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Preface

For a century, one of the most famous problems in mathematics was to prove
the four-colour theorem. This has spawned the development of many use-
ful tools for solving graph colouring problems. In a paper in 1912, Birkhoff
proposed a way of tackling the four-colour problem by introducing a func-
tion P(M, \), defined for all positive integers A, to be the number of proper
A-colourings of a map M. It turns out that P(M, )) is a polynomial in A,
called the chromatic polynomial of M. If one could prove that P(M,4) >0
for all maps M, then this would give a positive answer to the four-colour
problem. The polynomial P(M, )) is defined for all real and complex values
of A\. It was hoped that many useful tools from algebra and analysis could
be used to find or estimate the roots of the polynomial and hence lead to
the resolution of the problem.

The notion of a chromatic polynomial was later generalized to that of
an arbitrary graph by Whitney (1932), who established many fundamental
results for it. In 1946, Birkhoff and Lewis obtained results concerning the
distribution of real roots of chromatic polynomials of planar graphs and
conjectured that these polynomials have no real roots greater than or equal
to four. The conjecture remains open.

In 1968, Read aroused new interest in the study of chromatic polynomi-
als with his well referenced introductory article on the subject. He asked if
it is possible to find a set of necessary and sufficient algebraic conditions for
a polynomial to be the chromatic polynomial of some graph. For example,
it is true that the chromatic polynomial of a graph determines the numbers
of vertices and edges and that its coefficients are integers which alternate
in sign. Read observed that the absolute values of the coefficients appear
to form a unimodal sequence.

Read asked: What is a necessary and sufficient condition for two graphs
to be chromatically equivalent; that is, to have the same chromatic poly-
nomial? In particular, Chao and Whitehead Jr. (1978) defined a graph to
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VI Preface

be chromatically unique if no other graphs share its chromatic polynomial.
They found several families of such graphs. Since then many invariants
under chromatic equivalence have been found and various families of and
results on such graphs have been obtained successively. The question of
chromatic equivalence and uniqueness is termed the chromaticity of graphs.
This remains an active area of research.

Although Birkhoff’s hope of using the chromatic polynomial to prove the
four-colour theorem was not borne out, it has attracted a steady stream of
attention through the years, especially concerning the location of its roots.
More recently, Thomassen discovered a relation between hamiltonian paths
and the roots of the chromatic polynomial. There has also been an influx
of new ideas from statistical mechanics due to the recent discovery of a
connection to the Potts Model in Physics.

This book is divided into three main parts, after providing a chapter on
the basic concepts and terminology of graphs and a list of notation that are
needed and used in the book. Part one covers the first three chapters. It is
devoted in greater detail than the other two to the rudiment of chromatic
polynomials; their basic properties are derived, and some practical methods
for computing them are given. Furthermore, we provide several ways of
constructing chromatically equivalent graphs; characterize chromatically
unique graphs that are disconnected and those with connectivity 1. Further
results on chromatic equivalence classes of families of graphs are mentioned.

Part two, which consists of eight chapters from Chapter 4 to Chapter 11,
deals specifically with the chromaticity of multi-partite graphs, subdivisions
of graphs, and members of those families whose colour classes have nice
structures. By expanding a chromatic polynomial of a graph in terms of
falling factorials, we construct a polynomial, called the adjoint polynomial
of the graph. We study several invariants of this polynomial and roots of
some particular ones. It was found that this polynomial was particularly
useful in determining the chromaticity of graphs whose complements are of
simpler structure. We also mention some related polynomials.

The last part of the book covers the last four chapters and is concerned
with the distribution of roots of the chromatic polynomials both on the
real line and in the complex plane. In particular, we study those chromatic
polynomials that possess only integral roots. Furthermore, we study bounds
and inequalities of the chromatic polynomials of families of graphs.
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