

Discrete Mathematics 245 (2002) 247–253

DISCRETE MATHEMATICS

www.elsevier.com/locate/disc

Note

Non-chordal graphs having integral-root chromatic polynomials II

F.M. Dong^{a,*}, K.L. Teo^a, K.M. Koh^b, M.D. Hendy^a

^aInstitute of Fundamental Sciences (Mathematics), Massey University, Palmerston North, New Zealand

^bDepartment of Mathematics, National University of Singapore, Singapore, Singapore

Received 26 October 1999; revised 20 March 2001; accepted 9 April 2001

Abstract

It is known that the chromatic polynomial of any chordal graph has only integer roots. However, there also exist non-chordal graphs whose chromatic polynomials have only integer roots. Dmitriev asked in 1980 if for any integer $p \ge 4$, there exists a graph with chordless cycles of length p whose chromatic polynomial has only integer roots. This question has been given positive answers by Dong and Koh for p=4 and p=5. In this paper, we construct a family of graphs in which all chordless cycles are of length p for any integer $p \ge 4$. It is shown that the chromatic polynomial of such a graph has only integer roots iff a polynomial of degree p-1 has only integer roots. By this result, this paper extends Dong and Koh's result for p=5 and answer the question affirmatively for p=6 and 7. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Chordal graphs; Chromatic polynomials

In this paper, we consider only simple graphs. Let G be a graph. A cycle (say $v_1v_2...v_rv_1$) in G is called a *chordless cycle* (or *pure cycle*) of G if $r \ge 4$ and no pair of non-consecutive vertices on the cycle forms an edge of G. If G contains no chordless cycles, then G is called a *chordal graph*.

Let \mathscr{C} (resp., $\overline{\mathscr{C}}$) denote the family of chordal (resp., non-chordal) graphs. For any $G \in \mathscr{C}$, there exist non-negative integers d_1, d_2, \dots, d_n such that

$$P(G,\lambda) = \prod_{i=1}^{n} (\lambda - d_i), \tag{1}$$

where *n* is the order of *G* (see [8]). Thus all roots of $P(G, \lambda)$ are non-negative integers if $G \in \mathcal{C}$.

E-mail address: dong_feng_ming@hotmail.com (F.M. Dong).

0012-365X/02\\$- see front matter © 2002 Elsevier Science B.V. All rights reserved. PII: S0012-365X(01)00307-7

^{*} Corresponding author.

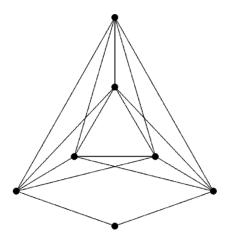


Fig. 1.

A polynomial is called an *integral-root* polynomial if all its roots are integers. Recently, Voloshin and Zhou [10] published a paper which discussed the integral-root chromatic polynomials for some hypergraphs. In this paper, we deal with integral-root chromatic polynomials for graphs. Let $\mathscr I$ denote the family of graphs G such that $P(G,\lambda)$ is an integral-root polynomial. (Since the chromatic polynomial of any graph has no negative real roots (see [8]), $P(G,\lambda)$ contains only non-negative integer roots iff $G \in \mathscr I$.) Thus $\mathscr C \subseteq \mathscr I$. It had been conjectured by Braun et al. [1] and Vaderlind [9] that $\mathscr C = \mathscr I$. This was disproved by Read [6], who discovered the graph in Fig. 1 whose chromatic polynomial is

$$\lambda(\lambda - 1)(\lambda - 2)(\lambda - 3)^{3}(\lambda - 4). \tag{2}$$

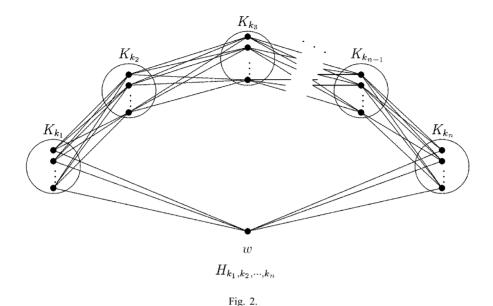
Therefore $\mathscr{C} \subset \mathscr{I}$.

It is known that the graph in Fig. 1 is the graph in $\mathscr{I} \cap \overline{\mathscr{C}}$ with least order (see [2]). It means that any graph with order less than 7 belongs to \mathscr{C} iff it belongs to \mathscr{I} .

Dmitriev [3] constructed a family of graphs in $\mathscr{I} \cap \overline{\mathscr{C}}$. All chordless cycles in the graphs of this family are of order 4. He asked the following:

Problem 1. For any integer $p \ge 5$, does there exist a graph $G \in \mathcal{I} \cap \bar{\mathcal{C}}$ such that G has a chordless cycle of order p?

We now construct a family of graphs. For any positive integers k_i , $i=1,2,\ldots,n$, where $n \ge 2$, let H_{k_1,k_2,\ldots,k_n} denote the graph obtained from the disjoint union of n complete graphs $K_{k_1},K_{k_2},\ldots,K_{k_n}$ and a vertex w by adding edges joining each vertex in K_{k_i} to each vertex in $K_{k_{i+1}}$ for $i=1,2,\ldots,n-1$, and edges joining w to each vertex in K_{k_1} and K_{k_n} , as shown in Fig. 2. Clearly, when $n \ge 3$, $H_{k_1,k_2,\ldots,k_n} \in \mathscr{C}$ and H_{k_1,k_2,\ldots,k_n} contains chordless cycles of order n+1.



Problem 2. For $n \ge 3$, are there positive integers $k_1, k_2, ..., k_n$ such that

$$H_{k_1,k_2,\dots,k_n} \in \mathscr{I}? \tag{3}$$

Read [7] obtained a formula for the chromatic polynomial of a graph he called a 'ring of cliques', which is like the graph in Fig. 2 but with the single vertex w replaced by another complete graph. Thus, the following result for the chromatic polynomial of $H_{k_1,k_2,...,k_n}$ is a special case of Read's result. But we think it is worth to give a short proof of this result here. For a real number λ and a positive integer r, denote

$$(\lambda)_r = \prod_{i=0}^{r-1} (\lambda - i). \tag{4}$$

Lemma 1. For any positive integers $n, k_1, k_2, ..., k_n$, where $n \ge 2$,

$$P(H_{k_1, k_2, \dots, k_n}, \lambda) = \frac{\prod_{i=1}^{n-1} (\lambda)_{k_i + k_{i+1}}}{\lambda \prod_{i=2}^{n-1} (\lambda)_{k_i + 1}} \left(\prod_{i=1}^{n} (\lambda - k_i) - (-1)^n \prod_{i=1}^{n} k_i \right).$$
 (5)

Proof. It is easy to verify the result for n = 2, 3. Now let $n \ge 4$. Consider the graph H' obtained from H_{k_1,k_2,\dots,k_n} by adding edges joining w to all vertices in the clique $K_{k_{n-1}}$ (see Fig. 2). The chromatic polynomial of H' is

$$P(H',\lambda) = \frac{(\lambda)_{k_{n-1}+k_n+1}}{(\lambda)_{k_{n-1}+1}} P(H_{k_1,k_2,\dots,k_{n-1}},\lambda).$$
(6)

Thus, by repeatedly using the Fundamental Reduction Theorem of chromatic polynomials (see [5] and [8]), we have

$$P(H_{k_{1},k_{2},...,k_{n}},\lambda) = \frac{(\lambda)_{k_{n-1}+k_{n}+1}}{(\lambda)_{k_{n-1}+1}} P(H_{k_{1},k_{2},...,k_{n-1}},\lambda) + \frac{k_{n-1}(\lambda)_{k_{n-1}+k_{n}}(\lambda)_{k_{n-2}+k_{n-1}}}{(\lambda)_{k_{n-1}}(\lambda)_{k_{n-2}+1}} P(H_{k_{1},k_{2},...,k_{n-2}},\lambda).$$

$$(7)$$

The result follows by induction from the above recursive expression. \Box

For positive integers n, k_1, k_2, \dots, k_n and real number x, define

$$f(k_1, k_2, \dots, k_n, x) = \prod_{i=1}^{n} (x - k_i) - (-1)^n \prod_{i=1}^{n} k_i.$$
 (8)

Lemma 1 reduces Problem 2 to a much simpler one.

Lemma 2. Let $k_1, k_2, ..., k_n$ be any positive integers. For any permutation t of 1, 2, ..., n, $H_{k_{t(1)}, k_{t(2)}, ..., k_{t(n)}} \in \mathscr{I}$ iff $f(k_1, k_2, ..., k_n, x)$ is an integral-root polynomial of x. \square

For positive integers $k_1, k_2, ..., k_n$, let $\mathcal{H}(k_1, k_2, ..., k_n)$ denote the set of graphs $H_{k_{t(1)}, k_{t(2)}, ..., k_{t(n)}}$ for all permutations t of 1, 2, ..., n. By Lemma 2, we have

Lemma 3. Let $k_1, k_2, ..., k_n$ be any positive integers. If $f(k_1, k_2, ..., k_n, x)$ is an integral-root polynomial of x, then $\mathcal{H}(k_1, k_2, ..., k_n) \subseteq \mathcal{I}$. \square

Problem 2 is thus equivalent to the following.

Problem 3. For $n \ge 3$, are there positive integers $k_1, k_2, ..., k_n$ such that $f(k_1, k_2, ..., k_n, x)$ is an integral-root polynomial?

We shall see that Lemma 3 is very useful. Almost all graphs in $\bar{\mathscr{C}} \cap \mathscr{I}$ that have been found can be verified easily by using Lemma 3. The graph in Fig. 1 is $H_{1,4,1}$. Observe that

$$f(1,1,4,x) = (x-1)^2(x-4) + 4 = x(x-3)^2.$$
(9)

By Lemma 3, we have $\mathcal{H}(1,1,4) \subseteq \mathcal{I}$. Further we observe that

$$f(1,ab,(a+1)(b+1),x) = x(x-1-a-ab)(x-1-b-ab).$$
(10)

Thus by Lemma 3, $\mathcal{H}(1,ab,(a+1)(b+1)) \subseteq \mathcal{I}$ for any positive integers a and b. This result was first found by Dmitriev [3].

Theorem 1 (Dmitriev [3]). If $k_1 = 1, k_2 = (k+1)(k+l+1)$ and $k_3 = (k+2)(k+l+2)$ for any non-negative integers k and l, then $\mathcal{H}(k_1, k_2, k_3) \subseteq \mathcal{I}$. \square

Dmitriev's result was extended by Dong and Koh [4].

Theorem 2 (Dong and Koh [4]). If $k_1 = a_1b_1, k_2 = a_2b_2$ and $k_3 = (a_1 + a_2)(b_1 + b_2)$ for any positive integers a_1, a_2, b_1, b_2 , then $\mathcal{H}(k_1, k_2, k_3) \subseteq \mathcal{I}$.

This result can also be verified by using Lemma 3. Let $k_1 = a_1b_1, k_2 = a_2b_2$ and $k_3 = (a_1 + a_2)(b_1 + b_2)$. Then

$$f(k_1, k_2, k_3, x) = x(x - a_1b_1 - a_2b_2 - a_1b_2)(x - a_1b_1 - a_2b_2 - a_2b_1).$$
(11)

By Lemma 3, $\mathcal{H}(k_1, k_2, k_3) \subseteq \mathcal{I}$.

Dong and Koh [4] also gave a positive answer to Problem 3 for n = 4.

Theorem 3 (Dong and Koh [4]). *If* $k_1 = 1, k_2 = ab, k_3 = (a + 2)(b + 1)$ and $k_4 = (a + 1)(2b + 1)$ for any positive integers a and b, then $\mathcal{H}(k_1, k_2, k_3, k_4) \subseteq \mathcal{I}$.

To prove Theorem 3 by using Lemma 3, we observe that

$$f(1,ab,(a+2)(b+1),(a+1)(2b+1),x)$$

$$=x(x-1-a-ab)(x-1-2b-ab)(x-2-2b-a-2ab).$$
(12)

We shall now apply Lemma 3 to establish some new results. The first one given below is an extension of Theorem 3.

Theorem 4. If $k_1 = a_1b_1, k_2 = a_2b_2, k_3 = (a_1 + a_2)(2b_1 + b_2)$ and $k_4 = (a_1 + 2a_2)(b_1 + b_2)$, where a_1, a_2, b_1 and b_2 are arbitrary positive integers, then $\mathcal{H}(k_1, k_2, k_3, k_4) \subseteq \mathcal{I}$.

Proof. Given the k_i 's, we have

$$f(k_1, k_2, k_3, k_4, x) = x(x - a_2b_2 - 2a_2b_1 - a_1b_1)(x - a_2b_2 - a_1b_2 - a_1b_1)$$

$$\times (x - 2a_2b_2 - 2a_2b_1 - a_1b_2 - 2a_1b_1). \tag{13}$$

The result then follows from Lemma 3. \Box

Using Lemma 3, we also obtain positive solutions to Problem 3 for n = 5, 6.

Theorem 5. If $k_1 = 1$, $k_2 = a(a-3)/2$, $k_3 = a(a+3)/2$, $k_4 = (a-1)(a+2)$ and $k_5 = (a-2)(a+1)$, where a is an arbitrary integer with $a \ge 4$, then $\mathcal{H}(k_1, k_2, k_3, k_4, k_5) \subseteq \mathcal{I}$.

Proof. Given the k_i 's, we observe that

$$f(k_1, k_2, k_3, k_4, k_5, x) = x(x - a^2)(x - a^2 - 1) \times \left(x - \frac{a(a-1)}{2} + 2\right) \left(x - \frac{a(a+1)}{2} + 2\right).$$
(14)

The result then follows from Lemma 3. \Box

We have also found the following multisets $\{k_1, k_2, k_3, k_4, k_5\}$ such that the function $f(k_1, k_2, k_3, k_4, k_5, x)$ is an integral-root polynomial in x, some of which are included in the family of Theorem 5:

Theorem 6. If $k_1 = a_1b_1$, $k_2 = a_2b_2$, $k_3 = (a_1 + a_2)(b_1 + 3b_2)$, $k_4 = (3a_1 + a_2)(b_1 + b_2)$, $k_5 = (2a_1 + a_2)(2b_1 + 3b_2)$ and $k_6 = (3a_1 + 2a_1)(b_1 + 2b_2)$, where a_1, a_2, b_1 and b_2 are arbitrary positive integers, then $\mathcal{H}(k_1, k_2, k_3, k_4, k_5, k_6) \subseteq \mathcal{I}$.

Proof. Given the k_i 's, we observe that

$$f(k_1, k_2, k_3, k_4, k_5, k_6, x)$$

$$= x(x - 3a_1b_2 - 3a_1b_1 - 3a_2b_2 - 2a_2b_1)$$

$$\times (x - 3a_1b_2 - a_1b_1 - a_2b_2)(x - 6a_1b_2 - 4a_1b_1 - 4a_2b_2 - 2a_2b_1)$$

$$\times (x - a_1b_1 - a_2b_2 - a_2b_1)(x - 3a_1b_1 - 3a_2b_2 - a_2b_1 - 6a_1b_2).$$
(16)

The result then follows from Lemma 3. \square

Theorems 5 and 6 answer affirmatively Problem 3 and hence Problem 2 for n = 5 and n = 6. Thus, the problem asked by Dmitriev has positive answers for p = 6 and p = 7. For $n \ge 7$, Problem 3 remains open, and so does Dmitriev's problem for $p \ge 8$.

Acknowledgements

We thank the referees for helpful comments.

References

- K. Braun, M. Kretz, B. Walter, M. Walter, Die chromatischen polynome unterringfreier graphen, Manuscripta Math. 14 (1974) 223–234.
- [2] O.D'antona, C. Mereghetti, F. Zamparini, The 224 Non-chordal graphs on less than 10 vertices whose chromatic polynomial has no complex roots, Draft, 1998.
- [3] I.G. Dmitriev, Weakly cyclic graphs with integral chromatic number (in Russian), Metody Diskret. Analiz. 34 (1980) 3–7.
- [4] F.M. Dong, K.M. Koh, Non-chordal graphs having integral-root chromatic polynomials, Bull. Combin. Appl. 22 (1998) 67–77.
- [5] R.C. Read, An introduction to chromatic polynomials, J. Combin. Theory 4 (1968) 52-71.
- [6] R.C. Read, Review, Math. Rev. 50 (6909) (1975).
- [7] R.C. Read, A large family of chromatic polynomials, Proceedings of the third Caribbean Conference on Combinatorics and Computing, Barbados, 1981.
- [8] R.C. Read, W.T. Tutte, Chromatic polynomials, Selected Topics in Graph Theory 3, Academic Press, New York, 1988, pp. 15–42.
- [9] P. Vaderlind, Chromaticity of triangulated graphs, J. Graph Theory 12 (1988) 245-248.
- [10] Vitaly I. Voloshin, Huishan Zhou, Pseudo-chordal mixed hypergraphs, Discrete Math. 202 (1999) 239-248.