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Abstract

This note presents two results on real zeros of chromatic polyno-
mials. The first result states that if G is a graph containing a q-tree
as a spanning subgraph, then the chromatic polynomial P (G, λ) of G
has no non-integer zeros in the interval (0, q). Sokal conjectured that
for any graph G and any real λ > ∆(G), P (G, λ) > 0. Our second
result confirms that it is true if ∆(G) ≥ bn/3c − 1, where n is the
order of G.
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1 Introduction

For any graph G, let V (G), E(G), v(G), e(G), ∆(G) and P (G, λ) denote, re-

spectively, its vertex set, edge set, order, size, maximum degree and chromatic

polynomial.

Given a positive integer q, the class of q-trees is defined recursively as

follows. Any complete graph Kq is a q-tree, and any q-tree of order n + 1 is

a graph obtained from a q-tree G of order n, where n ≥ q, by adding a new

vertex and joining it to each vertex of a Kq in G. Thus a graph is a 1-tree if

and only if it is a tree. Let Sq denote the family of graphs containing q-trees as

spanning subgraphs. Thus S1 is the family of connected graphs. It is known

(see [3], for instance) that if G ∈ S1, n = v(G) ≥ 2, then (−1)n−1P (G, λ) > 0

for all real λ in the interval (0, 1). We extend this observation to the following

result.

Theorem 1 Let G ∈ Sq with n = v(G) ≥ q ≥ 1. Then

P (G, λ) 6= 0,

for all non-integer real λ in (0, q).

Sokal [4] showed that for any graph G, all (real or complex) zeros of

P (G, λ) lie in the disc |z| < 7.963907∆(G). Thus there exists a constant c

with 1 ≤ c ≤ 7.963907 such that P (G, λ) > 0 for all real λ > c∆(G). He also

conjectured that if G is any graph and λ > ∆(G), then P (G, λ) > 0.

As the second result of this note, we show that Sokal’s conjecture is true

if ∆(G) ≥ 1
3
v(G)− 1.

Theorem 2 If G is a graph of order n and λ > max{∆(G), bn/3c − 1},
then P (G, λ) > 0.
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2 The first result

Let G be a graph. Given x, y ∈ V (G) with xy ∈ E(G), let G − xy denote

the graph obtained from G by deleting the edge xy, and G · xy be the graph

obtained from G by identifying x and y, and replacing multi-edges (if they

arise) by single ones. The Fundamental Reduction Theorem (see [3], for

instance) states that

P (G, λ) = P (G− xy, λ)− P (G · xy, λ) (1)

for every edge xy in E(G).

For any vertex x in a graph G, let N(x) denote the set of its neighbours,

and d(x) its degree. A vertex x in G is said to be simplicial if either d(x) = 0

or N(x) forms a clique in G. It is known that every q-tree, except Kq and

Kq+1, contains at least two non-adjacent simplicial vertices. The following

result is useful.

Lemma 1 If u and v are two non-adjacent vertices of a q-tree G, then

G · uv ∈ Sq.

Proof. The result is trivial if v(G) = q, q + 1, q + 2. Let G be a q-tree

of order n, where n ≥ q + 3, and let u, v be two non-adjacent vertices of

G. If u or v, say u, is a simplicial vertex of G, then G − u is a q-tree and

also a spanning subgraph of G · uv. Thus G · uv ∈ Sq. Assume that both

u and v are not simplicial vertices of G. Let w be a simplicial vertex of G.

Observe that G− w is a q-tree of order n− 1. By the induction hypothesis,

(G · uv) − w = (G − w) · uv ∈ Sq. This then implies that G · uv ∈ Sq, as

required. 2
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Proof of Theorem 1. Since a q-tree always contains a (q−1)-tree as a spanning

subgraph, to prove Theorem 1, it suffices to show that

(−1)n−qP (G, λ) > 0 (2)

for all real λ in (q − 1, q).

If n = q, then G = Kq, so that P (G, λ) = λ(λ − 1) · · · (λ − q + 1), and

the result holds trivially.

Assume that n > q. Suppose that the result fails. Then there exists a

graph G ∈ Sq of minimum size such that

(−1)n−qP (G, λ) ≤ 0

for some real λ with q − 1 < λ < q.

Observe that G cannot be a q-tree; otherwise,

P (G, λ) = λ(λ− 1) · · · (λ− q + 1)(λ− q)n−q,

and we have

(−1)n−qP (G, λ) > 0

for q − 1 < λ < q.

Let T be a spanning q-tree of G. Since G 6∼= T , there exists uv ∈ E(G)

such that uv /∈ E(T ). Thus, by (1),

P (G, λ) = P (G− uv, λ)− P (G · uv, λ),

and we have

(−1)n−qP (G, λ) = (−1)n−qP (G− uv, λ) + (−1)n−1−qP (G · uv, λ). (3)
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By our choice of G, we have G − uv ∈ Sq. Also, by Lemma 1, T · uv ∈ Sq,

implying that G · uv ∈ Sq. By the minimality of e(G), the result (2) holds

for both G− uv and G · uv. But then by (3), we have

(−1)n−qP (G, λ) > 0

for q − 1 < λ < q, a contradiction. The result thus follows. 2

3 The second main result

For any subset S of V (G), let G · S denote the graph obtained from G by

identifying all vertices in S and replacing all multi-edges by single ones. We

first state the following known result which will be used in the proof that

follows.

Lemma 2 ([1, 2]) Let xy be an edge of a graph G. Then

P (G, λ)− (λ− d(x))P (G− x, λ)

= P (G− xy, λ)− (λ− d(x) + 1)P (G− x, λ)

+
∑

u∈N(x)\{y}
yu/∈E(G)

P (G · {x, y, u}, λ).

2

To prove Theorem 2, we prove the following stronger result.

Theorem 3 Let G be a graph and suppose V (G) is partitioned into A and

B, where |A| = a ≥ 0 and |B| = b ≥ 0. Let ∆A = max{dG(x) : x ∈ A}.
Then for λ > max{∆A, ba/3c + b− 1},

(i) P (G, λ) > 0; and
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(ii) for any x ∈ A,

P (G, λ) ≥ (λ− dG(x))P (G− x, λ),

where the equality holds if and only if x is a simplicial vertex.

Proof. If a = 0, the assertions (i) and (ii) hold vacuously. Assume that

both (i) and (ii) hold when a < k, where k ≥ 1. Now let a = k. By the

induction hypothesis, assertion (i) holds for the graph G − x, where x ∈ A,

i.e., P (G− x, λ) > 0 for

λ > max{∆A, ba/3c + b− 1} ≥ max{∆A\{x}, b(a− 1)/3c + b− 1}.

As λ−d(x) > 0, assertion (ii) implies assertion (i). Hence it suffices to prove

that assertion (ii) holds.

Let x be any vertex in A. If x is a simplicial vertex, then (ii) holds, since

P (G, λ) = (λ− d(x))P (G− x, λ).

Thus (ii) also holds when d(x) ≤ 1.

Assume that (ii) holds when d(x) < s, where s ≥ 2. Now assume that

x is not simplicial and d(x) = s. Let w ∈ N(x). Since the degree of x in

G− xw is s− 1, assertion (ii) holds for G− xw, i.e.,

P (G− xw, λ)− (λ− d(x) + 1)P (G− x, λ) ≥ 0 (4)

for λ > max{∆A, ba/3c + b− 1}.
Then, by Lemma 2 and (4), assertion (ii) holds if N(x)\(N(w)∪{w}) 6= ∅

and

P (G · {x, w, u}, λ) > 0 (5)
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for λ > max{∆A, ba/3c+ b− 1} and for every u ∈ N(x)\(N(w) ∪ {w}). We

shall prove them below.

Since x is not a simplicial vertex, there exist two non-adjacent vertices

in N(x). So if w is selected to be one of such vertices, then N(x)\(N(w) ∪
{w}) 6= ∅.

Let u be any vertex in N(x)\(N(w) ∪ {w}) and let H = G · {x, w, u}.
Suppose v is the resulting vertex in H after contracting x, w and u in G. Let

B′ = (B\{w, u}) ∪ {v} and A′ = A\{x, w, u}. Observe that |A′| < |A| = a

and A′∪B′ is a partition of V (H). By the induction hypothesis, P (H, λ) > 0

for λ > max{∆A′ , b|A′|/3c + |B′| − 1}. So (5) holds if

max{∆A′ , b|A′|/3c + |B′| − 1} ≤ max{∆A, ba/3c + b− 1}. (6)

Notice that ∆A′ ≤ ∆A, |A′| ≤ a − 1 and |B′| ≤ b + 1. But if |B′| = b + 1,

then w, u ∈ A, implying that |A′| = a− 3. So we always have

b|A′|/3c + |B′| − 1 ≤ ba/3c + b− 1.

Thus (6) holds.

Therefore assertion (ii) holds. This completes the proof. 2

By letting B = ∅, Theorem 2 now follows from Theorem 3. We shall end

this paper by giving the following remarks.

Remarks:

(i) Theorem 2 verifies Sokal’s conjecture only for a special case, namely,

the order of G is at most 3∆(G) + 5.

(ii) The method used in the proof of Theorem 3 is unlikely of any use in

proving Sokal’s conjecture due to the fact that new graphs (the H’s)
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created from the recurrence relation in Lemma 2 may have their max-

imum degrees greater than that of the original graph. There might

be some hope to establish Sokal’s conjecture if one could find a recur-

rence relation for chromatic polynomials which does not produce any

new graph with higher maximum degree even after a finite number of

iterations.

(iii) In Sokal’s conjecture, the maximum degree is at least 3. It may be

more realistic to start off the study by considering the extreme case

when ∆(G) = 3.

(iv) The “maxmaxflow” of a graph G, denoted by Λ(G), is defined as

Λ(G) = max
x6=y

λ(x, y),

where

λ(x, y) = maximum number of edge-disjoint paths from x to y

= minimum number of edges separating x from y.

Since λ(x, y) ≤ min{d(x), d(y)}, we have Λ(G) ≤ ∆(G). In his private

communication, Sokal also conjectured that for any graph G and λ >

Λ(G), P (G, λ) > 0.
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