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Abstract

For a graph G, let P(G; �) be its chromatic polynomial and let [G] be the set of graphs
having P(G; �) as their chromatic polynomial. We call [G] the chromatic equivalence class of
G. If [G]={G}, then G is said to be chromatically unique. In this paper, we 4rst determine [G]
for each graph G whose complement 5G is of the form aK1∪bK3∪⋃

16i6s Pli , where a; b are any
nonnegative integers and li is even. By this result, we 4nd that such a graph G is chromatically
unique i7 ab = 0 and li �=4 for all i. This settles the conjecture that the complement of Pn is
chromatically unique for each even n with n �=4. We also determine [H ] for each graph H whose
complement 5H is of the form aK3 ∪⋃

16i6s Pui ∪
⋃

16j6t Cvj , where ui¿ 3 and ui �≡ 4 (mod 5)
for all i. We prove that such a graph H is chromatically unique if ui + 1 �= vj for all i; j and ui
is even when ui¿ 6. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper, all graphs considered are simple graphs. For a graph G, let 5G; V (G);
E(G); v(G); e(G), t(G); c(G); �(G); �(G) and P(G; �), respectively, be the com-
plement, vertex set, edge set, order, size, number of triangles, number of components,
chromatic number, minimum degree and chromatic polynomial of G. We will denote
by Pn the path, Cn the cycle, and Kn the complete graph with n vertices.

A partition {A1; A2; : : : ; Ak} of V (G), where k is a positive integer, is called a
k-independent partition of a graph G if each Ai is a nonempty independent set of
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G. Let �(G; k) denote the number of k-independent partitions of G. Then

P(G; �)=
v(G)∑
k=1

�(G; k)(�)k ; (1)

where (�)k = �(�− 1) · · · (�− k + 1). (See [17].)
Two graphs G and H are said to be chromatically equivalent (or simply �-equivalent),

symbolically G∼H , if P(G; �)=P(H; �). It is clear that the relation ‘∼ ’ is an equiv-
alence relation on the family of graphs. The chromatic equivalence class determined
by G under ∼ is denoted by [G]. A graph G is said to be chromatically unique
(or simply �-unique) if H ∼=G whenever H ∼G. Observe that G is �-unique i7 [G] =
{G}. By (1), we have

Lemma 1.1. For any two graphs G and H , G∼H i0 v(G)= v(H) and �(G; k)=
�(H; k) for all k with 16k6v(G).

It is an interesting problem to determine [G] for a given graph G. In this paper, we
shall study this problem for some dense graphs G such that the components of 5G are
isolated vertices, paths or cycles. We shall use the adjoint polynomial of a graph as a
tool for this study.
Let G be a graph with order n. If H is a spanning subgraph of G and each component

of H is complete, then H is called a clique cover (or an ideal subgraph) of G [4].
Two clique covers are considered to be di7erent if they have di7erent edge sets. For
k¿1, let N (G; k) be the number of clique covers H in G with c(H)= k. It is clear
that N (G; n)= 1 and N (G; k)= 0 for k¿n. De4ne

h(G; �)=
{∑n

k=1 N (G; k)�k if n¿1;
1 if n=0:

(2)

The polynomial h(G; �) is called the adjoint polynomial of G. Observe that h(G; �)=
h(G′; �) if G∼=G′. Hence, h(G; �) is a well-de4ned graph-function. The notion of
the adjoint polynomial of a graph was introduced by Liu [9]. Note that the adjoint
polynomial is a special case of an F-polynomial [4].
Two graphs G and H are said to be adjointly equivalent, symbolically G∼h H , if

h(G; �)= h(H; �). Let [G]h= {H |H ∼h G}. A graph G is said to be adjointly unique
if [G]h= {G}. By (2), we have

Lemma 1.2. For any two graphs G and H , G∼h H i0 v(G)= v(H) and N (G; k)=
N (H; k) for all k with 16k6v(G).

Let 5G denote the complement of G, i.e., the graph with vertex set V (G) and edge
set {xy|xy =∈E(G); x; y∈V (G)}. Note that

�(G; k) = N ( 5G; k); k = 1; 2; : : : ; n: (3)

It follows from Lemmas 1.1 and 1.2 together with (3) that
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Theorem 1.1. (i) G∼H i0 5G∼h 5H ;

(ii) [G] = {H | 5H ∈[ 5G]h};
(iii) G is chromatically unique i0 5G is adjointly unique.

Hence the goal of determining [G] for a given graph G can be realized by deter-
mining [ 5G]h. Thus, as has been observed in [13,16], if e(G) is very large, it may be
easier to study [ 5G]h rather than [G]. Another polynomial used to study the chromatic-
ity of dense graphs is the $-polynomial, which was introduced by Korfhage [6]. The
$-polynomial of G is de4ned by

$(G; �)= h( 5G; �)=��(G):

Although some researchers, such as Du [3] and Li and Whitehead [7], have used
$-polynomials to study the chromaticity of some dense graphs, one disadvantage is
that $(G; �) does not determine the order of G. This can be seen from the fact that
$(G; �)= $(G ∪mK1; �) for any integer m¿1, where G ∪mK1 is the graph obtained
from G by adding m isolated vertices. The adjoint polynomial does not have this fault,
and it contains all the information that the $-polynomial has. Hence in this paper we
shall use adjoint polynomials rather than $-polynomials.
It is clear that N (G; k) is an invariant for adjointly equivalent graphs for each positive

integer k. Thus any expression in terms of N (G; 1); N (G; 2); : : : ; N (G; n) is an invariant
for adjointly equivalent graphs. However we prefer invariants which have some useful
properties such as having constant upper bounds or lower bounds. One invariant that
has been used by several researchers [5,11–16], to determine adjoint equivalence classes
of graphs is R1(G). Given a polynomial f(x)= xn + b1xn−1 + b2xn−2 + · · ·+ bn, let

R1(f)=




−
(
b1
2

)
+ b1 if n=1;

b2 −
(
b1
2

)
+ b1 if n¿2:

(4)

For any graph G, we de4ne

R1(G) = R1(h(G; �)): (5)

It is clear that R1(G) is in fact an invariant for adjointly equivalent graphs. It is known
that this invariant is additive over the components of a graph. Speci4cally we have the
following lemma.

Lemma 1.3 (Liu [9]). For any graph G with components G1; G2; : : : ; Gk

R1(G)=
k∑
i=1

R1(Gi):

Liu [16] showed that R1(G)61 for any connected graph G, and characterised the
connected graphs G with R1(G)¿0. For positive integers k; s and t, let Tk; s; t be
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Fig. 1.

the graph in Fig. 1(a). Let

T′ = {Tk; s; t | k¿s¿t¿1}:
Let Dn and Fn be the graphs shown in Fig. 1(b) and (c).

Theorem 1.2 (Liu and Zhao [16]). Let G be a connected graph. Then R1(G)61 and

(i) R1(G)= 1 i0 G∈{K3}∪ {Pn | n¿2},
(ii) R1(G)= 0 i0 G∈{K1}∪T′ ∪{Cn; Dn | n¿4}, and
(iii) R1(G)= − 1 with e(G)¿v(G) + 1 i0 G∈{K4 − e}∪ {Fn | n¿6}.

A further result from [1] that is needed for the present paper is the following.

Theorem 1.3. For any connected graph G with G =∈{K3; K4},

(i) if −16R1(G)61, then R1(G)6v(G)− e(G) with equality if and only if

G∈{K4 − e}∪ {Pn; Cn+1; Dn+2; Fn+4 | n¿2};
(ii) if R1(G)6− 2, then R1(G)6v(G)− e(G)− 1.

Note that e(K3) + R1(K3)= v(K3) + 1 and e(K4) + R1(K4)= v(K4), since
R1(K4)=− 2 [1].
In [1] another invariant R2(G) is introduced. For any polynomial f(x)= xn+b1xn−1+

b2xn−2 + · · ·+ bn, let

R2(f)= b3 −
(
b1
3

)
− (b1 − 2)

(
b2 −

(
b1
2

))
− b1;

where bk =0 for k¿n. For any graph G, de4ne

R2(G)=R2(h(G; �)):
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Since R2(G) is determined by h(G; �), R2(G) is indeed an invariant for adjointly equiv-
alent graphs. This invariant is also additive over the components of a graph (see [1]).
We shall use it in combination with R1(G) to determine the adjoint equivalence classes
of certain graphs and con4rm a conjecture of Liu [13] that Pn is adjointly unique for
each even n 	=4.
We shall need the following theorem from [1]. Here Yn denotes the graph Tn−3;1;1

where n¿4.

Theorem 1.4. (i) R2(P1)= 0; R2(P2)=−1 and R2(Pn)=−2 for n¿3;
(ii) R2(K3)=−2 and R2(Cn)= 0 for n¿4;
(iii) R2(Y4)=−1 and R2(Yn)= 0 for n¿5;
(iv) R2(D4)= 0 and R2(Dn)= 1 for n¿5;
(v) R2(F6)= 5 and R2(Fn)= 4 for n¿7;
(vi) R2(K4 − e)= 3 and R2(K4)= 7.

We also need the following results from [2] on the zeros of the adjoint polynomials
of paths and cycles.

Theorem 1.5. For any positive integer n, the zeros of h(Pn; �) are:

0; 0; : : : ; 0︸ ︷︷ ︸
�n=2�

; −2− 2 cos
2s+
n+ 1

; s=1; 2; : : : ; 
n=2�:

Theorem 1.6. For any integer n¿4, h(Cn; �) has the following zeros:

0; 0; : : : ; 0︸ ︷︷ ︸
�n=2�

; −2− 2 cos
(2s− 1)+

n
; s=1; 2; : : : ; 
n=2�:

For S ⊆V (G), let G[S] denote the subgraph of G induced by S. For any two
graphs G and H , let G ∪H denote the graph whose vertex set can be partitioned into
sets V1 and V2 such that (G ∪H)[V1]∼=G and (G ∪H)[V2]∼=H , and whose edge set
is E(G)∪E(H). We call G ∪H the union of G and H . For any positive integer k,
let kG denote the union of k copies of G. Our main results determine [G] for any
graph G with 5G= aK1 ∪ bK3 ∪

⋃
16i6s Pli , where a; b are any nonnegative integers and

li is even, or 5G= aK3 ∪
⋃

16i6s Pui ∪
⋃

16j6t Cvj , where ui¿3 and ui 	≡ 4 (mod 5) for
all i.

2. Chromatic equivalence classes of some dense graphs

Our aim is to determine the chromatic equivalence classes of some graphs G such
that the components of 5G are members of the set

{K1; D4}∪ {Pk; Ck+1 | k¿2};
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but we realize this aim by determining the adjoint equivalence classes of graphs whose
components belong to this set. We do not consider it necessary to translate the results on
adjoint equivalence classes and adjoint uniqueness into those on chromatic equivalence
classes and chromatic uniqueness.
We shall need the following reduction formula.

Theorem 2.1 (Liu [10]). If xy is an edge not in any triangle of a graph G then

h(G; �)= h(G − xy; �) + �h(G − {x; y}; �):

For any graph G, let 5�(G) denote the minimum integer k such that N (G; k)¿0.
Observe that 5�(G)= �( 5G). Let -(G)=N (G; 5�(G)). By the de4nition of N (G; k), we
have

Lemma 2.1. Let G1; G2; : : : ; Gk be the components of G. Then

5�(G) =
k∑
i=1

5�(Gi); (6)

-(G) =
k∏
i=1

-(Gi): (7)

Since v(G); e(G); R1(G); R2(G); 5�(G) and -(G) are determined by h(G; �), we
have

Lemma 2.2. For any graph G, the parameters v(G); e(G); R1(G); R2(G); 5�(G) and
-(G) are invariants for graphs in [G]h.

But the following lemma shows that the number of components of a graph is not
an invariant for adjointly equivalent graphs.

Lemma 2.3. (i) h(P4; �)= h(K1 ∪K3; �);

(ii) h(P2n+1; �)= h(Pn ∪Cn+1; �) for any n¿3;
(iii) h(Yn; �)= h(K1 ∪Cn−1; �) for any n¿5;
(iv) h(C4; �)= h(D4; �).

Proof. (i) Observe that h(P4; �)= �4 + 3�3 + �2 = �h(C3; �).
(ii) By Theorem 2.1, for n¿3,

h(P2n+1; �)= h(Pn; �)h(Pn+1; �) + �h(Pn; �)h(Pn−1; �)

and

h(Cn+1; �)= h(Pn+1; �) + �h(Pn−1; �):

The result then follows.
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(iii) By Theorem 2.1, for n¿5,

h(Yn; �)= �h(Pn−1; �) + �2h(Pn−3; �);

and

h(Cn−1; �)= h(Pn−1; �) + �h(Pn−3; �):

The result follows.
(iv) Observe that h(C4; �)= h(D4; �)= �4 + 4�3 + 2�2:

By Lemma 2.3, we have

Theorem 2.2. A graph is not adjointly unique if either one of its components or the
union of two of its components is included in the set

{P4; C4; D4}∪ {P2n+1; Yn+2; Pn ∪Cn+1; K1 ∪Cn | n¿3}:

In the following subsections, we shall focus on determining the adjoint equivalence
class of each graph in the sets S1 and S2, where

S1 =

{
r0K1 ∪ r1K3 ∪

⋃
16i6s

P2li | r0; r1¿0; s¿0; li¿1

}
; and

S2 =


aK3 ∪ bD4 ∪

⋃
16i6s

Pui ∪
⋃

16j6t

Cvj | a; b¿0; ui¿3; ui 	≡ 4 (mod 5); vj¿4


 :

2.1. The family S1

There are some known results on the adjoint uniqueness of graphs in S1, but the
problem of determining all adjointly unique graphs in S1 has not hitherto been settled.

Theorem 2.3 (Du [3]). The graph
⋃s
i=1 Pni ∪ lC3, where each ni is even and ni 	≡ 4

(mod 10), is adjointly unique.

By Theorem 2.2, Pn is not adjointly unique for n=4 or odd n¿7. Is Pn adjointly
unique for any even n with n 	=4? Liu [13] proposed the following conjecture.

Conjecture. For each even number n 	=4, Pn is adjointly unique.

Du’s result partially proved the above conjecture. In this section, we shall determine
[G]h for every G∈S1, and hence all adjointly unique graphs in S1. Consequently, we
prove the above conjecture.
We shall prove that h(G; �) 	= h(H; �) for any graphs G∈S1 and H =∈S1. For this

purpose, we introduce the concept of being adjointly closed. A set S of graphs is said
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to be adjointly closed if [G]h⊆S for any graph G∈S. Thus, if S is adjointly closed,
then S=

⋃
G∈S[G]h. In the following, we 4rst prove the set S1 is adjointly closed,

then determine the adjoint equivalence class for each graph in S1, and 4nally 4nd all
adjointly unique graphs in S1.

Lemma 2.4. For any connected graph G with v(G)¿2, if -(G)=1, then 5�(G)6
v(G)=2.

Proof. Let 5�(G)= k. If k =1, the result holds. Let k¿2. Since -(G)=N (G; k)= 1,
G has only one clique cover H with k components, say H1; H2; : : : ; Hk . We shall
show that v(Hi)¿2 for all i=1; 2; : : : ; k. Suppose that V (H1)= {x}. Let y∈NG(x),
say y∈V (H2), and let H0 =G[{x; y}]. If V (H2)= {y}, then G has a clique cover H ′

with k − 1 components H0; H3; H4; : : : ; Hk , which contradicts the fact that 5�(G)= k.
Otherwise, we have another clique cover with k components H0; H2−y;H3; H4; : : : ; Hk ,
which contradicts the fact that -(G)= 1. Hence v(Hi)¿2 for all i=1; 2; : : : ; k, which
implies that k6v(G)=2.

Lemma 2.5. For any connected graph G, if -(G)= 1, then

e(G) + R1(G) + 2 5�(G)6 2v(G); (8)

where equality holds i0 G∈{K1; K3}∪ {P2i | i¿1}.

Proof. Observe that the equality of (8) holds for any graph G in the set {K1; K3}∪{P2i |
i¿1}. Now let G be a connected graph and G =∈{K1; K3}∪ {P2i | i¿1}. It remains to
show that the strict inequality holds for G.
If G=K4, then

e(G) + R1(G) + 2 5�(G)= 6− 2 + 2=6¡2v(G):

Now let G 	∈{K1; K3; K4}∪ {P2i | i¿1}. By Theorem 1.3, we have

e(G) + R1(G)6v(G):

Since -(G)= 1, by Lemma 2.4, 5�(G)6v(G)=2. Thus

e(G) + R1(G) + 2 5�(G)62v(G):

Now suppose that the above equality holds. This occurs i7

e(G) + R1(G)= v(G);

5�(G)= v(G)=2:

Since e(G) + R1(G)= v(G), again by Theorem 1.3, R1(G)¿− 1. By Theorem 1.2,

G∈{Pn; Cn; Dn; Fn}∪ {K4 − e};
where n= v(G). But -(Pn)¿1 when n¿3 and n is odd, -(Cn)¿1 when n¿4, either
-(Dn)¿1 (when n is even) or 5�(Dn)¡n=2 (when n is odd), 5�(Fn)¡n=2 and -(K4 −
e)¿1, a contradiction.
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By Lemma 2.5, we 4nd a necessary and suRcient condition for a graph to be
in S1.

Theorem 2.4. For any graph G, G∈S1 i0 -(G)= 1 and

e(G) + R1(G) + 2 5�(G)= 2v(G):

Proof. It is straightforward to check the necessity. Now let -(G)= 1 and e(G) +
R1(G) + 2 5�(G)= 2v(G). Let G1; G2; : : : ; Gk be the components of G. By Lemma 2.1,
-(Gj)= 1 for all j as -(G)= 1, and 5�(G)=

∑k
j=1 5�(Gj). Thus by Lemma 2.5,

e(G) + R1(G) + 2 5�(G)=
k∑
j=1

(e(Gj) + R1(Gj) + 2 5�(Gj))6
k∑
j=1

2v(Gj)= 2v(G):

Since e(G) + R1(G) + 2 5�(G)= 2v(G), we have e(Gj) + R1(Gj) + 2 5�(Gj)= 2v(Gj) for
each j. By Lemma 2.5 again, we have Gj∈{K1; K3}∪ {P2i | i¿1} for all j. Hence
G∈S1.

By Lemma 2.2, -(G); v(G); e(G); R1(G) and 5�(G) are invariants for graphs in [G]h.
Thus by Theorem 2.4, we have [G]h⊆S1 if G∈S1.

Theorem 2.5. The set S1 is adjointly closed.

Since S1 is adjointly closed, we need only search graphs within S1 for determining
[G]h if G∈S1.

Theorem 2.6. For any nonnegative integers s; r0; r1 and ai; i=1; : : : ; s, if G= r0K1 ∪
r1K3 ∪

⋃s
i=1 aiP2i, then

[G]h =


(r0 − a)K1 ∪ (r1 − a)K3 ∪ (a2 + a)P4

∪
⋃

16i6s
i �=2

aiP2i | − a26a6min{r0; r1}


 :

Proof. Let G denote the set of graphs in the right-hand side of the theorem. Since

h(P4; �)= �h(K3; �)= h(K1; �)h(K3; �);

we have G⊆ [G]h.
Observe that

h(G; �)= �r0−r1 (h(P4; �))r1+a2
∏

16i6s
i �=2

(h(P2i ; �))ai :
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By Theorem 1.5, h(G; �) has exactly ai repeated zeros −2 − 2 cos(2+=(2i + 1)) for
16i6s; i 	=2; and has r1 + a2 repeated zeros −2− 2 cos 2+=5.
Now let H be a graph in [G]h. By Theorem 2.5, H ∈S1. Thus

H ∼= r′0K1 ∪ r′1K3 ∪
∞⋃
i= 1

a′iP2i ;

for some nonnegative integers r′0; r
′
1 and a′i ; i=1; 2; : : : ; where

∑
i¿1 a

′
i is 4nite.

By comparing the zeros of h(H; �) and h(G; �), we see that

a′1 = a1; a′2 + r′1 = a2 + r1; a′i = ai for i=3; 4; : : : ; s; and a′i =0 for i¿s+ 1:

Let a= r1 − r′1. Then a′2 = a2 + a and r′1 = r1 − a. By considering the order of H , we
have

r0 + 3r1 +
s∑
i=1

2iai = r′0 + 3r′1 +
s∑
i=1

2ia′i ;

which implies that r′0 = r0 − a. Since a′2; r
′
1 and r′0 are nonnegative, we have −a26a6

min{r0; r1}. Thus H ∈G and therefore [G]h⊆G.

Theorem 2.7. For nonnegative integers r0; r1; s; a1; a2; : : : ; as, the graph

r0K1 ∪ r1K3 ∪
s⋃
i=1

aiP2i

is adjointly unique i0 r0r1 + a2 = 0.

Proof. Let G= r0K1 ∪ r1K3 ∪
⋃s
i=1 aiP2i. Recall that G is adjointly unique i7 [G]h=

{G}. By Theorem 2.6, [G]h= {G} i7 a2 = 0 and r0r1 = 0.

As a consequence of Theorem 2.7, we now know which paths are adjointly unique.
In fact, a more general result is obtained.

Theorem 2.8. For any integers n and r with n¿1 and r¿0, rK1 ∪Pn is adjointly
unique i0 n∈{1; 2; 3; 5}∪ {l¿6 | l is even} and r=0 when n=5.

Proof. It is easy to verify that rK1 ∪Pn is adjointly unique when 16n63. By Theorem
2.2, rK1 ∪Pn is not adjointly unique for n=4 or odd n¿7. By Theorem 2.7, rK1 ∪Pn
is adjointly unique for even n¿6. It remains to show that rK1 ∪P5 is adjointly unique
i7 r=0.
If r¿1, we have

h(rK1 ∪P5)= h((r − 1)K1 ∪T1;1;1 ∪P2):
Thus rK1 ∪P5 is not adjointly unique if r¿1.
Let G be a graph with h(G; �)= h(P5; �). Then R1(G)= 1 by Lemma 2.2 and The-

orem 1.2. By Lemma 1.3 and Theorem 1.2, G has a component, say G0, such that
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R1(G0)= 1. Again by Theorem 1.2, either G0
∼=K3 or G0

∼=Pt for some 26t65. Since
h(G0; �) is a factor of h(G; �)= h(P5; �), by Theorem 1.5, either G0

∼=P2 or G0
∼=P5.

If G0
∼=P5, then G∼=P5. Now suppose that G0

∼=P2. Observe that

h(P5; �)= �5 + 4�4 + 3�3 = (�3 + 3�2)(�2 + �)= (�3 + 3�2)h(P2; �):

Let G1 be the graph G[V (G)− V (G0)]. We have

h(G; �)= h(G0; �)h(G1; �):

Thus

h(G1; �)= �3 + 3�2:

Therefore the graph G1 is of order 3 and size 3, which implies that G1
∼=K3. But

h(K3; �)= �3 + 3�2 + �;

a contradiction. Hence G∼=P5 and P5 is adjointly unique.

Thus, the graph rK1 ∪P5 is not adjointly unique when r¿1. The following result
gives its adjoint equivalence class.

Theorem 2.9. For any positive integer r, the adjoint equivalence class of rK1 ∪P5 is

{rK1 ∪P5; (r − 1)K1 ∪T1;1;1 ∪P2}:

Proof. We have verify that (r − 1)K1 ∪T1;1;1 ∪P2 ∼h rK1 ∪P5. Let G be a graph with
G∼h rK1 ∪P5. It suRces to show that G∈{rK1 ∪P5; (r − 1)K1 ∪T1;1;1 ∪P2}.
Observe that R1(G)=R1(rK1 ∪P5)= 1 by Lemmas 2.2 and 1.3. Thus by Lemma 1.3

and Theorem 1.2, G has a component, say G0, such that R1(G0)= 1. Again by The-
orem 1.2, either G0

∼=K3 or G0
∼=Pt for some 26t65. Since h(G0; �) is a factor of

h(G; �)= h(rK1 ∪P5; �), by Theorem 1.5, either G0
∼=P2 or G0

∼=P5. If G0
∼=P5, then

we have G∼= rK1 ∪P5. Now assume that G0
∼=P2. Let G1 =G[V (G) − V (G0)]. Then

G1 is a graph of size 3. Thus

G1 = r0K1 ∪ r1P2 ∪ r2P3 ∪ r3P4 ∪ r4K3 ∪ r5 T1;1;1
for some non-negative integers r0; r1; r2; r3; r4; r5. Since R1(G1)=R1(G) − R1(G0)= 0,
we have

0=R1(G1)= r1 + r2 + r3 + r4;

implying that ri =0 for i=1; 2; 3; 4. Hence G1 = r0K1 ∪ r5T1;1;1. Since G1 is of
size 3 and order r + 3, we have r5 = 1 and r0 = r − 1. Therefore G∼=(r − 1)K1 ∪
T1;1;1 ∪P2.
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2.2. The family S2

We need two results before we can prove that S2 is adjointly closed. For any graph
G, let c3(G) be the number of components of G which are isomorphic to K3.

Lemma 2.6. For any graph G,

e(G) + R1(G)6v(G) + c3(G);

where equality holds i0 Gi in {K4− e; K4}∪ {Pn; Cn+1; Dn+2; Fn+4 | n¿2} for each com-
ponent Gi of G.

Proof. Let H be a connected graph. By Theorems 1.2 and 1.3, we have e(H) + R1(H)
6v(H) + 1, and further

(i) e(H) + R1(H)= v(H) + 1 i7 H ∼=K3;
(ii) e(H) + R1(H)= v(H) i7

H ∈{K4 − e; K4}∪ {Pn; Cn+2; Dn+2; Fn+4 | n¿2}:

Let G1; G2; : : : ; Gk be the components of G. Since e(G)=
∑k

i=1 e(Gi), R1(G)=∑k
i=1R1(Gi) and v(G)=

∑k
i=1 v(Gi), the result then follows.

Lemma 2.7. If e(G) + R1(G)= v(G) + c3(G), then

2R1(G) + R2(G)¿0;

where equality holds i0 Gi∈{D4}∪ {Pn; Cn | n¿3} for each component Gi of G.

Proof. Let Gi be any component of G. Since e(G) + R1(G)= v(G) + c3(G), by
Lemma 2.6,

Gi∈{K4 − e; K4}∪ {Pn; Cn+1; Dn+2; Fn+4 | n¿2}:

By Theorem 1.2 and Lemma 1.4 and the fact that R1(K4)=−2,

2R1(Gi) + R2(Gi)




=0 if Gi∈{D4}∪ {Pn; Cn | n¿3};
=1 if Gi∈{P2; K4 − e}∪ {Dn | n¿5};
¿1 if Gi∈{K4}∪ {Fn | n¿6}:

Thus, 2R1(G) + R2(G)¿0, where equality implies that Gi∈{D4}∪ {Pn; Cn | n¿3} for
each component Gi of G.

Now we can prove that S2 is adjointly closed. In fact, the set S2 can be partitioned
into smaller adjointly closed sets. For any nonnegative integer a, let

S2(a)= {G∈S2 | c3(G)= a}:
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Observe that

S2 =
⋃
a¿0

S2(a):

Theorem 2.10. For any nonnegative integer a; S2(a) is adjointly closed.

Proof. Let G∈S2(a), i.e.,

G= aK3 ∪ bD4 ∪
⋃

16i6 s

Pui ∪
⋃

16j6t

Cvj ;

for nonnegative integers a; b; ui and vj with ui¿3, ui 	≡ 4 (mod 5) and vj¿4. Let H
be any graph such that h(H; �)= h(G; �). It suRces to show that H ∈S2(a). Since
h(K3; �)= h(P4; �)=� if � 	=0, by Theorem 1.5, −2− 2 cos 4+=5 is a zero of h(K3; �).
But it is not a zero of h(Pui ; �) when ui 	≡ 4 (mod 5) by Theorem 1.5, and it is also
not a zero of h(Cvi ; �) by Theorem 1.6. As h(D4; �)= h(C4; �) by Lemma 2.3(iv),
−2− 2 cos 4+=5 is not a zero of h(D4; �). Hence the zero −2− 2 cos 4+=5 of h(G; �)
is of multiplicity a, which implies that c3(H)6a. Now let

H = a′K3 ∪H ′;

where a′6a and c3(H ′)= 0. Then h(H ′; �)= h(G′; �), where

G′ =(a− a′)K3 ∪ bD4 ∪
⋃

16i6s

Pui ∪
⋃

16j6t

Cvj :

Observe that e(G′) + R1(G′)= v(G′) + a− a′ by Lemma 2.6. Thus, we have

e(H ′) + R1(H ′)= e(G′) + R1(G′)= v(G′) + a− a′ = v(H ′) + a− a′:

Further,

e(H) + R1(H) = a′(e(K3) + R1(K3)) + (e(H ′) + R1(H ′))

= 4a′ + v(H ′) + a− a′ = v(H ′) + a+ 3a′

= v(H) + a¿v(H) + a′ = v(H) + c3(H):

By Lemma 2.6, we have e(H) + R1(H)6v(H) + c3(H). Hence, a= a′ and e(H) +
R1(H)= v(H) + c3(H).
Observe that 2R1(G) + R2(G)= 0 by Lemmas 2.6 and 2.7. Thus

2R1(H) + R2(H)= 2R1(G) + R2(G)= 0:

By Lemma 2.7, each component of H is a graph in the set

{D4}∪ {Pn; Cn | n¿3}:
Assume that

H = aK3 ∪ b′D4 ∪
⋃

16i6s′
Pu′i ∪

⋃
16j6t′

Cv′j ;
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where u′i¿3 and v′j¿4. If u′i ≡ 4 (mod 5) for some i, then by Theorem 1.5,
−2 − 2 cos 4+=5 is a zero of h(Pu′i ; �), which implies that the zero −2 − 2 cos 4+=5
of h(H; �) is of multiplicity more than a, a contradiction. Hence u′i 	≡ 4 (mod 5) for
i=1; 2; : : : ; s′. Therefore, H ∈S2(a).

Corollary. The set S2 is adjointly closed.

Now we are ready to determine the adjoint equivalence class of each graph G∈S2,
and all adjointly unique graphs in S2. For this purpose, we need the following two
results. Let

S3 =


aK3 ∪

⋃
16i6s

Pui ∪
⋃

16j6t

Cvj | a¿0; vj¿4; ui¿2; ui is even if ui¿6


 :

Lemma 2.8. Let G;H ∈S3. If h(G; �)= h(H; �), then G∼=H .

Proof. Suppose that the result is not true. Then there exists a counterexample. Let
G;H ∈S3, where

G= aK3 ∪
⋃

16i6s

Pui ∪
⋃

16j6t

Cvj ;

H = a′K3 ∪
⋃

16i6s′
Pu′i ∪

⋃
16j6t′

Cv′j :

Suppose that h(G; �)= h(H; �), but G 	∼=H . We may also assume that the result holds
for graphs G′; H ′∈S3 if v(G′)¡v(G). Without loss of generality, let

u16u26 · · ·6us;

u′16u′26 · · ·6u′s′ ;

v16v26 · · ·6vt ;

v′16v′26 · · ·6v′t′ :

We shall show that a= a′ = s= s′ = t= t′ =0.

Claim 1. aa′ =0, {u1; u2; : : : ; us}∩ {u′1; u′2; : : : ; u′s′}= ∅, and {v1; v2; : : : ; vt}∩ {v′1; v′2;
: : : ; v′t′}= ∅.

Claim 1 is equivalent to saying that G and H do not contain any isomorphic com-
ponents. For example, assume that both G and H have components isomorphic to K3.
Let G′ be the graph obtained from G by deleting a component isomorphic to K3, and
let H ′ be the graph obtained from H by deleting a component isomorphic to K3. Ob-
serve that G′; H ′∈S3 and h(G′; �)= h(H ′; �). Since v(G′)¡v(G), we have G′ ∼=H ′

by assumption, which implies that G∼=H , a contradiction.

Claim 2. a= a′ =0.
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By Lemma 2.6, a= c3(G)= e(G) + R1(G) − v(G) and a′ = e(H) + R1(H) − v(H).
By Lemma 2.2, we have a= a′. Since aa′ =0, the claim holds.

Claim 3. t= t′ =0.

Suppose that the claim is not true. Then without loss of generality, we may assume
that t¿1 and vt¿v′t′ if t′¿1. By Theorem 1.6, h(G; �) has a zero:

�= − 2− 2 cos +=vt :

Since v′i¡vt for 16i6t′, by Theorem 1.6, � is not a zero of h(Cv′i ; �). Since u′i is
even when u′i¿6, by Theorem 1.5, � is not a zero of h(Pu′i ; �). Hence � is not a zero
of h(H; �), a contradiction. Thus, the claim holds.

Claim 4. s= s′ =0.

By Claim 2, we have s=R1(G)=R1(H)= s′. Suppose that s= s′¿0 and us¿u′s.
By Theorem 1.5, h(G; �) contains the following zero:

0= − 2− 2 cos(2+=(us + 1)):

Since u′i¡us for i=1; 2; : : : ; s′, by Theorem 1.5, 0 is not a zero of h(Pu′i ; �). Thus 0
is not a zero of h(H; �), a contradiction.

For any graph G∈S2, we construct a graph G̃ from G by the following operations
until none of the components is isomorphic to P2n+1 (n¿3) or D4:

(i) Replace each component P2n+1, where n¿3, by two components Pn and Cn+1;
(ii) Replace each component D4 by C4.

Lemma 2.9. For any graph G∈S2, we have

(i) h(G; �)= h(G̃; �); and
(ii) G̃∈S2 ∩S3.

Proof. Since h(P2n+1; �)= h(Pn ∪Cn+1; �) for n¿3 by Lemma 2.3(ii) and h(D4; �)=
h(C4; �), we have h(G; �)= h(G̃; �) by the de4nition of G̃.
It is clear that G̃∈S3. To show that G̃∈S2, it suRces to prove that G̃ does not

contain any component Pn with n=2 or n≡ 4 (mod 5). By de4nition, G̃ contains a
component P2 i7 G does. Notice that if n≡ 4 (mod 5), then 2n+1≡ 4 (mod 5). By the
de4nition of G̃, G̃ does not contain any such component Pn since G∈S2.

Now we give a necessary and suRcient condition for two graphs G;H ∈S2 to be
adjointly equivalent.

Theorem 2.11. For any graphs G;H ∈S2, h(G; �)= h(H; �) i0 G̃∼= H̃ .
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Proof. By Lemma 2.9, the suRciency holds. Now let h(G; �)= h(H; �). By Lemma 2.9,
G̃; H̃ ∈S3 and h(G̃; �)= h(H̃ ; �). Then by Lemma 2.8, G̃∼= H̃ .

Corollary. For any graph G∈S2,

[G]h= {H ∈S2 | H̃ ∼= G̃}:

There is a numerical method to judge whether G∼h H for two graphs G and H
in S2. For a graph G∈S2, there are nonnegative integers a; b; ni; mi, with ni =0 if
i≡ 4 (mod 5) and

∑
i¿3 (ni + mi+1) 4nite such that

G= aK3 ∪ bD4 ∪
⋃
i¿3

niPi ∪
⋃
i¿4

miCi:

Then by the de4nition of G̃, we have

Lemma 2.10. G̃= a′K3 ∪
⋃
i¿3 n

′
iPi ∪

⋃
i¿4m

′
iCi, where a

′ = a and

n′i =0; i∈{4}∪ {7; 9; 11; : : :};

n′i =
∑
k¿0

n2k (i+1)−1; i∈{3; 5}∪ {6; 8; 10; : : :};

m′
i =mi +

∑
k¿1

n2k i−1; i¿5;

m′
4 = b+ m4 +

∑
k¿1

n2k+2−1:

Given two graphs G and H in S2, it is easy to check by Lemma 2.10 whether
G̃∼= H̃ , and then answer immediately the question whether G∼h H . However it is not
easy to list all graphs in [G]h.
Now we are in a position to 4nd the adjointly unique graphs in S2. Let G∈S2,

where

G= aK3 ∪ bD4 ∪
⋃

16i6s

Pui ∪
⋃

16j6t

Cvj :

By Theorem 2.2, G is not adjointly unique if

(i) b¿1; or
(ii) vj =4 for some j; or
(iii) ui¿7 and ui is odd for some i; or
(iv) vj = ui + 1 for some i and j.

We shall show that G is adjointly unique otherwise.
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Theorem 2.12. Let G∈S2(a), i.e.,

G= aK3 ∪ bD4 ∪
⋃

16i6s

Pui ∪
⋃

16j6t

Cvj ;

for nonnegative integers a; b; ui and vj with ui¿3, ui 	≡ 4 (mod 5) and vj¿4. Then G
is adjointly unique i0 b=0; vj¿5, ui is even when ui¿6 and

{u1 + 1; u2 + 1; : : : ; us + 1}∩ {v1; : : : ; vt}= ∅:

Proof. The necessity is clearly true. We prove just the suRciency. Let H be a graph
with h(H; �)= h(G; �). By Theorem 2.10, H ∈S2(a). By Theorem 2.11, H̃ ∼= G̃. By
de4nition, we have G∼= G̃, which implies that H̃ ∼=G.

If H contains a component C4 or D4, then H̃ contains a component C4 by the
de4nition of H̃ , a contradiction. Assume that H contains a component P2n+1, where
n¿3. From the de4nition of H̃ , we see that H̃ and hence G contains a pair of
components Pm and Cm+1, contradicting the condition that G satis4es. Hence H does
not contain any P2n+1 as a component, where n¿3. Therefore H ∼= H̃ , which implies
that H ∼=G.

In particular, we have

Corollary 1. Any graph in the following set is adjointly unique:{ ⋃
16i6t

Cvi | t¿1; vi =3 or vi¿5

}
:

Corollary 2. Any graph in the following set is adjointly unique:{
aK3 ∪

⋃
16i6s

Pui | s¿0; ui¿3; ui 	≡ 4 (mod 5) and ui is even when ui¿6

}
:

Du [3] also obtained the result of Corollary 1. Liu and Bao [14] showed that⋃
16i6t Cvi is adjointly unique for vi¿5.

2.3. Open problems

Let

S4 =


aK3 ∪ bD4 ∪

⋃
16i6s

Pui ∪
⋃

16j6t

Cvj | a; b¿0; ui¿3; vj¿4


 :

Observe that S2 is a proper subset of S4:. Is S4 adjointly closed? It is clear that while
P4∈S4, K1 ∪K3 =∈S4, but K1 ∪K3 ∼h P4 by Lemma 2.3(i). Thus S4 is not adjointly
closed. Then a problem arises.
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For a set S of graphs, let

minh(S)=
⋃
G∈S

[G]h:

Observe that minh(S) is adjointly closed and S⊆minh(S). The set S is adjointly
closed i7 S=minh(S). Moreover, for any set G of graphs, if S⊆G and G is adjointly
closed, then minh(S)⊆G. Hence, minh(S) is called the adjoint closure of S.

Problem. Determine minh(S4).

Since K1 ∪K3 ∼h P4 by Lemma 2.3(i), we have

minh(S4)⊇

rK1 ∪ aK3 ∪ bD4 ∪

⋃
16i6s

Pui ∪
⋃

16j6t

Cvj

|r; a; b; s; t¿0; r6a; ui¿3; vj¿4


 :

Since K1 ∪Cn−1 ∼hYn for n¿5 by Lemma 2.3(iii), we have

minh(S4)⊇

rK1 ∪ aK3 ∪ bD4 ∪

⋃
16i6m

Yri ∪
⋃

16i6s

Pui ∪
⋃

16j6t

Cvj

|r; a; b; s; t; m¿0; m+ r6a; ri¿5; ui¿3; vj¿4


 : (9)

Conjecture 1. The set equality (9) holds.

Let

S5 =


rK1 ∪

⋃
16j6t

Cvj | r; t¿0; vj¿4


 :

Since D4 ∼h C4 and K1 ∪Cn−1 ∼ hYn for n¿5 by Lemma 2.3, we have

minh(S5)⊇

rK1 ∪ bD4 ∪

⋃
16i6m

Yri

∪
⋃

16j6t

Cvj | r; b; m; t¿0; ri¿5; vj¿4


 : (10)

Conjecture 2. The set equality (10) holds.
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