DISCRETE MATHEMATICS

Chromatically unique bipartite graphs with low 3-independent partition numbers

F.M. Dong ${ }^{\text {a, * }}$, K.M. Koh ${ }^{\text {b }}$, K.L. Teo ${ }^{\text {a }}$, C.H.C. Little ${ }^{\text {a }}$, M.D. Hendy ${ }^{\text {a }}$
${ }^{a}$ Institute of Fundamental Sciences (Mathematics), Massey University, Palmerston North, New Zealand ${ }^{\mathrm{b}}$ Department of Mathematics, National University of Singapore, Singapore

Abstract

For integers p, q, s with $p \geqslant q \geqslant 2$ and $s \geqslant 0$, let $\mathscr{K}_{2}^{-s}(p, q)$ denote the set of 2-connected bipartite graphs which can be obtained from $K_{p, q}$ by deleting a set of s edges. In this paper, we prove that for any graph $G \in \mathscr{K}_{2}^{-s}(p, q)$ with $p \geqslant q \geqslant 3$ and $1 \leqslant s \leqslant q-1$, if the number of 3 -independent partitions of G is at most $2^{p-1}+2^{q-1}+s+2$, then G is χ-unique. It follows that any graph in $\mathscr{K}_{2}^{-s}(p, q)$ is χ-unique if $p \geqslant q \geqslant 3$ and $1 \leqslant s \leqslant \min \{q-1,4\}$. (C) 2000 Elsevier Science B.V. All rights reserved.

Keywords: Bipartite graph; Chromatic polynomial

1. Introduction

All graphs considered here are simple graphs. For a graph G, let $V(G), E(G), e(G)$, $\delta(G), \Delta(G)$ and $P(G, \lambda)$ be the vertex set, edge set, size, minimum degree, maximum degree and the chromatic polynomial of G, respectively.

For integers p, q, s with $p \geqslant q \geqslant 2$ and $s \geqslant 0$, let $\mathscr{K}^{-s}(p, q)$ (resp. $\left.\mathscr{K}_{2}^{-s}(p, q)\right)$ denote the set of connected (resp. 2-connected) bipartite graphs which can be obtained from $K_{p, q}$ by deleting a set of s edges. The following result was obtained in [1].

Lemma 1.1. If $p \geqslant q \geqslant 3$ and $s \leqslant p+q-4$, then for any $G \in \mathscr{K}^{-s}(p, q)$ with $\delta(G) \geqslant 2$, G is 2-connected.

For a bipartite graph $G=(A, B ; E)$ with bipartition A and B and edge set E, let $G^{\prime}=\left(A^{\prime}, B^{\prime} ; E^{\prime}\right)$ be the bipartite graph induced by the edge set $E^{\prime}=\{x y \mid x y \notin E, x \in$ $A, y \in B\}$, where $A^{\prime} \subseteq A$ and $B^{\prime} \subseteq B$. We write $G^{\prime}=K_{p, q}-G$, where $p=|A|$ and $q=|B|$. Observe that $\delta(G)=\min \left(q-\Delta\left(G^{\prime}\right), p-\Delta\left(G^{\prime}\right)\right)$.

[^0]Corollary 1.1. For $p \geqslant q \geqslant 3$ and $0 \leqslant s \leqslant q-1$, if $G \in K^{-s}(p, q)-K_{2}^{-s}(p, q)$, then $s=q-1$ and $\Delta\left(G^{\prime}\right)=q-1$.

Two graphs G and H are said to be chromatically equivalent (or simply χ-equivalent), symbolically $G \sim H$, if $P(G, \lambda)=P(H, \lambda)$. The equivalence class determined by G under \sim is denoted by [G]. A graph G is chromatically unique (or simply χ-unique) if $H \cong G$ whenever $H \sim G$. For a set \mathscr{G} of graphs, if $[G] \subseteq \mathscr{G}$ for every $G \in \mathscr{G}$, then \mathscr{G} is said to be χ-closed. In [1], we established the following result.

Theorem 1.1. For integers p, q, s with $p \geqslant q \geqslant 2$ and $0 \leqslant s \leqslant q-1, \mathscr{K}_{2}^{-s}(p, q)$ is χ-closed.
The complete bipartite graph $K_{p, q}$ is χ-unique for any $p \geqslant q \geqslant 2$ (see [2,6]). In this paper, we shall search for χ-unique graphs or χ-equivalence classes from the set $\mathscr{K}_{2}^{-s}(p, q)$, where $p \geqslant q \geqslant 3$ and $0 \leqslant s \leqslant q-1$. Hence, in this paper, we fix the following conditions for p, q and s :

$$
p \geqslant q \geqslant 3 \quad \text { and } \quad 0 \leqslant s \leqslant q-1 .
$$

For a graph G and a positive integer k, a partition $\left\{A_{1}, A_{2}, \ldots, A_{k}\right\}$ of $V(G)$ is called a k-independent partition in G if each A_{i} is a non-empty independent set of G. Let $\alpha(G, k)$ denote the number of k-independent partitions in G. For any bipartite graph $G=(A, B ; E)$, define

$$
\alpha^{\prime}(G, 3)=\alpha(G, 3)-\left(2^{|A|-1}+2^{|B|-1}-2\right) .
$$

In [1], we found the following sharp bounds for $\alpha^{\prime}(G, 3)$:

Theorem 1.2. For $G \in \mathscr{K}^{-s}(p, q)$ with $p \geqslant q \geqslant 3$ and $0 \leqslant s \leqslant q-1$,

$$
s \leqslant \alpha^{\prime}(G, 3) \leqslant 2^{s}-1,
$$

where $\alpha^{\prime}(G, 3)=s$ iff $\Delta\left(G^{\prime}\right)=1$ and $\alpha^{\prime}(G, 3)=2^{s}-1$ iff $\Delta\left(G^{\prime}\right)=s$.

For $t=0,1,2, \ldots$, let $\mathscr{B}(p, q, s, t)$ denote the set of graphs $G \in \mathscr{K}^{-s}(p, q)$ with $\alpha^{\prime}(G, 3)=s+t$. Thus, $\mathscr{K}^{-s}(p, q)$ is partitioned into the following subsets:

$$
\mathscr{B}(p, q, s, 0), \mathscr{B}(p, q, s, 1), \ldots, \mathscr{B}\left(p, q, s, 2^{s}-s-1\right) .
$$

Assume that $\mathscr{B}(p, q, s, t)=\emptyset$ for $t>2^{s}-s-1$.

Lemma 1.2. For $p \geqslant q \geqslant 3$ and $0 \leqslant s \leqslant q-1$, if $0 \leqslant t \leqslant 2^{q-1}-q-1$, then

$$
\mathscr{B}(p, q, s, t) \subseteq \mathscr{K}_{2}^{-s}(p, q) .
$$

Proof. We consider the following two cases.
Case 1: $s \leqslant q-2$. By the corollary to Lemma $1.1, \mathscr{K}^{-s}(p, q)=\mathscr{K}_{2}^{-s}(p, q)$ and thus $\mathscr{B}(p, q, s, t) \subseteq \mathscr{K}_{2}^{-s}(p, q)$ for all t.

Case 2: $s=q-1$. If $0 \leqslant t \leqslant 2^{q-1}-q-1$, by Theorem 1.2 , for any $G \in \mathscr{B}(p, q, s, t)$, we have $\Delta\left(G^{\prime}\right) \leqslant q-2$ and thus by the corollary to Lemma $1.1, G$ is 2 -connected. Hence $\mathscr{B}(p, q, s, t) \subseteq \mathscr{K}_{2}^{-s}(p, q)$ if $0 \leqslant t \leqslant 2^{q-1}-q-1$.

For any graph G, we have $P(G, \lambda)=\sum_{k \geqslant 1} \alpha(G, k) \lambda(\lambda-1) \cdots(\lambda-k+1)$ (see [5]). If $G \sim H$, then $\alpha(G, k)=\alpha(H, k)$ for $k=1,2, \ldots$. Thus, by Theorem 1.1, the following result is obtained.

Theorem 1.3. The set $\mathscr{B}(p, q, s, t) \cap \mathscr{K}_{2}^{-s}(p, q)$ is χ-closed for all $t \geqslant 0$.
Corollary 1.2. If $0 \leqslant t \leqslant 2^{q-1}-q-1$, then $\mathscr{B}(p, q, s, t)$ is χ-closed.
We have proved in [1] the following result.
Theorem 1.4. For any graph $G \in \mathscr{B}(p, q, s, 0) \cup \mathscr{B}\left(p, q, s, 2^{s}-s-1\right)$, if G is 2-connected, then G is χ-unique.

In this paper, we shall show that every 2 -connected graph in $\mathscr{B}(p, q, s, t)$ is χ-unique for $1 \leqslant t \leqslant 4$. Further, we prove that every graph in $\mathscr{K}_{2}^{-s}(p, q)$ is χ-unique if $1 \leqslant s \leqslant \min \{4, q-1\}$.

2. $\mathscr{B}(p, q, s, t)$ for $t \leqslant 4$

In this section, we shall study the structure of graphs in $\mathscr{B}(p, q, s, t)$ for $t \leqslant 4$.
Lemma 2.1. For $G=(A, B ; E) \in \mathscr{K}^{-s}(p, q)$ with $|A|=p$ and $|B|=q$, we have

$$
e\left(G^{\prime}\right)=\sum_{x \in A^{\prime}} d_{G^{\prime}}(x)=\sum_{y \in B^{\prime}} d_{G^{\prime}}(y)=s
$$

For a graph G and $x \in V(G)$, let $N_{G}(x)$ or simply $N(x)$ denote the set of vertices y such that $x y \in E(G)$. Let $G=(A, B ; E)$ be a graph in $\mathscr{K}^{-s}(p, q)$ with $|A|=p$ and $|B|=q$. Since $s \leqslant q-1 \leqslant p-1$, there exist vertices $u \in A$ and $v \in B$ such that $N(u)=B$ and $N(v)=A$. Thus, for any independent set Q in G, if $u \in Q$, then $Q \subseteq A$; if $v \in Q$, then $Q \subseteq B$. Therefore for any 3-independent partition $\left\{A_{1}, A_{2}, A_{3}\right\}$ in G, there are at least two A_{i} 's, say A_{2}, A_{3}, such that $A_{2} \subseteq A$ and $A_{3} \subseteq B$. Hence G has only two types of 3-independent partitions $\left\{A_{1}, A_{2}, A_{3}\right\}$:

Type 1: either $A_{1} \cup A_{2}=A, A_{3}=B$ or $A_{1} \cup A_{3}=B, A_{2}=A$.
Type 2: $A_{1} \cap A \neq \emptyset, A_{1} \cap B \neq \emptyset, A_{2}=A-A_{1}$ and $A_{3}=B-A_{1}$.
The number of 3 -independent partitions of Type 1 is $2^{p-1}+2^{q-1}-2$. Let $\Psi(G)$ be the set of 3-independent partitions $\left\{A_{1}, A_{2}, A_{3}\right\}$ of Type 2 in G. Thus $|\Psi(G)|=\alpha^{\prime}(G, 3)$ by the definition of $\alpha^{\prime}(G, 3)$. Let
$\Omega(G)=\{Q \mid Q$ is an independent set in G with $Q \cap A \neq \emptyset, Q \cap B \neq \emptyset\}$.

Since $s \leqslant q-1 \leqslant p-1, A-Q \neq \emptyset$ and $B-Q \neq \emptyset$ for any $Q \in \Omega(G)$. This implies that $Q \in \Omega(G)$ iff $\{Q, A-Q, B-Q\} \in \Psi(G)$. The following result is then obtained.

Lemma 2.2. $\alpha^{\prime}(G, 3)=|\Omega(G)|$ for any $G \in \mathscr{K}^{-s}(p, q)$.
We consider two special types of sets $Q \in \Omega(G)$: either $|Q \cap A|=1$ or $|Q \cap B|=1$. Let $\Omega_{1}(G)=\{Q \in \Omega(G)| | Q \cap A \mid=1\}$ and $\Omega_{2}(G)=\{Q \in \Omega(G)| | Q \cap B \mid=1\}$. Thus

$$
\begin{align*}
& \left|\Omega_{1}(G) \cap \Omega_{2}(G)\right|=s, \\
& \left|\Omega_{1}(G)\right|=\sum_{x \in A^{\prime}}\left(2^{d_{G^{\prime}}(x)}-1\right) \geqslant s, \\
& \left|\Omega_{2}(G)\right|=\sum_{y \in B^{\prime}}\left(2^{d_{G^{\prime}}(y)}-1\right) \geqslant s . \tag{1}
\end{align*}
$$

Let $\beta_{i}(G)$, or simply β_{i}, denote the number of vertices in G with degree i, and let $n_{i}(G)$ denote the number of i-cycles in G.

Lemma 2.3. For $G=(A, B ; E) \in \mathscr{K}^{-s}(p, q)$,

$$
\begin{equation*}
\alpha^{\prime}(G, 3) \geqslant s+\sum_{i \geqslant 2} \beta_{i}\left(G^{\prime}\right)\left(2^{i}-1-i\right)+n_{4}\left(G^{\prime}\right) \tag{2}
\end{equation*}
$$

where equality holds iff $\left|N_{G^{\prime}}(x) \cap N_{G^{\prime}}(y)\right| \leqslant 2$ for every $x, y \in A^{\prime}$ or $x, y \in B^{\prime}$.
Proof. The number of $Q \in \Omega(G)$ with $|Q \cap A|=1$ or $|Q \cap B|=1$ is

$$
\begin{aligned}
& \left|\Omega_{1}(G) \cup \Omega_{2}(G)\right| \\
& \quad=-s+\sum_{x \in V\left(G^{\prime}\right)}\left(2^{d_{G^{\prime}}(x)}-1\right) \\
& \quad=-s+\sum_{i \geqslant 1} \beta_{i}\left(G^{\prime}\right)\left(2^{i}-1\right) \\
& \quad=-s+\sum_{i \geqslant 1} i \beta_{i}\left(G^{\prime}\right)+\sum_{i \geqslant 1} \beta_{i}\left(G^{\prime}\right)\left(2^{i}-1-i\right) \\
& \quad=-s+2 s+\sum_{i \geqslant 1} \beta_{i}\left(G^{\prime}\right)\left(2^{i}-1-i\right) \\
& \quad=s+\sum_{i \geqslant 2} \beta_{i}\left(G^{\prime}\right)\left(2^{i}-1-i\right) .
\end{aligned}
$$

Notice that the number of Q 's in $\Omega(G)$ such that $|Q \cap A|=2$ and $|Q \cap B|=2$ is exactly the number of 4 -cycles in G^{\prime}. Thus (2) is obtained by Lemma 2.2. The equality in (2) holds iff there is no $Q \in \Omega(G)$ such that either $|Q \cap A| \geqslant 3$ and $|Q \cap B| \geqslant 2$, or $|Q \cap A| \geqslant 2$ and $|Q \cap B| \geqslant 3$, i.e., $\left|N_{G^{\prime}}(x) \cap N_{G^{\prime}}(y)\right| \geqslant 3$ for $x, y \in A^{\prime}$ or $x, y \in B^{\prime}$.

Corollary 2.1. For $G=(A, B ; E) \in \mathscr{K}^{-s}(p, q)$,
(i) if $\Delta\left(G^{\prime}\right) \leqslant 2$, then $\alpha^{\prime}(G, 3)=s+\beta_{2}\left(G^{\prime}\right)+n_{4}\left(G^{\prime}\right)$;
(ii) if $\Delta\left(G^{\prime}\right)=3$, then $\alpha^{\prime}(G, 3) \geqslant s+\beta_{2}\left(G^{\prime}\right)+4 \beta_{3}\left(G^{\prime}\right)+n_{4}\left(G^{\prime}\right)$, where equality holds iff $\left|N_{G^{\prime}}(u) \cap N_{G^{\prime}}(v)\right| \leqslant 2$ for all $u, v \in A^{\prime}$ or $u, v \in B^{\prime}$;
(iii) $\alpha^{\prime}(G, 3) \geqslant 2^{\Delta\left(G^{\prime}\right)}+s-1-\Delta\left(G^{\prime}\right)$.

For two disjoint graphs H_{1} and H_{2}, let $H_{1} \cup H_{2}$ denote the graph with vertex set $V\left(H_{1}\right) \cup V\left(H_{2}\right)$ and edge set $E\left(H_{1}\right) \cup E\left(H_{2}\right)$. Let $k H=\underbrace{H \cup \cdots \cup H}_{k}$ for $k \geqslant 1$ and let
$k H$ be null if $k=0$.

Lemma 2.4. Let $G \in \mathscr{K}^{-s}(p, q)$. If $\alpha^{\prime}(G, 3)=s+t \leqslant s+4$, then either
(i) each component of G^{\prime} is a path and $\beta_{2}\left(G^{\prime}\right)=t$, or
(ii) $G^{\prime} \cong K_{1,3} \cup(s-3) K_{2}$.

Proof. Since $\alpha^{\prime}(G, 3) \leqslant s+4, \Delta\left(G^{\prime}\right) \leqslant 3$ by corollary (iii) to Lemma 2.3. If $\Delta\left(G^{\prime}\right)=3$, then $\beta_{2}\left(G^{\prime}\right)=0$ and $\beta_{3}\left(G^{\prime}\right)=1$ by corollary (ii) to Lemma 2.3, and thus $G^{\prime} \cong K_{1,3} \cup(s-3) K_{2}$. If $\Delta\left(G^{\prime}\right)=2$, then $\beta_{2}\left(G^{\prime}\right)+n_{4}\left(G^{\prime}\right) \leqslant 4$ by corollary (i) to Lemma 2.3, and thus G^{\prime} contains no cycles. Hence when $\Delta\left(G^{\prime}\right)=2$, each component of G^{\prime} is a path, and $\beta_{2}\left(G^{\prime}\right)=t$ by corollary (i) to Lemma 2.3.

Let P_{n} denote the path with n vertices. By Lemma 2.4, we establish the following result.

Theorem 2.1. Let $G \in \mathscr{K}^{-s}(p, q)$ and $\alpha^{\prime}(G, 3)=s+t$, where $0 \leqslant t \leqslant 4$. Then

$$
G^{\prime} \in \begin{cases}\left\{s K_{2}\right\} & \text { if } t=0, \\ \left\{P_{3} \cup(s-2) K_{2}\right\} & \text { if } t=1, \\ \left\{P_{4} \cup(s-3) K_{2}, 2 P_{3} \cup(s-4) K_{2}\right\} & \text { if } t=2, \\ \left\{P_{5} \cup(s-4) K_{2}, P_{4} \cup P_{3} \cup(s-5) K_{2}, 3 P_{3} \cup(s-6) K_{2}\right\} & \text { if } t=3, \\ \left\{P_{6} \cup(s-5) K_{2}, P_{5} \cup P_{3} \cup(s-6) K_{2}, 2 P_{4} \cup(s-6) K_{2},\right. & \\ \left.P_{4} \cup 2 P_{3} \cup(s-7) K_{2}, 4 P_{3} \cup(s-8) K_{2}, K_{1,3} \cup(s-3) K_{2}\right\} & \text { if } t=4,\end{cases}
$$

where $H \cup(s-i) K_{2}$ does not exist if $s<i$.

3. Chromaticity of graphs in $\mathscr{B}(p, q, s, t), t \leqslant 4$

In this section, we shall show that each graph in $\bigcup_{1 \leqslant t \leqslant 4} \mathscr{B}(p, q, s, t)$ is χ-unique.
For a bipartite graph $G=(A, B ; E)$, the number of 4-independent partitions $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ with $A_{i} \subseteq A$ or $A_{i} \subseteq B$ for all $i=1,2,3,4$ is

$$
\begin{align*}
& \left(2^{|A|-1}-1\right)\left(2^{|B|-1}-1\right)+\frac{1}{3!}\left(3^{|A|}-3 \cdot 2^{|A|}+3\right)+\frac{1}{3!}\left(3^{|B|}-3 \cdot 2^{|B|}+3\right) \\
& \quad=\left(2^{|A|-1}-2\right)\left(2^{|B|-1}-2\right)+\frac{1}{2}\left(3^{|A|-1}+3^{|B|-1}\right)-2 \tag{3}
\end{align*}
$$

Let $\alpha^{\prime}(G, 4)=\alpha(G, 4)-\left(\left(2^{|A|-1}-2\right)\left(2^{|B|-1}-2\right)+\frac{1}{2}\left(3^{|A|-1}+3^{|B|-1}\right)-2\right)$. Observe that for $G, H \in \mathscr{K}^{-s}(p, q), \alpha(G, 4)=\alpha(H, 4)$ iff $\alpha^{\prime}(G, 4)=\alpha^{\prime}(H, 4)$.

Lemma 3.1. For $G=(A, B ; E) \in \mathscr{K}^{-s}(p, q)$ with $|A|=p$ and $|B|=q$,

$$
\begin{aligned}
\alpha^{\prime}(G, 4)= & \sum_{Q \in \Omega(G)}\left(2^{p-1-|Q \cap A|}+2^{q-1-|Q \cap B|}-2\right) \\
& +\left|\left\{\left\{Q_{1}, Q_{2}\right\} \mid Q_{1}, Q_{2} \in \Omega(G), Q_{1} \cap Q_{2}=\emptyset\right\}\right| .
\end{aligned}
$$

Proof. As $s \leqslant q-1 \leqslant p-1$, there exist $x \in A$ and $y \in B$ such that $N_{G}(x)=B$ and $N_{G}(y)=A$. Thus, for any 4-independent partition $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$, there are at least two A_{i} 's with $A_{i} \subseteq A$ or $A_{i} \subseteq B$. This means that G has only three types of 4-independent partitions $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$: for $k=0,1,2$, we call the partition type k if there are exactly $k A_{i}$'s with $A_{i} \in \Omega(G)$. The number of 4-independent partitions of type 0 is given in (3). The number of 4 -independent partitions of type 1 is

$$
\sum_{Q \in \Omega(G)}\left(2^{p-1-|Q \cap A|}+2^{q-1-|Q \cap B|}-2\right)
$$

and the number of 4 -independent partitions of type 2 is

$$
\left|\left\{\left\{Q_{1}, Q_{2}\right\} \mid Q_{1}, Q_{2} \in \Omega(G), Q_{1} \cap Q_{2}=\emptyset\right\}\right|
$$

The lemma holds.

For a bipartite graph $G=(A, B ; E)$, let $\beta_{i}(G, A)$ (resp. $\beta_{i}(G, B)$) be the number of vertices in A (resp. B) with degree i.

Remark. For $G \in \mathscr{B}(p, q, s, t)$, if each component of G^{\prime} is a path, then $\alpha^{\prime}(G, 3)=s+$ $\beta_{2}\left(G^{\prime}\right)$ by Corollary 2.1(i) to Lemma 2.3. Thus $\beta_{2}\left(G^{\prime}\right)=t$.

Lemma 3.2. For $G \in \mathscr{B}(p, q, s, t)$, if each component of G^{\prime} is a path, then

$$
\begin{aligned}
& \sum_{Q \in \Omega(G)}\left(2^{p-1-|Q \cap A|}+2^{q-1-|Q \cap B|}-2\right) \\
& \quad=s\left(2^{p-2}+2^{q-2}-2\right)+t\left(2^{p-3}+2^{q-2}-2\right)+\left(2^{p-3}-2^{q-3}\right) \beta_{2}\left(G^{\prime}, A^{\prime}\right)
\end{aligned}
$$

Proof. Since each component of G^{\prime} is a path, $|Q| \leqslant 3$ for every $Q \in \Omega(G)$. There are exactly s sets Q in $\Omega(G)$ with $|Q|=2$, there are exactly $\beta_{2}\left(G^{\prime}, A^{\prime}\right)$ sets Q in $\Omega(G)$
with $|Q \cap A|=1$ and $|Q \cap B|=2$, and there are exactly $\beta_{2}\left(G^{\prime}, B^{\prime}\right)$ sets Q in $\Omega(G)$ with $|Q \cap A|=2$ and $|Q \cap B|=1$. Thus

$$
\begin{aligned}
\sum_{Q \in \Omega(G)} & \left(2^{p-1-|Q \cap A|}+2^{q-1-|Q \cap B|}-2\right) \\
= & s\left(2^{p-2}+2^{q-2}-2\right)+\beta_{2}\left(G^{\prime}, A^{\prime}\right)\left(2^{p-2}+2^{q-3}-2\right) \\
& +\beta_{2}\left(G^{\prime}, B^{\prime}\right)\left(2^{p-3}+2^{q-2}-2\right) \\
= & s\left(2^{p-2}+2^{q-2}-2\right)+\left(\beta_{2}\left(G^{\prime}, A^{\prime}\right)+\beta_{2}\left(G^{\prime}, B^{\prime}\right)\right)\left(2^{p-3}+2^{q-2}-2\right) \\
& +\left(2^{p-3}-2^{q-3}\right) \beta_{2}\left(G^{\prime}, A^{\prime}\right) \\
= & s\left(2^{p-2}+2^{q-2}-2\right)+\beta_{2}\left(G^{\prime}\right)\left(2^{p-3}+2^{q-2}-2\right)+\left(2^{p-3}-2^{q-3}\right) \beta_{2}\left(G^{\prime}, A^{\prime}\right) .
\end{aligned}
$$

Since $\beta_{2}\left(G^{\prime}\right)=t$, the lemma is obtained.
Let $p_{i}(G)$ denote the number of paths P_{i} in G.
Lemma 3.3. For $G \in \mathscr{B}(p, q, s, t)$, if each component of G^{\prime} is a path, then

$$
\begin{aligned}
& \left|\left\{\left\{Q_{1}, Q_{2}\right\} \mid Q_{1}, Q_{2} \in \Omega(G), Q_{1} \cap Q_{2}=\emptyset\right\}\right| \\
& \quad=\binom{s+t}{2}-3 t-3 p_{4}\left(G^{\prime}\right)-p_{5}\left(G^{\prime}\right)
\end{aligned}
$$

Proof. Since each component of G^{\prime} is a path, $|Q| \leqslant 3$ for every $Q \in \Omega(G)$. We also have $\beta_{2}\left(G^{\prime}\right)=t$. There are exactly s (resp. t) sets Q in $\Omega(G)$ with $|Q|=2$ (resp. $|Q|=3$). Observe that

$$
\begin{align*}
& \left|\left\{\left\{Q_{1}, Q_{2}\right\}\left|Q_{1}, Q_{2} \in \Omega(G),\left|Q_{1}\right|=\left|Q_{2}\right|=2, Q_{1} \cap Q_{2}=\emptyset\right\} \mid\right.\right. \\
& \quad=\left|\left\{\left\{Q_{1}, Q_{2}\right\}\left|Q_{1}, Q_{2} \in \Omega(G),\left|Q_{1}\right|=\left|Q_{2}\right|=2,\left|Q_{1} \cap Q_{2}\right| \leqslant 1\right\} \mid\right.\right. \\
& \quad-\left|\left\{\left\{Q_{1}, Q_{2}\right\}\left|Q_{1}, Q_{2} \in \Omega(G),\left|Q_{1}\right|=\left|Q_{2}\right|=2,\left|Q_{1} \cap Q_{2}\right|=1\right\} \mid\right.\right. \\
& \quad=\binom{s}{2}-t . \tag{4}
\end{align*}
$$

There are exactly $t Q_{1}$'s with $\left|Q_{1}\right|=3$. For each $Q_{1} \in \Omega(G)$ with $\left|Q_{1}\right|=3$, there are exactly $s-2 Q_{2}$'s in $\Omega(G)$ with $\left|Q_{2}\right|=2$ and $\left|Q_{1} \cap Q_{2}\right| \leqslant 1$. Observe that $\left|Q_{1} \cap Q_{2}\right|=1$ iff $Q_{1} \cup Q_{2}$ induces a path P_{4} in G^{\prime}, and that for each path P_{4} in G^{\prime}, there are exactly two pairs Q_{1}, Q_{2} with $\left|Q_{1}\right|=3,\left|Q_{2}\right|=2$ and $\left|Q_{1} \cap Q_{2}\right|=1$ such that $Q_{1} \cup Q_{2}$ induces this path P_{4}. Thus the number of sets $\left\{Q_{1}, Q_{2}\right\}$ with $\left|Q_{1}\right|=3,\left|Q_{2}\right|=2$ and $\left|Q_{1} \cap Q_{2}\right|=1$ is $2 p_{4}\left(G^{\prime}\right)$. Hence

$$
\left|\left\{\left\{Q_{1}, Q_{2}\right\}\left|Q_{1}, Q_{2} \in \Omega(G),\left|Q_{1}\right|=3,\left|Q_{2}\right|=2, Q_{1} \cap Q_{2}=\emptyset\right\} \mid\right.\right.
$$

$$
\begin{align*}
= & \left|\left\{\left\{Q_{1}, Q_{2}\right\}\left|Q_{1}, Q_{2} \in \Omega(G),\left|Q_{1}\right|=3,\left|Q_{2}\right|=2,\left|Q_{1} \cap Q_{2}\right| \leqslant 1\right\} \mid\right.\right. \\
& -\left|\left\{\left\{Q_{1}, Q_{2}\right\}\left|Q_{1}, Q_{2} \in \Omega(G),\left|Q_{1}\right|=3,\left|Q_{2}\right|=2,\left|Q_{1} \cap Q_{2}\right|=1\right\} \mid\right.\right. \\
= & t(s-2)-2 p_{4}\left(G^{\prime}\right) . \tag{5}
\end{align*}
$$

There are exactly $\binom{t}{2}$ sets $\left\{Q_{1}, Q_{2}\right\}$, where $Q_{1}, Q_{2} \in \Omega(G)$, with $\left|Q_{1}\right|=\left|Q_{2}\right|=3$ and $Q_{1} \neq Q_{2}$. Thus $\left|Q_{1} \cap Q_{2}\right| \leqslant 2$ for such Q_{1}, Q_{2}. The number of sets $\left\{Q_{1}, Q_{2}\right\}$ with $\left|Q_{1}\right|=\left|Q_{2}\right|=3$ and $\left|Q_{1} \cap Q_{2}\right|=2$ is $p_{4}\left(G^{\prime}\right)$, because
(i) $\left|Q_{1} \cap Q_{2}\right|=2$ iff $Q_{1} \cup Q_{2}$ induces a path P_{4} in G^{\prime} and
(ii) for each path P_{4} in G^{\prime}, there is only one set $\left\{Q_{1}, Q_{2}\right\}$ with $\left|Q_{1}\right|=\left|Q_{2}\right|=3$ such that $Q_{1} \cup Q_{2}$ induces this path P_{4}.

Similarly, the number of sets $\left\{Q_{1}, Q_{2}\right\}$ with $\left|Q_{1}\right|=\left|Q_{2}\right|=3$ and $\left|Q_{1} \cap Q_{2}\right|=1$ is $p_{5}\left(G^{\prime}\right)$. Hence

$$
\begin{align*}
\mid\{ & \left\{Q_{1}, Q_{2}\right\}\left|Q_{1}, Q_{2} \in \Omega(G),\left|Q_{1}\right|=\left|Q_{2}\right|=3, Q_{1} \cap Q_{2}=\emptyset\right\} \mid \\
= & \left|\left\{\left\{Q_{1}, Q_{2}\right\}\left|Q_{1}, Q_{2} \in \Omega(G),\left|Q_{1}\right|=\left|Q_{2}\right|=3,\left|Q_{1} \cap Q_{2}\right| \leqslant 2\right\} \mid\right.\right. \\
& \quad-\left|\left\{\left\{Q_{1}, Q_{2}\right\}\left|Q_{1}, Q_{2} \in \Omega(G),\left|Q_{1}\right|=\left|Q_{2}\right|=3,\left|Q_{1} \cap Q_{2}\right|=2\right\} \mid\right.\right. \\
& -\left|\left\{\left\{Q_{1}, Q_{2}\right\}\left|Q_{1}, Q_{2} \in \Omega(G),\left|Q_{1}\right|=\left|Q_{2}\right|=3,\left|Q_{1} \cap Q_{2}\right|=1\right\} \mid\right.\right. \\
= & \binom{t}{2}-p_{4}\left(G^{\prime}\right)-p_{5}\left(G^{\prime}\right) . \tag{6}
\end{align*}
$$

By (4)-(6), the result is obtained.

For $G \in \mathscr{B}(p, q, s, t)$, define

$$
\begin{align*}
\alpha^{\prime \prime}(G, 4)= & \alpha^{\prime}(G, 4)-\left(s\left(2^{p-2}+2^{q-2}-2\right)+t\left(2^{p-3}+2^{q-2}-2\right)\right. \\
& +(s+t)(s+t-1) / 2-3 t) . \tag{7}
\end{align*}
$$

Observe that for $G, H \in \mathscr{B}(p, q, s, t), \alpha^{\prime \prime}(G, 4)=\alpha^{\prime \prime}(H, 4)$ iff $\alpha(G, 4)=\alpha(H, 4)$.

Lemma 3.4. For $G \in \mathscr{B}(p, q, s, t)$, if each component of G^{\prime} is a path, then

$$
\alpha^{\prime \prime}(G, 4)=\left(2^{p-3}-2^{q-3}\right) \beta_{2}\left(G^{\prime}, A^{\prime}\right)-3 p_{4}\left(G^{\prime}\right)-p_{5}\left(G^{\prime}\right)
$$

Proof. It follows from Lemmas 3.1-3.3.

For a graph G with $u v \notin E(G)$, let $G+u v$ (resp. $G \cdot u v$) denote the graph obtained from G by adding the edge $u v$ (resp. by identifying u and v). For any vertex set $A \subseteq V(G)$, let $G-A$ denote the graph obtained from G by deleting all vertices in A and all edges incident to vertices in A.

For two disjoint graphs G and H, let $G+H$ denote the graph with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H) \cup\{x y \mid x \in V(G), y \in V(H)\}$.

Lemma 3.5. For a bipartite graph $G=(A, B ; E)$, if uvw is a path in G^{\prime} with $d_{G^{\prime}}(u)=1$ and $d_{G^{\prime}}(v)=2$, then for any $k \geqslant 2$,

$$
\alpha(G, k)=\alpha(G+u v, k)+\alpha(G-\{u, v\}, k-1)+\alpha(G-\{u, v, w\}, k-1) .
$$

Proof. Since $P(G, \lambda)=P(G+u v, \lambda)+P(G \cdot u v, \lambda)$, we have

$$
\alpha(G, k)=\alpha(G+u v, k)+\alpha(G \cdot u v, k) .
$$

Let x be the vertex in $G \cdot u v$ produced by identifying u and v. Notice that x is adjacent to all vertices in $V(G \cdot u v)-\{x, w\}$. Thus $G \cdot u v+x w=K_{1}+(G-\{u, v\})$ and $G \cdot u v \cdot x w=$ $K_{1}+(G-\{u, v, w\})$. We also observe that for any graph $H, \alpha\left(K_{1}+H, k\right)=\alpha(H, k-1)$, since

$$
P\left(K_{1}+H, \lambda\right)=\lambda P(H, \lambda-1) .
$$

Hence

$$
\begin{aligned}
\alpha(G \cdot u v, k) & =\alpha(G \cdot u v+x w, k)+\alpha(G \cdot u v \cdot x w, k) \\
& =\alpha\left(K_{1}+(G-\{u, v\}), k\right)+\alpha\left(K_{1}+(G-\{u, v, w\}), k\right) \\
& =\alpha(G-\{u, v\}, k-1)+\alpha(G-\{u, v, w\}, k-1) .
\end{aligned}
$$

The lemma is then obtained.

Theorem 3.1. Let p, q and s be integers with $p \geqslant q \geqslant 3$ and $0 \leqslant s \leqslant q-1$. For every $G \in \bigcup_{t=1}^{4} \mathscr{B}(p, q, s, t)$, if G is 2 -connected, then G is χ-unique.

Proof. By Theorem 1.3, $\mathscr{B}(p, q, s, t) \cap \mathscr{K}_{2}^{-s}(p, q)$ is χ-closed for each $t \geqslant 0$. To show that every 2 -connected graph in $\mathscr{B}(p, q, s, t)$ is χ-unique, it suffices to show that for every two graphs G and H in $\mathscr{B}(p, q, s, t)$, if $G \neq H$, then $\alpha(G, 4) \neq \alpha(H, 4)$ or $\alpha(G, 5) \neq \alpha(H, 5)$. Recall that for $G, H \in \mathscr{B}(p, q, s, t), \alpha^{\prime \prime}(G, 4) \neq \alpha^{\prime \prime}(H, 4)$ iff $\alpha(G, 4) \neq$ $\alpha(H, 4)$.

For each $t=1,2,3,4$, the graphs in $\mathscr{B}(p, q, s, t)$ are named as $G_{t, 1}, G_{t, 2}, \ldots$, and are shown in a table together with the values $\alpha^{\prime \prime}\left(G_{t, 1}\right), \alpha^{\prime \prime}\left(G_{t, 2}\right), \ldots$. For each graph $G_{t, i}$, if every component of $G_{t, i}^{\prime}$ is a path, then $\alpha^{\prime \prime}\left(G_{t, i}, 4\right)$ can be obtained by Lemma 3.4; otherwise, we must first find $\alpha^{\prime}\left(G_{t, i}, 4\right)$ by Lemma 3.1, and then find $\alpha^{\prime \prime}\left(G_{t, i}, 4\right)$ by (7).
(1) $\mathscr{B}(p, q, s, 1)$: The set $\mathscr{B}(p, q, s, 1)$ includes two graphs by Theorem 2.1, $G_{1,1}$ and $G_{1,2}$ (see Table 1). Notice that $\alpha^{\prime \prime}\left(G_{1,1}, 4\right) \neq \alpha^{\prime \prime}\left(G_{1,2}, 4\right)$ when $p \neq q$. But when $p=q, G_{1,1} \cong G_{1,2}$.
(2) $\mathscr{B}(p, q, s, 2)$: The set $\mathscr{B}(p, q, s, 2)$ includes four graphs by Theorem $2.1, G_{2,1}$, $G_{2,2}, G_{2,3}$ and $G_{2,4}$ (see Table 2). Notice that only $\alpha^{\prime \prime}\left(G_{2,1}, 4\right)$ is odd. If $p>q$, the three values $\alpha^{\prime \prime}\left(G_{2,2}, 4\right), \alpha^{\prime \prime}\left(G_{2,3}, 4\right)$ and $\alpha^{\prime \prime}\left(G_{2,4}, 4\right)$ are distinct. If $p=q$, then $G_{2,2} \cong$ $G_{2,3}$ and we shall show that $\alpha\left(G_{2,3}, 5\right)>\alpha\left(G_{2,4}, 5\right)$. When $p=q$, by Lemma 3.5

Table 1
$\mathscr{B}(p, q, s, 1)$

name of graph	graphs $G_{1, i}^{\prime}$ $\left(\begin{array}{l}\left.G_{1, i}^{\prime}=K_{p, q}-G_{1, i}\right) \\ (\|A\|=p,\|B\|=q)\end{array}\right.$ $G_{1,1}$ $G_{1,2}$	$\alpha^{\prime \prime}\left(G_{1, i}, 4\right)$	conditions on
s			

Table 2
$\mathscr{B}(p, q, s, 2)$

name of graph	graphs $G_{2, i}^{\prime}$ $\begin{aligned} & \left(G_{2, i}^{\prime}=K_{p, q}-G_{2, i}\right) \\ & (\|A\|=p,\|B\|=q) \end{aligned}$	$\alpha^{\prime \prime}\left(G_{2, i}, 4\right)$	conditions on s
$G_{2,1}$		$\left(2^{p-3}-2^{q-3}\right)-3$	$3 \leq s \leq q-1$
$G_{2,2}$		0	$4 \leq s \leq q-1$
$G_{2,3}$		$2\left(2^{p-3}-2^{q-3}\right)$	$4 \leq s \leq q-1$
$G_{2.4}$		$\left(2^{p-3}-2^{q-3}\right)$	$4 \leq s \leq q-1$

and Table 1, we have

$$
\begin{align*}
\alpha(& \left.G_{2,3}, 5\right)-\alpha\left(G_{2,4}, 5\right) \\
= & \alpha\left(G_{2,3}+u_{1} v_{1}, 5\right)+\alpha\left(G_{2,3}-\left\{u_{1}, v_{1}\right\}, 4\right)+\alpha\left(G_{2,3}-\left\{u_{1}, v_{1}, w_{1}\right\}, 4\right) \\
& -\left(\alpha\left(G_{2,4}+u_{2} v_{2}, 5\right)+\alpha\left(G_{2,4}-\left\{u_{2}, v_{2}\right\}, 4\right)+\alpha\left(G_{2,4}-\left\{u_{2}, v_{2}, w_{2}\right\}, 4\right)\right) \\
= & \alpha\left(G_{2,3}-\left\{u_{1}, v_{1}, w_{1}\right\}, 4\right)-\alpha\left(G_{2,4}-\left\{u_{2}, v_{2}, w_{2}\right\}, 4\right) \\
= & \alpha^{\prime \prime}\left(G_{2,3}-\left\{u_{1}, v_{1}, w_{1}\right\}, 4\right)-\alpha^{\prime \prime}\left(G_{2,4}-\left\{u_{2}, v_{2}, w_{2}\right\}, 4\right) \\
= & 2^{q-4}-2^{q-5} \\
> & 0 \tag{8}
\end{align*}
$$

since $G_{2,3}+u_{1} v_{1} \cong G_{2,4}+u_{2} v_{2}, G_{2,3}-\left\{u_{1}, v_{1}\right\} \cong G_{2,4}-\left\{u_{2}, v_{2}\right\}$, and both $G_{2,3}-\left\{u_{1}, v_{1}, w_{1}\right\}$ and $G_{2,4}-\left\{u_{2}, v_{2}, w_{2}\right\}$ belong to $\mathscr{B}(q-1, q-2, s-2,1)$.
(3) $\mathscr{B}(p, q, s, 3)$: The set $\mathscr{B}(p, q, s, 3)$ contains eight graphs by Theorem $2.1, G_{3,1}$, $G_{3,2}, \ldots, G_{3,8}$ (see Table 3). Notice that $\alpha^{\prime \prime}\left(G_{3, i}, 4\right)$ is odd when $1 \leqslant i \leqslant 4$ and even when $i \geqslant 5$. Thus $\alpha^{\prime \prime}\left(G_{3, i}, 4\right) \neq \alpha^{\prime \prime}\left(G_{3, j}, 4\right)$ if $1 \leqslant i \leqslant 4$ and $5 \leqslant j \leqslant 8$. Observe that $\alpha^{\prime \prime}\left(G_{3, i}, 4\right)+7$ contains a factor 2^{q-3} for $i=1,2$, but no factor 8 for $i=3,4$. Thus $\alpha^{\prime \prime}\left(G_{3, i}, 4\right) \neq \alpha^{\prime \prime}\left(G_{3, j}, 4\right)$ for all $i=1,2$ and all $j=3,4$. When $p>q, \alpha^{\prime \prime}\left(G_{3,1}, 4\right) \neq$ $\alpha^{\prime \prime}\left(G_{3,2}, 4\right)$ and $\alpha^{\prime \prime}\left(G_{3,3}, 4\right) \neq \alpha^{\prime \prime}\left(G_{3,4}, 4\right)$. When $p=q, G_{3,1} \cong G_{3,2}$ and $G_{3,3} \cong G_{3,4}$.

For $i=5, \ldots, 8$, the $\alpha^{\prime \prime}\left(G_{4, i}, 4\right)$'s are distinct if $p>q$. If $p=q$, then $G_{3,5} \cong G_{3,8}$ and $G_{3,6} \cong G_{3,7}$, and by using the method in (8), we have

$$
\begin{aligned}
\alpha\left(G_{3,7}, 5\right)-\alpha\left(G_{3,8}, 5\right) & =\alpha^{\prime \prime}\left(G_{3,7}-\left\{u_{1}, v_{1}, w_{1}\right\}, 4\right)-\alpha^{\prime \prime}\left(G_{3,8}-\left\{u_{2}, v_{2}, w_{2}\right\}, 4\right) \\
& =-2^{q-4}<0
\end{aligned}
$$

(4) $\mathscr{B}(p, q, s, 4)$: The set $\mathscr{B}(p, q, s, 4)$ has 16 graphs by Theorem $2.1, G_{4,1}, G_{4,2}, \ldots, G_{4,16}$ (see Table 4). Partition $\mathscr{B}(p, q, s, 4)$ into subsets:

$$
\begin{aligned}
& \mathscr{S}_{1}=\left\{G_{4,1}\right\} \\
& \mathscr{S}_{2}=\left\{G_{4,2}, G_{4,3}, G_{4,4}, G_{4,5}\right\} \\
& \mathscr{S}_{3}=\left\{G_{4,6}, G_{4,7}, G_{4,8}\right\} \\
& \mathscr{S}_{4}=\left\{G_{4,9}\right\} \\
& \mathscr{S}_{5}=\left\{G_{4,10}, G_{4,11}\right\} \\
& \mathscr{S}_{6}=\left\{G_{4,12}, G_{4,13}, G_{4,14}, G_{4,15}, G_{4,16}\right\} .
\end{aligned}
$$

For non-empty sets W_{1}, \ldots, W_{k} of graphs, let $\eta\left(W_{1}, \ldots, W_{k}\right)=0$ if $\alpha\left(G_{1}, 4\right) \neq \alpha\left(G_{2}, 4\right)$ for every two graphs $G_{1} \in W_{i}$ and $G_{2} \in W_{j}$, where $i \neq j$, and let $\eta\left(W_{1}, \ldots, W_{k}\right)=1$ otherwise.

Table 3
$\mathscr{B}(p, q, s, 3)$

name of graph	$\begin{aligned} & \text { graphs } G_{3, i}^{\prime} \\ & \left(G_{3, i}^{\prime}=K_{p, q}-G_{3, q}\right. \\ & (\|A\|=p,\|B\|=q) \end{aligned}$	$\alpha^{\prime \prime}\left(G_{3, i}, 4\right)$	conditions on s
$G_{3,1}$		$\left(\begin{array}{l} \left(2^{p-3}-2^{q-3}\right) \\ -7 \end{array}\right.$	$4 \leq s \leq q-1$
$G_{3,2}$		$\begin{aligned} & 2\left(2^{p-3}-2^{q-3}\right) \\ & -7 \end{aligned}$	$4 \leq s \leq q-1$
$G_{3,3}$		$\begin{aligned} & 2\left(2^{p-3}-2^{q-3}\right) \\ & -3 \end{aligned}$	$5 \leq s \leq q-1$
$G_{3,4}$		$\begin{aligned} & \left(2^{p-3}-2^{q-3}\right) \\ & -3 \end{aligned}$	$5 \leq s \leq q-1$
$G_{3,5}$		0	$6 \leq s \leq q-1$
$G_{3,6}$		$\left(2^{p-3}-2^{q-3}\right)$	$6 \leq s \leq q-1$
$G_{3,7}$		$2\left(2^{p-3}-2^{q-3}\right)$	$6 \leq s \leq q-1$
$G_{3,8}$		$3\left(2^{p-3}-2^{q-3}\right)$	$6 \leq s \leq q-1$

The values of $\alpha^{\prime \prime}\left(G_{4,10}, 4\right)$ and $\alpha^{\prime \prime}\left(G_{4,11}, 4\right)$ are not given by Lemma 3.4, but can be obtained by Lemma 3.1 and (7). We have

$$
\begin{aligned}
\alpha^{\prime \prime}\left(G_{4,10}, 4\right)= & s\left(2^{p-2}+2^{q-2}-2\right)+3\left(2^{p-3}+2^{q-2}-2\right) \\
& +\left(2^{p-4}+2^{q-2}-2\right)+\binom{s}{2}-3+4(s-3) \\
& -s\left(2^{p-2}+2^{q-2}-2\right)-4\left(2^{p-3}+2^{q-2}-2\right)-\binom{s+4}{2}+12 \\
= & -2^{p-4}-9 .
\end{aligned}
$$

Table 4
$\mathscr{B}(p, q, s, 4)$

name of graph	$\begin{aligned} & \text { graphs } G_{4, i}^{\prime} \\ & \left(G_{4, i}^{\prime}=K_{p, q}-G_{4, i}\right) \\ & (\|A\|=p,\|B\|=q) \end{aligned}$	$\alpha^{\prime \prime}\left(G_{4, i}, 4\right)$	conditions on s
$G_{4,1}$		$\begin{aligned} & 2\left(2^{p-3}-2^{q-3}\right) \\ & -11 \end{aligned}$	$5 \leq s \leq q-1$
$G_{4,2}$		$\begin{aligned} & \left(2^{p-3}-2^{q-3}\right) \\ & -7 \end{aligned}$	$6 \leq s \leq q-1$
$G_{4,3}$		$\begin{aligned} & 2\left(2^{p-3}-2^{q-3}\right) \\ & -7 \end{aligned}$	$6 \leq s \leq q-1$
$G_{4,4}$		$\begin{aligned} & 2\left(2^{p-3}-2^{q-3}\right) \\ & -7 \end{aligned}$	$6 \leq s \leq q-1$
$G_{4,5}$		$\begin{aligned} & 3\left(2^{p-3}-2^{q-3}\right) \\ & -7 \end{aligned}$	$6 \leq s \leq q-1$
$G_{4,6}$		$\begin{aligned} & 3\left(2^{p-3}-2^{q-3}\right) \\ & -3 \end{aligned}$	$7 \leq s \leq q-1$
$G_{4,7}$		$\begin{aligned} & 2\left(2^{p-3}-2^{q-3}\right) \\ & -3 \end{aligned}$	$7 \leq s \leq q-1$
$G_{4,8}$		$\begin{aligned} & \left(2^{p-3}-2^{q-3}\right) \\ & -3 \end{aligned}$	$7 \leq s \leq q-1$

Similarly, we find $\alpha^{\prime \prime}\left(G_{4,11}, 4\right)=2^{p-1}-9 \cdot 2^{q-4}-9$.
Claim 1. $\eta\left(\mathscr{S}_{1}, \ldots, \mathscr{S}_{6}\right)=0$:
(a) If $s \leqslant 4$, only \mathscr{S}_{5} is non-empty.
(b) For $s \geqslant 5, \alpha^{\prime \prime}(G, 4)$ is odd if $G \in \mathscr{S}_{1} \cup \mathscr{S}_{2} \cup \mathscr{S}_{3} \cup \mathscr{S}_{5}$ and even if $G \in \mathscr{S}_{4} \cup \mathscr{S}_{6}$. Hence $\eta\left(\mathscr{S}_{1} \cup \mathscr{S}_{2} \cup \mathscr{S}_{3} \cup \mathscr{S}_{5}, \mathscr{S}_{4} \cup \mathscr{S}_{6}\right)=0$.

Table 4. (continued)

name of graph	$\begin{aligned} & \text { graphs } G_{4, i}^{\prime} \\ & \left(G_{4, i}^{\prime}=K_{p, q}-G_{4, i}\right) \\ & (\|A\|=p,\|B\|=q) \end{aligned}$	$\alpha^{\prime \prime}\left(G_{4, i}, 4\right)$	conditions on s
$G_{4,9}$		$\begin{aligned} & 2\left(2^{p-3}-2^{q-3}\right) \\ & -6 \end{aligned}$	$6 \leq s \leq q-1$
$G_{4,10}$	$\cdots 0_{0}^{0} \bullet_{0}^{s-3} \bullet_{B} A$	$\begin{aligned} & -2^{p-4} \\ & -9 \end{aligned}$	$3 \leq s \leq q-1$
$G_{4,11}$	$\overbrace{\bullet \bullet} \bullet_{\bullet}^{*-3} \bullet_{B} A$	$\begin{aligned} & \left(2^{p-1}-9 \cdot 2^{q-4}\right) \\ & -9 \end{aligned}$	$3 \leq s \leq q-1$
$G_{4,12}$		$4\left(2^{p-3}-2^{q-3}\right)$	$8 \leq s \leq q-1$
$G_{4,13}$		$3\left(2^{p-3}-2^{q-3}\right)$	$8 \leq s \leq q-1$
$G_{4,14}$		$2\left(2^{p-3}-2^{q-3}\right)$	$8 \leq s \leq q-1$
$G_{4,15}$		$\left(2^{p-3}-2^{q-3}\right)$	$8 \leq s \leq q-1$
$G_{4,16}$		0	$8 \leq s \leq q-1$

(c) For $s \geqslant 5$, we have $q \geqslant 6$ and 2^{q-4} is a factor of $\alpha^{\prime \prime}(G, 4)+9$ for every $G \in \mathscr{S}_{5}$, but 4 is not a factor of $\alpha^{\prime \prime}(G, 4)+9$ for every $G \in \mathscr{S}_{1} \cup \mathscr{S}_{2} \cup \mathscr{S}_{3}$. Hence $\eta\left(\mathscr{S}_{1} \cup \mathscr{S}_{2} \cup \mathscr{S}_{3}, \mathscr{S}_{5}\right)=0$.
(d) For $s \geqslant 5$, we have $q \geqslant 6$, and 2^{q-2} is a factor of $\alpha^{\prime \prime}(G, 4)+11$ for $G \in \mathscr{S}_{1}, 2^{3}$ is not a factor of $\alpha^{\prime \prime}(G, 4)+11$ for $G \in \mathscr{S}_{2}$, and 2^{3} is a factor of $\alpha^{\prime \prime}(G, 4)+11$ but 2^{4} is not for $G \in \mathscr{S}_{3}$. Hence $\eta\left(\mathscr{S}_{1}, \mathscr{S}_{2}, \mathscr{S}_{3}\right)=0$.
(e) For $s \geqslant 6$, we have $q \geqslant 7$, and 2^{2} is a factor of $\alpha^{\prime \prime}(G, 4)$ for every $G \in \mathscr{S}_{6}$ but it is not for every $G \in \mathscr{S}_{4}$. Hence $\eta\left(\mathscr{S}_{4}, \mathscr{S}_{6}\right)=0$.

By (b)-(e), Claim 1 holds.
The remaining work is to compare every two graphs in each \mathscr{S}_{i}. Both \mathscr{S}_{1} and \mathscr{S}_{4} contain only one graph. For \mathscr{S}_{5}, when $p=q, G_{4,10} \cong G_{4,11}$; when $p>q, \alpha^{\prime \prime}\left(G_{4,10}, 4\right) \neq$ $\alpha^{\prime \prime}\left(G_{4,11}, 4\right)$. In the following, we shall study the three sets $\mathscr{S}_{2}, \mathscr{S}_{3}$ and \mathscr{S}_{6}.
(4.1) \mathscr{S}_{3} : When $p>q, \alpha^{\prime \prime}\left(G_{4,6}, 4\right)>\alpha^{\prime \prime}\left(G_{4,7}, 4\right)>\alpha^{\prime \prime}\left(G_{4,8}, 4\right)$. When $p=q$, we have $G_{4,6} \cong G_{4,8}$ and by the method used in (8),

$$
\begin{aligned}
& \alpha\left(G_{4,7}, 5\right)-\alpha\left(G_{4,8}, 5\right) \\
& \quad=\alpha\left(G_{4,7}-\left\{a_{4}, b_{4}, c_{4}\right\}, 4\right)-\alpha\left(G_{4,8}-\left\{a_{5}, b_{5}, c_{5}\right\}, 4\right)=-2^{q-5} \neq 0 .
\end{aligned}
$$

(4.2) \mathscr{S}_{6} : When $p>q$,

$$
\alpha^{\prime \prime}\left(G_{4,12}, 4\right)>\alpha^{\prime \prime}\left(G_{4,13}, 4\right)>\alpha^{\prime \prime}\left(G_{4,14}, 4\right)>\alpha^{\prime \prime}\left(G_{4,15}, 4\right)>\alpha^{\prime \prime}\left(G_{4,16}, 4\right) .
$$

When $p=q, G_{4,12} \cong G_{4,16}, G_{4,13} \cong G_{4,15}$ and by the method used in (8),

$$
\begin{aligned}
& \alpha\left(G_{4,14}, 5\right)-\alpha\left(G_{4,15}, 5\right)=-2^{q-5} \\
& \alpha\left(G_{4,15}, 5\right)-\alpha\left(G_{4,16}, 5\right)=-3 \times 2^{q-5}<0
\end{aligned}
$$

(4.3) \mathscr{S}_{2} : Observe that $\alpha^{\prime \prime}\left(G_{4,3}, 4\right)=\alpha^{\prime \prime}\left(G_{4,4}, 4\right)$. When $p>q$,

$$
\alpha^{\prime \prime}\left(G_{4,2}, 4\right)<\alpha^{\prime \prime}\left(G_{4,3}, 4\right)<\alpha^{\prime \prime}\left(G_{4,5}, 4\right)
$$

When $p=q, G_{4,2} \cong G_{4,5}$ and $G_{4,3} \cong G_{4,4}$. In the following, we shall compare $\alpha\left(G_{4,4}, 5\right)$ with $\alpha\left(G_{4,5}, 5\right)$ for $p=q$, and $\alpha\left(G_{4,3}, 5\right)$ with $\alpha\left(G_{4,4}, 5\right)$ for $p>q$.

By Lemma 3.5, when $p=q$, by the method used in (8),

$$
\begin{aligned}
& \alpha\left(G_{4,4}, 5\right)-\alpha\left(G_{4,5}, 5\right) \\
& \quad=\alpha\left(G_{4,4}-\left\{a_{2}^{\prime}, b_{2}^{\prime}, c_{2}^{\prime}\right\}, 4\right)-\alpha\left(G_{4,5}-\left\{a_{3}, b_{3}, c_{3}\right\}, 5\right) \\
& \quad=-2^{q-5} \\
& \quad<0
\end{aligned}
$$

For $G_{4,3}$ and $G_{4,4}$, we prove the following claim:
Claim 2. $\alpha\left(G_{4,3}, 5\right)-\alpha\left(G_{4,4}, 5\right)=3\left(2^{p-5}-2^{q-5}\right)$.
By Lemma 3.5,

$$
\begin{aligned}
& \alpha\left(G_{4,3}, 5\right) \\
& \quad=\alpha\left(G_{4,3}+a_{1} b_{1}, 5\right)+\alpha\left(G_{4,3}-\left\{a_{1}, b_{1}\right\}, 4\right)+\alpha\left(G_{4,3}-\left\{a_{1}, b_{1}, c_{1}\right\}, 4\right) \\
& = \\
& =\alpha\left(G_{4,3}+a_{1} b_{1}+b_{1} c_{1}, 5\right)+\alpha\left(G_{4,3}-\left\{b_{1}, c_{1}\right\}, 4\right)+\alpha\left(G_{4,3}-\left\{b_{1}, c_{1}, d_{1}\right\}, 4\right) \\
& \\
& \quad+\alpha\left(G_{4,3}-\left\{a_{1}, b_{1}\right\}, 4\right)+\alpha\left(G_{4,3}-\left\{a_{1}, b_{1}, c_{1}\right\}, 4\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \alpha\left(G_{4,4}, 5\right) \\
&= \alpha\left(G_{4,4}+a_{2} b_{2}, 5\right)+\alpha\left(G_{4,4}-\left\{a_{2}, b_{2}\right\}, 4\right)+\alpha\left(G_{4,4}-\left\{a_{2}, b_{2}, c_{2}\right\}, 4\right) \\
&= \alpha\left(G_{4,4}+a_{2} b_{2}+b_{2} c_{2}, 5\right)+\alpha\left(G_{4,4}-\left\{b_{2}, c_{2}\right\}, 4\right)+\alpha\left(G_{4,4}-\left\{b_{2}, c_{2}, d_{2}\right\}, 4\right) \\
&+\alpha\left(G_{4,4}-\left\{a_{2}, b_{2}\right\}, 4\right)+\alpha\left(G_{4,4}-\left\{a_{2}, b_{2}, c_{2}\right\}, 4\right) .
\end{aligned}
$$

Observe that

$$
\begin{align*}
& G_{4,3}+a_{1} b_{1}+b_{1} c_{1} \cong G_{4,4}+a_{2} b_{2}+b_{2} c_{2} \\
& \alpha\left(G_{4,3}-\left\{b_{1}, c_{1}\right\}, 4\right)-\alpha\left(G_{4,4}-\left\{b_{2}, c_{2}\right\}, 4\right)=2^{p-4}-2^{q-4} \\
& G_{4,3}-\left\{a_{1}, b_{1}\right\} \cong G_{4,4}-\left\{a_{2}, b_{2}\right\} \tag{9}
\end{align*}
$$

Since

$$
\begin{aligned}
& G_{4,3}-\left\{a_{1}, b_{1}, c_{1}\right\} \in \mathscr{B}(p-2, q-1, s-3,1), \\
& G_{4,4}-\left\{b_{2}, c_{2}, d_{2}\right\} \in \mathscr{B}(p-2, q-1, s-4,1),
\end{aligned}
$$

by Lemma 3.1, we have

$$
\begin{align*}
& \alpha\left(G_{4,3}-\left\{a_{1}, b_{1}, c_{1}\right\}, 4\right)-\alpha\left(G_{4,4}-\left\{b_{2}, c_{2}, d_{2}\right\}, 4\right) \\
&= \alpha^{\prime}\left(G_{4,3}-\left\{a_{1}, b_{1}, c_{1}\right\}, 4\right)-\alpha^{\prime}\left(G_{4,4}-\left\{b_{2}, c_{2}, d_{2}\right\}, 4\right) \\
&=(s-3)\left(2^{p-4}+2^{q-3}-2\right)+\left(2^{p-4}+2^{q-4}-2\right)+\binom{s-3}{2}-1+(s-5) \\
&-\left((s-4)\left(2^{p-4}+2^{q-3}-2\right)+\left(2^{p-5}+2^{q-3}-2\right)\right. \\
&\left.+\binom{s-4}{2}-1+(s-6)\right) \\
&= 2^{p-4}+2^{p-5}+2^{q-4}+s-5 . \tag{10}
\end{align*}
$$

Similarly, since

$$
\begin{aligned}
& G_{4,3}-\left\{b_{1}, c_{1}, d_{1}\right\} \in \mathscr{B}(p-1, q-2, s-4,1), \\
& G_{4,4}-\left\{a_{2}, b_{2}, c_{2}\right\} \in \mathscr{B}(p-1, q-2, s-3,1),
\end{aligned}
$$

by Lemma 3.1, we have

$$
\begin{aligned}
& \alpha\left(G_{4,3}-\left\{b_{1}, c_{1}, d_{1}\right\}, 4\right)-\alpha\left(G_{4,4}-\left\{a_{2}, b_{2}, c_{2}\right\}, 4\right) \\
& \quad=\alpha^{\prime}\left(G_{4,3}-\left\{b_{1}, c_{1}, d_{1}\right\}, 4\right)-\alpha^{\prime}\left(G_{4,4}-\left\{a_{2}, b_{2}, c_{2}\right\}, 4\right) \\
& \quad=(s-4)\left(2^{p-3}+2^{q-4}-2\right)+\left(2^{p-3}+2^{q-5}-2\right)+\binom{s-4}{2}-1+(s-6)
\end{aligned}
$$

Table 5
\(\left.$$
\begin{array}{|l|l|l|l|}\hline \text { name of } \\
\text { graph }\end{array}
$$ \quad $$
\begin{array}{l}\text { graphs } R_{i}^{\prime} \\
\left(R_{i}^{\prime}=K_{p, q}-R_{i}\right) \\
(|A|=p,|B|=q)\end{array}
$$ \quad \begin{array}{l}\alpha^{\prime}\left(R_{i}, 4\right)

-4\left(2^{p-2}+2^{q-2}-2\right)\end{array}\right]\)| $2\left(2^{p-2}+2^{q-3}-2\right)$ |
| :--- |
| R_{1} |

$$
\begin{align*}
& -\left((s-3)\left(2^{p-3}+2^{q-4}-2\right)+\left(2^{p-4}+2^{q-4}-2\right)\right. \\
& \left.+\binom{s-3}{2}-1+(s-5)\right) \\
& =-2^{p-4}-2^{q-4}-2^{q-5}-s+5 . \tag{11}
\end{align*}
$$

By (9)-(11), Claim 2 is proved.

Finally, we conclude that for every two graphs $G_{1}, G_{2} \in \mathscr{B}(p, q, s, 4)$, if $G_{1} \neq G_{2}$, then either $\alpha^{\prime \prime}\left(G_{1}, 4\right) \neq \alpha^{\prime \prime}\left(G_{2}, 4\right)$ or $\alpha\left(G_{1}, 5\right) \neq \alpha\left(G_{2}, 5\right)$. This completes the proof of the result.

Theorem 3.2. For any $G \in \mathscr{K}_{2}^{-s}(p, q)$ with $p \geqslant q \geqslant 3$ and $0 \leqslant s \leqslant \min \{4, q-1\}, G$ is χ-unique.

Proof. Let $G \in \mathscr{K}_{2}^{-s}(p, q)$. If $s \leqslant 3$, then by Theorem $1.2, \alpha^{\prime}(G, 3) \leqslant 2^{s}-1 \leqslant s+4$. Thus by Theorem 3.1, G is χ-unique if $s \leqslant 3$. Now suppose that $s=4$. We have $q \geqslant 5$. If $\Delta\left(G^{\prime}\right) \in\{1,4\}$, then $\alpha^{\prime}(G, 3)=s$ or $\alpha^{\prime}(G, 3)=2^{s}-1$ and thus G is χ-unique by Theorem 1.4. If $\Delta\left(G^{\prime}\right)=2$ and $G^{\prime} \not \not K_{2,2}$, then $\alpha^{\prime}(G, 3) \leqslant s+3$ by Corollary (i) to Lemma 2.3, and thus G is χ-unique by Theorem 3.1. If $G^{\prime}=K_{1,3} \cup K_{2}$, then $\alpha^{\prime}(G, 3)=8=s+4$, and thus G is χ-unique by Theorem 3.1. Otherwise, there are only two possible structures for G^{\prime}. They are shown in Table 5. For $i=1,2,3, \alpha^{\prime}\left(R_{i}, 4\right)$ is obtained by Lemma 3.1. From Table 5, observe that $\alpha^{\prime}\left(R_{i}, 4\right)$ is even when $i=1$ and odd when
$i=2,3$. When $p=q, R_{2} \cong R_{3}$; when $p>q, \alpha^{\prime}\left(R_{2}, 4\right)-\alpha^{\prime}\left(R_{3}, 4\right)=7\left(2^{p-4}-2^{q-4}\right)>0$. Hence G is χ-unique when $\Delta\left(G^{\prime}\right) \in\{2,3\}$. This completes the proof.

4. For further reading

The following references are also of interest to the reader: $[3,4]$.

References

[1] F.M. Dong, K.M. Koh, K.L. Teo, C.H.C. Little, M.D. Hendy, Sharp bounds for the number of 3-partitions and the chromaticity of bipartite graphs, submitted.
[2] R.E. Giudici, E. Lima de Sá, Chromatic uniqueness of certain bipartite graphs, Congr. Numer. 76 (1990) 69-75.
[3] K.M. Koh, K.L. Teo, The search for chromatically unique graphs, Graphs Combin. 6 (1990) 259-285.
[4] K.M. Koh, K.L. Teo, The search for chromatically unique graphs - II, Discrete Math. 172 (1997) 59-78.
[5] R.C. Read, W.T. Tutte, Chromatic polynomials, in: L.W. Beineke, R.J. Wilson (Eds.), Selected Topics in Graph Theory, Vol. 3, Academic Press, New York, 1988, pp. 15-42.
[6] C.P. Teo, K.M. Koh, The chromaticity of complete bipartite graphs with at most one edge deleted, J. Graph Theory 14 (1990) 89-99.

[^0]: * Corresponding author.

 E-mail address: f.m.dong@massey.ac.nz (F.M. Dong).

