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Abstract

It is known that the chromatic polynomial of any chordal graph has only integer roots. How-
ever, there also exist non-chordal graphs whose chromatic polynomials have only integer roots.
Dmitriev asked in 1980 if for any integer p > 4, there exists a graph with chordless cycles
of length p whose chromatic polynomial has only integer roots. This question has been given
positive answers by Dong and Koh for p=4 and p=>5. In this paper, we construct a family of
graphs in which all chordless cycles are of length p for any integer p > 4. It is shown that the
chromatic polynomial of such a graph has only integer roots iff a polynomial of degree p — 1
has only integer roots. By this result, this paper extends Dong and Koh’s result for p=35 and
answer the question affirmatively for p=6 and 7. (© 2002 Elsevier Science B.V. All rights
reserved.

Keywords: Chordal graphs; Chromatic polynomials

In this paper, we consider only simple graphs. Let G be a graph. A cycle (say
vivy...001) in G is called a chordless cycle (or pure cycle) of G if r =4 and no
pair of non-consecutive vertices on the cycle forms an edge of G. If G contains no
chordless cycles, then G is called a chordal graph.

Let % (resp., %) denote the family of chordal (resp., non-chordal) graphs. For any
G €€, there exist non-negative integers di,d,...,d, such that

PG =[]~ d. (1)
i=1

where n is the order of G (see [8]). Thus all roots of P(G, A) are non-negative integers
if GEF.
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Fig. 1.

A polynomial is called an integral-root polynomial if all its roots are integers.
Recently, Voloshin and Zhou [10] published a paper which discussed the integral-root
chromatic polynomials for some hypergraphs. In this paper, we deal with integral-root
chromatic polynomials for graphs. Let .# denote the family of graphs G such that
P(G,2) is an integral-root polynomial. (Since the chromatic polynomial of any graph
has no negative real roots (see [8]), P(G, A) contains only non-negative integer roots
iff Ge.#.) Thus ¥ C .. It had been conjectured by Braun et al. [1] and Vaderlind
[9] that ¥ =.#. This was disproved by Read [6], who discovered the graph in Fig. 1
whose chromatic polynomial is

IO —1)(A—=2)(2—=3) (4 —4). (2)

Therefore € C ..
It is known that the graph in Fig. 1 is the graph in .# N'% with least order (see [2]).
It means that any graph with order less than 7 belongs to % iff it belongs to .#.
Dmitriev [3] constructed a family of graphs in .# N %. All chordless cycles in the
graphs of this family are of order 4. He asked the following:

Problem 1. For any integer p =5, does there exist a graph G € 9 N € such that G
has a chordless cycle of order p?

We now construct a family of graphs. For any positive integers k;, i=1,2,...,n,
where n > 2, let Hy, x,. ..k, denote the graph obtained from the disjoint union of n
complete graphs Kj,,Kj,,...,K;, and a vertex w by adding edges joining each vertex
in K, to each vertex in Kj,,, for i=1,2,...,n—1, and edges joining w to each vertex
in K}, and K;,, as shown in Fig. 2. Clearly, when n >3, Hy, 4, .., €% and Hy, 4, 1,
contains chordless cycles of order n + 1.
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Hkl k2, kn

Fig. 2.

Problem 2. For n = 3, are there positive integers ki, ky, ..., k, such that
Hy kyyoky €7 (3)

Read [7] obtained a formula for the chromatic polynomial of a graph he called a
‘ring of cliques’, which is like the graph in Fig. 2 but with the single vertex w replaced
by another complete graph. Thus, the following result for the chromatic polynomial of
Hy, K, ..k, 1s a special case of Read’s result. But we think it is worth to give a short
proof of this result here. For a real number A and a positive integer », denote

r—1

(=[] G~ 4)
i=0

Lemma 1. For any positive integers n,ky,ka,. .., k,, where n = 2,

15 kenn (T o
P(H, ko, by :1,177 A—k)— (-1 kil - 5
(Hi koo s %) T D (H( )— D' ) (5)

i=1 i=1

Proof. It is easy to verify the result for n=2,3. Now let n > 4. Consider the graph H’

,,,,,

see Fig. 2). The chromatic polynomial of H’ is
( g 2) poly

y)
MP(H,%,% o

PH', )= s A
( ) (M 41 o

). (6)
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Thus, by repeatedly using the Fundamental Reduction Theorem of chromatic polyno-

mials (see [5] and [8]), we have

Dk, 1 +h,4+1
(2t +1

Feon— 1 (2 ks ks (A by

()‘)k,,_|(;“)kn_2+1
The result follows by induction from the above recursive expression. [J

P(Hklﬂk25"'7kn’)v): P(Hkl,kzﬂmaknfl’/l)

P(Hklystn-;kn—Z’/l)' (7)

For positive integers n, ki, k,...,k, and real number x, define
n n
SOk, k) =] = k) = (=D"] [ % (8)
i=1 i=1
Lemma 1 reduces Problem 2 to a much simpler one.

Lemma 2. Let ki, ks, ..., k, be any positive integers. For any permutation t of 1,2,...,n,
Hiykys ke €2 U fk1s ko, ... ky,x) is an integral-root polynomial of x. [

For positive integers ki, ka,....k,, let #(k\,ka,...,k,) denote the set of graphs
Hi1). kiays o by 1OT all permutations ¢ of 1,2,...,n. By Lemma 2, we have

Lemma 3. Let ki, ky,...,k, be any positive integers. If f(ky,ka, ..., ky,x) is an integral-
root polynomial of x, then #(ki,ky,....k,) C #. O

Problem 2 is thus equivalent to the following.

Problem 3. For n = 3, are there positive integers ki, ky, ..., k, such that f(ki,ky,...,
ky,x) is an integral-root polynomial?

We shall see that Lemma 3 is very useful. Almost all graphs in % N.# that have
been found can be verified easily by using Lemma 3. The graph in Fig. 1 is Hj 4.
Observe that

S 1L4,0)=(x — 1 (x —4) +4=x(x - 3)%. )
By Lemma 3, we have 5#(1,1,4) C .#. Further we observe that
f(Lab,(a+ 1) b+ 1),x)=x(x—1—a—ab)(x —1—b— ab). (10)

Thus by Lemma 3, s#(1,ab,(a + 1)(b+ 1)) C # for any positive integers a and b.
This result was first found by Dmitriev [3].

Theorem 1 (Dmitriev [3]). If ki=Lky=(k+1)k+14+1) and ks =(k+2)(k+1+2)
for any non-negative integers k and 1, then #(ki,ky,k3) C 4. O

Dmitriev’s result was extended by Dong and Koh [4].



F.M. Dong et al. | Discrete Mathematics 245 (2002) 247-253 251

Theorem 2 (Dong and Koh [4]). If ki =a1b1,k; = ayb, and ks = (ay +a ) (b +by) for
any positive integers ai,ay, by, by, then # (ki ky,k3) C £.

This result can also be verified by using Lemma 3. Let ky =ab1,k; =axb, and
ks =(a; + a2)(b1 + by). Then
Skt ke ks, x) =x(x — arby — axby — a1by)(x — a1y — axby — azby). (11
By Lemma 3, #(kj,ky, k3) C J.

Dong and Koh [4] also gave a positive answer to Problem 3 for n=4.

Theorem 3 (Dong and Koh [4]). If ki=1,ky=abks=(a + 2)(b + 1) and k,=
(a4 1)(2b+ 1) for any positive integers a and b, then H (ky,ky, ks, ky) C F. [

To prove Theorem 3 by using Lemma 3, we observe that
f(Lyab,(a+2)(b+1),(a+ 1)(2b+1),x)
=x(x—1—a—ab)(x —1—-2b—ab)(x —2—2b—a— 2ab). (12)

We shall now apply Lemma 3 to establish some new results. The first one given
below is an extension of Theorem 3.

Theorem 4. If ky = a b1, ky = ayby, ks = (a1 +a2)(2by1 +by) and ky = (a1 +2a3)(by +b3),
where ayi,ax,by and by are arbitrary positive integers, then (ki ka, k3, k4) C 5.
Proof. Given the £;’s, we have
Skt ky, k3, kg, x) = x(x — azby — 2a0b) — a1by )(x — azxby — ayby — a1by)
><(x72a2b2 72a2b1 7a1b2 7201b1). (13)

The result then follows from Lemma 3. [J
Using Lemma 3, we also obtain positive solutions to Problem 3 for n=35,6.

Theorem 5. If ki1 =1, ky=a(a — 3)/2, ks=a(a + 3)/2, ky=(a — 1)a+2) and ks =
(a —2)a+ 1), where a is an arbitrary integer with a = 4, then H# (ki,ky, k3, ks, ks)
C /.

Proof. Given the k;’s, we observe that
Sk, ko, ks, ka, ks, x)

=x(x —a*)(x —a* — 1)

x (x_a(a2—1)+2> (x—a(a;1)+2>. (14)

The result then follows from Lemma 3. O
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We have also found the following multisets {ki, k2, k3,k4,ks} such that the function
f(ki,ky, k3, kq, ks,x) is an integral-root polynomial in x, some of which are included in
the family of Theorem 5:

{ki ko, ks, ks, ks}  zeros of f(kyi,ka, ks, ks, ks,x)

{1,2,10,14,18}
{1,3,12,14,20}
{1,4,20,21,30}
{1,5,18,20,28}
{1,7,20,24,28}
{1,9,27,28,40}
{1,11,30,35,48}
{1,12,30,35,52}
{1,13,32,35,54}
{1,14,35,40,54}
{1,19,42,48,65}
{1,20,44,54,70}
{1,21,48,52,75}

{0,4,8,16,17}

{0,6,8,17,19}

{0,6,16,25,29}
{0,8,13,25,26}
{0,12,13,29,31}
{0,13,19,36,37}
{0,15,23,41,46}
{0,17,22,40,51}
{0,19,22,41,53}
{0,19,26,49, 50}
{0,27,29,58,61}
{0,26,34,64,65}
{0,27,36,61,73}

(15)

{1,26,55,60,84} {0,34,81,71,40}.

Theorem 6. If ki =a\by, ky=axby, k3= (a1 + a2)(by + 3b2), ks =(3a1 + a2 )(b1 + b2),
ks = Qay + a2)(2by 4+ 3by) and k¢ = (3a; + 2a; ) (by + 2b,), where ay,ay,b; and by are
arbitrary positive integers, then H (ki,ky, ks, ke, ks, ke) C S

Proof. Given the £;’s, we observe that
Sk, ko, ks, ka, ks, ke, x)
=x(x — 3a1by; — 3a1by — 3axby — 2a,by)
X(x —3a1by — a1b; — axby)(x — 6a1by — 4a by — 4arby — 2a;by)
X(x —ayb; — axby — azb1)(x — 3a1b; — 3axb; — ayby — 6a1by). (16)
The result then follows from Lemma 3. [J
Theorems 5 and 6 answer affirmatively Problem 3 and hence Problem 2 for n=35

and n=6. Thus, the problem asked by Dmitriev has positive answers for p =6 and
p="T. For n = 7, Problem 3 remains open, and so does Dmitriev’s problem for p > 8.
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