DISCRETE

 MATHEMATICS
The vertex-cover polynomial of a graph

F.M. Dong, M.D. Hendy, K.L. Teo, C.H.C. Little*
Institute of Fundamental Sciences (Mathematics), Massey University, Private Bag 11222, Palmerston North, New Zealand

Received 10 February 1999; revised 16 February 2001; accepted 5 March 2001

Abstract

In this paper we define the vertex-cover polynomial $\Psi(G, \tau)$ for a graph G. The coefficient of τ^{r} in this polynomial is the number of vertex covers V^{\prime} of G with $\left|V^{\prime}\right|=r$. We develop a method to calculate $\Psi(G, \tau)$. Motivated by a problem in biological systematics, we also consider the mappings f from $\{1,2, \ldots, m\}$ into the vertex set $V(G)$ of a graph G, subject to $f^{-1}(x) \cup$ $f^{-1}(y) \neq \emptyset$ for every edge $x y$ in G. Let $F(G, m)$ be the number of such mappings f. We show that $F(G, m)$ can be determined from $\Psi(G, \tau)$. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Graph; Vertex-cover; Graph-function; Graph-polynomial

1. Introduction

The graphs considered in this paper are undirected and contain no multi-edges, but may have loops. For a graph G, let $V(G), E(G), v(G)$ and $e(G)$ be the vertex set, edge set, order and size of G, respectively. The null graph is the graph G with $v(G)=0$. The reader is referred to [4] for any terminology not defined here.

For a graph $G, V^{\prime} \subseteq V(G)$ is called an r-vertex cover in G if $\left|V^{\prime}\right|=r$ and $V^{\prime} \cap\{x, y\} \neq \emptyset$ for all $x y \in E(G)$. Let $\mathscr{C} \mathscr{V}(G, r)$ be the set of r-vertex covers in G, and $\operatorname{cv}(G, r)=|\mathscr{C} \mathscr{V}(G, r)|$. Observe that $\operatorname{cv}(G, r)=0$ if either $r<0$ or $r>v(G)$.

We define the following generating function:

$$
\begin{equation*}
\Psi(G, \tau)=\sum_{r=0}^{v(G)} \operatorname{cv}(G, r) \tau^{r} \tag{1}
\end{equation*}
$$

For example, let K_{n} be the complete graph on $n \geqslant 1$ vertices. Then $\Psi\left(K_{n}, \tau\right)=$ $\tau^{n}+n \tau^{n-1}$ since $\operatorname{cv}\left(K_{n}, n\right)=1, \operatorname{cv}\left(K_{n}, n-1\right)=n$ and $\operatorname{cv}\left(K_{n}, r\right)=0$ if $0 \leqslant r<n-1$.

It is natural to call $\Psi(G, \tau)$ the vertex-cover polynomial of G. In this paper, we shall develop a method to calculate $\Psi(G, \tau)$. By definition, $\operatorname{cv}(G, r)$ can be obtained

[^0]if $\Psi(G, \tau)$ is determined. Recall that the vertex-cover number of G is the minimum number r such that G has an r-vertex cover. Thus, the vertex-cover number can be determined from $\Psi(G, \tau)$.

Now we define another graph function $F(G, m)$ for any graph G and nonnegative integer m. The definition of $F(G, m)$ is motivated by a problem in biology [2], where it was necessary to calculate the number of mappings f, from a given finite set to the vertex set $V(G)$ of a graph G, such that $\bigcup_{v \in V^{\prime}} f^{-1}(v) \neq \emptyset$ for each member V^{\prime} of a given set \mathscr{S} of subsets of $V(G)$. In this paper, we consider the case $\mathscr{S}=\{\{x, y\} \mid x y \in E(G)\}$. For a graph G and an integer $m \geqslant 0$, define $\mathscr{F}(G, m)$ to be the set of mappings

$$
\begin{equation*}
f:\{1,2, \ldots, m\} \rightarrow V(G) \tag{2}
\end{equation*}
$$

subject to $f^{-1}(x) \cup f^{-1}(y) \neq \emptyset$ for every $x y \in E(G)$. Note that for $v(G)=0$ or $m=0$, we have

$$
\mathscr{F}(G, m)= \begin{cases}\{\emptyset\} & \text { if } e(G)=0 \text { and } m=0 \tag{3}\\ \emptyset & \text { otherwise } .\end{cases}
$$

Let $F(G, m)=|\mathscr{F}(G, m)|$. By the definition of $\mathscr{F}(G, m)$, we observe that $F(G, m)$ is a graph-function.

We shall show that $F(G, m)$ can be expressed in terms of $\operatorname{cv}(G, r)$ for $r \geqslant 0$. Thus $F(G, m)$ can be obtained from $\Psi(G, \tau)$.

2. Vertex-cover polynomials

In this section, we shall develop a method to calculate $\Psi(G, \tau)$. Observe that $\Psi(G, \tau)$ is independent of the multiplicity of any edge in G. Hence we assume that G contains no multi-edges.

We first consider some special types of graphs. By definition,

Lemma 2.1. For the null graph $G, \Psi(G, \tau)=1$.
For integer $n \geqslant 1$, let N_{n} be the graph with n vertices and no edges.

Lemma 2.2. For any integer $n \geqslant 1$, we have

$$
\begin{equation*}
\Psi\left(N_{n}, \tau\right)=\sum_{r=0}^{n}\binom{n}{r} \tau^{r}=(1+\tau)^{n} . \tag{4}
\end{equation*}
$$

Proof. By definition, we have $\operatorname{cv}\left(N_{n}, r\right)=\binom{n}{r}$ for any integer r with $0 \leqslant r \leqslant n$. Thus the result is obtained by (1).

Lemma 2.3. For a graph G, if there is a loop at each vertex of G, then

$$
\begin{equation*}
\Psi(G, \tau)=\tau^{\nu(G)} . \tag{5}
\end{equation*}
$$

Proof. By definition, we have $\operatorname{cv}(G, r)=0$ when $r<v(G)$ and $\operatorname{cv}(G, v(G))=1$. Thus the result is obtained by (1).

We now give a reduction method for computing $\Psi(G, \tau)$ for general graphs.
For $S \subseteq V(G)$, let $G-S$ denote the graph obtained from G by deleting all vertices in S and all edges incident with any vertices in S. For simplicity, for $x \in$ $V(G)$, we let $G-x$ denote the graph $G-\{x\}$ and let $N_{G}(x)=\{y \in V(G) \mid y \neq$ $x, x y \in E(G)\}$.

Theorem 2.1. Let G be a graph and $L=\{x \in V(G) \mid x x \in E(G)\}$. Then

$$
\begin{equation*}
\Psi(G, \tau)=\tau^{|L|} \Psi(G-L, \tau) \tag{6}
\end{equation*}
$$

Proof. Observe that for any $S \subset V(G), S$ is an r-vertex cover of G iff $L \subseteq S$ and $S-L$ is an $(r-|L|)$-vertex cover of $G-L$. Thus

$$
\operatorname{cv}(G, r)=\operatorname{cv}(G-L, r-|L|)
$$

for $r=1,2, \ldots, v(G)$. Hence the result follows.
Theorem 2.2. Let G be a graph with no loops and $v(G) \geqslant 2$. Let $x \in V(G)$ and $d=\left|N_{G}(x)\right|$. Then

$$
\begin{equation*}
\Psi(G, \tau)=\tau \Psi(G-x, \tau)+\tau^{d} \Psi\left(G-x-N_{G}(x), \tau\right) \tag{7}
\end{equation*}
$$

Proof. We first show that

$$
\begin{equation*}
\operatorname{cv}(G, r)=\operatorname{cv}(G-x, r-1)+\operatorname{cv}\left(G-x-N_{G}(x), r-d\right) . \tag{8}
\end{equation*}
$$

Let S be an r-vertex cover of G. There are two cases: $x \in S$ or $x \notin S$.
We observe that S is an r-vertex cover with $x \in S$ iff $x \in S$ and $S-\{x\}$ is an ($r-1$)-vertex cover of $G-x$. Thus the number of such r-vertex covers S is $\operatorname{cv}(G-x, r-1)$.

If $x \notin S$, then by definition, $N_{G}(x) \subseteq S$ and $S-N_{G}(x)$ is an $(r-d)$-vertex cover of $G-x-N_{G}(x)$. On the other hand, for any $(r-d)$-vertex cover S^{\prime} of $G-x-N_{G}(x)$, $S^{\prime} \cup N_{G}(x)$ is an r-vertex cover of G. Hence the number of r-vertex covers S with $x \notin S$ is $\operatorname{cv}\left(G-x-N_{G}(x), r-d\right)$. Thus (8) holds. Hence

$$
\begin{aligned}
\Psi(G, \tau) & =\sum_{r=0}^{v(G)} \operatorname{cv}(G, r) \tau^{r} \\
& =\sum_{r=0}^{v(G)}\left(\operatorname{cv}(G-x, r-1)+\operatorname{cv}\left(G-x-N_{G}(x), r-d\right)\right) \tau^{r}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{r=1}^{v(G)} \operatorname{cv}(G-x, r-1) \tau^{r}+\sum_{r=d}^{v(G)} \operatorname{cv}\left(G-x-N_{G}(x), r-d\right) \tau^{r} \\
& =\tau \Psi(G-x, \tau)+\tau^{d} \Psi\left(G-x-N_{G}(x), \tau\right) .
\end{aligned}
$$

Theorems 2.1 and 2.2 together with Lemmas 2.1-2.3 give a reduction method to calculate $\Psi(G, \tau)$. Our next theorem shows that $\Psi(G, \tau)$ is multiplicative on a disjoint union of graphs. In this theorem $G_{1} \cup G_{2}$ denotes the graph G with two disjoint subgraphs G_{1} and G_{2} such that $V(G)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and $E(G)=E\left(G_{1}\right) \cup E\left(G_{2}\right)$.

Theorem 2.3. Let $G=G_{1} \cup G_{2}$ for two graphs G_{1} and G_{2}. Then $\Psi(G, \tau)=$ $\Psi\left(G_{1}, \tau\right) \Psi\left(G_{2}, \tau\right)$.

Proof. We proceed by induction on $v\left(G_{1}\right)$. If G_{1} or G_{2} is null, the result follows from Lemma 2.1. Suppose $v\left(G_{1}\right) \geqslant 1$ and $v\left(G_{2}\right) \geqslant 1$. If G contains a loop, the result follows from Theorem 2.1. Suppose therefore that G has no loop. If $G_{1}=N_{1}$ then, by Theorem 2.2, we have

$$
\begin{aligned}
\Psi(G, \tau) & =\tau \Psi\left(G_{2}, \tau\right)+\Psi\left(G_{2}, \tau\right) \\
& =(\tau+1) \Psi\left(G_{2}, \tau\right)=\Psi\left(G_{1}, \tau\right) \Psi\left(G_{2}, \tau\right) .
\end{aligned}
$$

Otherwise we choose $x \in V\left(G_{1}\right)$ and let $d=\left|N_{G_{1}}(x)\right|$. Then

$$
\begin{aligned}
\Psi(G, \tau) & =\tau \Psi\left(G_{1}-x, \tau\right) \Psi\left(G_{2}, \tau\right)+\tau^{d} \Psi\left(G_{1}-x-N_{G_{1}}(x), \tau\right) \Psi\left(G_{2}, \tau\right) \\
& =\left(\tau \Psi\left(G_{1}-x, \tau\right)+\tau^{d} \Psi\left(G_{1}-x-N_{G_{1}}(x), \tau\right)\right) \Psi\left(G_{2}, \tau\right) \\
& =\Psi\left(G_{1}, \tau\right) \Psi\left(G_{2}, \tau\right) .
\end{aligned}
$$

In the following, we shall determine $\Psi(G, \tau)$ for some special graphs G.
Theorem 2.4. Let G be a graph with no loops and $v(G) \geqslant 2$. For $x \in V(G)$, if $N_{G}(x)=$ $V(G)-\{x\}$, then

$$
\Psi(G, \tau)=\tau \Psi(G-x, \tau)+\tau^{\imath(G)-1} .
$$

Proof. It follows from Theorem 2.2 and Lemma 2.1.
Lemma 2.4. For the path graph P_{n} with n vertices, where $n \geqslant 1$, we have

$$
\Psi\left(P_{n}, \tau\right)=\sum_{i=0}^{n}\binom{i+1}{n-i} \tau^{i}=\sum_{i=\lceil(n-1) / 2\rceil}^{n}\binom{i+1}{n-i} \tau^{i} .
$$

Proof. The result holds for $n \leqslant 2$, since $\Psi\left(P_{1}, \tau\right)=1+\tau$ and $\Psi\left(P_{2}, \tau\right)=2 \tau+\tau^{2}$. Suppose that the result holds for $n<k$, where $k \geqslant 3$. Now let $n=k$. By Theorem 2.2 and by
induction on n, we have

$$
\begin{aligned}
\Psi\left(P_{n}, \tau\right) & =\tau \Psi\left(P_{n-1}, \tau\right)+\tau \Psi\left(P_{n-2}, \tau\right) \\
& =\tau \sum_{i=0}^{n-1}\binom{i+1}{n-1-i} \tau^{i}+\tau \sum_{i=0}^{n-2}\binom{i+1}{n-2-i} \tau^{i} \\
& =\tau \sum_{i=0}^{n-1}\left(\binom{i+1}{n-1-i}+\binom{i+1}{n-2-i}\right) \tau^{i} \\
& =\tau \sum_{i=0}^{n-1}\binom{i+2}{n-1-i} \tau^{i} \\
& =\sum_{i=1}^{n}\binom{i+1}{n-i} \tau^{i} \\
& =\sum_{i=0}^{n}\binom{i+1}{n-i} \tau^{i},
\end{aligned}
$$

where the last equality holds since $\binom{i+1}{n-i}=0$ when $n \geqslant 2$ and $i=0$.
Lemma 2.5. For the cycle graph C_{n}, where $n \geqslant 3$, we have

$$
\Psi\left(C_{n}, \tau\right)=\sum_{i=1}^{n} \frac{n}{i}\binom{i}{n-i} \tau^{i}=\sum_{i=\lceil n / 2\rceil}^{n} \frac{n}{i}\binom{i}{n-i} \tau^{i} .
$$

Proof. The result holds for $n=3$, since $\Psi\left(C_{3}, \tau\right)=\tau^{3}+3 \tau$. By Theorem 2.2, we have

$$
\Psi\left(C_{n}, \tau\right)=\tau \Psi\left(P_{n-1}, \tau\right)+\tau^{2} \Psi\left(P_{n-3}, \tau\right)
$$

for $n \geqslant 4$. Then the result follows by using Lemma 2.4.

Lemma 2.6. For the wheel graph W_{n} of n vertices, where $n \geqslant 4$, we have

$$
\Psi\left(W_{n}, \tau\right)=\tau^{n-1}+\sum_{i=\lceil(n+1) / 2\rceil}^{n} \frac{n-1}{i-1}\binom{i-1}{n-i} \tau^{i}
$$

Proof. By Theorem 2.4,

$$
\Psi\left(W_{n}, \tau\right)=\tau \Psi\left(C_{n-1}, \tau\right)+\tau^{n-1}
$$

and the result follows from Lemma 2.5.

Lemma 2.7. For the complete bipartite graph $K_{p, q}$, where $p \geqslant 1$ and $q \geqslant 1$,

$$
\Psi\left(K_{p, q}, \tau\right)=\tau^{p}(1+\tau)^{q}+\tau^{q}(1+\tau)^{p}-\tau^{p+q} .
$$

Proof. First consider the case when $p=1$. By Theorem 2.2,

$$
\Psi\left(K_{1, q}, \tau\right)=\tau \Psi\left(N_{q}, \tau\right)+\tau^{q}=\tau(1+\tau)^{q}+\tau^{q} .
$$

Hence the lemma holds for $p=1$. By Theorem 2.2 we have

$$
\Psi\left(K_{p, q}, \tau\right)=\tau \Psi\left(K_{p-1, q}, \tau\right)+\tau^{q} \Psi\left(N_{p-1}, \tau\right) .
$$

Then the result follows by induction and Lemma 2.2.
We recursively define the balanced tree B_{r} with a root vertex for $r \geqslant 0$. When $r=0, B_{r}$ is the graph with one vertex, which is the root vertex. When $r \geqslant 1$, let B_{r} be the tree obtained from two disjoint copies of B_{r-1} by adding a new vertex x_{r} and two new edges joining x_{r} to the root vertices of the two copies of B_{r-1}. The root vertex of B_{r} is x_{r}. The following result is obtained by Theorem 2.2.

Lemma 2.8. $\Psi\left(B_{0}, \tau\right)=1+\tau, \Psi\left(B_{1}, \tau\right)=\tau+3 \tau^{2}+\tau^{3}$ and for $r \geqslant 2$,

$$
\Psi\left(B_{r}, \tau\right)=\tau \Psi^{2}\left(B_{r-1}, \tau\right)+\tau^{2} \Psi^{4}\left(B_{r-2}, \tau\right) .
$$

3. Properties of vertex-cover polynomials

In this section, we shall consider only simple graphs. Let \bar{G} denote the complement of a simple graph G, and let $k_{r}(G)$ be the number of subgraphs in G isomorphic to the complete graph K_{r} for any non-negative integer r. We always assume that $k_{0}(G)=1$. By definition, we have $\operatorname{cv}(G, r)=k_{n-r}(\bar{G})$ for all r with $0 \leqslant r \leqslant n$, where $n=v(G)$. Thus

Lemma 3.1. Let G be a simple graph of order n. Then

$$
\begin{equation*}
\Psi(G, \tau)=\sum_{r=0}^{n} k_{n-r}(\bar{G}) \tau^{r} \tag{9}
\end{equation*}
$$

An interesting problem is to decide whether two given graphs G and H have the same vertex-cover polynomial. By (9), we observe that $\Psi(G, \tau)=\Psi(H, \tau)$ iff $v(G)=v(H)$ and $k_{i}(\bar{G})=k_{i}(\bar{H})$ for $i=0,1, \ldots, v(G)$. A result is immediately obtained.

Lemma 3.2. For two graphs G and H, if \bar{G} is K_{3}-free, then $\Psi(G, \tau)=\Psi(H, \tau)$ iff $v(G)=v(H), e(G)=e(H)$ and \bar{H} is also K_{3}-free.

Another problem is to study whether a given polynomial can be the vertex-cover polynomial of some graph. A necessary condition is obtained from (9).

Lemma 3.3. For a simple graph G of order n, we have

$$
\begin{equation*}
\tau^{n}+n \tau^{n-1}+\left(\binom{n}{2}-e(G)\right) \tau^{n-2} \leqslant \Psi(G, \tau) \leqslant(1+\tau)^{n} \tag{10}
\end{equation*}
$$

for $\tau \geqslant 0$. Moreover, $\Psi(G, \tau)=\tau^{n}+n \tau^{n-1}+\left(\binom{n}{2}-e(G)\right) \tau^{n-2}$ iff \bar{G} is K_{3}-free, and $\Psi(G, \tau)=(1+\tau)^{n}$ iff G is empty.

From Lemma 3.3, we observe that the polynomial $\Psi(G, \tau)$ has no positive real roots. It is also an interesting problem to study the roots of $\Psi(G, \tau)$.

4. Application in biological systematics

We have defined $F(G, m)$ in the first section. The graph function $F(G, m)$ is used in biological systematics to determine the order, size and dimension of a Buneman graph. To derive the relation between $F(G, m)$ and $\operatorname{cv}(G, r)$, we need the following two results.

Lemma 4.1. Let G be any graph and m any nonnegative integer. For any $f \in \mathscr{F}(G, m)$, we have

$$
V^{\prime}=\{f(1), f(2), \ldots, f(m)\} \in \mathscr{C} \mathscr{V}(G, r),
$$

where $r=\left|V^{\prime}\right|$.
Proof. For every $u v \in E(G)$, we have $f^{-1}(u) \cup f^{-1}(v) \neq \emptyset$ and thus $V^{\prime} \cap\{u, v\} \neq \emptyset$. By the definition of $\mathscr{C} \mathscr{V}(G, r), V^{\prime} \in \mathscr{C} \mathscr{V}(G, r)$.

In the following, $S(m, r)$ denotes a Stirling number of the second kind.
Lemma 4.2. Let G be any graph and m any nonnegative integer. For any $V^{\prime} \in$ $\mathscr{C} \mathscr{V}(G, r)$, where $r \geqslant 0$, there are exactly $r!S(m, r)$ mappings $f \in \mathscr{F}(G, m)$ such that

$$
\{f(1), f(2), \ldots, f(m)\}=V^{\prime}
$$

Proof. There are exactly $r!S(m, r)$ surjections

$$
f:\{1,2, \ldots, m\} \rightarrow V^{\prime} .
$$

Since V^{\prime} is a vertex cover of G, we have $f \in \mathscr{F}(G, m)$ for every such f.
Theorem 4.1. For any graph G and $m \geqslant 0$, we have

$$
\begin{equation*}
F(G, m)=\sum_{r=0}^{v(G)} \operatorname{cv}(G, r) r!S(m, r) . \tag{11}
\end{equation*}
$$

Proof. The result follows from Lemmas 4.1 and 4.2.
By this result, we can get another relation between $F(G, m)$ and $\Psi(G, \tau)$.
Theorem 4.2. For any graph G, we have

$$
\begin{equation*}
\Psi\left(G, \mathrm{e}^{\tau}-1\right)=\sum_{m=0}^{\infty} \frac{F(G, m)}{m!} \tau^{m} . \tag{12}
\end{equation*}
$$

In fact, Theorem 4.2 is a special case of the following result.
Theorem 4.3. Let $P(x)=\sum_{r=0}^{k} a_{r} x^{r}$ be any polynomial. If $b_{n}=\sum_{r=0}^{k} a_{r} r!S(n, r)$ for all $n \geqslant 0$, then

$$
\begin{equation*}
P\left(\mathrm{e}^{y}-1\right)=\sum_{n=0}^{\infty} \frac{b_{n} y^{n}}{n!} . \tag{13}
\end{equation*}
$$

Proof. Observe that

$$
\sum_{n=0}^{\infty} \frac{b_{n} y^{n}}{n!}=\sum_{n=0}^{\infty} \sum_{r=0}^{k} a_{r} r!S(n, r) \frac{y^{n}}{n!}=\sum_{r=0}^{k} a_{r} \sum_{n=0}^{\infty} \frac{r!S(n, r) y^{n}}{n!}
$$

By (3.6.2) in [5],

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{r!S(n, r) y^{n}}{n!}=\left(\mathrm{e}^{y}-1\right)^{r} . \tag{14}
\end{equation*}
$$

The result thus follows.

5. For further reading

The following references may also be of interest to the reader: [1,3].

References

[1] F.R.K. Chung, R.L. Graham, On the cover polynomial of a digraph, J. Combin. Theory Ser. B 65 (1995) 273-290.
[2] A. Dress, M.D. Hendy, K. Huber, V. Moulton, Enumerating the vertices of the Buneman graph, Ann. Combin. 1 (1998) 329-337.
[3] M. Dworkin, Factorisation of cover polynomial, J. Combin. Theory Ser. B 71 (1997) 17-53.
[4] W.T. Tutte, Graph Theory, Addison-Wesley, Reading, MA, 1984.
[5] H.S. Wilf, Generating functionology, Academic Press, New York, 1994.

[^0]: * Corresponding author.

 E-mail address: c.little@massey.ac.nz (C.H.C. Little).

