Let  $(X, \tau)$  be a *c*-well-filtered space and *A* a saturated subset of *X*. Then  $(A, \tau_A)$  is *c*-well-filtered in the inherited topology.

#### Proposition

Let 
$$(X, \tau)$$
 be a *c*-well-filtered  $T_0$ -space. Then  $\Omega(X)$  is a countably directed complete poset and  $\tau \subseteq \sigma_c(\Omega(X))$ , where  $\Omega(X) = (X, \leq_{\tau}), \leq_{\tau}$  is the specialization order of  $(X, \tau)$ .

#### Proposition

Let  $(X, \tau)$  be a *c*-well-filtered space and *A* a saturated subset of *X*. Then  $(A, \tau_A)$  is *c*-well-filtered in the inherited topology.

#### Proposition

A retract of a *c*-well-filtered space is *c*-well-filtered.

A countably approximating poset *L* is defined as:

- a countably directed complete poset- supremums of countably directed subsets of *L* exist.
- 2. the countably way-below relation on *L* is approximating.
  - ▶  $x, y \in L$ , x is said to be countably way-below y (in symbol,  $x \ll_c y$ ) if for every countably directed subset  $D \subseteq L$  with  $y \leq \sup D$ ,  $x \leq d$  for some  $d \in D$ .
  - ► the countably way-below relation is said to be approximating if for all a ∈ L, {x | x ≪<sub>c</sub> a} is <u>countably directed</u> and sup{x | x ≪<sub>c</sub> a} = a.

A countably approximating poset L is defined as:

- a countably directed complete poset- supremums of countably directed subsets of *L* exist.
- 2. the countably way-below relation on *L* is approximating.
  - ▶  $x, y \in L$ , x is said to be countably way-below y (in symbol,  $x \ll_c y$ ) if for every countably directed subset  $D \subseteq L$  with  $y \leq \sup D$ ,  $x \leq d$  for some  $d \in D$ .
  - ► the countably way-below relation is said to be approximating if for all a ∈ L, {x | x ≪<sub>c</sub> a} is <u>countably directed</u> and sup{x | x ≪<sub>c</sub> a} = a.

A nonempty subset F of L is called a countable filter if it is a countably filtered upper set.

# Saturated Lindelöf subsets

# Proposition

Let X be a c-well-filtered space. Then  $K = \bigcap C$  is a nonempty saturated Lindelöf set for each countable filter base C of nonempty saturated Lindelöf subsets of X. Hence,  $(\mathcal{LQ}(X), \supseteq)$  is a countably directed complete poset.

# Saturated Lindelöf subsets

#### Proposition

# Let X be a P-space.

- Let K<sub>1</sub>, K<sub>2</sub> ∈ LQ(X) and consider the following assertions:
  (a) There exists U ∈ O(X) such that K<sub>1</sub> ⊇ U ⊇ K<sub>2</sub>, i.e. int(K<sub>1</sub>) ⊇ K<sub>2</sub>;
  (b) K<sub>1</sub> ≪<sub>c</sub> K<sub>2</sub> in LQ(X).
  If X is c-well-filtered, then (a) ⇒ (b); if X is locally Lindelöf, then (b) ⇒ (a).
- If X is a locally Lindelöf and c-well-filtered space, then
   (LQ(X), ⊇) is a countably approximating poset.

# Hofmann-Mislove theorem

#### Lemma

Let X be a c-well-filtered space and  $U \in \mathcal{O}(X)$ . Then the set

$$\phi^{'}(U) = \{K \in \mathcal{LQ}(X) : K \subseteq U\}$$

is a  $\sigma$ -Scott open countable filter in  $(\mathcal{LQ}(X), \supseteq)$ .

# Hofmann-Mislove theorem

#### Lemma

Let X be a c-well-filtered space and  $U \in \mathcal{O}(X)$ . Then the set

$$\phi^{'}(U) = \{K \in \mathcal{LQ}(X) : K \subseteq U\}$$

is a  $\sigma$ -Scott open countable filter in  $(\mathcal{LQ}(X), \supseteq)$ .

The set of all  $\sigma$ -Scott open countable filters of  $(\mathcal{LQ}(X), \supseteq)$  is denoted by OCFilt<sub> $\sigma$ </sub> $((\mathcal{LQ}(X), \supseteq))$ .

# Hofmann-Mislove theorem

#### Theorem

Let X be a locally Lindelöf and c-well-filtered P-space, then the mapping

$$\phi^{'}:\mathcal{O}({\sf X})
ightarrow{{\sf OCFilt}_{\sigma}((\mathcal{LQ}({\sf X}),\supseteq))$$

is an order isomorphism.

Thank you !