

Discrete Mathematics 224 (2000) 107-124

www.elsevier.com/locate/disc

Chromatically unique bipartite graphs with low 3-independent partition numbers

F.M. Dong^{a, *}, K.M. Koh^b, K.L. Teo^a, C.H.C. Little^a, M.D. Hendy^a

^aInstitute of Fundamental Sciences (Mathematics), Massey University, Palmerston North, New Zealand ^bDepartment of Mathematics, National University of Singapore, Singapore

Abstract

For integers p,q,s with $p \ge q \ge 2$ and $s \ge 0$, let $\mathscr{K}_2^{-s}(p,q)$ denote the set of 2-connected bipartite graphs which can be obtained from $K_{p,q}$ by deleting a set of *s* edges. In this paper, we prove that for any graph $G \in \mathscr{K}_2^{-s}(p,q)$ with $p \ge q \ge 3$ and $1 \le s \le q - 1$, if the number of 3-independent partitions of *G* is at most $2^{p-1} + 2^{q-1} + s + 2$, then *G* is χ -unique. It follows that any graph in $\mathscr{K}_2^{-s}(p,q)$ is χ -unique if $p \ge q \ge 3$ and $1 \le s \le \min\{q-1,4\}$. © 2000 Elsevier Science B.V. All rights reserved.

Keywords: Bipartite graph; Chromatic polynomial

1. Introduction

All graphs considered here are simple graphs. For a graph G, let V(G), E(G), e(G), $\delta(G)$, $\Delta(G)$ and $P(G, \lambda)$ be the vertex set, edge set, size, minimum degree, maximum degree and the chromatic polynomial of G, respectively.

For integers p,q,s with $p \ge q \ge 2$ and $s \ge 0$, let $\mathscr{K}^{-s}(p,q)$ (resp. $\mathscr{K}_2^{-s}(p,q)$) denote the set of connected (resp. 2-connected) bipartite graphs which can be obtained from $K_{p,q}$ by deleting a set of *s* edges. The following result was obtained in [1].

Lemma 1.1. If $p \ge q \ge 3$ and $s \le p+q-4$, then for any $G \in \mathscr{K}^{-s}(p,q)$ with $\delta(G) \ge 2$, *G* is 2-connected.

For a bipartite graph G = (A, B; E) with bipartition A and B and edge set E, let G' = (A', B'; E') be the bipartite graph induced by the edge set $E' = \{xy | xy \notin E, x \in A, y \in B\}$, where $A' \subseteq A$ and $B' \subseteq B$. We write $G' = K_{p,q} - G$, where p = |A| and q = |B|. Observe that $\delta(G) = \min(q - \Delta(G'), p - \Delta(G'))$.

^{*} Corresponding author.

E-mail address: f.m.dong@massey.ac.nz (F.M. Dong).

Corollary 1.1. For $p \ge q \ge 3$ and $0 \le s \le q - 1$, if $G \in K^{-s}(p,q) - K_2^{-s}(p,q)$, then s = q - 1 and $\Delta(G') = q - 1$.

Two graphs G and H are said to be *chromatically equivalent* (or simply χ -equivalent), symbolically $G \sim H$, if $P(G, \lambda) = P(H, \lambda)$. The equivalence class determined by G under \sim is denoted by [G]. A graph G is *chromatically unique* (or simply χ -unique) if $H \cong G$ whenever $H \sim G$. For a set \mathscr{G} of graphs, if $[G] \subseteq \mathscr{G}$ for every $G \in \mathscr{G}$, then \mathscr{G} is said to be χ -closed. In [1], we established the following result.

Theorem 1.1. For integers p,q,s with $p \ge q \ge 2$ and $0 \le s \le q-1$, $\mathscr{K}_2^{-s}(p,q)$ is χ -closed.

The complete bipartite graph $K_{p,q}$ is χ -unique for any $p \ge q \ge 2$ (see [2,6]). In this paper, we shall search for χ -unique graphs or χ -equivalence classes from the set $\mathscr{K}_2^{-s}(p,q)$, where $p \ge q \ge 3$ and $0 \le s \le q-1$. Hence, in this paper, we fix the following conditions for p,q and s:

 $p \ge q \ge 3$ and $0 \le s \le q - 1$.

For a graph G and a positive integer k, a partition $\{A_1, A_2, ..., A_k\}$ of V(G) is called a *k-independent partition* in G if each A_i is a non-empty independent set of G. Let $\alpha(G, k)$ denote the number of k-independent partitions in G. For any bipartite graph G = (A, B; E), define

$$\alpha'(G,3) = \alpha(G,3) - (2^{|A|-1} + 2^{|B|-1} - 2).$$

In [1], we found the following sharp bounds for $\alpha'(G,3)$:

Theorem 1.2. For $G \in \mathscr{K}^{-s}(p,q)$ with $p \ge q \ge 3$ and $0 \le s \le q - 1$,

$$s \leq \alpha'(G,3) \leq 2^s - 1$$
,

where $\alpha'(G,3) = s$ iff $\Delta(G') = 1$ and $\alpha'(G,3) = 2^s - 1$ iff $\Delta(G') = s$.

For $t = 0, 1, 2, ..., \text{ let } \mathscr{B}(p, q, s, t)$ denote the set of graphs $G \in \mathscr{K}^{-s}(p, q)$ with $\alpha'(G, 3) = s + t$. Thus, $\mathscr{K}^{-s}(p, q)$ is partitioned into the following subsets:

 $\mathscr{B}(p,q,s,0), \mathscr{B}(p,q,s,1), \ldots, \mathscr{B}(p,q,s,2^s-s-1).$

Assume that $\mathscr{B}(p,q,s,t) = \emptyset$ for $t > 2^s - s - 1$.

Lemma 1.2. For $p \ge q \ge 3$ and $0 \le s \le q - 1$, if $0 \le t \le 2^{q-1} - q - 1$, then

$$\mathscr{B}(p,q,s,t) \subseteq \mathscr{K}_2^{-s}(p,q)$$

Proof. We consider the following two cases.

Case 1: $s \leq q-2$. By the corollary to Lemma 1.1, $\mathscr{K}^{-s}(p,q) = \mathscr{K}_2^{-s}(p,q)$ and thus $\mathscr{B}(p,q,s,t) \subseteq \mathscr{K}_2^{-s}(p,q)$ for all t.

Case 2: s = q - 1. If $0 \le t \le 2^{q-1} - q - 1$, by Theorem 1.2, for any $G \in \mathscr{B}(p,q,s,t)$, we have $\Delta(G') \le q - 2$ and thus by the corollary to Lemma 1.1, G is 2-connected. Hence $\mathscr{B}(p,q,s,t) \subseteq \mathscr{K}_2^{-s}(p,q)$ if $0 \le t \le 2^{q-1} - q - 1$. \Box

For any graph G, we have $P(G, \lambda) = \sum_{k \ge 1} \alpha(G, k)\lambda(\lambda - 1)\cdots(\lambda - k + 1)$ (see [5]). If $G \sim H$, then $\alpha(G, k) = \alpha(H, k)$ for k = 1, 2, ... Thus, by Theorem 1.1, the following result is obtained.

Theorem 1.3. The set $\mathscr{B}(p,q,s,t) \cap \mathscr{K}_2^{-s}(p,q)$ is χ -closed for all $t \ge 0$.

Corollary 1.2. If $0 \le t \le 2^{q-1} - q - 1$, then $\mathscr{B}(p,q,s,t)$ is χ -closed.

We have proved in [1] the following result.

Theorem 1.4. For any graph $G \in \mathcal{B}(p,q,s,0) \cup \mathcal{B}(p,q,s,2^s-s-1)$, if G is 2-connected, then G is χ -unique.

In this paper, we shall show that every 2-connected graph in $\mathscr{B}(p,q,s,t)$ is χ -unique for $1 \leq t \leq 4$. Further, we prove that every graph in $\mathscr{K}_2^{-s}(p,q)$ is χ -unique if $1 \leq s \leq \min\{4, q-1\}$.

2. $\mathscr{B}(p, q, s, t)$ for $t \leq 4$

In this section, we shall study the structure of graphs in $\mathscr{B}(p,q,s,t)$ for $t \leq 4$.

Lemma 2.1. For
$$G = (A, B; E) \in \mathscr{K}^{-s}(p,q)$$
 with $|A| = p$ and $|B| = q$, we have $e(G') = \sum_{x \in A'} d_{G'}(x) = \sum_{y \in B'} d_{G'}(y) = s.$

For a graph G and $x \in V(G)$, let $N_G(x)$ or simply N(x) denote the set of vertices y such that $xy \in E(G)$. Let G = (A, B; E) be a graph in $\mathscr{K}^{-s}(p,q)$ with |A| = p and |B| = q. Since $s \leq q-1 \leq p-1$, there exist vertices $u \in A$ and $v \in B$ such that N(u) = B and N(v) = A. Thus, for any independent set Q in G, if $u \in Q$, then $Q \subseteq A$; if $v \in Q$, then $Q \subseteq B$. Therefore for any 3-independent partition $\{A_1, A_2, A_3\}$ in G, there are at least two A_i 's, say A_2, A_3 , such that $A_2 \subseteq A$ and $A_3 \subseteq B$. Hence G has only two types of 3-independent partitions $\{A_1, A_2, A_3\}$:

Type 1: either $A_1 \cup A_2 = A$, $A_3 = B$ or $A_1 \cup A_3 = B$, $A_2 = A$.

Type 2: $A_1 \cap A \neq \emptyset$, $A_1 \cap B \neq \emptyset$, $A_2 = A - A_1$ and $A_3 = B - A_1$.

The number of 3-independent partitions of Type 1 is $2^{p-1} + 2^{q-1} - 2$. Let $\Psi(G)$ be the set of 3-independent partitions $\{A_1, A_2, A_3\}$ of Type 2 in G. Thus $|\Psi(G)| = \alpha'(G, 3)$ by the definition of $\alpha'(G, 3)$. Let

 $\Omega(G) = \{Q | Q \text{ is an independent set in } G \text{ with } Q \cap A \neq \emptyset, Q \cap B \neq \emptyset\}.$

Since $s \leq q-1 \leq p-1$, $A-Q \neq \emptyset$ and $B-Q \neq \emptyset$ for any $Q \in \Omega(G)$. This implies that $Q \in \Omega(G)$ iff $\{Q, A-Q, B-Q\} \in \Psi(G)$. The following result is then obtained.

Lemma 2.2. $\alpha'(G,3) = |\Omega(G)|$ for any $G \in \mathscr{K}^{-s}(p,q)$.

We consider two special types of sets $Q \in \Omega(G)$: either $|Q \cap A| = 1$ or $|Q \cap B| = 1$. Let $\Omega_1(G) = \{Q \in \Omega(G) | |Q \cap A| = 1\}$ and $\Omega_2(G) = \{Q \in \Omega(G) | |Q \cap B| = 1\}$. Thus

$$\begin{aligned} |\Omega_1(G) \cap \Omega_2(G)| &= s, \\ |\Omega_1(G)| &= \sum_{x \in A'} (2^{d_{G'}(x)} - 1) \ge s, \\ |\Omega_2(G)| &= \sum_{y \in B'} (2^{d_{G'}(y)} - 1) \ge s. \end{aligned}$$
(1)

Let $\beta_i(G)$, or simply β_i , denote the number of vertices in G with degree *i*, and let $n_i(G)$ denote the number of *i*-cycles in G.

Lemma 2.3. For
$$G = (A, B; E) \in \mathscr{K}^{-s}(p, q),$$

 $\alpha'(G, 3) \ge s + \sum_{i \ge 2} \beta_i(G')(2^i - 1 - i) + n_4(G'),$
(2)

where equality holds iff $|N_{G'}(x) \cap N_{G'}(y)| \leq 2$ for every $x, y \in A'$ or $x, y \in B'$.

Proof. The number of $Q \in \Omega(G)$ with $|Q \cap A| = 1$ or $|Q \cap B| = 1$ is

$$\begin{aligned} \Omega_1(G) \cup \Omega_2(G) | \\ &= -s + \sum_{x \in V(G')} (2^{d_{G'}(x)} - 1) \\ &= -s + \sum_{i \ge 1} \beta_i(G')(2^i - 1) \\ &= -s + \sum_{i \ge 1} i\beta_i(G') + \sum_{i \ge 1} \beta_i(G')(2^i - 1 - i) \\ &= -s + 2s + \sum_{i \ge 1} \beta_i(G')(2^i - 1 - i) \\ &= s + \sum_{i \ge 2} \beta_i(G')(2^i - 1 - i). \end{aligned}$$

Notice that the number of Q's in $\Omega(G)$ such that $|Q \cap A| = 2$ and $|Q \cap B| = 2$ is exactly the number of 4-cycles in G'. Thus (2) is obtained by Lemma 2.2. The equality in (2) holds iff there is no $Q \in \Omega(G)$ such that either $|Q \cap A| \ge 3$ and $|Q \cap B| \ge 2$, or $|Q \cap A| \ge 2$ and $|Q \cap B| \ge 3$, i.e., $|N_{G'}(x) \cap N_{G'}(y)| \ge 3$ for $x, y \in A'$ or $x, y \in B'$. \Box

Corollary 2.1. For $G = (A, B; E) \in \mathscr{K}^{-s}(p, q)$,

- (i) if $\Delta(G') \leq 2$, then $\alpha'(G,3) = s + \beta_2(G') + n_4(G')$;
- (ii) if $\Delta(G') = 3$, then $\alpha'(G,3) \ge s + \beta_2(G') + 4\beta_3(G') + n_4(G')$, where equality holds iff $|N_{G'}(u) \cap N_{G'}(v)| \le 2$ for all $u, v \in A'$ or $u, v \in B'$;
- (iii) $\alpha'(G,3) \ge 2^{\Delta(G')} + s 1 \Delta(G').$

For two disjoint graphs H_1 and H_2 , let $H_1 \cup H_2$ denote the graph with vertex set $V(H_1) \cup V(H_2)$ and edge set $E(H_1) \cup E(H_2)$. Let $kH = \underbrace{H \cup \cdots \cup H}_k$ for $k \ge 1$ and let kH be null if k = 0.

Lemma 2.4. Let $G \in \mathscr{K}^{-s}(p,q)$. If $\alpha'(G,3) = s + t \leq s + 4$, then either

(i) each component of G' is a path and $\beta_2(G') = t$, or (ii) $G' \cong K_{1,3} \cup (s-3)K_2$.

Proof. Since $\alpha'(G,3) \leq s + 4$, $\Delta(G') \leq 3$ by corollary (iii) to Lemma 2.3. If $\Delta(G') = 3$, then $\beta_2(G') = 0$ and $\beta_3(G') = 1$ by corollary (ii) to Lemma 2.3, and thus $G' \cong K_{1,3} \cup (s-3)K_2$. If $\Delta(G') = 2$, then $\beta_2(G') + n_4(G') \leq 4$ by corollary (i) to Lemma 2.3, and thus G' contains no cycles. Hence when $\Delta(G') = 2$, each component of G' is a path, and $\beta_2(G') = t$ by corollary (i) to Lemma 2.3. \Box

Let P_n denote the path with *n* vertices. By Lemma 2.4, we establish the following result.

Theorem 2.1. Let $G \in \mathscr{K}^{-s}(p,q)$ and $\alpha'(G,3) = s + t$, where $0 \leq t \leq 4$. Then

$$G' \in \begin{cases} \{sK_2\} & \text{if } t = 0, \\ \{P_3 \cup (s-2)K_2\} & \text{if } t = 1, \\ \{P_4 \cup (s-3)K_2, 2P_3 \cup (s-4)K_2\} & \text{if } t = 2, \\ \{P_5 \cup (s-4)K_2, P_4 \cup P_3 \cup (s-5)K_2, 3P_3 \cup (s-6)K_2\} & \text{if } t = 3, \\ \{P_6 \cup (s-5)K_2, P_5 \cup P_3 \cup (s-6)K_2, 2P_4 \cup (s-6)K_2, \\ P_4 \cup 2P_3 \cup (s-7)K_2, 4P_3 \cup (s-8)K_2, K_{1,3} \cup (s-3)K_2\} & \text{if } t = 4, \end{cases}$$

where $H \cup (s - i)K_2$ does not exist if s < i.

3. Chromaticity of graphs in $\mathcal{B}(p, q, s, t), t \leq 4$

In this section, we shall show that each graph in $\bigcup_{1 \le t \le 4} \mathscr{B}(p,q,s,t)$ is χ -unique. For a bipartite graph G = (A, B; E), the number of 4-independent partitions $\{A_1, A_2, A_3, A_4\}$ with $A_i \subseteq A$ or $A_i \subseteq B$ for all i = 1, 2, 3, 4 is

$$(2^{|A|-1} - 1)(2^{|B|-1} - 1) + \frac{1}{3!}(3^{|A|} - 3 \cdot 2^{|A|} + 3) + \frac{1}{3!}(3^{|B|} - 3 \cdot 2^{|B|} + 3)$$

$$=(2^{|A|-1}-2)(2^{|B|-1}-2)+\frac{1}{2}(3^{|A|-1}+3^{|B|-1})-2.$$
(3)

Let $\alpha'(G,4) = \alpha(G,4) - ((2^{|A|-1}-2)(2^{|B|-1}-2) + \frac{1}{2}(3^{|A|-1}+3^{|B|-1}) - 2)$. Observe that for $G, H \in \mathscr{K}^{-s}(p,q), \ \alpha(G,4) = \alpha(H,4)$ iff $\alpha'(G,4) = \alpha'(H,4)$.

Lemma 3.1. For
$$G = (A, B; E) \in \mathscr{K}^{-s}(p,q)$$
 with $|A| = p$ and $|B| = q$,
 $\alpha'(G,4) = \sum_{Q \in \Omega(G)} (2^{p-1-|Q \cap A|} + 2^{q-1-|Q \cap B|} - 2)$

$$+|\{\{Q_1,Q_2\}|Q_1,Q_2\in \Omega(G),Q_1\cap Q_2=\emptyset\}|.$$

Proof. As $s \leq q - 1 \leq p - 1$, there exist $x \in A$ and $y \in B$ such that $N_G(x) = B$ and $N_G(y) = A$. Thus, for any 4-independent partition $\{A_1, A_2, A_3, A_4\}$, there are at least two A_i 's with $A_i \subseteq A$ or $A_i \subseteq B$. This means that G has only three types of 4-independent partitions $\{A_1, A_2, A_3, A_4\}$: for k = 0, 1, 2, we call the partition type k if there are exactly $k A_i$'s with $A_i \in \Omega(G)$. The number of 4-independent partitions of type 0 is given in (3). The number of 4-independent partitions of type 1 is

$$\sum_{Q \in \mathcal{Q}(G)} (2^{p-1-|\mathcal{Q} \cap A|} + 2^{q-1-|\mathcal{Q} \cap B|} - 2)$$

and the number of 4-independent partitions of type 2 is

$$|\{\{Q_1, Q_2\}|Q_1, Q_2 \in \Omega(G), Q_1 \cap Q_2 = \emptyset\}|.$$

The lemma holds. \Box

For a bipartite graph G = (A, B; E), let $\beta_i(G, A)$ (resp. $\beta_i(G, B)$) be the number of vertices in A (resp. B) with degree *i*.

Remark. For $G \in \mathcal{B}(p,q,s,t)$, if each component of G' is a path, then $\alpha'(G,3) = s + \beta_2(G')$ by Corollary 2.1(i) to Lemma 2.3. Thus $\beta_2(G') = t$.

Lemma 3.2. For $G \in \mathcal{B}(p,q,s,t)$, if each component of G' is a path, then

$$\sum_{\mathcal{Q}\in\Omega(G)} (2^{p-1-|\mathcal{Q}\cap A|} + 2^{q-1-|\mathcal{Q}\cap B|} - 2)$$

= $s(2^{p-2} + 2^{q-2} - 2) + t(2^{p-3} + 2^{q-2} - 2) + (2^{p-3} - 2^{q-3})\beta_2(G', A').$

Proof. Since each component of G' is a path, $|Q| \leq 3$ for every $Q \in \Omega(G)$. There are exactly s sets Q in $\Omega(G)$ with |Q| = 2, there are exactly $\beta_2(G', A')$ sets Q in $\Omega(G)$

with $|Q \cap A| = 1$ and $|Q \cap B| = 2$, and there are exactly $\beta_2(G', B')$ sets Q in $\Omega(G)$ with $|Q \cap A| = 2$ and $|Q \cap B| = 1$. Thus

$$\sum_{Q \in \Omega(G)} (2^{p-1-|Q \cap A|} + 2^{q-1-|Q \cap B|} - 2)$$

= $s(2^{p-2} + 2^{q-2} - 2) + \beta_2(G', A')(2^{p-2} + 2^{q-3} - 2)$
+ $\beta_2(G', B')(2^{p-3} + 2^{q-2} - 2)$
= $s(2^{p-2} + 2^{q-2} - 2) + (\beta_2(G', A') + \beta_2(G', B'))(2^{p-3} + 2^{q-2} - 2)$
+ $(2^{p-3} - 2^{q-3})\beta_2(G', A')$
= $s(2^{p-2} + 2^{q-2} - 2) + \beta_2(G')(2^{p-3} + 2^{q-2} - 2) + (2^{p-3} - 2^{q-3})\beta_2(G', A').$

Since $\beta_2(G') = t$, the lemma is obtained. \Box

Let $p_i(G)$ denote the number of paths P_i in G.

Lemma 3.3. For $G \in \mathscr{B}(p,q,s,t)$, if each component of G' is a path, then $|\{\{Q_1,Q_2\}|Q_1,Q_2 \in \Omega(G),Q_1 \cap Q_2 = \emptyset\}|$ $= {s+t \choose 2} - 3t - 3p_4(G') - p_5(G').$

Proof. Since each component of G' is a path, $|Q| \leq 3$ for every $Q \in \Omega(G)$. We also have $\beta_2(G') = t$. There are exactly s (resp. t) sets Q in $\Omega(G)$ with |Q| = 2 (resp. |Q| = 3). Observe that

$$|\{\{Q_1, Q_2\} | Q_1, Q_2 \in \Omega(G), |Q_1| = |Q_2| = 2, Q_1 \cap Q_2 = \emptyset\}|$$

= |\{\{Q_1, Q_2\} | Q_1, Q_2 \in \Omega(G), |Q_1| = |Q_2| = 2, |Q_1 \cap Q_2| \le 1\}|
- |\{\{Q_1, Q_2\} | Q_1, Q_2 \in \Omega(G), |Q_1| = |Q_2| = 2, |Q_1 \cap Q_2| = 1\}|
= $\binom{s}{2} - t.$ (4)

There are exactly $t Q_1$'s with $|Q_1| = 3$. For each $Q_1 \in \Omega(G)$ with $|Q_1| = 3$, there are exactly $s - 2 Q_2$'s in $\Omega(G)$ with $|Q_2| = 2$ and $|Q_1 \cap Q_2| \leq 1$. Observe that $|Q_1 \cap Q_2| = 1$ iff $Q_1 \cup Q_2$ induces a path P_4 in G', and that for each path P_4 in G', there are exactly two pairs Q_1, Q_2 with $|Q_1| = 3$, $|Q_2| = 2$ and $|Q_1 \cap Q_2| = 1$ such that $Q_1 \cup Q_2$ induces this path P_4 . Thus the number of sets $\{Q_1, Q_2\}$ with $|Q_1| = 3$, $|Q_2| = 2$ and $|Q_1 \cap Q_2| = 1$ and $|Q_1 \cap Q_2| = 1$ is $2p_4(G')$. Hence

$$|\{\{Q_1, Q_2\} | Q_1, Q_2 \in \Omega(G), |Q_1| = 3, |Q_2| = 2, Q_1 \cap Q_2 = \emptyset\}|$$

$$= |\{\{Q_1, Q_2\} | Q_1, Q_2 \in \Omega(G), |Q_1| = 3, |Q_2| = 2, |Q_1 \cap Q_2| \le 1\}| - |\{\{Q_1, Q_2\} | Q_1, Q_2 \in \Omega(G), |Q_1| = 3, |Q_2| = 2, |Q_1 \cap Q_2| \le 1\}| = t(s-2) - 2p_4(G').$$
(5)

There are exactly $\binom{l}{2}$ sets $\{Q_1, Q_2\}$, where $Q_1, Q_2 \in \Omega(G)$, with $|Q_1| = |Q_2| = 3$ and $Q_1 \neq Q_2$. Thus $|Q_1 \cap Q_2| \leq 2$ for such Q_1, Q_2 . The number of sets $\{Q_1, Q_2\}$ with $|Q_1| = |Q_2| = 3$ and $|Q_1 \cap Q_2| = 2$ is $p_4(G')$, because

- (i) $|Q_1 \cap Q_2| = 2$ iff $Q_1 \cup Q_2$ induces a path P_4 in G' and
- (ii) for each path P_4 in G', there is only one set $\{Q_1, Q_2\}$ with $|Q_1| = |Q_2| = 3$ such that $Q_1 \cup Q_2$ induces this path P_4 .

Similarly, the number of sets $\{Q_1, Q_2\}$ with $|Q_1| = |Q_2| = 3$ and $|Q_1 \cap Q_2| = 1$ is $p_5(G')$. Hence

$$|\{\{Q_1, Q_2\} | Q_1, Q_2 \in \Omega(G), |Q_1| = |Q_2| = 3, Q_1 \cap Q_2 = \emptyset\}|$$

$$= |\{\{Q_1, Q_2\} | Q_1, Q_2 \in \Omega(G), |Q_1| = |Q_2| = 3, |Q_1 \cap Q_2| \leq 2\}|$$

$$-|\{\{Q_1, Q_2\} | Q_1, Q_2 \in \Omega(G), |Q_1| = |Q_2| = 3, |Q_1 \cap Q_2| = 2\}|$$

$$-|\{\{Q_1, Q_2\} | Q_1, Q_2 \in \Omega(G), |Q_1| = |Q_2| = 3, |Q_1 \cap Q_2| = 1\}|$$

$$= \binom{t}{2} - p_4(G') - p_5(G').$$
(6)

By (4)–(6), the result is obtained. \Box

For $G \in \mathscr{B}(p,q,s,t)$, define

$$\alpha''(G,4) = \alpha'(G,4) - (s(2^{p-2} + 2^{q-2} - 2) + t(2^{p-3} + 2^{q-2} - 2) + (s+t)(s+t-1)/2 - 3t).$$
(7)

Observe that for $G, H \in \mathscr{B}(p, q, s, t)$, $\alpha''(G, 4) = \alpha''(H, 4)$ iff $\alpha(G, 4) = \alpha(H, 4)$.

Lemma 3.4. For $G \in \mathcal{B}(p,q,s,t)$, if each component of G' is a path, then

$$\alpha''(G,4) = (2^{p-3} - 2^{q-3})\beta_2(G',A') - 3p_4(G') - p_5(G').$$

Proof. It follows from Lemmas 3.1-3.3.

For a graph G with $uv \notin E(G)$, let G + uv (resp. $G \cdot uv$) denote the graph obtained from G by adding the edge uv (resp. by identifying u and v). For any vertex set $A \subseteq V(G)$, let G - A denote the graph obtained from G by deleting all vertices in A and all edges incident to vertices in A.

For two disjoint graphs G and H, let G + H denote the graph with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H) \cup \{xy | x \in V(G), y \in V(H)\}$.

Lemma 3.5. For a bipartite graph G = (A, B; E), if uvw is a path in G' with $d_{G'}(u) = 1$ and $d_{G'}(v) = 2$, then for any $k \ge 2$,

$$\alpha(G,k) = \alpha(G + uv, k) + \alpha(G - \{u,v\}, k-1) + \alpha(G - \{u,v,w\}, k-1).$$

Proof. Since $P(G, \lambda) = P(G + uv, \lambda) + P(G \cdot uv, \lambda)$, we have

$$\alpha(G,k) = \alpha(G + uv, k) + \alpha(G \cdot uv, k).$$

Let x be the vertex in $G \cdot uv$ produced by identifying u and v. Notice that x is adjacent to all vertices in $V(G \cdot uv) - \{x, w\}$. Thus $G \cdot uv + xw = K_1 + (G - \{u, v\})$ and $G \cdot uv \cdot xw = K_1 + (G - \{u, v, w\})$. We also observe that for any graph H, $\alpha(K_1 + H, k) = \alpha(H, k - 1)$, since

$$P(K_1 + H, \lambda) = \lambda P(H, \lambda - 1).$$

Hence

α

$$(G \cdot uv, k) = \alpha(G \cdot uv + xw, k) + \alpha(G \cdot uv \cdot xw, k)$$

= $\alpha(K_1 + (G - \{u, v\}), k) + \alpha(K_1 + (G - \{u, v, w\}), k)$
= $\alpha(G - \{u, v\}, k - 1) + \alpha(G - \{u, v, w\}, k - 1).$

The lemma is then obtained. \Box

Theorem 3.1. Let p,q and s be integers with $p \ge q \ge 3$ and $0 \le s \le q - 1$. For every $G \in \bigcup_{t=1}^{4} \mathscr{B}(p,q,s,t)$, if G is 2-connected, then G is χ -unique.

Proof. By Theorem 1.3, $\mathscr{B}(p,q,s,t) \cap \mathscr{K}_2^{-s}(p,q)$ is χ -closed for each $t \ge 0$. To show that every 2-connected graph in $\mathscr{B}(p,q,s,t)$ is χ -unique, it suffices to show that for every two graphs G and H in $\mathscr{B}(p,q,s,t)$, if $G \ncong H$, then $\alpha(G,4) \neq \alpha(H,4)$ or $\alpha(G,5) \neq \alpha(H,5)$. Recall that for $G, H \in \mathscr{B}(p,q,s,t)$, $\alpha''(G,4) \neq \alpha''(H,4)$ iff $\alpha(G,4) \neq \alpha(H,4)$.

For each t = 1, 2, 3, 4, the graphs in $\mathscr{B}(p, q, s, t)$ are named as $G_{t,1}, G_{t,2}, ...$, and are shown in a table together with the values $\alpha''(G_{t,1}), \alpha''(G_{t,2}), ...$ For each graph $G_{t,i}$, if every component of $G'_{t,i}$ is a path, then $\alpha''(G_{t,i}, 4)$ can be obtained by Lemma 3.4; otherwise, we must first find $\alpha'(G_{t,i}, 4)$ by Lemma 3.1, and then find $\alpha''(G_{t,i}, 4)$ by (7).

(1) $\mathscr{B}(p,q,s,1)$: The set $\mathscr{B}(p,q,s,1)$ includes two graphs by Theorem 2.1, $G_{1,1}$ and $G_{1,2}$ (see Table 1). Notice that $\alpha''(G_{1,1},4) \neq \alpha''(G_{1,2},4)$ when $p \neq q$. But when p = q, $G_{1,1} \cong G_{1,2}$.

(2) $\mathscr{B}(p,q,s,2)$: The set $\mathscr{B}(p,q,s,2)$ includes four graphs by Theorem 2.1, $G_{2,1}$, $G_{2,2}, G_{2,3}$ and $G_{2,4}$ (see Table 2). Notice that only $\alpha''(G_{2,1},4)$ is odd. If p > q, the three values $\alpha''(G_{2,2},4)$, $\alpha''(G_{2,3},4)$ and $\alpha''(G_{2,4},4)$ are distinct. If p = q, then $G_{2,2} \cong G_{2,3}$ and we shall show that $\alpha(G_{2,3},5) > \alpha(G_{2,4},5)$. When p = q, by Lemma 3.5

name of graph	graphs $G'_{1,i}$ $(G'_{1,i} = K_{p,q} - G_{1,i})$ (A = p, B = q)	$\alpha''(G_{1,i},4)$	conditions on s
$G_{1,1}$	$\bigvee \qquad \bigvee \qquad$	0	$2 \le s \le q-1$
$G_{1,2}$	$\int \int $	$2^{p-3} - 2^{q-3}$	$2 \le s \le q-1$

Table 2 $\mathscr{B}(p,q,s,2)$

name of graph	graphs $G'_{2,i}$ $(G'_{2,i} = K_{p,q} - G_{2,i})$ (A = p, B = q)	$\alpha''(G_{2,i},4)$	conditions on s
$G_{2,1}$	$ \begin{array}{c} s-3 \\ \bullet \\ \bullet \\ B \end{array} $	$(2^{p-3} - 2^{q-3}) - 3$	$3 \le s \le q-1$
G _{2,2}	$ \begin{array}{c} s - 4 \\ I \\$	0	$4 \le s \le q - 1$
G _{2,3}	$\begin{array}{c} v_1 & s-4 \\ \vdots & \vdots & \vdots \\ w_1 u_1 & \vdots & \vdots \\ \end{array} \\ \end{array} \\ \begin{array}{c} a \\ B \\ B \end{array} $	$2(2^{p-3}-2^{q-3})$	$4 \le s \le q - 1$
G _{2.4}	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$(2^{p-3}-2^{q-3})$	$4 \le s \le q - 1$

and Table 1, we have

$$\begin{aligned} \alpha(G_{2,3},5) - \alpha(G_{2,4},5) \\ &= \alpha(G_{2,3} + u_1v_1,5) + \alpha(G_{2,3} - \{u_1,v_1\},4) + \alpha(G_{2,3} - \{u_1,v_1,w_1\},4) \\ &- (\alpha(G_{2,4} + u_2v_2,5) + \alpha(G_{2,4} - \{u_2,v_2\},4) + \alpha(G_{2,4} - \{u_2,v_2,w_2\},4)) \\ &= \alpha(G_{2,3} - \{u_1,v_1,w_1\},4) - \alpha(G_{2,4} - \{u_2,v_2,w_2\},4) \\ &= \alpha''(G_{2,3} - \{u_1,v_1,w_1\},4) - \alpha''(G_{2,4} - \{u_2,v_2,w_2\},4) \\ &= 2^{q-4} - 2^{q-5} \\ &> 0, \end{aligned}$$
(8)

since $G_{2,3} + u_1v_1 \cong G_{2,4} + u_2v_2$, $G_{2,3} - \{u_1, v_1\} \cong G_{2,4} - \{u_2, v_2\}$, and both $G_{2,3} - \{u_1, v_1, w_1\}$ and $G_{2,4} - \{u_2, v_2, w_2\}$ belong to $\mathscr{B}(q-1, q-2, s-2, 1)$.

(3) $\mathscr{B}(p,q,s,3)$: The set $\mathscr{B}(p,q,s,3)$ contains eight graphs by Theorem 2.1, $G_{3,1}$, $G_{3,2},\ldots,G_{3,8}$ (see Table 3). Notice that $\alpha''(G_{3,i},4)$ is odd when $1 \le i \le 4$ and even when $i \ge 5$. Thus $\alpha''(G_{3,i},4) \ne \alpha''(G_{3,j},4)$ if $1 \le i \le 4$ and $5 \le j \le 8$. Observe that $\alpha''(G_{3,i},4) + 7$ contains a factor 2^{q-3} for i = 1, 2, but no factor 8 for i = 3, 4. Thus $\alpha''(G_{3,i},4) \ne \alpha''(G_{3,j},4)$ for all i = 1, 2 and all j = 3, 4. When p > q, $\alpha''(G_{3,1},4) \ne \alpha''(G_{3,2},4)$ and $\alpha''(G_{3,3},4) \ne \alpha''(G_{3,4},4)$. When p = q, $G_{3,1} \cong G_{3,2}$ and $G_{3,3} \cong G_{3,4}$.

For i = 5, ..., 8, the $\alpha''(G_{4,i}, 4)$'s are distinct if p > q. If p = q, then $G_{3,5} \cong G_{3,8}$ and $G_{3,6} \cong G_{3,7}$, and by using the method in (8), we have

$$\alpha(G_{3,7},5) - \alpha(G_{3,8},5) = \alpha''(G_{3,7} - \{u_1, v_1, w_1\}, 4) - \alpha''(G_{3,8} - \{u_2, v_2, w_2\}, 4)$$

= -2^{q-4} < 0.

(4) $\mathscr{B}(p,q,s,4)$: The set $\mathscr{B}(p,q,s,4)$ has 16 graphs by Theorem 2.1, $G_{4,1}, G_{4,2}, \ldots, G_{4,16}$ (see Table 4). Partition $\mathscr{B}(p,q,s,4)$ into subsets:

$$\begin{split} \mathscr{S}_{1} &= \{G_{4,1}\}, \\ \mathscr{S}_{2} &= \{G_{4,2}, G_{4,3}, G_{4,4}, G_{4,5}\}, \\ \mathscr{S}_{3} &= \{G_{4,6}, G_{4,7}, G_{4,8}\}, \\ \mathscr{S}_{4} &= \{G_{4,9}\}, \\ \mathscr{S}_{5} &= \{G_{4,10}, G_{4,11}\}, \\ \mathscr{S}_{6} &= \{G_{4,12}, G_{4,13}, G_{4,14}, G_{4,15}, G_{4,16}\} \end{split}$$

For non-empty sets W_1, \ldots, W_k of graphs, let $\eta(W_1, \ldots, W_k) = 0$ if $\alpha(G_1, 4) \neq \alpha(G_2, 4)$ for every two graphs $G_1 \in W_i$ and $G_2 \in W_j$, where $i \neq j$, and let $\eta(W_1, \ldots, W_k) = 1$ otherwise.

Table 3 $\mathscr{B}(p,q,s,3)$

name of graph	graphs $G'_{3,i}$ $(G'_{3,i} = K_{p,q} - G_{3,i}$ (A = p, B = q) A = -4	$)^{\alpha''(G_{3,i},4)}$	$\begin{array}{c} \text{conditions on} \\ s \end{array}$
$G_{3,1}$	$ \begin{array}{c} A \\ B \end{array} \left[\begin{array}{c} s - 4 \\ \\ \end{array} \right] \cdots \end{array} $	$(2^{p-3}-2^{q-3})$ -7	$4 \le s \le q - 1$
$G_{3,2}$	$A \qquad \qquad$	$2(2^{p-3} - 2^{q-3}) - 7$	$4 \le s \le q-1$
$G_{3,3}$	$A \\ B \\ M \\ M$	$2(2^{p-3} - 2^{q-3}) -3$	$5 \le s \le q - 1$
$G_{3,4}$	$A \\ B \\ M \\ M$	$(2^{p-3}-2^{q-3})$ -3	$5 \le s \le q-1$
$G_{3,5}$	$A \xrightarrow{s-6} B \xrightarrow{s-6} \dots$	0	$6 \le s \le q-1$
G _{3,6}	$A \qquad \qquad$	$(2^{p-3}-2^{q-3})$	$6 \le s \le q - 1$
$G_{3,7}$		$2(2^{p-3}-2^{q-3})$	$6 \le s \le q - 1$
$G_{3,8}$	$A^{v_2}_{B}_{w_2u_2} A A^{v_2}_{w_2u_2} A^{v_3}_{w_2u_2} A^{v_3}_{w_2u_2$	$3(2^{p-3}-2^{q-3})$	$6 \le s \le q - 1$

The values of $\alpha''(G_{4,10}, 4)$ and $\alpha''(G_{4,11}, 4)$ are not given by Lemma 3.4, but can be obtained by Lemma 3.1 and (7). We have

$$\alpha''(G_{4,10},4) = s(2^{p-2} + 2^{q-2} - 2) + 3(2^{p-3} + 2^{q-2} - 2) + (2^{p-4} + 2^{q-2} - 2) + \binom{s}{2} - 3 + 4(s-3) - s(2^{p-2} + 2^{q-2} - 2) - 4(2^{p-3} + 2^{q-2} - 2) - \binom{s+4}{2} + 12 = -2^{p-4} - 9.$$

Table 4 $\mathscr{B}(p,q,s,4)$

$\mathcal{B}(p,q,s,4)$)	1	
name of graph	graphs $G'_{4,i}$ $(G'_{4,i} = K_{p,q} - G_{4,i})$ (A = p, B = q)	$\alpha''(G_{4,i},4)$	$\begin{array}{c} \text{conditions on} \\ s \end{array}$
$G_{4,1}$	$\begin{array}{cccc} s-5 & A \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & $	$2(2^{p-3} - 2^{q-3}) -11$	$5 \le s \le q - 1$
$G_{4,2}$	$\begin{array}{c} s-6 & A \\ \downarrow \downarrow$	$(2^{p-3}-2^{q-3})$ -7	$6 \le s \le q - 1$
$G_{4,3}$	$\begin{bmatrix} a_1 c_1 & s-6 & A \\ \\ \\ \\ b_1 d_1 & \\ \end{bmatrix} \begin{bmatrix} s-6 & A \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$2(2^{p-3} - 2^{q-3}) -7$	$6 \le s \le q - 1$
$G_{4,4}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$2(2^{p-3} - 2^{q-3}) -7$	$6 \le s \le q - 1$
$G_{4,5}$	$b_3 s - 6 \qquad A \\ \dots \qquad B \qquad B$	$3(2^{p-3} - 2^{q-3}) -7$	$6 \le s \le q - 1$
$G_{4,6}$	$\begin{array}{c c} s-7 \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$\frac{3(2^{p-3}-2^{q-3})}{-3}$	$7 \le s \le q - 1$
G _{4,7}	$b_4 \qquad \qquad s - 7 \\ A \\ a_4 c_4 \qquad \qquad$	$2(2^{p-3} - 2^{q-3}) -3$	$7 \le s \le q - 1$
$G_{4,8}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$(2^{p-3} - 2^{q-3}) -3$	$7 \le s \le q - 1$

Similarly, we find $\alpha''(G_{4,11}, 4) = 2^{p-1} - 9 \cdot 2^{q-4} - 9$. *Claim* 1. $\eta(\mathscr{S}_1, ..., \mathscr{S}_6) = 0$:

- (a) If $s \leq 4$, only \mathscr{S}_5 is non-empty.
- (b) For $s \ge 5$, $\alpha''(G,4)$ is odd if $G \in \mathscr{S}_1 \cup \mathscr{S}_2 \cup \mathscr{S}_3 \cup \mathscr{S}_5$ and even if $G \in \mathscr{S}_4 \cup \mathscr{S}_6$. Hence $\eta(\mathscr{S}_1 \cup \mathscr{S}_2 \cup \mathscr{S}_3 \cup \mathscr{S}_5, \mathscr{S}_4 \cup \mathscr{S}_6) = 0$.

name of graph	graphs $G'_{4,i}$ $(G'_{4,i} = K_{p,q} - G_{4,i})$ (A = p, B = q)	$\alpha''(G_{4,i},4)$	$\begin{array}{c} \text{conditions on} \\ s \end{array}$
$G_{4,9}$	(A = p, B = q)	$2(2^{p-3}-2^{q-3}) -6$	$6 \le s \le q - 1$
$G_{4,10}$	$\begin{array}{c} & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$	-2^{p-4} -9	$3 \le s \le q-1$
$G_{4,11}$	$ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & $	$(2^{p-1} - 9 \cdot 2^{q-4}) -9$	$3 \le s \le q - 1$
$G_{4,12}$		$4(2^{p-3} - 2^{q-3})$	$8 \le s \le q - 1$
$G_{4,13}$	$\begin{array}{c c} s - 8 \\ \hline \\ \end{array} \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$3(2^{p-3}-2^{q-3})$	$8 \le s \le q-1$
$G_{4,14}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$2(2^{p-3}-2^{q-3})$	$8 \le s \le q-1$
$G_{4,15}$	$ \begin{array}{c} c_8 a_7 c_7 \\ \hline \\ a_8 b_8 b_7 \end{array} \begin{array}{c} s - 8 \\ \hline \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$(2^{p-3}-2^{q-3})$	$8 \le s \le q - 1$
$G_{4,16}$	$\begin{array}{c} a_8 b_8 b_7 \\ a_9 c_9 \\ b_9 \end{array} \xrightarrow{s - 8} A \\ b_9 \end{array}$	0	$8 \le s \le q - 1$

Table 4. (continued)

- (c) For $s \ge 5$, we have $q \ge 6$ and 2^{q-4} is a factor of $\alpha''(G,4) + 9$ for every $G \in \mathscr{S}_5$, but 4 is not a factor of $\alpha''(G,4) + 9$ for every $G \in \mathscr{S}_1 \cup \mathscr{S}_2 \cup \mathscr{S}_3$. Hence $\eta(\mathscr{S}_1 \cup \mathscr{S}_2 \cup \mathscr{S}_3, \mathscr{S}_5) = 0$.
- (d) For $s \ge 5$, we have $q \ge 6$, and 2^{q-2} is a factor of $\alpha''(G,4) + 11$ for $G \in \mathscr{S}_1$, 2^3 is not a factor of $\alpha''(G,4) + 11$ for $G \in \mathscr{S}_2$, and 2^3 is a factor of $\alpha''(G,4) + 11$ but 2^4 is not for $G \in \mathscr{S}_3$. Hence $\eta(\mathscr{S}_1, \mathscr{S}_2, \mathscr{S}_3) = 0$.

(e) For s≥6, we have q≥7, and 2² is a factor of α"(G,4) for every G ∈ 𝒴₆ but it is not for every G ∈ 𝒴₄. Hence η(𝒴₄, 𝒴₆) = 0.

By (b)–(e), Claim 1 holds.

The remaining work is to compare every two graphs in each \mathscr{S}_i . Both \mathscr{S}_1 and \mathscr{S}_4 contain only one graph. For \mathscr{S}_5 , when p=q, $G_{4,10} \cong G_{4,11}$; when p > q, $\alpha''(G_{4,10}, 4) \neq \alpha''(G_{4,11}, 4)$. In the following, we shall study the three sets \mathscr{S}_2 , \mathscr{S}_3 and \mathscr{S}_6 .

(4.1) \mathscr{S}_3 : When p > q, $\alpha''(G_{4,6}, 4) > \alpha''(G_{4,7}, 4) > \alpha''(G_{4,8}, 4)$. When p = q, we have $G_{4,6} \cong G_{4,8}$ and by the method used in (8),

$$\alpha(G_{4,7},5) - \alpha(G_{4,8},5)$$

$$= \alpha(G_{4,7} - \{a_4, b_4, c_4\}, 4) - \alpha(G_{4,8} - \{a_5, b_5, c_5\}, 4) = -2^{q-5} \neq 0.$$

(4.2) \mathscr{S}_6 : When p > q,

$$\alpha''(G_{4,12},4) > \alpha''(G_{4,13},4) > \alpha''(G_{4,14},4) > \alpha''(G_{4,15},4) > \alpha''(G_{4,16},4)$$

When p = q, $G_{4,12} \cong G_{4,16}$, $G_{4,13} \cong G_{4,15}$ and by the method used in (8),

 $\alpha(G_{4,14},5) - \alpha(G_{4,15},5) = -2^{q-5},$

$$\alpha(G_{4,15},5) - \alpha(G_{4,16},5) = -3 \times 2^{q-5} < 0$$

(4.3) \mathscr{G}_2 : Observe that $\alpha''(G_{4,3},4) = \alpha''(G_{4,4},4)$. When p > q,

$$\alpha''(G_{4,2},4) < \alpha''(G_{4,3},4) < \alpha''(G_{4,5},4).$$

When p=q, $G_{4,2} \cong G_{4,5}$ and $G_{4,3} \cong G_{4,4}$. In the following, we shall compare $\alpha(G_{4,4},5)$ with $\alpha(G_{4,5},5)$ for p=q, and $\alpha(G_{4,3},5)$ with $\alpha(G_{4,4},5)$ for p>q.

By Lemma 3.5, when p = q, by the method used in (8),

$$\alpha(G_{4,4},5) - \alpha(G_{4,5},5)$$

$$= \alpha(G_{4,4} - \{a'_2,b'_2,c'_2\},4) - \alpha(G_{4,5} - \{a_3,b_3,c_3\},5)$$

$$= -2^{q-5}$$

$$< 0.$$

For $G_{4,3}$ and $G_{4,4}$, we prove the following claim: *Claim* 2. $\alpha(G_{4,3},5) - \alpha(G_{4,4},5) = 3(2^{p-5} - 2^{q-5})$. By Lemma 3.5,

$$\begin{aligned} \alpha(G_{4,3},5) \\ &= \alpha(G_{4,3} + a_1b_1,5) + \alpha(G_{4,3} - \{a_1,b_1\},4) + \alpha(G_{4,3} - \{a_1,b_1,c_1\},4) \\ &= \alpha(G_{4,3} + a_1b_1 + b_1c_1,5) + \alpha(G_{4,3} - \{b_1,c_1\},4) + \alpha(G_{4,3} - \{b_1,c_1,d_1\},4) \\ &+ \alpha(G_{4,3} - \{a_1,b_1\},4) + \alpha(G_{4,3} - \{a_1,b_1,c_1\},4), \end{aligned}$$

and

$$\begin{aligned} \alpha(G_{4,4},5) \\ &= \alpha(G_{4,4} + a_2b_2,5) + \alpha(G_{4,4} - \{a_2,b_2\},4) + \alpha(G_{4,4} - \{a_2,b_2,c_2\},4) \\ &= \alpha(G_{4,4} + a_2b_2 + b_2c_2,5) + \alpha(G_{4,4} - \{b_2,c_2\},4) + \alpha(G_{4,4} - \{b_2,c_2,d_2\},4) \\ &+ \alpha(G_{4,4} - \{a_2,b_2\},4) + \alpha(G_{4,4} - \{a_2,b_2,c_2\},4). \end{aligned}$$

Observe that

$$G_{4,3} + a_1b_1 + b_1c_1 \cong G_{4,4} + a_2b_2 + b_2c_2,$$

$$\alpha(G_{4,3} - \{b_1, c_1\}, 4) - \alpha(G_{4,4} - \{b_2, c_2\}, 4) = 2^{p-4} - 2^{q-4},$$

$$G_{4,3} - \{a_1, b_1\} \cong G_{4,4} - \{a_2, b_2\}.$$
(9)

Since

$$\begin{split} & G_{4,3} - \{a_1, b_1, c_1\} \in \mathscr{B}(p-2, q-1, s-3, 1), \\ & G_{4,4} - \{b_2, c_2, d_2\} \in \mathscr{B}(p-2, q-1, s-4, 1), \end{split}$$

by Lemma 3.1, we have

$$\alpha(G_{4,3} - \{a_1, b_1, c_1\}, 4) - \alpha(G_{4,4} - \{b_2, c_2, d_2\}, 4)$$

$$= \alpha'(G_{4,3} - \{a_1, b_1, c_1\}, 4) - \alpha'(G_{4,4} - \{b_2, c_2, d_2\}, 4)$$

$$= (s - 3)(2^{p-4} + 2^{q-3} - 2) + (2^{p-4} + 2^{q-4} - 2) + {\binom{s-3}{2}} - 1 + (s - 5)$$

$$- ((s - 4)(2^{p-4} + 2^{q-3} - 2) + (2^{p-5} + 2^{q-3} - 2)$$

$$+ {\binom{s-4}{2}} - 1 + (s - 6)$$

$$= 2^{p-4} + 2^{p-5} + 2^{q-4} + s - 5.$$
(10)

Similarly, since

$$\begin{aligned} &G_{4,3} - \{b_1, c_1, d_1\} \in \mathscr{B}(p-1, q-2, s-4, 1), \\ &G_{4,4} - \{a_2, b_2, c_2\} \in \mathscr{B}(p-1, q-2, s-3, 1), \end{aligned}$$

by Lemma 3.1, we have

$$\begin{aligned} \alpha(G_{4,3} - \{b_1, c_1, d_1\}, 4) &- \alpha(G_{4,4} - \{a_2, b_2, c_2\}, 4) \\ &= \alpha'(G_{4,3} - \{b_1, c_1, d_1\}, 4) - \alpha'(G_{4,4} - \{a_2, b_2, c_2\}, 4) \\ &= (s-4)(2^{p-3} + 2^{q-4} - 2) + (2^{p-3} + 2^{q-5} - 2) + \binom{s-4}{2} - 1 + (s-6) \end{aligned}$$

name of graph	graphs R'_i $(R'_i = K_{p,q} - R_i)$ (A = p, B = q)	$\alpha'(R_i, 4) -4(2^{p-2} + 2^{q-2} - 2)$
R_1		$2(2^{p-2} + 2^{q-3} - 2) +2(2^{p-3} + 2^{q-2} - 2) +(2^{p-3} + 2^{q-3} - 2) +2$
R_2		$3(2^{p-2} + 2^{q-3} - 2) +(2^{p-3} + 2^{q-2} - 2) +(2^{p-2} + 2^{q-4} - 2) +3$
R_3		$3(2^{p-3} + 2^{q-2} - 2) +(2^{p-2} + 2^{q-3} - 2) +(2^{p-4} + 2^{q-2} - 2) +3$

$$-\left((s-3)(2^{p-3}+2^{q-4}-2)+(2^{p-4}+2^{q-4}-2)\right) + \left(\frac{s-3}{2}\right) - 1 + (s-5)\right)$$
$$= -2^{p-4} - 2^{q-4} - 2^{q-5} - s + 5.$$
(11)

By (9)–(11), Claim 2 is proved. \Box

Finally, we conclude that for every two graphs $G_1, G_2 \in \mathscr{B}(p, q, s, 4)$, if $G_1 \not\cong G_2$, then either $\alpha''(G_1, 4) \neq \alpha''(G_2, 4)$ or $\alpha(G_1, 5) \neq \alpha(G_2, 5)$. This completes the proof of the result. \Box

Theorem 3.2. For any $G \in \mathscr{K}_2^{-s}(p,q)$ with $p \ge q \ge 3$ and $0 \le s \le \min\{4, q-1\}$, G is χ -unique.

Proof. Let $G \in \mathscr{K}_2^{-s}(p,q)$. If $s \leq 3$, then by Theorem 1.2, $\alpha'(G,3) \leq 2^s - 1 \leq s + 4$. Thus by Theorem 3.1, *G* is χ -unique if $s \leq 3$. Now suppose that s = 4. We have $q \geq 5$. If $\Delta(G') \in \{1,4\}$, then $\alpha'(G,3) = s$ or $\alpha'(G,3) = 2^s - 1$ and thus *G* is χ -unique by Theorem 1.4. If $\Delta(G') = 2$ and $G' \not\cong K_{2,2}$, then $\alpha'(G,3) \leq s + 3$ by Corollary (i) to Lemma 2.3, and thus *G* is χ -unique by Theorem 3.1. If $G' = K_{1,3} \cup K_2$, then $\alpha'(G,3)=8=s+4$, and thus *G* is χ -unique by Theorem 3.1. Otherwise, there are only two possible structures for *G'*. They are shown in Table 5. For $i=1,2,3, \alpha'(R_i,4)$ is obtained by Lemma 3.1. From Table 5, observe that $\alpha'(R_i,4)$ is even when i=1 and odd when i=2,3. When p=q, $R_2 \cong R_3$; when p>q, $\alpha'(R_2,4)-\alpha'(R_3,4)=7(2^{p-4}-2^{q-4})>0$. Hence G is χ -unique when $\Delta(G') \in \{2,3\}$. This completes the proof. \Box

4. For further reading

The following references are also of interest to the reader: [3,4].

References

- F.M. Dong, K.M. Koh, K.L. Teo, C.H.C. Little, M.D. Hendy, Sharp bounds for the number of 3-partitions and the chromaticity of bipartite graphs, submitted.
- [2] R.E. Giudici, E. Lima de Sá, Chromatic uniqueness of certain bipartite graphs, Congr. Numer. 76 (1990) 69–75.
- [3] K.M. Koh, K.L. Teo, The search for chromatically unique graphs, Graphs Combin. 6 (1990) 259-285.
- [4] K.M. Koh, K.L. Teo, The search for chromatically unique graphs II, Discrete Math. 172 (1997) 59–78.
- [5] R.C. Read, W.T. Tutte, Chromatic polynomials, in: L.W. Beineke, R.J. Wilson (Eds.), Selected Topics in Graph Theory, Vol. 3, Academic Press, New York, 1988, pp. 15–42.
- [6] C.P. Teo, K.M. Koh, The chromaticity of complete bipartite graphs with at most one edge deleted, J. Graph Theory 14 (1990) 89–99.