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Abstract

For integers p,q,s with p>¢>2 and s>0, let #,"(p,q) denote the set of 2-connected
bipartite graphs which can be obtained from K,, by deleting a set of s edges. In this paper,
we prove that for any graph G € ', *(p,q) with p>¢>3 and 1<s<g — 1, if the number of
3-independent partitions of G is at most 277! +2¢7! 4 5 4+ 2, then G is y-unique. It follows
that any graph in 2", *(p,q) is y-unique if p>¢>3 and 1 <s<min{g—1,4}. © 2000 Elsevier
Science B.V. All rights reserved.

Keywords. Bipartite graph; Chromatic polynomial

1. Introduction

All graphs considered here are simple graphs. For a graph G, let V(G), E(G), e(G),
0(G), A(G) and P(G, /) be the vertex set, edge set, size, minimum degree, maximum
degree and the chromatic polynomial of G, respectively.

For integers p,q,s with p>¢>2 and s>0, let " ~*(p,q) (resp. A, °(p,q)) denote
the set of connected (resp. 2-connected) bipartite graphs which can be obtained from
K, , by deleting a set of s edges. The following result was obtained in [1].

Lemma 1.1. If p>q>3 and s< p+q—4, then for any G € A (p,q) with 6(G)=2,
G is 2-connected.

For a bipartite graph G = (4,B; E) with bipartition 4 and B and edge set E, let
G’ =(4',B’;E") be the bipartite graph induced by the edge set E' = {xy|xy € E,x €
A,y € B}, where A’ C 4 and B’ C B. We write G'=K,, ,— G, where p=|A4| and ¢=|B|.
Observe that 6(G) = min(q — 4(G"), p — A(G")).
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Corollary 1.1. For p=¢g>=3 and 0<s<q — 1, if G € K™*(p,q) — K, *(p,q), then
s=q—1and A(G')=q — 1.

Two graphs G and H are said to be chromatically equivalent (or simply y-equivalent),
symbolically G ~ H, if P(G, )= P(H, ). The equivalence class determined by G un-
der ~ is denoted by [G]. A graph G is chromatically unique (or simply y-unique) if
H = G whenever H ~ G. For a set ¢ of graphs, if [G]C ¥ for every G € ¥, then ¥
is said to be y-closed. In [1], we established the following result.

Theorem 1.1. For integers p,q,s with p=q=2 and 0<s<q—1, A'5*(p,q) is y-closed.

The complete bipartite graph K, , is yx-unique for any p>¢g>2 (see [2,6]). In
this paper, we shall search for y-unique graphs or y-equivalence classes from the set
A'5°(p,q), where p>¢g>3 and 0<s<g—1. Hence, in this paper, we fix the following
conditions for p,q and s:

p=q=3 and 0<s<qg-— 1.

For a graph G and a positive integer &, a partition {4, A4,,...,4;x} of V(G) is called
a k-independent partition in G if each 4; is a non-empty independent set of G. Let
o(G, k) denote the number of k-independent partitions in G. For any bipartite graph
G =(4,B; E), define

?(G,3) = a(G,3) — 2H1I=1 1 2lBI=1 _2),

In [1], we found the following sharp bounds for o/(G,3):

Theorem 1.2. For G € 4 *(p,q) with p=q>3 and 0<s<q — 1,
s<0(G,3)<2° — 1,

where o/(G,3)=s iff A(G')=1 and o/(G,3)=2*—1 iff A(G')=s.

For t =0,1,2,..., let 4(p,q,s,t) denote the set of graphs G € H# *(p,q) with

o'(G,3)=s+t. Thus, # ~5(p,q) is partitioned into the following subsets:
A(p.q,s,0), B(p,q,s,1),...,8(p,q,5,2° —s — 1).

Assume that #(p,q,s,t) =10 for t > 25 — s — 1.

Lemma 1.2. For p>¢g=>3 and 0<s<q — 1, if 0<t<297! — g — 1, then

B(p,q,5,1) C A (p,q).

Proof. We consider the following two cases.
Case 1: s<q—2. By the corollary to Lemma 1.1, " ~*(p,q)= 4", *(p,q) and thus
B(p,q,s,t) C A5 (p.q) for all 1.
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Case 2: s=q— 1. If 0<t<29"! — g — 1, by Theorem 1.2, for any G € %(p,q,s,t),
we have A(G’)<q — 2 and thus by the corollary to Lemma 1.1, G is 2-connected.
Hence %(p,q,s,t) C A5 (p,q) if 0<t<297 —g— 1. [

For any graph G, we have P(G,2)=) ;- « G k)A(LA—1)---(A—k+1) (see [5]).
If G ~ H, then a(G,k)=0o(H,k) for k=1,2,.... Thus, by Theorem 1.1, the following
result is obtained.

Theorem 1.3. The set B(p,q,s.t) N A5 (p.q) is y-closed for all t=0.
Corollary 1.2. If 0<t<2¢~! — g — 1, then H(p,q,s,t) is y-closed.
We have proved in [1] the following result.

Theorem 1.4. For any graph G € #(p,q,s,0)UHB(p,q,s,2°—s—1), if G is 2-connected,
then G is y-unique.

In this paper, we shall show that every 2-connected graph in #(p,q,s,t) is
y-unique for 1<¢<4. Further, we prove that every graph in 2’5 *(p,q) is x-unique
if 1<s<min{4,q — 1}.

2. B(p, q,s,t) for t<4
In this section, we shall study the structure of graphs in %(p,q,s,t) for t<4.

Lemma 2.1. For G=(4,B;E) € A (p,q) with |A| = p and |B| = q, we have
e(GN=> do(x)=>_ de(y)=s.

xeAd’ yEB'

For a graph G and x € V(G), let Ng(x) or simply N(x) denote the set of vertices
y such that xy € E(G). Let G =(4,B;E) be a graph in " ~*(p,q) with |4| = p and
|B|=gq. Since s<q—1< p—1, there exist vertices u € 4 and v € B such that N(u)=B
and N(v) =A. Thus, for any independent set Q in G, if u € O, then QC4; if v € O,
then Q C B. Therefore for any 3-independent partition {4;,4,,43} in G, there are at
least two A4;’s, say Ay, A3, such that 4, C A4 and A3 CB. Hence G has only two types
of 3-independent partitions {41, 4,,43}:

Type 1: either 4] UAd, =A4, A3=B or Ay UA3 =B, Ay =A.

Type 2: AiNA#D, AANB#D, Ay=A— A, and 43 =B — A4;.

The number of 3-independent partitions of Type 1 is 277! +2971 —2. Let ¥(G) be
the set of 3-independent partitions {4, 45,43} of Type 2 in G. Thus |P(G)|=2'(G,3)
by the definition of &/(G,3). Let

Q(G)={0|Q is an independent set in G with QNA # 0, QN B # 0}.
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Since s<qg—1<p—1,4A—Q # 0 and B— Q # () for any Q € Q(G). This implies
that Q € Q(G) iff {Q0,4 — O,B — O} € P(G). The following result is then obtained.

Lemma 2.2. o/(G,3)=|Q(G)| for any G € A (p,q).
We consider two special types of sets O € Q(G): either |[QNA|=1 or |ONB|=1.
Let Q/(G)={0 € QG)||Q0NA| =1} and 2,(G)={0 € Q(G)||QNB|=1}. Thus
[21(G) N Q(G)| =5,

21(G) =D %™ —1)=s,

xeA’

2(G)| =D 2% —1)=s. (1)

yEB’

Let 3;(G), or simply f;, denote the number of vertices in G with degree i, and let
n;(G) denote the number of i-cycles in G.
Lemma 2.3. For G=(A4,B;E) € A *(p,q),
o(G,3)=s+ > BG)2 =1 — i)+ na(G), (2)

i>2
where equality holds iff |Ng:/(x) N Ng/(y)| <2 for every x,y € A’ or x,y € B'.
Proof. The number of O € Q(G) with [ONA|=1o0r |ONB|=1is
[21(G) U 2(G)|

=—s+ » @01

xEV(G)

——s+Y_ B(GH2—1)

i1

—s+ Y iB(G)+ D PG — 1 1)

i1 i1

=—s+25+ ) B(GH2 —1-1)

i1

=s+ Y p(GH2 —1-1).
i>2
Notice that the number of Q’s in Q(G) such that [0 NA|=2 and |[ONB|=2is
exactly the number of 4-cycles in G’. Thus (2) is obtained by Lemma 2.2. The equality
in (2) holds iff there is no O € Q(G) such that either |0 N A4|>3 and |Q N B|>2, or
|ONA|=2 and |Q N B|=3, ie., |[Ng:(x) N Ng/(y)| =3 for x,y € A" or x,y € B'. [J
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Corollary 2.1. For G=(A4,B;E) € A °(p,q),

(1) if A(G")<K2, then o/(G,3) =15+ P2(G") + ny(G);
(i) if A(G")=3, then o/(G,3)=s+ P2(G") + 4B5(G") + na(G"), where equality holds
iff INe/(u) N Ng:(v)| <2 for all u,v € A" or u,v € B';
(iii) o/(G,3)=24C) 45— 1 — A(G").

For two disjoint graphs H; and H,, let H; U H, denote the graph with vertex set
V(H))UV(H;) and edge set E(H)) UE(H,). Let kH=HU---UH for k=1 and let
. —_—
kH be null if £ =0. k

Lemma 24. Let G € A *(p,q). If «/(G,3) =5+ t<s+4, then either

(i) each component of G' is a path and B,(G') =1, or
(11) G = K1j3 U (S — 3)K2

Proof. Since o/(G,3)<s + 4, A4(G')<3 by corollary (iii) to Lemma 2.3. If
A(G") =3, then f,(G’)=0 and f3(G’) =1 by corollary (ii) to Lemma 2.3, and thus
G =2 Ki3U(s —3)K;. If A(G') =2, then (G") + ns(G')<4 by corollary (i) to
Lemma 2.3, and thus G’ contains no cycles. Hence when 4(G’) =2, each component
of G’ is a path, and f,(G’) =t by corollary (i) to Lemma 2.3. [J

Let P, denote the path with n vertices. By Lemma 2.4, we establish the following
result.

Theorem 2.1. Let G € X 5(p,q) and ¢/(G,3) =5 + t, where 0<t<4. Then

{SKQ} lf t=0,
{P3U(S—2)K2} if t=1,
{P4U (s —3)K5,2P; U (s — 4)K>} if t=2,

{P5 U(s —4)K,P,UP3;U(s —5)K,,3P3 U (s — 6)K2} if t=3,
{P6 U (S - 5)K2,P5 UP3 U (S - 6)K2,2P4 U (S - 6)K2,
Py U2P3 U (s — 7)K3,4P3; U (s — 8)K2,K1,3 U(s — 3)K2} lf t =4,

where H U (s — i)K, does not exist if s <.

3. Chromaticity of graphs in %(p, ¢, s, t), t <4

In this section, we shall show that each graph in {J, .,., #(p,q,s,t) is x-unique.
For a bipartite graph G=(4, B; E), the number of 4-independent partitions {4, 45,43, A4}
with A4; CA or A; CB forall i=1,2,3,4 is
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1 1
M= — DRI — 1)+ g(3|A| —3.2M 13y ¢ 5(3‘3‘ —3.281 1 3)

=M= —2y2BI= —2) + %(3‘/4'—' +31B1=1y 2, (3)

Let o/(G,4)=u(G,4) — ((2HI=1 —2)(2/5I=! —2) 4 L (3MI=1 1 315=1) — 2. Observe that
for G,H € A ~5(p,q), o(G,4) = a(H,4) iff «/(G,4) = o/ (H,4).

Lemma 3.1. For G=(4,B;E) € # *(p,q) with |A| = p and |B| =g,

o' (G,4) = Z (2~ 17100l | pa—1-10NB] _ 5)
0eQ(G)

+H{{01,0:}|01,0: € Q(G),01 N 0y = D}

Proof. As s<q — 1< p — 1, there exist x € 4 and y € B such that Ng(x) =B and
Ng(y)=A. Thus, for any 4-independent partition {4, 4,43, A4}, there are at least two
A;’s with 4; CA or A; CB. This means that G has only three types of 4-independent
partitions {41,4,,A3,A4}: for k=0, 1,2, we call the partition type k if there are exactly
k A;’s with 4; € Q(G). The number of 4-independent partitions of type 0 is given in
(3). The number of 4-independent partitions of type 1 is

Z (2r~ 11004l pa=1=10NBl _ 9y
0€Q(G)

and the number of 4-independent partitions of type 2 is
{01, 02}|01, 02 € Q(G), 01 N 0y = B}].
The lemma holds. [

For a bipartite graph G = (4,B;E), let B;(G,A4) (resp. f:(G,B)) be the number of
vertices in A (resp. B) with degree i.

Remark. For G € 4(p,q,s,t), if each component of G’ is a path, then o/(G,3) =5+
P2(G") by Corollary 2.1(i) to Lemma 2.3. Thus f,(G')=1t.

Lemma 3.2. For G € %4(p,q,s,t), if each component of G' is a path, then

Z (2p—1—\QﬂA| + 24—1-|0NB| _ 2)
0€Q(G)

=s5(2P72 42972 —2) +1(2P 3 42972 —2) + (2P = 2973 By(G', A)).

Proof. Since each component of G’ is a path, |Q|<3 for every Q € Q(G). There are
exactly s sets O in Q(G) with |Q| =2, there are exactly f,(G’,4’) sets O in Q(G)
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with |O0NA|=1 and |QNB|=2, and there are exactly f,(G’,B’) sets Q in Q(G) with
|[ONA|=2 and |Q N B|=1. Thus

Z (2p~1-lendl 4 pa—1-10NBl _ 9y
0e€(G)
=5(2P72 42972 —2) + (G’ AH)(2P2 42473 —2)
+ (G BY(2P 3 42977 — 2)
=527 +217% = 2) + (PG A) + Bo(G', B))(2P T + 277 - 2)

+(2P77 = 2070)By(G, 4")

=s5(2P72 42972 = 2) + Bo(G )27 + 2972 = 2) + (2P — 2973 By(G, A).
Since f,(G’) =1, the lemma is obtained. [J

Let p;(G) denote the number of paths P; in G.

Lemma 3.3. For G € B(p,q,s,t), if each component of G' is a path, then
{{01.0:}01, 0> € Q(G), 01 N 0> =0}

s+t
=( ) ) —3t=3py(G') = ps(G)
Proof. Since each component of G’ is a path, |Q|<3 for every O € Q(G). We also
have $,(G’) =t. There are exactly s (resp. ¢) sets Q in Q(G) with |Q| =2 (resp.
|Q| = 3). Observe that

{{01,0:}101, 02 € Q(G),|01| = 02| =2,01 N 02 = 0}
={{01,02}|01. 02 € Q(G),|01] = 02| =2,]01 N O] <1}
—[{{01,0:}|01, 01 € Q(G),|01] = [02] =2,]01 N 02| = 1}

S
:<2)_t_ 4)

There are exactly ¢ Q;’s with |Q;| = 3. For each Q; € Q(G) with |Q;| =3, there are
exactly s —2 0,’s in Q(G) with |Q,] =2 and |Q; N O, < 1. Observe that |Q; N O,| =1
iff 01 UQ, induces a path P4 in G’, and that for each path P, in G, there are exactly
two pairs Oy, Q> with |01 =3, |02] =2 and |Q; N O] =1 such that O; U O, induces
this path P4. Thus the number of sets {Q;, 0,} with |Q1|=3, |02|=2 and |O;NO1|=1
is 2 p4(G"). Hence

{01, 02}101,0: € Q(G),|01| = 3,|02] =2,01 N Q> = 0}
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= |{{Q1’Q2}|Q1’Q2 € Q(G)’|Q1| :3’|Q2| :27|Q1 N Q2|<1}|
—{{01,0:}|01,0; € Q(G), 01| =3,|02| =2,|01 N Qs =1}

=t(s —2) —2pa(G"). (5)

There are exactly () sets {01, 0>}, where 0,0, € Q(G), with |0 = |0,| =3
and Q) # 0,. Thus |Q) N O,| <2 for such Oy, 0. The number of sets {Q;, 0>} with
|01| = 02| =3 and |Q) N 02| =2 is ps(G"), because

(1) |01 N O] =2 iff Q1 U Q; induces a path P4 in G’ and
(ii) for each path P4 in G’, there is only one set {Q;, 0>} with |Q;| =|0,| =3 such
that O; U O, induces this path Py.

Similarly, the number of sets {Q1,0,} with |Q)|=]02] =3 and |O; N Oy =1 is
ps(G’). Hence

{{01.0:}01,02 € QG), |01 = 02| =3,01 N 02 = 0}
=[{{01,0:}101, 02 € QG),|01] = |02 =3,[01 N Q2| <2}
—{{01,0:}01,0; € (G), |01 =10:2| =3,[01 N O] =2}
—{{01.02}101.0; € Q(G),|Q1 =102| =3,|01 N Oz = 1}

t
= <2> — pa(G') — ps(G'). (6)
By (4)—(6), the result is obtained. [J

For G € #(p,q,s,t), define
7'(G,4) =a/(G,4) — (P2 42072 = 2) +4(27 7 + 2972 - 2)
+(s+1)(s+1—1)/2-30). %
Observe that for G,H € %A(p,q,s,t), &' (G,4) =o' (H,4) iff «(G,4) = a(H,4).

Lemma 3.4. For G € B(p,q,s,t), if each component of G' is a path, then
o'(G,4)= (2" = 277)By(G',A') = 3pa(G') — ps(G').

Proof. It follows from Lemmas 3.1-3.3. [

For a graph G with uv € E(G), let G + uv (resp. G - uv) denote the graph obtained
from G by adding the edge wv (resp. by identifying # and v). For any vertex set
ACV(G), let G — A denote the graph obtained from G by deleting all vertices in 4
and all edges incident to vertices in A.

For two disjoint graphs G and H, let G + H denote the graph with vertex set
V(G)UV(H) and edge set E(G)UE(H)U {xy|x € V(G),y € V(H)}.
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Lemma 3.5. For a bipartite graph G=(A, B; E), if uow is a path in G’ with dg(u)=1
and dg/(v) =2, then for any k=2,

(G, k)=o(G + uv,k) + (G — {u,v},k — 1)+ (G — {u,v,w},k — 1).

Proof. Since P(G,A)=P(G + uv,A) + P(G - uv,J), we have
(G, k)y=o(G + uv,k) + (G - uv, k).

Let x be the vertex in G -uv produced by identifying u and v. Notice that x is adjacent
to all vertices in V(G -uv)—{x,w}. Thus G-uv+xw=K,+(G—{u,v}) and G-uv-xw=
K1+ (G —{u,v,w}). We also observe that for any graph H, a(K; + H, k)=o(H,k—1),
since

P(Ky + H,2)= AP(H,A —1).
Hence

oG -uv,k)=o(G - uv+xw, k) + (G - uv - xw, k)
=a(K; + (G — {u,v}),k) + K, + (G — {u,v,w}),k)

=a(G — {u,v},k — 1)+ (G — {u,v,w},k — 1).

The lemma is then obtained. [

Theorem 3.1. Let p,q and s be integers with p=>q>3 and 0<s<q — 1. For every
G e Uf:l B(p,q,s,t), if G is 2-connected, then G is y-unique.

Proof. By Theorem 1.3, #(p.q,s,t) N A, (p,q) is x-closed for each =0. To show
that every 2-connected graph in #(p,q,s,t) is y-unique, it suffices to show that for
every two graphs G and H in %(p,q,s,t), if G % H, then a(G,4) # a(H,4) or
(G, 5) # a(H,5). Recall that for G,H € %(p,q,s,t), &' (G,4) # «''(H,4) iff a(G,4) #
o(H,4).

For each ¢ =1,2,3,4, the graphs in #(p,q,s,t) are named as G;1,G2,..., and are
shown in a table together with the values o”’(Gy 1), (G;2),.... For each graph G,;,
if every component of Gj; is a path, then o”’(G;;,4) can be obtained by Lemma 3.4;
otherwise, we must first find ’(G,;,4) by Lemma 3.1, and then find «”(G;;,4) by (7).

(1) #(p,q,s,1): The set #(p,q,s,1) includes two graphs by Theorem 2.1, Gy,
and Gy, (see Table 1). Notice that o”'(G 1,4) # ¢”(G12,4) when p # g. But when
p=q, Gi,1 =G

(2) #(p,q,s,2): The set #(p,q,s,2) includes four graphs by Theorem 2.1, G, 1,
G2,2,Ga3 and Gy 4 (see Table 2). Notice that only o”(Ga,1,4) is odd. If p > g, the
three values o/(Gz.2,4), o''(G23,4) and o'/(Gy.4,4) are distinct. If p =g, then Gy, =
Gy3 and we shall show that o(Ga3,5) > a(Ga4,5). When p =g, by Lemma 3.5
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Table 1
B(p.q,s,1)
name of | graphs G ; e conditions on
’ o 1,25
graph | (G, = K, — G14) s
(IAI =p, |Bl=1q)
s—2 A
Gy v II I 0 2<s<q-1
B
s—2
A
B
Table 2
B(p,q,5,2)
name of | graphs G,
, conditions on
graph (Gh; = Kpg — G;) o"(Ga,i, 4) s
(Al =p,|B]=q)
s—3
A
G M HI (- —3 | 3<s<qm1
B
s —4
A
G VWI I 0 4<s<q-1
B
A
0273 II I 2(27)_3 - 2{]_3) 4 S S S q— 1
wiUy
Uy S — 4 A
Gy I (23 — 99-3) 4<s<qg-—1
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and Table 1, we have

(G23,5) — (Ga4,5)
=u(Go3 +uiv1,5) + U(Gaz — {ur,v1},4) + (G — {ur, v, wi },4)
—((Gaa + u202,5) + a(Gaa — {u2,02},4) + U(Goa — {2, 02, w2 },4))
=Gy 3 — {ur,v1,w1 },4) — a(Ga,a — {uz, v2,w2},4)

=" (Gy3 — {ur,v1, w1 1,4) — o' (Go g — {uz,v2,w2},4)

—09—4 _ a5

>0, (®)

since G2,3 + wvy = G2)4 + Uy, G2)3 — {ul,vl} = G2,4 — {uZ,Uz}, and both
G2,3 — {ul,vl,wl} and G2,4 — {uz,Uz,Wz} belong to #(q — 1,q —2,s —2,1).

(3) #(p.q,s,3): The set #(p,q,s,3) contains eight graphs by Theorem 2.1, G i,
G3,2,...,G35 (see Table 3). Notice that o/(Gs;,4) is odd when 1<i<4 and even
when i>5. Thus o’(Gs;,4) # (G ;,4) if 1<i<4 and 5<;<8. Observe that
¢"(Gs,;,4) + 7 contains a factor 2973 for i = 1,2, but no factor 8 for i = 3,4. Thus
o"(Gs,,4) # o'(Gs;,4) for all i =1,2 and all j =3,4. When p >gq, o«/(G31,4) #
OCN(G3’2,4) and OCH(G3,3,4) 75 OC”(G374,4). When pP=4q, G3ﬂ1 = G3’2 and G3,3 = G3j4.

For i =5,...,8, the o/(G4;,4)’s are distinct if p>gq. If p=gq, then G35 = G35
and G3¢ = Gs,7, and by using the method in (8), we have

u(Gs.7,5) — a(Gs,8,5) =o' (G3 7 — {ur,v1, w1 },4) — o' (G35 — {uz, v2, w2 },4)
=-217% <.

(4) #(p.q,s,4): The set #(p,q,s,4) has 16 graphs by Theorem 2.1, G4,1, G42,...,G4.16
(see Table 4). Partition #(p,q,s,4) into subsets:

S1={Ga1},

S 2 =1{G1.2,G13,G44,G45},

S35 ={Ga,6,Ga.7,Ga g},

L4 ={Gao},

Ss ={Ga10,Ga 11},

6 = {G4,12, G413, G4,14, Ga 15, Ga 16 }-

For non-empty sets Wi,..., Wy of graphs, let n(W,..., W) =0 if a(Gy,4) # oa(G,,4)
for every two graphs G; € W; and G, € W;, where i # j, and let n(W1,...,W;) =1
otherwise.
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Table 3
A(p.q.5,3)
name of | graphs G4, , diti
3 (G, conditions on
graph (G = Kpg — G34) (G 4) s
(Al =p|Bl =9
A o .
p—3 _ 9q—3
Gs,1 W III (27 2177%) 4<s<q-1
B
A s—4 p-3 _ og—3
B
A e o 4 ‘
Gs3 NA III 2(2r7% = 217%) | 5 <s<gq-1
B -3
A 5—0 (272—3 _ 2q—3)
Gsa N\[ HI _3 5<s<qg-1
B
5s—0
A
Gas VVVHI 0 6<s<q-1
B
s—06
IA . .
G3e (@2 =2070) g <s<q-1
B
U s—6
Gs,r V H I 2277 =200 | 6<s<qg—1
s—0
Gas 3(20-3 —203) |6 < s<q—1
B
Wolly

The values of /(Gy,10,4) and o”'(Gy,11,4) are not given by Lemma 3.4, but can be

obtained by Lemma 3.1 and (7). We have

o (G 10,4) = s(2P 72 42072

—2)+ 3273 42472

_2)

+QP 2072 - 2) + (;) —3 4+ 4(s —3)

— (P72 42972 _2) —4(2P 3 42972 —2) — (

=-2r4 9

s+4
2

)2
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Table 4
B(p;q,s,4)
graphs Gﬂm«
f diti
g:;ie}zlo (G’u — K,y — Gy) 0" (G, 4) COIlgl ions on
(|Al =p,|Bl=q)
)
A 2(2P73 — 2473)
G, . 11 5<s<qg-1
s — 6 A (27773 _ 2q73)
Gio _7 6<s<qg—1
B
a ¢ s—6
A 2(2”‘3 — 2‘1‘3)
) 6<s<qg-—1
Gugs
B -7
bid,
ahchs —6 4 \ ,
/ 2(2P7° — 29~
2 C2 '2 B
bg s—6
A p—3 _ 9q—3
Gus MRIII ?i(g 27) 6<s<qg-—-1
asC3 B
A P = e
B
b4 s—17
A 2(2[1—3 _ 2(1—3)
Guz _3 7T<s<gqg—1
(4 Cy B
C s—T 4
(5 Cr S A (27,73 3 2(]73)
Gis _3 T<s<g-1
B
bs

Similarly, we find o”/(Gy11,4) =2°"1 —9.2¢7% -9,

Claim 1. 5(¥,..

(a) If s<4, only

.,y6):01

s 1s non-empty.

119

(b) For s=5, o(G,4) is odd if G € 1 US>, US3UF5 and even if G € ¥4, U L.
Hence n(<1 U S U S35 U S5, L4 US)=0.
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Table 4. (continued)

¢ graphs G} ;
. ’ " ; conditions on
graph (Gl = Kpg — Gay) a"(Gyy,4) ‘
s — 6 A ' ‘
Gug T N PR
B —6
-3 4 o

3<s<qg—1

g 43 —209)  |8<s<g—1
l
|

A (27)—1 —-9. 2(1—4)

9 3<s<q—1

- [\
-~ [T
- AN T

arc s—8 4
G4.15 k w II I (21)73 - 2(173) 8 S S S q — 1
B
-8

3(2r—3 — 2173) 8§<s<qg—-1

2(2;}—3 _ 2(]—3)
8<s<qg—1

73 bg })7

- [

(c) For s=5, we have ¢ =6 and 294 is a factor of o (G,4) +9 for every G € Fs,
but 4 is not a factor of «”(G,4) + 9 for every G € %1 U ¥, U ¥;. Hence
(11U S UFs3,F5)=0.

(d) For s>5, we have ¢=>6, and 2972 is a factor of o//(G,4) + 11 for G € &, 23
is not a factor of «’(G,4)+ 11 for G € &>, and 2 is a factor of o’/(G,4) + 11
but 2% is not for G € &3. Hence (%1, S, %3) =0.

0 8SS§(]—1
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(e) For s>6, we have ¢=>7, and 22 is a factor of o”/(G,4) for every G € ¢ but it
is not for every G € %4. Hence y(%4, %) = 0.

By (b)—(e), Claim 1 holds.

The remaining work is to compare every two graphs in each %;. Both .¥; and ¥4
contain only one graph. For &’s, when p=q, Gi 10 = G411; when p > g, o' (G4 10,4) #
o"(Ga,11,4). In the following, we shall study the three sets ¥», &3 and .

(4.1) &3: When p > gq, 0'(Gae,4) > 0"'(Ga7,4) > 0""(Gss,4). When p =g, we
have G4 = G435 and by the method used in (8),

(G4,7,5) — o(Gas,5)
=0(Ga7 — {as, ba,cs},4) — a(Gas — {as,bs,cs},4) = =297 £ 0.
(4.2) 6. When p > ¢,
o (Ga12,4) > 0'(Ga13,4) > 0" (Ga14,4) > o'(Ga15,4) > o' (Ga,16,4).
When p=gq, Gs12 = G416, Ga,13 = G415 and by the method used in (8),
2(Ga14,5) — (G 15,5) = =277,

(Ga15,5) — o Ga16,5) = —3 x 297 < 0.
(4.3) S»: Observe that o’(Gy3,4) = o' (Ga4,4). When p > g,
2"(Gap,4) < 0"(Ga3,4) < 0"(Gas,4).

When p=gq, G421 = G4 5 and G 3 = G4 4. In the following, we shall compare (G4 4,5)
with 0(Gas5,5) for p =g, and a(Ga3,5) with a(Gs4,5) for p > q.
By Lemma 3.5, when p = ¢, by the method used in (8),

(Ga,4,5) — (Gys5,5)
:OC(G4’4 - {aé, béycé}"") - OC(G4,5 - {a3:b3yc3}55)

=213

< 0.

For G43 and G44, we prove the following claim:
Claim 2. 0(G43,5) — 0(G44,5) = 3(2P75 —2079),
By Lemma 3.5,

%(G4.3,5)
=a(Ga3 +aiby,5) +o(Gaz — {a1,b1},4) + u(Ga3 — {a1,bi,c1},4)
=a(Ga3 +aiby + bici,5) + a(Gaz — {bi,c1},4) + (Ga3 — {b1,c1,d1},4)

+o(Ga3 — {ar,b1},4) + (Ga3 — {a1,b1,¢1},4),
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and
(G4,4,5)
=a(Gaq4 + a2h2,5) + (Gaa — {a2,b2},4) + (Ga g — {az,b2,¢2},4)
=0(Ga4 + arhy + b2¢2,5) + 0(Ga s — {b2,¢2},4) + U(Ga s — {b2,¢2,d2},4)

+o(Gaa — {a2,02},4) + 0(Ga s — {a2,b2,¢2},4).
Observe that
Gs3 +arby + bicy = Gy g + arby + bycy,

UGz — {b1,c1},4) — o Gag — {br,c2},4) =2P74 — 2474,

Ga3 —{a1,b1} = Gag — {az, by} 9)
Since

G4,3 - {abblscl} S %)(p_lq_ 1,S_ 3a1)5

G4,4 — {bz,Cz,dz} cAB(p—2,q9—1,5s—4,1),
by Lemma 3.1, we have

(Gaz — {a1,b1,¢1},4) — (Gas — {b2,¢2,d2 },4)

=o' (Gas — {a1,b1,¢1},4) — o (Gaa — {b2,¢2,dr},4)
=(s—3)QFP 42973 — )+ (27 4217 —2) + <S;3> —1+(s—5)

—((s =42 +2177 —2) + 2P 42973 - 2)

+ (s;4>1+(s6)>

=2P4 4 2P 404 g5, (10)
Similarly, since

Ga3z —{br,c1,d\} € B(p— 1,9 — 2,5 —4,1),

G4ﬂ4 — {az,bz,CQ} S <@(p — l,q — 2,S — 3, 1),
by Lemma 3.1, we have

o(Gaz — {b1,c1,d1},4) — (Gas — {az,b2,¢2},4)

=0/(Ga3 — {b1,c1,d1},4) — &' (Gaa — {a2,b2,2},4)

=(s—4)QRP 427 =) (273 42175 —2) + (S;4> —1+(s—6)
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Table 5
hs R/
name of Braphs f o'(R;, 4)
(B; = Kpq— Ri) -2 -2
graph ’ —4(2P72 42977 =2
(4] = p, Bl = ) ( )
Al 2(2p2 +297% — 9)
R +2(2073 4 2072 9
1 T
+2
|A| 3(2072 42078 — 2)
Ry +(2P73 42072 — 2)
B +(2P2 42071 - 2)
+3
A 3(2r77 +2072 - 2)
R3 +(2p72 +207% — 2)
| B| +(2P71 42072 - 9)
+3

—((s=3)2r 3 +207 —2) + 2r* 4277 - 2)

+ (s;3>1+(s5)>

= 2P 174 0075 545, (11)

By (9)—(11), Claim 2 is proved. [

Finally, we conclude that for every two graphs Gy, G, € %(p,q,s,4), if G| 2 G,
then either o’/ (G1,4) # o (G,,4) or a(Gy,5) # a(G»,5). This completes the proof of
the result. [

Theorem 3.2. For any G € A'5°(p,q) with p>q>3 and 0<s<min{4,q — 1}, G is
y-unique.

Proof. Let G € '5°(p.q). If s<3, then by Theorem 1.2, «/(G,3)<2° — 1<s + 4.
Thus by Theorem 3.1, G is y-unique if s <3. Now suppose that s =4. We have ¢=5.
If A(G") € {1,4}, then o/(G,3)=s or &/(G,3)=2° — 1 and thus G is y-unique by
Theorem 1.4. If A(G') =2 and G’ % K,,, then «'(G,3)<s + 3 by Corollary (i)
to Lemma 2.3, and thus G is y-unique by Theorem 3.1. If G’ = K;3 U K, then
o'(G,3)=8=s+4, and thus G is y-unique by Theorem 3.1. Otherwise, there are only two
possible structures for G'. They are shown in Table 5. For i=1,2,3, «/(R;,4) is obtained
by Lemma 3.1. From Table 5, observe that o/(R;,4) is even when i =1 and odd when
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i=2,3. When p=gq, R, = R;3; when p > q, o' (R2,4) — o/ (R3,4)=7(2P~* - 297%) > 0.
Hence G is y-unique when A(G’) € {2,3}. This completes the proof. [

4. For further reading

The following references are also of interest to the reader: [3,4].
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