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Abstract

For integers p; q; s with p¿q¿2 and s¿0, let K−s
2 (p; q) denote the set of 2-connected

bipartite graphs which can be obtained from Kp;q by deleting a set of s edges. In this paper,
we prove that for any graph G ∈ K−s

2 (p; q) with p¿q¿3 and 16s6q− 1, if the number of
3-independent partitions of G is at most 2p−1 + 2q−1 + s + 2, then G is �-unique. It follows
that any graph in K−s

2 (p; q) is �-unique if p¿q¿3 and 16s6min{q−1; 4}. c© 2000 Elsevier
Science B.V. All rights reserved.
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1. Introduction

All graphs considered here are simple graphs. For a graph G, let V (G), E(G), e(G),
�(G), �(G) and P(G; �) be the vertex set, edge set, size, minimum degree, maximum
degree and the chromatic polynomial of G, respectively.
For integers p; q; s with p¿q¿2 and s¿0, let K−s(p; q) (resp. K−s

2 (p; q)) denote
the set of connected (resp. 2-connected) bipartite graphs which can be obtained from
Kp;q by deleting a set of s edges. The following result was obtained in [1].

Lemma 1.1. If p¿q¿3 and s6p+q−4; then for any G ∈ K−s(p; q) with �(G)¿2;
G is 2-connected.

For a bipartite graph G = (A; B;E) with bipartition A and B and edge set E, let
G′ = (A′; B′;E′) be the bipartite graph induced by the edge set E′ = {xy|xy 6∈ E; x ∈
A; y ∈ B}, where A′ ⊆A and B′ ⊆B. We write G′=Kp;q−G, where p= |A| and q= |B|.
Observe that �(G) = min(q− �(G′); p− �(G′)).
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Corollary 1.1. For p¿q¿3 and 06s6q − 1; if G ∈ K−s(p; q) − K−s
2 (p; q); then

s= q− 1 and �(G′) = q− 1.

Two graphs G and H are said to be chromatically equivalent (or simply �-equivalent),
symbolically G ∼ H , if P(G; �)=P(H; �). The equivalence class determined by G un-
der ∼ is denoted by [G]. A graph G is chromatically unique (or simply �-unique) if
H ∼= G whenever H ∼ G. For a set G of graphs, if [G]⊆G for every G ∈ G, then G

is said to be �-closed. In [1], we established the following result.

Theorem 1.1. For integers p; q; s with p¿q¿2 and 06s6q−1;K−s
2 (p; q) is �-closed.

The complete bipartite graph Kp;q is �-unique for any p¿q¿2 (see [2,6]). In
this paper, we shall search for �-unique graphs or �-equivalence classes from the set
K−s

2 (p; q), where p¿q¿3 and 06s6q−1. Hence, in this paper, we �x the following
conditions for p; q and s:

p¿q¿3 and 06s6q− 1:
For a graph G and a positive integer k, a partition {A1; A2; : : : ; Ak} of V (G) is called

a k-independent partition in G if each Ai is a non-empty independent set of G. Let
�(G; k) denote the number of k-independent partitions in G. For any bipartite graph
G = (A; B;E), de�ne

�′(G; 3) = �(G; 3)− (2|A|−1 + 2|B|−1 − 2):
In [1], we found the following sharp bounds for �′(G; 3):

Theorem 1.2. For G ∈ K−s(p; q) with p¿q¿3 and 06s6q− 1;
s6�′(G; 3)62s − 1;

where �′(G; 3) = s i� �(G′) = 1 and �′(G; 3) = 2s − 1 i� �(G′) = s.

For t = 0; 1; 2; : : : ; let B(p; q; s; t) denote the set of graphs G ∈ K−s(p; q) with
�′(G; 3) = s+ t. Thus, K−s(p; q) is partitioned into the following subsets:

B(p; q; s; 0); B(p; q; s; 1); : : : ;B(p; q; s; 2s − s− 1):
Assume that B(p; q; s; t) = ∅ for t ¿ 2s − s− 1.

Lemma 1.2. For p¿q¿3 and 06s6q− 1; if 06t62q−1 − q− 1; then
B(p; q; s; t)⊆K−s

2 (p; q):

Proof. We consider the following two cases.
Case 1: s6q− 2. By the corollary to Lemma 1.1, K−s(p; q)=K−s

2 (p; q) and thus
B(p; q; s; t)⊆K−s

2 (p; q) for all t.
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Case 2: s= q− 1. If 06t62q−1− q− 1, by Theorem 1.2, for any G ∈ B(p; q; s; t),
we have �(G′)6q − 2 and thus by the corollary to Lemma 1.1, G is 2-connected.
Hence B(p; q; s; t)⊆K−s

2 (p; q) if 06t62
q−1 − q− 1.

For any graph G, we have P(G; �)=
∑

k¿1 �(G; k)�(�− 1) · · · (�− k +1) (see [5]).
If G ∼ H , then �(G; k)=�(H; k) for k=1; 2; : : : . Thus, by Theorem 1.1, the following
result is obtained.

Theorem 1.3. The set B(p; q; s; t) ∩K−s
2 (p; q) is �-closed for all t¿0.

Corollary 1.2. If 06t62q−1 − q− 1; then B(p; q; s; t) is �-closed.

We have proved in [1] the following result.

Theorem 1.4. For any graph G ∈ B(p; q; s; 0)∪B(p; q; s; 2s−s−1); if G is 2-connected;
then G is �-unique.

In this paper, we shall show that every 2-connected graph in B(p; q; s; t) is
�-unique for 16t64. Further, we prove that every graph in K−s

2 (p; q) is �-unique
if 16s6min{4; q− 1}.

2. B(p; q; s; t) for t64

In this section, we shall study the structure of graphs in B(p; q; s; t) for t64.

Lemma 2.1. For G = (A; B;E) ∈ K−s(p; q) with |A|= p and |B|= q; we have
e(G′) =

∑
x∈A′

dG′(x) =
∑
y∈B′

dG′(y) = s:

For a graph G and x ∈ V (G), let NG(x) or simply N (x) denote the set of vertices
y such that xy ∈ E(G). Let G = (A; B;E) be a graph in K−s(p; q) with |A|= p and
|B|=q. Since s6q−16p−1, there exist vertices u ∈ A and v ∈ B such that N (u)=B
and N (v) = A. Thus, for any independent set Q in G, if u ∈ Q, then Q⊆A; if v ∈ Q,
then Q⊆B. Therefore for any 3-independent partition {A1; A2; A3} in G, there are at
least two Ai’s, say A2; A3, such that A2⊆A and A3⊆B. Hence G has only two types
of 3-independent partitions {A1; A2; A3}:
Type 1: either A1 ∪ A2 = A, A3 = B or A1 ∪ A3 = B, A2 = A.
Type 2: A1 ∩ A 6= ∅, A1 ∩ B 6= ∅, A2 = A− A1 and A3 = B− A1.
The number of 3-independent partitions of Type 1 is 2p−1 + 2q−1− 2. Let 	(G) be

the set of 3-independent partitions {A1; A2; A3} of Type 2 in G. Thus |	(G)|=�′(G; 3)
by the de�nition of �′(G; 3). Let


(G) = {Q|Q is an independent set in G with Q ∩ A 6= ∅; Q ∩ B 6= ∅}:
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Since s6q − 16p − 1, A − Q 6= ∅ and B − Q 6= ∅ for any Q ∈ 
(G). This implies
that Q ∈ 
(G) i� {Q; A− Q; B− Q} ∈ 	(G). The following result is then obtained.

Lemma 2.2. �′(G; 3) = |
(G)| for any G ∈ K−s(p; q).

We consider two special types of sets Q ∈ 
(G): either |Q ∩ A|= 1 or |Q ∩ B|= 1.
Let 
1(G) = {Q ∈ 
(G) | |Q ∩ A|= 1} and 
2(G) = {Q ∈ 
(G) | |Q ∩ B|= 1}. Thus

|
1(G) ∩ 
2(G)|= s;

|
1(G)|=
∑
x∈A′

(2dG′ (x) − 1)¿s;

|
2(G)|=
∑
y∈B′

(2dG′ (y) − 1)¿s: (1)

Let �i(G), or simply �i, denote the number of vertices in G with degree i, and let
ni(G) denote the number of i-cycles in G.

Lemma 2.3. For G = (A; B;E) ∈ K−s(p; q);

�′(G; 3)¿s+
∑
i¿2

�i(G′)(2i − 1− i) + n4(G′); (2)

where equality holds i� |NG′(x) ∩ NG′(y)|62 for every x; y ∈ A′ or x; y ∈ B′.

Proof. The number of Q ∈ 
(G) with |Q ∩ A|= 1 or |Q ∩ B|= 1 is
|
1(G) ∪ 
2(G)|

=− s+
∑

x∈V (G′)

(2dG′ (x) − 1)

=− s+
∑
i¿1

�i(G′)(2i − 1)

=− s+
∑
i¿1

i�i(G′) +
∑
i¿1

�i(G′)(2i − 1− i)

=− s+ 2s+
∑
i¿1

�i(G′)(2i − 1− i)

= s+
∑
i¿2

�i(G′)(2i − 1− i):

Notice that the number of Q’s in 
(G) such that |Q ∩ A| = 2 and |Q ∩ B| = 2 is
exactly the number of 4-cycles in G′. Thus (2) is obtained by Lemma 2.2. The equality
in (2) holds i� there is no Q ∈ 
(G) such that either |Q ∩ A|¿3 and |Q ∩ B|¿2, or
|Q ∩ A|¿2 and |Q ∩ B|¿3, i.e., |NG′(x) ∩ NG′(y)|¿3 for x; y ∈ A′ or x; y ∈ B′.
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Corollary 2.1. For G = (A; B;E) ∈ K−s(p; q);

(i) if �(G′)62; then �′(G; 3) = s+ �2(G′) + n4(G′);
(ii) if �(G′) = 3; then �′(G; 3)¿s+ �2(G′) + 4�3(G′) + n4(G′); where equality holds

i� |NG′(u) ∩ NG′(v)|62 for all u; v ∈ A′ or u; v ∈ B′;
(iii) �′(G; 3)¿2�(G

′) + s− 1− �(G′).

For two disjoint graphs H1 and H2, let H1 ∪ H2 denote the graph with vertex set
V (H1) ∪ V (H2) and edge set E(H1) ∪ E(H2). Let kH = H ∪ · · · ∪ H︸ ︷︷ ︸

k

for k¿1 and let
kH be null if k = 0.

Lemma 2.4. Let G ∈ K−s(p; q). If �′(G; 3) = s+ t6s+ 4; then either

(i) each component of G′ is a path and �2(G′) = t; or
(ii) G′ ∼= K1;3 ∪ (s− 3)K2.

Proof. Since �′(G; 3)6s + 4, �(G′)63 by corollary (iii) to Lemma 2.3. If
�(G′) = 3, then �2(G′) = 0 and �3(G′) = 1 by corollary (ii) to Lemma 2.3, and thus
G′ ∼= K1;3 ∪ (s − 3)K2. If �(G′) = 2, then �2(G′) + n4(G′)64 by corollary (i) to
Lemma 2.3, and thus G′ contains no cycles. Hence when �(G′) = 2, each component
of G′ is a path, and �2(G′) = t by corollary (i) to Lemma 2.3.

Let Pn denote the path with n vertices. By Lemma 2.4, we establish the following
result.

Theorem 2.1. Let G ∈ K−s(p; q) and �′(G; 3) = s+ t; where 06t64. Then

G′ ∈




{sK2} if t = 0;

{P3 ∪ (s− 2)K2} if t = 1;

{P4 ∪ (s− 3)K2; 2P3 ∪ (s− 4)K2} if t = 2;

{P5 ∪ (s− 4)K2; P4 ∪ P3 ∪ (s− 5)K2; 3P3 ∪ (s− 6)K2} if t = 3;

{P6 ∪ (s− 5)K2; P5 ∪ P3 ∪ (s− 6)K2; 2P4 ∪ (s− 6)K2;
P4 ∪ 2P3 ∪ (s− 7)K2; 4P3 ∪ (s− 8)K2; K1;3 ∪ (s− 3)K2} if t = 4;

where H ∪ (s− i)K2 does not exist if s¡ i.

3. Chromaticity of graphs in B(p; q; s; t), t64

In this section, we shall show that each graph in
⋃
16t64 B(p; q; s; t) is �-unique.

For a bipartite graph G=(A; B;E), the number of 4-independent partitions {A1; A2; A3; A4}
with Ai⊆A or Ai⊆B for all i = 1; 2; 3; 4 is



112 F.M. Dong et al. / Discrete Mathematics 224 (2000) 107–124

(2|A|−1 − 1)(2|B|−1 − 1) + 1
3!
(3|A| − 3 · 2|A| + 3) + 1

3!
(3|B| − 3 · 2|B| + 3)

= (2|A|−1 − 2)(2|B|−1 − 2) + 1
2
(3|A|−1 + 3|B|−1)− 2: (3)

Let �′(G; 4)=�(G; 4)− ((2|A|−1−2)(2|B|−1−2)+ 1
2 (3

|A|−1 +3|B|−1)−2). Observe that
for G;H ∈ K−s(p; q), �(G; 4) = �(H; 4) i� �′(G; 4) = �′(H; 4).

Lemma 3.1. For G = (A; B;E) ∈ K−s(p; q) with |A|= p and |B|= q;
�′(G; 4) =

∑
Q∈
(G)

(2p−1−|Q∩A| + 2q−1−|Q∩B| − 2)

+ |{{Q1; Q2}|Q1; Q2 ∈ 
(G); Q1 ∩ Q2 = ∅}|:

Proof. As s6q − 16p − 1, there exist x ∈ A and y ∈ B such that NG(x) = B and
NG(y)=A. Thus, for any 4-independent partition {A1; A2; A3; A4}, there are at least two
Ai’s with Ai⊆A or Ai⊆B. This means that G has only three types of 4-independent
partitions {A1; A2; A3; A4}: for k=0; 1; 2, we call the partition type k if there are exactly
k Ai’s with Ai ∈ 
(G). The number of 4-independent partitions of type 0 is given in
(3). The number of 4-independent partitions of type 1 is∑

Q∈
(G)
(2p−1−|Q∩A| + 2q−1−|Q∩B| − 2)

and the number of 4-independent partitions of type 2 is

|{{Q1; Q2}|Q1; Q2 ∈ 
(G); Q1 ∩ Q2 = ∅}|:
The lemma holds.

For a bipartite graph G = (A; B;E), let �i(G; A) (resp. �i(G; B)) be the number of
vertices in A (resp. B) with degree i.

Remark. For G ∈ B(p; q; s; t), if each component of G′ is a path, then �′(G; 3) = s+
�2(G′) by Corollary 2.1(i) to Lemma 2.3. Thus �2(G′) = t.

Lemma 3.2. For G ∈ B(p; q; s; t); if each component of G′ is a path; then∑
Q∈
(G)

(2p−1−|Q∩A| + 2q−1−|Q∩B| − 2)

= s(2p−2 + 2q−2 − 2) + t(2p−3 + 2q−2 − 2) + (2p−3 − 2q−3)�2(G′; A′):

Proof. Since each component of G′ is a path, |Q|63 for every Q ∈ 
(G). There are
exactly s sets Q in 
(G) with |Q| = 2, there are exactly �2(G′; A′) sets Q in 
(G)
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with |Q∩A|=1 and |Q∩B|=2, and there are exactly �2(G′; B′) sets Q in 
(G) with
|Q ∩ A|= 2 and |Q ∩ B|= 1. Thus∑

Q∈
(G)
(2p−1−|Q∩A| + 2q−1−|Q∩B| − 2)

= s(2p−2 + 2q−2 − 2) + �2(G′; A′)(2p−2 + 2q−3 − 2)

+�2(G′; B′)(2p−3 + 2q−2 − 2)

= s(2p−2 + 2q−2 − 2) + (�2(G′; A′) + �2(G′; B′))(2p−3 + 2q−2 − 2)

+ (2p−3 − 2q−3)�2(G′; A′)

= s(2p−2 + 2q−2 − 2) + �2(G′)(2p−3 + 2q−2 − 2) + (2p−3 − 2q−3)�2(G′; A′):

Since �2(G′) = t, the lemma is obtained.

Let pi(G) denote the number of paths Pi in G.

Lemma 3.3. For G ∈ B(p; q; s; t); if each component of G′ is a path; then

|{{Q1; Q2}|Q1; Q2 ∈ 
(G); Q1 ∩ Q2 = ∅}|

=
(
s+ t
2

)
− 3t − 3p4(G′)− p5(G′):

Proof. Since each component of G′ is a path, |Q|63 for every Q ∈ 
(G). We also
have �2(G′) = t. There are exactly s (resp. t) sets Q in 
(G) with |Q| = 2 (resp.
|Q|= 3). Observe that

|{{Q1; Q2}|Q1; Q2 ∈ 
(G); |Q1|= |Q2|= 2; Q1 ∩ Q2 = ∅}|

= |{{Q1; Q2}|Q1; Q2 ∈ 
(G); |Q1|= |Q2|= 2; |Q1 ∩ Q2|61}|

−|{{Q1; Q2}|Q1; Q2 ∈ 
(G); |Q1|= |Q2|= 2; |Q1 ∩ Q2|= 1}|

=
(
s
2

)
− t: (4)

There are exactly t Q1’s with |Q1| = 3. For each Q1 ∈ 
(G) with |Q1| = 3, there are
exactly s− 2 Q2’s in 
(G) with |Q2|=2 and |Q1 ∩Q2|61. Observe that |Q1 ∩Q2|=1
i� Q1 ∪Q2 induces a path P4 in G′, and that for each path P4 in G′, there are exactly
two pairs Q1; Q2 with |Q1|= 3; |Q2|= 2 and |Q1 ∩Q2|= 1 such that Q1 ∪Q2 induces
this path P4. Thus the number of sets {Q1; Q2} with |Q1|=3; |Q2|=2 and |Q1∩Q2|=1
is 2p4(G′). Hence

|{{Q1; Q2}|Q1; Q2 ∈ 
(G); |Q1|= 3; |Q2|= 2; Q1 ∩ Q2 = ∅}|



114 F.M. Dong et al. / Discrete Mathematics 224 (2000) 107–124

= |{{Q1; Q2}|Q1; Q2 ∈ 
(G); |Q1|= 3; |Q2|= 2; |Q1 ∩ Q2|61}|

− |{{Q1; Q2}|Q1; Q2 ∈ 
(G); |Q1|= 3; |Q2|= 2; |Q1 ∩ Q2|= 1}|

= t(s− 2)− 2p4(G′): (5)

There are exactly ( t2 ) sets {Q1; Q2}, where Q1; Q2 ∈ 
(G), with |Q1| = |Q2| = 3
and Q1 6= Q2. Thus |Q1 ∩ Q2|62 for such Q1; Q2. The number of sets {Q1; Q2} with
|Q1|= |Q2|= 3 and |Q1 ∩ Q2|= 2 is p4(G′), because

(i) |Q1 ∩ Q2|= 2 i� Q1 ∪ Q2 induces a path P4 in G′ and
(ii) for each path P4 in G′, there is only one set {Q1; Q2} with |Q1|= |Q2|= 3 such

that Q1 ∪ Q2 induces this path P4.
Similarly, the number of sets {Q1; Q2} with |Q1| = |Q2| = 3 and |Q1 ∩ Q2| = 1 is

p5(G′). Hence

|{{Q1; Q2}|Q1; Q2 ∈ 
(G); |Q1|= |Q2|= 3; Q1 ∩ Q2 = ∅}|

= |{{Q1; Q2}|Q1; Q2 ∈ 
(G); |Q1|= |Q2|= 3; |Q1 ∩ Q2|62}|

−|{{Q1; Q2}|Q1; Q2 ∈ 
(G); |Q1|= |Q2|= 3; |Q1 ∩ Q2|= 2}|

−|{{Q1; Q2}|Q1; Q2 ∈ 
(G); |Q1|= |Q2|= 3; |Q1 ∩ Q2|= 1}|

=
(
t
2

)
− p4(G′)− p5(G′): (6)

By (4)–(6), the result is obtained.

For G ∈ B(p; q; s; t), de�ne

�′′(G; 4) = �′(G; 4)− (s(2p−2 + 2q−2 − 2) + t(2p−3 + 2q−2 − 2)
+ (s+ t)(s+ t − 1)=2− 3t): (7)

Observe that for G;H ∈ B(p; q; s; t); �′′(G; 4) = �′′(H; 4) i� �(G; 4) = �(H; 4).

Lemma 3.4. For G ∈ B(p; q; s; t); if each component of G′ is a path; then

�′′(G; 4) = (2p−3 − 2q−3)�2(G′; A′)− 3p4(G′)− p5(G′):

Proof. It follows from Lemmas 3.1–3.3.

For a graph G with uv 6∈ E(G), let G + uv (resp. G · uv) denote the graph obtained
from G by adding the edge uv (resp. by identifying u and v). For any vertex set
A⊆V (G), let G − A denote the graph obtained from G by deleting all vertices in A
and all edges incident to vertices in A.
For two disjoint graphs G and H , let G + H denote the graph with vertex set

V (G) ∪ V (H) and edge set E(G) ∪ E(H) ∪ {xy|x ∈ V (G); y ∈ V (H)}.
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Lemma 3.5. For a bipartite graph G=(A; B;E); if uvw is a path in G′ with dG′(u)=1
and dG′(v) = 2; then for any k¿2;

�(G; k) = �(G + uv; k) + �(G − {u; v}; k − 1) + �(G − {u; v; w}; k − 1):

Proof. Since P(G; �) = P(G + uv; �) + P(G · uv; �), we have
�(G; k) = �(G + uv; k) + �(G · uv; k):

Let x be the vertex in G ·uv produced by identifying u and v. Notice that x is adjacent
to all vertices in V (G ·uv)−{x; w}. Thus G ·uv+xw=K1+(G−{u; v}) and G ·uv ·xw=
K1 +(G−{u; v; w}). We also observe that for any graph H; �(K1 +H; k)=�(H; k−1),
since

P(K1 + H; �) = �P(H; �− 1):
Hence

�(G · uv; k) = �(G · uv+ xw; k) + �(G · uv · xw; k)

= �(K1 + (G − {u; v}); k) + �(K1 + (G − {u; v; w}); k)

= �(G − {u; v}; k − 1) + �(G − {u; v; w}; k − 1):
The lemma is then obtained.

Theorem 3.1. Let p; q and s be integers with p¿q¿3 and 06s6q − 1. For every
G ∈ ⋃4

t=1B(p; q; s; t); if G is 2-connected; then G is �-unique.

Proof. By Theorem 1.3, B(p; q; s; t) ∩K−s
2 (p; q) is �-closed for each t¿0. To show

that every 2-connected graph in B(p; q; s; t) is �-unique, it su�ces to show that for
every two graphs G and H in B(p; q; s; t), if G 6∼= H , then �(G; 4) 6= �(H; 4) or
�(G; 5) 6= �(H; 5). Recall that for G;H ∈ B(p; q; s; t); �′′(G; 4) 6= �′′(H; 4) i� �(G; 4) 6=
�(H; 4).
For each t = 1; 2; 3; 4, the graphs in B(p; q; s; t) are named as Gt;1; Gt;2; : : :, and are

shown in a table together with the values �′′(Gt;1); �′′(Gt;2); : : : : For each graph Gt; i,
if every component of G′

t; i is a path, then �
′′(Gt; i; 4) can be obtained by Lemma 3.4;

otherwise, we must �rst �nd �′(Gt; i; 4) by Lemma 3.1, and then �nd �′′(Gt; i; 4) by (7).
(1) B(p; q; s; 1): The set B(p; q; s; 1) includes two graphs by Theorem 2.1, G1;1

and G1;2 (see Table 1). Notice that �′′(G1;1; 4) 6= �′′(G1;2; 4) when p 6= q. But when
p= q; G1;1 ∼= G1;2.
(2) B(p; q; s; 2): The set B(p; q; s; 2) includes four graphs by Theorem 2.1, G2;1;

G2;2; G2;3 and G2;4 (see Table 2). Notice that only �′′(G2;1; 4) is odd. If p¿q, the
three values �′′(G2;2; 4); �′′(G2;3; 4) and �′′(G2;4; 4) are distinct. If p= q, then G2;2 ∼=
G2;3 and we shall show that �(G2;3; 5)¿�(G2;4; 5). When p = q, by Lemma 3.5
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Table 1
B(p; q; s; 1)

Table 2
B(p; q; s; 2)



F.M. Dong et al. / Discrete Mathematics 224 (2000) 107–124 117

and Table 1, we have

�(G2;3; 5)− �(G2;4; 5)

= �(G2;3 + u1v1; 5) + �(G2;3 − {u1; v1}; 4) + �(G2;3 − {u1; v1; w1}; 4)

− (�(G2;4 + u2v2; 5) + �(G2;4 − {u2; v2}; 4) + �(G2;4 − {u2; v2; w2}; 4))

= �(G2;3 − {u1; v1; w1}; 4)− �(G2;4 − {u2; v2; w2}; 4)

= �′′(G2;3 − {u1; v1; w1}; 4)− �′′(G2;4 − {u2; v2; w2}; 4)

=2q−4 − 2q−5

¿ 0; (8)

since G2;3 + u1v1 ∼= G2;4 + u2v2; G2;3 − {u1; v1} ∼= G2;4 − {u2; v2}, and both
G2;3 − {u1; v1; w1} and G2;4 − {u2; v2; w2} belong to B(q− 1; q− 2; s− 2; 1).
(3) B(p; q; s; 3): The set B(p; q; s; 3) contains eight graphs by Theorem 2.1, G3;1;

G3;2; : : : ; G3;8 (see Table 3). Notice that �′′(G3; i ; 4) is odd when 16i64 and even
when i¿5. Thus �′′(G3; i ; 4) 6= �′′(G3; j ; 4) if 16i64 and 56j68. Observe that
�′′(G3; i ; 4) + 7 contains a factor 2q−3 for i = 1; 2, but no factor 8 for i = 3; 4. Thus
�′′(G3; i ; 4) 6= �′′(G3; j ; 4) for all i = 1; 2 and all j = 3; 4. When p¿q; �′′(G3;1; 4) 6=
�′′(G3;2; 4) and �′′(G3;3; 4) 6= �′′(G3;4; 4). When p= q; G3;1 ∼= G3;2 and G3;3 ∼= G3;4.
For i = 5; : : : ; 8, the �′′(G4; i ; 4)’s are distinct if p¿q. If p = q, then G3;5 ∼= G3;8

and G3;6 ∼= G3;7, and by using the method in (8), we have
�(G3;7; 5)− �(G3;8; 5) = �′′(G3;7 − {u1; v1; w1}; 4)− �′′(G3;8 − {u2; v2; w2}; 4)

=−2q−4¡ 0:

(4) B(p; q; s; 4): The set B(p; q; s; 4) has 16 graphs by Theorem 2.1, G4;1; G4;2; : : : ; G4;16
(see Table 4). Partition B(p; q; s; 4) into subsets:

S1 = {G4;1};
S2 = {G4;2; G4;3; G4;4; G4;5};
S3 = {G4;6; G4;7; G4;8};
S4 = {G4;9};
S5 = {G4;10; G4;11};
S6 = {G4;12; G4;13; G4;14; G4;15; G4;16}:

For non-empty sets W1; : : : ; Wk of graphs, let �(W1; : : : ; Wk) = 0 if �(G1; 4) 6= �(G2; 4)
for every two graphs G1 ∈ Wi and G2 ∈ Wj, where i 6= j, and let �(W1; : : : ; Wk) = 1
otherwise.
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Table 3
B(p; q; s; 3)

The values of �′′(G4;10; 4) and �′′(G4;11; 4) are not given by Lemma 3.4, but can be
obtained by Lemma 3.1 and (7). We have

�′′(G4;10; 4) = s(2p−2 + 2q−2 − 2) + 3(2p−3 + 2q−2 − 2)
+ (2p−4 + 2q−2 − 2) +

(
s
2

)
− 3 + 4(s− 3)

− s(2p−2 + 2q−2 − 2)− 4(2p−3 + 2q−2 − 2)−
(
s+ 4
2

)
+ 12

=−2p−4 − 9:
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Table 4
B(p; q; s; 4)

Similarly, we �nd �′′(G4;11; 4) = 2p−1 − 9 · 2q−4 − 9.
Claim 1. �(S1; : : : ;S6) = 0:

(a) If s64; only S5 is non-empty.
(b) For s¿5; �′′(G; 4) is odd if G ∈ S1 ∪S2 ∪S3 ∪S5 and even if G ∈ S4 ∪S6.

Hence �(S1 ∪S2 ∪S3 ∪S5;S4 ∪S6) = 0.
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Table 4. (continued)

(c) For s¿5; we have q¿6 and 2q−4 is a factor of �′′(G; 4) + 9 for every G ∈ S5;
but 4 is not a factor of �′′(G; 4) + 9 for every G ∈ S1 ∪ S2 ∪ S3. Hence
�(S1 ∪S2 ∪S3;S5) = 0.

(d) For s¿5; we have q¿6; and 2q−2 is a factor of �′′(G; 4) + 11 for G ∈ S1; 23

is not a factor of �′′(G; 4) + 11 for G ∈ S2; and 23 is a factor of �′′(G; 4) + 11
but 24 is not for G ∈ S3. Hence �(S1;S2;S3) = 0.
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(e) For s¿6; we have q¿7; and 22 is a factor of �′′(G; 4) for every G ∈ S6 but it
is not for every G ∈ S4. Hence �(S4;S6) = 0.

By (b)–(e), Claim 1 holds.
The remaining work is to compare every two graphs in each Si. Both S1 and S4

contain only one graph. For S5, when p=q; G4;10 ∼= G4;11; when p¿q; �′′(G4;10; 4) 6=
�′′(G4;11; 4). In the following, we shall study the three sets S2; S3 and S6.
(4.1) S3: When p¿q; �′′(G4;6; 4)¿�′′(G4;7; 4)¿�′′(G4;8; 4). When p = q, we

have G4;6 ∼= G4;8 and by the method used in (8),
�(G4;7; 5)− �(G4;8; 5)

= �(G4;7 − {a4; b4; c4}; 4)− �(G4;8 − {a5; b5; c5}; 4) =−2q−5 6= 0:
(4.2) S6: When p¿q,

�′′(G4;12; 4)¿�′′(G4;13; 4)¿�′′(G4;14; 4)¿�′′(G4;15; 4)¿�′′(G4;16; 4):

When p= q; G4;12 ∼= G4;16; G4;13 ∼= G4;15 and by the method used in (8),
�(G4;14; 5)− �(G4;15; 5) =−2q−5;

�(G4;15; 5)− �(G4;16; 5) =−3× 2q−5¡ 0:

(4.3) S2: Observe that �′′(G4;3; 4) = �′′(G4;4; 4). When p¿q,

�′′(G4;2; 4)¡�′′(G4;3; 4)¡�′′(G4;5; 4):

When p=q; G4;2 ∼= G4;5 and G4;3 ∼= G4;4. In the following, we shall compare �(G4;4; 5)
with �(G4;5; 5) for p= q, and �(G4;3; 5) with �(G4;4; 5) for p¿q.
By Lemma 3.5, when p= q, by the method used in (8),

�(G4;4; 5)− �(G4;5; 5)

= �(G4;4 − {a′2; b′2; c′2}; 4)− �(G4;5 − {a3; b3; c3}; 5)

=− 2q−5

¡ 0:

For G4;3 and G4;4, we prove the following claim:
Claim 2. �(G4;3; 5)− �(G4;4; 5) = 3(2p−5 − 2q−5).
By Lemma 3.5,

�(G4;3; 5)

= �(G4;3 + a1b1; 5) + �(G4;3 − {a1; b1}; 4) + �(G4;3 − {a1; b1; c1}; 4)

= �(G4;3 + a1b1 + b1c1; 5) + �(G4;3 − {b1; c1}; 4) + �(G4;3 − {b1; c1; d1}; 4)

+ �(G4;3 − {a1; b1}; 4) + �(G4;3 − {a1; b1; c1}; 4);
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and

�(G4;4; 5)

= �(G4;4 + a2b2; 5) + �(G4;4 − {a2; b2}; 4) + �(G4;4 − {a2; b2; c2}; 4)

= �(G4;4 + a2b2 + b2c2; 5) + �(G4;4 − {b2; c2}; 4) + �(G4;4 − {b2; c2; d2}; 4)

+ �(G4;4 − {a2; b2}; 4) + �(G4;4 − {a2; b2; c2}; 4):
Observe that

G4;3 + a1b1 + b1c1 ∼= G4;4 + a2b2 + b2c2;

�(G4;3 − {b1; c1}; 4)− �(G4;4 − {b2; c2}; 4) = 2p−4 − 2q−4;

G4;3 − {a1; b1} ∼= G4;4 − {a2; b2}: (9)

Since

G4;3 − {a1; b1; c1} ∈ B(p− 2; q− 1; s− 3; 1);

G4;4 − {b2; c2; d2} ∈ B(p− 2; q− 1; s− 4; 1);
by Lemma 3.1, we have

�(G4;3 − {a1; b1; c1}; 4)− �(G4;4 − {b2; c2; d2}; 4)

= �′(G4;3 − {a1; b1; c1}; 4)− �′(G4;4 − {b2; c2; d2}; 4)

= (s− 3)(2p−4 + 2q−3 − 2) + (2p−4 + 2q−4 − 2) +
(
s− 3
2

)
− 1 + (s− 5)

− (
(s− 4)(2p−4 + 2q−3 − 2) + (2p−5 + 2q−3 − 2)

+
(
s− 4
2

)
− 1 + (s− 6)

)

=2p−4 + 2p−5 + 2q−4 + s− 5: (10)

Similarly, since

G4;3 − {b1; c1; d1} ∈ B(p− 1; q− 2; s− 4; 1);

G4;4 − {a2; b2; c2} ∈ B(p− 1; q− 2; s− 3; 1);
by Lemma 3.1, we have

�(G4;3 − {b1; c1; d1}; 4)− �(G4;4 − {a2; b2; c2}; 4)

= �′(G4;3 − {b1; c1; d1}; 4)− �′(G4;4 − {a2; b2; c2}; 4)

= (s− 4)(2p−3 + 2q−4 − 2) + (2p−3 + 2q−5 − 2) +
(
s− 4
2

)
− 1 + (s− 6)
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Table 5

− (
(s− 3)(2p−3 + 2q−4 − 2) + (2p−4 + 2q−4 − 2)

+
(
s− 3
2

)
− 1 + (s− 5)

)

= − 2p−4 − 2q−4 − 2q−5 − s+ 5: (11)

By (9)–(11), Claim 2 is proved.

Finally, we conclude that for every two graphs G1; G2 ∈ B(p; q; s; 4), if G1 6∼= G2,
then either �′′(G1; 4) 6= �′′(G2; 4) or �(G1; 5) 6= �(G2; 5). This completes the proof of
the result.

Theorem 3.2. For any G ∈ K−s
2 (p; q) with p¿q¿3 and 06s6min{4; q− 1}, G is

�-unique.

Proof. Let G ∈ K−s
2 (p; q). If s63, then by Theorem 1.2, �′(G; 3)62s − 16s + 4.

Thus by Theorem 3.1, G is �-unique if s63. Now suppose that s=4. We have q¿5.
If �(G′) ∈ {1; 4}, then �′(G; 3) = s or �′(G; 3) = 2s − 1 and thus G is �-unique by
Theorem 1.4. If �(G′) = 2 and G′ 6∼= K2;2, then �′(G; 3)6s + 3 by Corollary (i)
to Lemma 2.3, and thus G is �-unique by Theorem 3.1. If G′ = K1;3 ∪ K2, then
�′(G; 3)=8=s+4, and thus G is �-unique by Theorem 3.1. Otherwise, there are only two
possible structures for G′. They are shown in Table 5. For i=1; 2; 3, �′(Ri; 4) is obtained
by Lemma 3.1. From Table 5, observe that �′(Ri; 4) is even when i=1 and odd when
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i=2; 3. When p=q, R2 ∼= R3; when p¿q, �′(R2; 4)−�′(R3; 4)=7(2p−4−2q−4)¿ 0.
Hence G is �-unique when �(G′) ∈ {2; 3}. This completes the proof.

4. For further reading

The following references are also of interest to the reader: [3,4].
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