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Abstract

In this paper we de1ne the vertex-cover polynomial �(G; �) for a graph G. The coe2cient
of �r in this polynomial is the number of vertex covers V ′ of G with |V ′|= r. We develop a
method to calculate �(G; �). Motivated by a problem in biological systematics, we also consider
the mappings f from {1; 2; : : : ; m} into the vertex set V (G) of a graph G, subject to f−1(x) ∪
f−1(y) �= ∅ for every edge xy in G. Let F(G;m) be the number of such mappings f. We show
that F(G;m) can be determined from �(G; �). c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The graphs considered in this paper are undirected and contain no multi-edges, but
may have loops. For a graph G, let V (G); E(G); v(G) and e(G) be the vertex set, edge
set, order and size of G, respectively. The null graph is the graph G with v(G)= 0.
The reader is referred to [4] for any terminology not de1ned here.
For a graph G; V ′ ⊆ V (G) is called an r-vertex cover in G if |V ′|= r and

V ′∩{x; y} �= ∅ for all xy∈E(G). Let CV(G; r) be the set of r-vertex covers in G, and
cv(G; r)= |CV(G; r)|. Observe that cv(G; r)= 0 if either r ¡ 0 or r ¿v(G).
We de1ne the following generating function:

�(G; �)=
v(G)∑
r=0

cv(G; r)�r: (1)

For example, let Kn be the complete graph on n¿ 1 vertices. Then �(Kn; �)=
�n + n�n−1 since cv(Kn; n)= 1, cv(Kn; n− 1)= n and cv(Kn; r)= 0 if 06 r ¡n− 1.

It is natural to call �(G; �) the vertex-cover polynomial of G. In this paper, we
shall develop a method to calculate �(G; �). By de1nition, cv(G; r) can be obtained
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if �(G; �) is determined. Recall that the vertex-cover number of G is the minimum
number r such that G has an r-vertex cover. Thus, the vertex-cover number can be
determined from �(G; �).
Now we de1ne another graph function F(G;m) for any graph G and nonnegative

integer m. The de1nition of F(G;m) is motivated by a problem in biology [2], where it
was necessary to calculate the number of mappings f, from a given 1nite set to the ver-
tex set V (G) of a graph G, such that

⋃
v∈V ′ f−1(v) �= ∅ for each member V ′ of a given

set S of subsets of V (G). In this paper, we consider the case S= {{x; y} | xy∈E(G)}.
For a graph G and an integer m¿ 0, de1ne F(G;m) to be the set of mappings

f : {1; 2; : : : ; m} → V (G); (2)

subject to f−1(x)∪f−1(y) �= ∅ for every xy∈E(G). Note that for v(G)= 0 or m=0,
we have

F(G;m)=

{
{∅} if e(G)= 0 and m=0;

∅ otherwise:
(3)

Let F(G;m)= |F(G;m)|. By the de1nition of F(G;m), we observe that F(G;m) is a
graph-function.
We shall show that F(G;m) can be expressed in terms of cv(G; r) for r¿ 0. Thus

F(G;m) can be obtained from �(G; �).

2. Vertex-cover polynomials

In this section, we shall develop a method to calculate �(G; �). Observe that �(G; �)
is independent of the multiplicity of any edge in G. Hence we assume that G contains
no multi-edges.
We 1rst consider some special types of graphs. By de1nition,

Lemma 2.1. For the null graph G; �(G; �)= 1.

For integer n¿ 1, let Nn be the graph with n vertices and no edges.

Lemma 2.2. For any integer n¿ 1; we have

�(Nn; �)=
n∑
r=0

(
n
r

)
�r =(1 + �)n: (4)

Proof. By de1nition, we have cv(Nn; r)= ( nr ) for any integer r with 06 r6 n. Thus
the result is obtained by (1).

Lemma 2.3. For a graph G; if there is a loop at each vertex of G; then

�(G; �)= �v(G): (5)
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Proof. By de1nition, we have cv(G; r)= 0 when r ¡v(G) and cv(G; v(G))= 1. Thus
the result is obtained by (1).

We now give a reduction method for computing �(G; �) for general graphs.
For S ⊆ V (G), let G − S denote the graph obtained from G by deleting all

vertices in S and all edges incident with any vertices in S. For simplicity, for x∈
V (G), we let G − x denote the graph G − {x} and let NG(x)= {y∈V (G) |y �=
x; xy∈E(G)}.

Theorem 2.1. Let G be a graph and L= {x∈V (G) | xx∈E(G)}. Then

�(G; �)= �|L|�(G − L; �): (6)

Proof. Observe that for any S ⊂ V (G), S is an r-vertex cover of G iI L ⊆ S and
S − L is an (r − |L|)-vertex cover of G − L. Thus

cv(G; r)= cv(G − L; r − |L|)

for r=1; 2; : : : ; v(G). Hence the result follows.

Theorem 2.2. Let G be a graph with no loops and v(G)¿ 2. Let x∈V (G) and
d= |NG(x)|. Then

�(G; �)= ��(G − x; �) + �d�(G − x − NG(x); �): (7)

Proof. We 1rst show that

cv(G; r)= cv(G − x; r − 1) + cv(G − x − NG(x); r − d): (8)

Let S be an r-vertex cover of G. There are two cases: x∈ S or x �∈ S.
We observe that S is an r-vertex cover with x∈ S iI x∈ S and S − {x} is an

(r − 1)-vertex cover of G − x. Thus the number of such r-vertex covers S is
cv(G − x; r − 1).
If x �∈ S, then by de1nition, NG(x) ⊆ S and S −NG(x) is an (r− d)-vertex cover of

G − x− NG(x). On the other hand, for any (r − d)-vertex cover S ′ of G − x− NG(x),
S ′ ∪ NG(x) is an r-vertex cover of G. Hence the number of r-vertex covers S with
x �∈ S is cv(G − x − NG(x); r − d). Thus (8) holds. Hence

�(G; �) =
v(G)∑
r=0

cv(G; r)�r

=
v(G)∑
r=0

(cv(G − x; r − 1) + cv(G − x − NG(x); r − d))�r
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=
v(G)∑
r=1

cv(G − x; r − 1)�r +
v(G)∑
r=d

cv(G − x − NG(x); r − d)�r

= ��(G − x; �) + �d�(G − x − NG(x); �):

Theorems 2.1 and 2.2 together with Lemmas 2.1–2.3 give a reduction method to
calculate �(G; �). Our next theorem shows that �(G; �) is multiplicative on a disjoint
union of graphs. In this theorem G1 ∪ G2 denotes the graph G with two disjoint
subgraphs G1 and G2 such that V (G)=V (G1) ∪ V (G2) and E(G)=E(G1) ∪ E(G2).

Theorem 2.3. Let G=G1 ∪ G2 for two graphs G1 and G2. Then �(G; �)=
�(G1; �)�(G2; �).

Proof. We proceed by induction on v(G1). If G1 or G2 is null, the result follows
from Lemma 2.1. Suppose v(G1)¿ 1 and v(G2)¿ 1. If G contains a loop, the result
follows from Theorem 2.1. Suppose therefore that G has no loop. If G1 =N1 then, by
Theorem 2.2, we have

�(G; �) = ��(G2; �) +�(G2; �)

= (�+ 1)�(G2; �)=�(G1; �)�(G2; �):

Otherwise we choose x∈V (G1) and let d= |NG1 (x)|. Then
�(G; �) = ��(G1 − x; �)�(G2; �) + �d�(G1 − x − NG1 (x); �)�(G2; �)

= (��(G1 − x; �) + �d�(G1 − x − NG1 (x); �))�(G2; �)

=�(G1; �)�(G2; �):

In the following, we shall determine �(G; �) for some special graphs G.

Theorem 2.4. Let G be a graph with no loops and v(G)¿ 2. For x∈V (G); if NG(x)=
V (G)− {x}; then

�(G; �)= ��(G − x; �) + �v(G)−1:

Proof. It follows from Theorem 2.2 and Lemma 2.1.

Lemma 2.4. For the path graph Pn with n vertices; where n¿ 1; we have

�(Pn; �)=
n∑
i=0

(
i + 1
n− i

)
�i =

n∑
i=�(n−1)=2�

(
i + 1
n− i

)
�i:

Proof. The result holds for n6 2, since �(P1; �)= 1+� and �(P2; �)= 2�+�2. Suppose
that the result holds for n¡k, where k¿ 3. Now let n= k. By Theorem 2.2 and by
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induction on n, we have

�(Pn; �) = ��(Pn−1; �) + ��(Pn−2; �)

= �
n−1∑
i=0

(
i + 1

n− 1− i

)
�i + �

n−2∑
i=0

(
i + 1

n− 2− i

)
�i

= �
n−1∑
i=0

((
i + 1

n− 1− i

)
+
(

i + 1
n− 2− i

))
�i

= �
n−1∑
i=0

(
i + 2

n− 1− i

)
�i

=
n∑
i=1

(
i + 1
n− i

)
�i

=
n∑
i=0

(
i + 1
n− i

)
�i;

where the last equality holds since ( i+1
n−i )= 0 when n¿ 2 and i=0.

Lemma 2.5. For the cycle graph Cn; where n¿ 3; we have

�(Cn; �)=
n∑
i=1

n
i

(
i

n− i

)
�i =

n∑
i=�n=2�

n
i

(
i

n− i

)
�i:

Proof. The result holds for n=3, since �(C3; �)= �3 + 3�. By Theorem 2.2, we have

�(Cn; �)= ��(Pn−1; �) + �2�(Pn−3; �)

for n¿ 4. Then the result follows by using Lemma 2.4.

Lemma 2.6. For the wheel graph Wn of n vertices; where n¿ 4; we have

�(Wn; �)= �n−1 +
n∑

i=�(n+1)=2�

n− 1
i − 1

(
i − 1
n− i

)
�i:

Proof. By Theorem 2.4,

�(Wn; �)= ��(Cn−1; �) + �n−1

and the result follows from Lemma 2.5.

Lemma 2.7. For the complete bipartite graph Kp;q; where p¿ 1 and q¿ 1;

�(Kp;q; �)= �p(1 + �)q + �q(1 + �)p − �p+q:
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Proof. First consider the case when p=1. By Theorem 2.2,

�(K1; q; �)= ��(Nq; �) + �q= �(1 + �)q + �q:

Hence the lemma holds for p=1. By Theorem 2.2 we have

�(Kp;q; �)= ��(Kp−1; q; �) + �q�(Np−1; �):

Then the result follows by induction and Lemma 2.2.

We recursively de1ne the balanced tree Br with a root vertex for r¿ 0. When
r=0; Br is the graph with one vertex, which is the root vertex. When r¿ 1, let Br be
the tree obtained from two disjoint copies of Br−1 by adding a new vertex xr and two
new edges joining xr to the root vertices of the two copies of Br−1. The root vertex
of Br is xr . The following result is obtained by Theorem 2.2.

Lemma 2.8. �(B0; �)= 1 + �; �(B1; �)= �+ 3�2 + �3 and for r¿ 2,

�(Br; �)= ��2(Br−1; �) + �2�4(Br−2; �):

3. Properties of vertex-cover polynomials

In this section, we shall consider only simple graphs. Let KG denote the complement
of a simple graph G, and let kr(G) be the number of subgraphs in G isomorphic to the
complete graph Kr for any non-negative integer r. We always assume that k0(G)= 1.
By de1nition, we have cv(G; r)= kn−r( KG) for all r with 06 r6 n, where n= v(G).
Thus

Lemma 3.1. Let G be a simple graph of order n. Then

�(G; �)=
n∑
r=0

kn−r( KG)�r: (9)

An interesting problem is to decide whether two given graphs G and H have the same
vertex-cover polynomial. By (9), we observe that �(G; �)=�(H; �) iI v(G)= v(H)
and ki( KG)= ki( KH) for i=0; 1; : : : ; v(G). A result is immediately obtained.

Lemma 3.2. For two graphs G and H; if KG is K3-free; then �(G; �)=�(H; �) i3
v(G)= v(H), e(G)= e(H) and KH is also K3-free.

Another problem is to study whether a given polynomial can be the vertex-cover
polynomial of some graph. A necessary condition is obtained from (9).
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Lemma 3.3. For a simple graph G of order n; we have

�n + n�n−1 +
((

n
2

)
− e(G)

)
�n−26�(G; �)6 (1 + �)n (10)

for �¿ 0. Moreover; �(G; �)= �n + n�n−1 + (( n2 ) − e(G))�n−2 i3 KG is K3-free; and
�(G; �)= (1 + �)n i3 G is empty.

From Lemma 3.3, we observe that the polynomial �(G; �) has no positive real roots.
It is also an interesting problem to study the roots of �(G; �).

4. Application in biological systematics

We have de1ned F(G;m) in the 1rst section. The graph function F(G;m) is used
in biological systematics to determine the order, size and dimension of a Buneman
graph. To derive the relation between F(G;m) and cv(G; r), we need the following
two results.

Lemma 4.1. LetG be any graph andm any nonnegative integer. For any f∈F(G;m),
we have

V ′ = {f(1); f(2); : : : ; f(m)}∈CV(G; r);

where r= |V ′|.

Proof. For every uv∈E(G), we have f−1(u) ∪ f−1(v) �= ∅ and thus V ′ ∩ {u; v} �= ∅.
By the de1nition of CV(G; r), V ′ ∈CV(G; r).

In the following, S(m; r) denotes a Stirling number of the second kind.

Lemma 4.2. Let G be any graph and m any nonnegative integer. For any V ′ ∈
CV(G; r), where r¿ 0, there are exactly r!S(m; r) mappings f∈F(G;m) such
that

{f(1); f(2); : : : ; f(m)}=V ′:

Proof. There are exactly r!S(m; r) surjections

f : {1; 2; : : : ; m} → V ′:

Since V ′ is a vertex cover of G, we have f∈F(G;m) for every such f.

Theorem 4.1. For any graph G and m¿ 0; we have

F(G;m)=
v(G)∑
r=0

cv(G; r)r!S(m; r): (11)
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Proof. The result follows from Lemmas 4.1 and 4.2.

By this result, we can get another relation between F(G;m) and �(G; �).

Theorem 4.2. For any graph G; we have

�(G; e� − 1)=
∞∑
m=0

F(G;m)
m!

�m: (12)

In fact, Theorem 4.2 is a special case of the following result.

Theorem 4.3. Let P(x)=
∑k

r=0 arx
r be any polynomial. If bn=

∑k
r=0 arr!S(n; r) for

all n¿ 0; then

P(ey − 1)=
∞∑
n=0

bnyn

n!
: (13)

Proof. Observe that
∞∑
n=0

bnyn

n!
=

∞∑
n=0

k∑
r=0

arr!S(n; r)
yn

n!
=

k∑
r=0

ar
∞∑
n=0

r!S(n; r)yn

n!
:

By (3:6:2) in [5],
∞∑
n=0

r!S(n; r)yn

n!
= (ey − 1)r : (14)

The result thus follows.

5. For further reading

The following references may also be of interest to the reader: [1,3].
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