

Discrete Mathematics 250 (2002) 71-78

DISCRETE MATHEMATICS

www.elsevier.com/locate/disc

The vertex-cover polynomial of a graph

F.M. Dong, M.D. Hendy, K.L. Teo, C.H.C. Little*

Institute of Fundamental Sciences (Mathematics), Massey University, Private Bag 11222, Palmerston North, New Zealand

Received 10 February 1999; revised 16 February 2001; accepted 5 March 2001

Abstract

In this paper we define the vertex-cover polynomial $\Psi(G, \tau)$ for a graph G. The coefficient of τ^r in this polynomial is the number of vertex covers V' of G with |V'| = r. We develop a method to calculate $\Psi(G, \tau)$. Motivated by a problem in biological systematics, we also consider the mappings f from $\{1, 2, ..., m\}$ into the vertex set V(G) of a graph G, subject to $f^{-1}(x) \cup$ $f^{-1}(y) \neq \emptyset$ for every edge xy in G. Let F(G, m) be the number of such mappings f. We show that F(G, m) can be determined from $\Psi(G, \tau)$. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Graph; Vertex-cover; Graph-function; Graph-polynomial

1. Introduction

The graphs considered in this paper are undirected and contain no multi-edges, but may have loops. For a graph G, let V(G), E(G), v(G) and e(G) be the vertex set, edge set, order and size of G, respectively. The null graph is the graph G with v(G) = 0. The reader is referred to [4] for any terminology not defined here.

For a graph $G, V' \subseteq V(G)$ is called an *r*-vertex cover in G if |V'| = r and $V' \cap \{x, y\} \neq \emptyset$ for all $xy \in E(G)$. Let $\mathscr{CV}(G, r)$ be the set of *r*-vertex covers in G, and $\operatorname{cv}(G, r) = |\mathscr{CV}(G, r)|$. Observe that $\operatorname{cv}(G, r) = 0$ if either r < 0 or r > v(G).

We define the following generating function:

(C)

$$\Psi(G,\tau) = \sum_{r=0}^{\nu(G)} \operatorname{cv}(G,r)\tau^r.$$
(1)

For example, let K_n be the complete graph on $n \ge 1$ vertices. Then $\Psi(K_n, \tau) = \tau^n + n\tau^{n-1}$ since $\operatorname{cv}(K_n, n) = 1$, $\operatorname{cv}(K_n, n-1) = n$ and $\operatorname{cv}(K_n, r) = 0$ if $0 \le r < n-1$.

It is natural to call $\Psi(G,\tau)$ the vertex-cover polynomial of G. In this paper, we shall develop a method to calculate $\Psi(G,\tau)$. By definition, cv(G,r) can be obtained

* Corresponding author.

0012-365X/02/\$ - see front matter © 2002 Elsevier Science B.V. All rights reserved. PII: S0012-365X(01)00272-2

E-mail address: c.little@massey.ac.nz (C.H.C. Little).

if $\Psi(G,\tau)$ is determined. Recall that the vertex-cover number of G is the minimum number r such that G has an r-vertex cover. Thus, the vertex-cover number can be determined from $\Psi(G,\tau)$.

Now we define another graph function F(G,m) for any graph G and nonnegative integer m. The definition of F(G,m) is motivated by a problem in biology [2], where it was necessary to calculate the number of mappings f, from a given finite set to the vertex set V(G) of a graph G, such that $\bigcup_{v \in V'} f^{-1}(v) \neq \emptyset$ for each member V' of a given set \mathscr{S} of subsets of V(G). In this paper, we consider the case $\mathscr{S} = \{\{x, y\} | xy \in E(G)\}$. For a graph G and an integer $m \ge 0$, define $\mathscr{F}(G,m)$ to be the set of mappings

$$f: \{1, 2, \dots, m\} \to V(G), \tag{2}$$

subject to $f^{-1}(x) \cup f^{-1}(y) \neq \emptyset$ for every $xy \in E(G)$. Note that for v(G) = 0 or m = 0, we have

$$\mathscr{F}(G,m) = \begin{cases} \{\emptyset\} & \text{if } e(G) = 0 \text{ and } m = 0, \\ \emptyset & \text{otherwise.} \end{cases}$$
(3)

Let $F(G,m) = |\mathscr{F}(G,m)|$. By the definition of $\mathscr{F}(G,m)$, we observe that F(G,m) is a graph-function.

We shall show that F(G,m) can be expressed in terms of cv(G,r) for $r \ge 0$. Thus F(G,m) can be obtained from $\Psi(G,\tau)$.

2. Vertex-cover polynomials

In this section, we shall develop a method to calculate $\Psi(G, \tau)$. Observe that $\Psi(G, \tau)$ is independent of the multiplicity of any edge in G. Hence we assume that G contains no multi-edges.

We first consider some special types of graphs. By definition,

Lemma 2.1. For the null graph G, $\Psi(G, \tau) = 1$. \Box

For integer $n \ge 1$, let N_n be the graph with *n* vertices and no edges.

Lemma 2.2. For any integer $n \ge 1$, we have

$$\Psi(N_n,\tau) = \sum_{r=0}^n \binom{n}{r} \tau^r = (1+\tau)^n.$$
(4)

Proof. By definition, we have $cv(N_n, r) = \binom{n}{r}$ for any integer r with $0 \le r \le n$. Thus the result is obtained by (1). \Box

Lemma 2.3. For a graph G, if there is a loop at each vertex of G, then

$$\Psi(G,\tau) = \tau^{\nu(G)}.$$
(5)

Proof. By definition, we have cv(G,r) = 0 when r < v(G) and cv(G,v(G)) = 1. Thus the result is obtained by (1). \Box

We now give a reduction method for computing $\Psi(G, \tau)$ for general graphs.

For $S \subseteq V(G)$, let G - S denote the graph obtained from G by deleting all vertices in S and all edges incident with any vertices in S. For simplicity, for $x \in V(G)$, we let G - x denote the graph $G - \{x\}$ and let $N_G(x) = \{y \in V(G) \mid y \neq x, xy \in E(G)\}$.

Theorem 2.1. Let G be a graph and $L = \{x \in V(G) \mid xx \in E(G)\}$. Then

$$\Psi(G,\tau) = \tau^{|L|} \Psi(G-L,\tau).$$
(6)

Proof. Observe that for any $S \subset V(G)$, S is an r-vertex cover of G iff $L \subseteq S$ and S - L is an (r - |L|)-vertex cover of G - L. Thus

$$\operatorname{cv}(G,r) = \operatorname{cv}(G - L, r - |L|)$$

for r = 1, 2, ..., v(G). Hence the result follows. \Box

Theorem 2.2. Let G be a graph with no loops and $v(G) \ge 2$. Let $x \in V(G)$ and $d = |N_G(x)|$. Then

$$\Psi(G,\tau) = \tau \Psi(G-x,\tau) + \tau^d \Psi(G-x-N_G(x),\tau).$$
⁽⁷⁾

Proof. We first show that

$$cv(G,r) = cv(G - x, r - 1) + cv(G - x - N_G(x), r - d).$$
(8)

Let *S* be an *r*-vertex cover of *G*. There are two cases: $x \in S$ or $x \notin S$.

We observe that S is an r-vertex cover with $x \in S$ iff $x \in S$ and $S - \{x\}$ is an (r-1)-vertex cover of G - x. Thus the number of such r-vertex covers S is cv(G - x, r - 1).

If $x \notin S$, then by definition, $N_G(x) \subseteq S$ and $S - N_G(x)$ is an (r - d)-vertex cover of $G - x - N_G(x)$. On the other hand, for any (r - d)-vertex cover S' of $G - x - N_G(x)$, $S' \cup N_G(x)$ is an *r*-vertex cover of *G*. Hence the number of *r*-vertex covers *S* with $x \notin S$ is $\operatorname{cv}(G - x - N_G(x), r - d)$. Thus (8) holds. Hence

$$\Psi(G,\tau) = \sum_{r=0}^{\nu(G)} \operatorname{cv}(G,r)\tau^{r}$$

= $\sum_{r=0}^{\nu(G)} (\operatorname{cv}(G-x,r-1) + \operatorname{cv}(G-x-N_{G}(x),r-d))\tau^{r}$

$$=\sum_{r=1}^{v(G)} \operatorname{cv}(G-x,r-1)\tau^r + \sum_{r=d}^{v(G)} \operatorname{cv}(G-x-N_G(x),r-d)\tau^r$$
$$=\tau\Psi(G-x,\tau) + \tau^d\Psi(G-x-N_G(x),\tau). \quad \Box$$

Theorems 2.1 and 2.2 together with Lemmas 2.1–2.3 give a reduction method to calculate $\Psi(G, \tau)$. Our next theorem shows that $\Psi(G, \tau)$ is multiplicative on a disjoint union of graphs. In this theorem $G_1 \cup G_2$ denotes the graph G with two disjoint subgraphs G_1 and G_2 such that $V(G) = V(G_1) \cup V(G_2)$ and $E(G) = E(G_1) \cup E(G_2)$.

Theorem 2.3. Let $G = G_1 \cup G_2$ for two graphs G_1 and G_2 . Then $\Psi(G, \tau) = \Psi(G_1, \tau)\Psi(G_2, \tau)$.

Proof. We proceed by induction on $v(G_1)$. If G_1 or G_2 is null, the result follows from Lemma 2.1. Suppose $v(G_1) \ge 1$ and $v(G_2) \ge 1$. If *G* contains a loop, the result follows from Theorem 2.1. Suppose therefore that *G* has no loop. If $G_1 = N_1$ then, by Theorem 2.2, we have

$$\Psi(G,\tau) = \tau \Psi(G_2,\tau) + \Psi(G_2,\tau)$$
$$= (\tau+1)\Psi(G_2,\tau) = \Psi(G_1,\tau)\Psi(G_2,\tau).$$

Otherwise we choose $x \in V(G_1)$ and let $d = |N_{G_1}(x)|$. Then

$$\begin{split} \Psi(G,\tau) &= \tau \Psi(G_1 - x,\tau) \Psi(G_2,\tau) + \tau^d \Psi(G_1 - x - N_{G_1}(x),\tau) \Psi(G_2,\tau) \\ &= (\tau \Psi(G_1 - x,\tau) + \tau^d \Psi(G_1 - x - N_{G_1}(x),\tau)) \Psi(G_2,\tau) \\ &= \Psi(G_1,\tau) \Psi(G_2,\tau). \quad \Box \end{split}$$

In the following, we shall determine $\Psi(G, \tau)$ for some special graphs G.

Theorem 2.4. Let G be a graph with no loops and $v(G) \ge 2$. For $x \in V(G)$, if $N_G(x) = V(G) - \{x\}$, then

$$\Psi(G,\tau) = \tau \Psi(G-x,\tau) + \tau^{v(G)-1}$$

Proof. It follows from Theorem 2.2 and Lemma 2.1. \Box

Lemma 2.4. For the path graph P_n with n vertices, where $n \ge 1$, we have

$$\Psi(P_n,\tau) = \sum_{i=0}^n \binom{i+1}{n-i} \tau^i = \sum_{i=\lceil (n-1)/2\rceil}^n \binom{i+1}{n-i} \tau^i.$$

Proof. The result holds for $n \le 2$, since $\Psi(P_1, \tau) = 1 + \tau$ and $\Psi(P_2, \tau) = 2\tau + \tau^2$. Suppose that the result holds for n < k, where $k \ge 3$. Now let n = k. By Theorem 2.2 and by

induction on n, we have

$$\begin{split} \Psi(P_n,\tau) &= \tau \Psi(P_{n-1},\tau) + \tau \Psi(P_{n-2},\tau) \\ &= \tau \sum_{i=0}^{n-1} \binom{i+1}{n-1-i} \tau^i + \tau \sum_{i=0}^{n-2} \binom{i+1}{n-2-i} \tau^i \\ &= \tau \sum_{i=0}^{n-1} \left(\binom{i+1}{n-1-i} + \binom{i+1}{n-2-i} \right) \tau^i \\ &= \tau \sum_{i=0}^{n-1} \binom{i+2}{n-1-i} \tau^i \\ &= \sum_{i=1}^n \binom{i+1}{n-i} \tau^i , \end{split}$$

where the last equality holds since $\binom{i+1}{n-i} = 0$ when $n \ge 2$ and i = 0. \Box

Lemma 2.5. For the cycle graph C_n , where $n \ge 3$, we have

$$\Psi(C_n,\tau) = \sum_{i=1}^n \frac{n}{i} \binom{i}{n-i} \tau^i = \sum_{i=\lceil n/2 \rceil}^n \frac{n}{i} \binom{i}{n-i} \tau^i.$$

Proof. The result holds for n = 3, since $\Psi(C_3, \tau) = \tau^3 + 3\tau$. By Theorem 2.2, we have

$$\Psi(C_n,\tau) = \tau \Psi(P_{n-1},\tau) + \tau^2 \Psi(P_{n-3},\tau)$$

for $n \ge 4$. Then the result follows by using Lemma 2.4. \Box

Lemma 2.6. For the wheel graph W_n of n vertices, where $n \ge 4$, we have

$$\Psi(W_n,\tau)=\tau^{n-1}+\sum_{i=\lceil (n+1)/2\rceil}^n\frac{n-1}{i-1}\binom{i-1}{n-i}\tau^i.$$

Proof. By Theorem 2.4,

 $\Psi(W_n,\tau) = \tau \Psi(C_{n-1},\tau) + \tau^{n-1}$

and the result follows from Lemma 2.5. \Box

Lemma 2.7. For the complete bipartite graph $K_{p,q}$, where $p \ge 1$ and $q \ge 1$,

$$\Psi(K_{p,q},\tau)=\tau^p(1+\tau)^q+\tau^q(1+\tau)^p-\tau^{p+q}.$$

Proof. First consider the case when p = 1. By Theorem 2.2,

$$\Psi(K_{1,q},\tau) = \tau \Psi(N_q,\tau) + \tau^q = \tau (1+\tau)^q + \tau^q.$$

Hence the lemma holds for p = 1. By Theorem 2.2 we have

$$\Psi(K_{p,q},\tau) = \tau \Psi(K_{p-1,q},\tau) + \tau^q \Psi(N_{p-1},\tau).$$

Then the result follows by induction and Lemma 2.2. \Box

We recursively define the balanced tree B_r with a root vertex for $r \ge 0$. When r = 0, B_r is the graph with one vertex, which is the root vertex. When $r \ge 1$, let B_r be the tree obtained from two disjoint copies of B_{r-1} by adding a new vertex x_r and two new edges joining x_r to the root vertices of the two copies of B_{r-1} . The root vertex of B_r is x_r . The following result is obtained by Theorem 2.2.

Lemma 2.8. $\Psi(B_0, \tau) = 1 + \tau$, $\Psi(B_1, \tau) = \tau + 3\tau^2 + \tau^3$ and for $r \ge 2$, $\Psi(B_r, \tau) = \tau \Psi^2(B_{r-1}, \tau) + \tau^2 \Psi^4(B_{r-2}, \tau)$.

3. Properties of vertex-cover polynomials

In this section, we shall consider only simple graphs. Let \overline{G} denote the complement of a simple graph G, and let $k_r(G)$ be the number of subgraphs in G isomorphic to the complete graph K_r for any non-negative integer r. We always assume that $k_0(G) = 1$. By definition, we have $cv(G, r) = k_{n-r}(\overline{G})$ for all r with $0 \le r \le n$, where n = v(G). Thus

Lemma 3.1. Let G be a simple graph of order n. Then

$$\Psi(G,\tau) = \sum_{r=0}^{n} k_{n-r}(\bar{G})\tau^r. \qquad \Box$$
(9)

An interesting problem is to decide whether two given graphs *G* and *H* have the same vertex-cover polynomial. By (9), we observe that $\Psi(G, \tau) = \Psi(H, \tau)$ iff v(G) = v(H) and $k_i(\bar{G}) = k_i(\bar{H})$ for i = 0, 1, ..., v(G). A result is immediately obtained.

Lemma 3.2. For two graphs G and H, if \overline{G} is K_3 -free, then $\Psi(G, \tau) = \Psi(H, \tau)$ iff v(G) = v(H), e(G) = e(H) and \overline{H} is also K_3 -free. \Box

Another problem is to study whether a given polynomial can be the vertex-cover polynomial of some graph. A necessary condition is obtained from (9).

Lemma 3.3. For a simple graph G of order n, we have

$$\tau^{n} + n\tau^{n-1} + \left(\binom{n}{2} - e(G) \right) \tau^{n-2} \leq \Psi(G,\tau) \leq (1+\tau)^{n}$$
(10)

for $\tau \ge 0$. Moreover, $\Psi(G, \tau) = \tau^n + n\tau^{n-1} + (\binom{n}{2} - e(G))\tau^{n-2}$ iff \overline{G} is K_3 -free, and $\Psi(G, \tau) = (1 + \tau)^n$ iff G is empty. \Box

From Lemma 3.3, we observe that the polynomial $\Psi(G, \tau)$ has no positive real roots. It is also an interesting problem to study the roots of $\Psi(G, \tau)$.

4. Application in biological systematics

We have defined F(G,m) in the first section. The graph function F(G,m) is used in biological systematics to determine the order, size and dimension of a Buneman graph. To derive the relation between F(G,m) and cv(G,r), we need the following two results.

Lemma 4.1. Let G be any graph and m any nonnegative integer. For any $f \in \mathcal{F}(G,m)$, we have

$$V' = \{f(1), f(2), \dots, f(m)\} \in \mathscr{CV}(G, r),$$

where r = |V'|.

Proof. For every $uv \in E(G)$, we have $f^{-1}(u) \cup f^{-1}(v) \neq \emptyset$ and thus $V' \cap \{u, v\} \neq \emptyset$. By the definition of $\mathscr{CV}(G, r)$, $V' \in \mathscr{CV}(G, r)$. \Box

In the following, S(m, r) denotes a Stirling number of the second kind.

Lemma 4.2. Let G be any graph and m any nonnegative integer. For any $V' \in \mathscr{CV}(G,r)$, where $r \ge 0$, there are exactly r!S(m,r) mappings $f \in \mathscr{F}(G,m)$ such that

 ${f(1), f(2), \ldots, f(m)} = V'.$

Proof. There are exactly r!S(m,r) surjections

 $f:\{1,2,\ldots,m\}\to V'.$

Since V' is a vertex cover of G, we have $f \in \mathscr{F}(G,m)$ for every such f. \Box

Theorem 4.1. For any graph G and $m \ge 0$, we have

$$F(G,m) = \sum_{r=0}^{\nu(G)} cv(G,r)r!S(m,r).$$
(11)

Proof. The result follows from Lemmas 4.1 and 4.2. \Box

By this result, we can get another relation between F(G,m) and $\Psi(G,\tau)$.

Theorem 4.2. For any graph G, we have

$$\Psi(G, e^{\tau} - 1) = \sum_{m=0}^{\infty} \frac{F(G, m)}{m!} \tau^{m}.$$
(12)

In fact, Theorem 4.2 is a special case of the following result.

Theorem 4.3. Let $P(x) = \sum_{r=0}^{k} a_r x^r$ be any polynomial. If $b_n = \sum_{r=0}^{k} a_r r! S(n,r)$ for all $n \ge 0$, then

$$P(e^{y}-1) = \sum_{n=0}^{\infty} \frac{b_{n} y^{n}}{n!}.$$
(13)

Proof. Observe that

$$\sum_{n=0}^{\infty} \frac{b_n y^n}{n!} = \sum_{n=0}^{\infty} \sum_{r=0}^k a_r r! S(n,r) \frac{y^n}{n!} = \sum_{r=0}^k a_r \sum_{n=0}^{\infty} \frac{r! S(n,r) y^n}{n!}.$$

By (3.6.2) in [5],
$$\sum_{n=0}^{\infty} \frac{r! S(n,r) y^n}{n!} = (e^y - 1)^r.$$
 (14)

The result thus follows. \Box

5. For further reading

The following references may also be of interest to the reader: [1,3].

References

- F.R.K. Chung, R.L. Graham, On the cover polynomial of a digraph, J. Combin. Theory Ser. B 65 (1995) 273–290.
- [2] A. Dress, M.D. Hendy, K. Huber, V. Moulton, Enumerating the vertices of the Buneman graph, Ann. Combin. 1 (1998) 329–337.
- [3] M. Dworkin, Factorisation of cover polynomial, J. Combin. Theory Ser. B 71 (1997) 17-53.
- [4] W.T. Tutte, Graph Theory, Addison-Wesley, Reading, MA, 1984.
- [5] H.S. Wilf, Generating functionology, Academic Press, New York, 1994.