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Abstract

It is known that the chromatic polynomial of any chordal graph has only integer roots. How-
ever, there also exist non-chordal graphs whose chromatic polynomials have only integer roots.
Dmitriev asked in 1980 if for any integer p¿ 4, there exists a graph with chordless cycles
of length p whose chromatic polynomial has only integer roots. This question has been given
positive answers by Dong and Koh for p=4 and p=5. In this paper, we construct a family of
graphs in which all chordless cycles are of length p for any integer p¿ 4. It is shown that the
chromatic polynomial of such a graph has only integer roots i8 a polynomial of degree p − 1
has only integer roots. By this result, this paper extends Dong and Koh’s result for p=5 and
answer the question a;rmatively for p=6 and 7. c© 2002 Elsevier Science B.V. All rights
reserved.
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In this paper, we consider only simple graphs. Let G be a graph. A cycle (say
v1v2 : : : vrv1) in G is called a chordless cycle (or pure cycle) of G if r¿ 4 and no
pair of non-consecutive vertices on the cycle forms an edge of G. If G contains no
chordless cycles, then G is called a chordal graph.
Let C (resp., @C) denote the family of chordal (resp., non-chordal) graphs. For any

G ∈C, there exist non-negative integers d1; d2; : : : ; dn such that

P(G; 
)=
n∏
i=1

(
− di); (1)

where n is the order of G (see [8]). Thus all roots of P(G; 
) are non-negative integers
if G ∈C.
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Fig. 1.

A polynomial is called an integral-root polynomial if all its roots are integers.
Recently, Voloshin and Zhou [10] published a paper which discussed the integral-root
chromatic polynomials for some hypergraphs. In this paper, we deal with integral-root
chromatic polynomials for graphs. Let I denote the family of graphs G such that
P(G; 
) is an integral-root polynomial. (Since the chromatic polynomial of any graph
has no negative real roots (see [8]), P(G; 
) contains only non-negative integer roots
i8 G ∈I.) Thus C ⊆ I. It had been conjectured by Braun et al. [1] and Vaderlind
[9] that C=I. This was disproved by Read [6], who discovered the graph in Fig. 1
whose chromatic polynomial is


(
− 1)(
− 2)(
− 3)3(
− 4): (2)

Therefore C ⊂ I.
It is known that the graph in Fig. 1 is the graph in I∩ @C with least order (see [2]).

It means that any graph with order less than 7 belongs to C i8 it belongs to I.
Dmitriev [3] constructed a family of graphs in I ∩ @C. All chordless cycles in the

graphs of this family are of order 4. He asked the following:

Problem 1. For any integer p¿ 5; does there exist a graph G ∈I ∩ @C such that G
has a chordless cycle of order p?

We now construct a family of graphs. For any positive integers ki, i=1; 2; : : : ; n,
where n¿ 2, let Hk1 ; k2 ; :::; kn denote the graph obtained from the disjoint union of n
complete graphs Kk1 ; Kk2 ; : : : ; Kkn and a vertex w by adding edges joining each vertex
in Kki to each vertex in Kki+1 for i=1; 2; : : : ; n− 1, and edges joining w to each vertex
in Kk1 and Kkn , as shown in Fig. 2. Clearly, when n¿ 3, Hk1 ; k2 ; :::; kn ∈ @C and Hk1 ; k2 ; :::; kn
contains chordless cycles of order n+ 1.
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Fig. 2.

Problem 2. For n¿ 3; are there positive integers k1; k2; : : : ; kn such that

Hk1 ; k2 ; :::; kn ∈I? (3)

Read [7] obtained a formula for the chromatic polynomial of a graph he called a
‘ring of cliques’, which is like the graph in Fig. 2 but with the single vertex w replaced
by another complete graph. Thus, the following result for the chromatic polynomial of
Hk1 ; k2 ; :::; kn is a special case of Read’s result. But we think it is worth to give a short
proof of this result here. For a real number 
 and a positive integer r, denote

(
)r =
r−1∏
i=0

(
− i): (4)

Lemma 1. For any positive integers n; k1; k2; : : : ; kn; where n¿ 2;

P(Hk1 ; k2 ; :::; kn ; 
)=
∏n−1
i=1 (
)ki+ki+1



∏n−1
i=2 (
)ki+1

(
n∏
i=1

(
− ki)− (−1)n
n∏
i=1

ki

)
: (5)

Proof. It is easy to verify the result for n=2; 3. Now let n¿ 4. Consider the graph H ′

obtained from Hk1 ;k2 ;:::;kn by adding edges joining w to all vertices in the clique Kkn−1

(see Fig. 2). The chromatic polynomial of H ′ is

P(H ′; 
)=
(
)kn−1+kn+1

(
)kn−1+1
P(Hk1 ; k2 ; :::; kn−1 ; 
): (6)
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Thus, by repeatedly using the Fundamental Reduction Theorem of chromatic polyno-
mials (see [5] and [8]), we have

P(Hk1 ; k2 ; :::; kn ; 
) =
(
)kn−1+kn+1

(
)kn−1+1
P(Hk1 ; k2 ; :::; kn−1 ; 
)

+
kn−1(
)kn−1+kn(
)kn−2+kn−1

(
)kn−1 (
)kn−2+1
P(Hk1 ; k2 ; :::; kn−2 ; 
): (7)

The result follows by induction from the above recursive expression.

For positive integers n; k1; k2; : : : ; kn and real number x, deNne

f(k1; k2; : : : ; kn; x)=
n∏
i=1

(x − ki)− (−1)n
n∏
i=1

ki: (8)

Lemma 1 reduces Problem 2 to a much simpler one.

Lemma 2. Let k1; k2; : : : ; kn be any positive integers. For any permutation t of 1; 2; : : : ; n,
Hkt(1) ; kt(2) ; :::; kt(n) ∈I i1 f(k1; k2; : : : ; kn; x) is an integral-root polynomial of x.

For positive integers k1; k2; : : : ; kn, let H(k1; k2; : : : ; kn) denote the set of graphs
Hkt(1) ; kt(2) ; :::; kt(n) for all permutations t of 1; 2; : : : ; n. By Lemma 2, we have

Lemma 3. Let k1; k2; : : : ; kn be any positive integers. If f(k1; k2; : : : ; kn; x) is an integral-
root polynomial of x; then H(k1; k2; : : : ; kn) ⊆ I.

Problem 2 is thus equivalent to the following.

Problem 3. For n¿ 3; are there positive integers k1; k2; : : : ; kn such that f(k1; k2; : : : ;
kn; x) is an integral-root polynomial?

We shall see that Lemma 3 is very useful. Almost all graphs in @C ∩ I that have
been found can be veriNed easily by using Lemma 3. The graph in Fig. 1 is H1;4;1.
Observe that

f(1; 1; 4; x)= (x − 1)2(x − 4) + 4= x(x − 3)2: (9)

By Lemma 3, we have H(1; 1; 4) ⊆ I. Further we observe that

f(1; ab; (a+ 1)(b+ 1); x)= x(x − 1− a− ab)(x − 1− b− ab): (10)

Thus by Lemma 3, H(1; ab; (a + 1)(b + 1)) ⊆ I for any positive integers a and b.
This result was Nrst found by Dmitriev [3].

Theorem 1 (Dmitriev [3]). If k1 = 1; k2 = (k+1)(k+ l+1) and k3 = (k+2)(k+ l+2)
for any non-negative integers k and l; then H(k1; k2; k3) ⊆ I.

Dmitriev’s result was extended by Dong and Koh [4].
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Theorem 2 (Dong and Koh [4]). If k1 = a1b1; k2 = a2b2 and k3 = (a1+a2)(b1+b2) for
any positive integers a1; a2; b1; b2; then H(k1; k2; k3) ⊆ I.

This result can also be veriNed by using Lemma 3. Let k1 = a1b1; k2 = a2b2 and
k3 = (a1 + a2)(b1 + b2). Then

f(k1; k2; k3; x)= x(x − a1b1 − a2b2 − a1b2)(x − a1b1 − a2b2 − a2b1): (11)

By Lemma 3, H(k1; k2; k3) ⊆ I.
Dong and Koh [4] also gave a positive answer to Problem 3 for n=4.

Theorem 3 (Dong and Koh [4]). If k1 = 1; k2 = ab; k3 = (a + 2)(b + 1) and k4 =
(a+ 1)(2b+ 1) for any positive integers a and b; then H(k1; k2; k3; k4) ⊆ I.

To prove Theorem 3 by using Lemma 3, we observe that

f(1; ab; (a+ 2)(b+ 1); (a+ 1)(2b+ 1); x)

= x(x − 1− a− ab)(x − 1− 2b− ab)(x − 2− 2b− a− 2ab): (12)

We shall now apply Lemma 3 to establish some new results. The Nrst one given
below is an extension of Theorem 3.

Theorem 4. If k1 = a1b1; k2 = a2b2; k3 = (a1+a2)(2b1+b2) and k4 = (a1+2a2)(b1+b2),
where a1; a2; b1 and b2 are arbitrary positive integers; then H(k1; k2; k3; k4) ⊆ I.

Proof. Given the ki’s, we have

f(k1; k2; k3; k4; x) = x(x − a2b2 − 2a2b1 − a1b1)(x − a2b2 − a1b2 − a1b1)
×(x − 2a2b2 − 2a2b1 − a1b2 − 2a1b1): (13)

The result then follows from Lemma 3.

Using Lemma 3, we also obtain positive solutions to Problem 3 for n=5; 6.

Theorem 5. If k1 = 1; k2 = a(a − 3)=2; k3 = a(a + 3)=2; k4 = (a − 1)(a + 2) and k5 =
(a − 2)(a + 1); where a is an arbitrary integer with a¿ 4; then H(k1; k2; k3; k4; k5)
⊆ I.

Proof. Given the ki’s, we observe that

f(k1; k2; k3; k4; k5; x)

= x(x − a2)(x − a2 − 1)

×
(
x − a(a− 1)

2
+ 2
)(

x − a(a+ 1)
2

+ 2
)
: (14)

The result then follows from Lemma 3.
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We have also found the following multisets {k1; k2; k3; k4; k5} such that the function
f(k1; k2; k3; k4; k5; x) is an integral-root polynomial in x, some of which are included in
the family of Theorem 5:

{k1; k2; k3; k4; k5} zeros of f(k1; k2; k3; k4; k5; x)

{1; 2; 10; 14; 18} {0; 4; 8; 16; 17}
{1; 3; 12; 14; 20} {0; 6; 8; 17; 19}
{1; 4; 20; 21; 30} {0; 6; 16; 25; 29}
{1; 5; 18; 20; 28} {0; 8; 13; 25; 26}
{1; 7; 20; 24; 28} {0; 12; 13; 29; 31}
{1; 9; 27; 28; 40} {0; 13; 19; 36; 37}
{1; 11; 30; 35; 48} {0; 15; 23; 41; 46}
{1; 12; 30; 35; 52} {0; 17; 22; 40; 51}
{1; 13; 32; 35; 54} {0; 19; 22; 41; 53}
{1; 14; 35; 40; 54} {0; 19; 26; 49; 50}
{1; 19; 42; 48; 65} {0; 27; 29; 58; 61}
{1; 20; 44; 54; 70} {0; 26; 34; 64; 65}
{1; 21; 48; 52; 75} {0; 27; 36; 61; 73}
{1; 26; 55; 60; 84} {0; 34; 81; 71; 40}:

(15)

Theorem 6. If k1 = a1b1; k2 = a2b2; k3 = (a1 + a2)(b1 + 3b2); k4 = (3a1 + a2)(b1 + b2);
k5 = (2a1 + a2)(2b1 + 3b2) and k6 = (3a1 + 2a1)(b1 + 2b2); where a1; a2; b1 and b2 are
arbitrary positive integers; then H(k1; k2; k3; k4; k5; k6) ⊆ I.

Proof. Given the ki’s, we observe that

f(k1; k2; k3; k4; k5; k6; x)

= x(x − 3a1b2 − 3a1b1 − 3a2b2 − 2a2b1)

×(x − 3a1b2 − a1b1 − a2b2)(x − 6a1b2 − 4a1b1 − 4a2b2 − 2a2b1)

×(x − a1b1 − a2b2 − a2b1)(x − 3a1b1 − 3a2b2 − a2b1 − 6a1b2): (16)

The result then follows from Lemma 3.

Theorems 5 and 6 answer a;rmatively Problem 3 and hence Problem 2 for n=5
and n=6. Thus, the problem asked by Dmitriev has positive answers for p=6 and
p=7. For n¿ 7, Problem 3 remains open, and so does Dmitriev’s problem for p¿ 8.
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