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Abstract

For integers p; q; s with p¿q¿3 and 16s6q − 1, let K−s(p; q) (resp. K−s
2 (p; q)) denote

the set of connected (resp. 2-connected) bipartite graphs which can be obtained from Kp;q by
deleting a set of s edges. In this paper, we �rst �nd an upper bound for the 3-independent
partition number of a graph G ∈K−s(p; q) with respect to the maximum degree �(G′) of G′,
where G′ =Kp;q −G. By using this result, we show that the set {G |G ∈K−s

2 (p; q); �(G
′) = i}

is closed under the chromatic equivalence for every integer i with s¿i¿(s + 3)=2. From this
result, we prove that for any G ∈K−s

2 (p; q) with p¿q¿3, if 56s6q− 1 and �(G′) = s− 1,
or 76s6q − 1 and �(G′) = s − 2, then G is chromatically unique. c© 2000 Elsevier Science
B.V. All rights reserved.
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1. Introduction

All graphs considered here are simple graphs. For a graph G, let V (G); E(G); �(G);
�(G) and P(G; �) be the vertex set, edge set, minimum degree, maximum degree and
the chromatic polynomial of G, respectively.
For integers p; q; s with p¿q¿2 and s¿0, let K−s(p; q) (resp. K−s

2 (p; q)) denote
the connected (resp. 2-connected) bipartite graphs which can be obtained from Kp;q by
deleting a set of s edges.
For a graph G and a positive integer k, a partition {A1; A2; : : : ; Ak} of V (G) is called

a k-independent partition in G if each Ai is a non-empty independent set of G. Let
�(G; k) denote the number of k-independent partitions in G. For any bipartite graph
G = (A; B;E) with bipartition A and B and edge set E, let

�′(G; 3) = �(G; 3)− (2|A|−1 + 2|B|−1 − 2):
∗ Corresponding author.
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0012-365X/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S0012 -365X(00)00007 -8

fmdong
Rectangle



74 F.M. Dong et al. / Discrete Mathematics 222 (2000) 73–88

For integers s and m with m¿1 and s¿0, de�ne

g(m; s) = 2a+m + 2a+d − 2m − 2a+1 + 1;
where a and d are integers determined by s= am+ d; a¿0 and 06d6m− 1. In [1,
Theorem 3.1], we obtained the following result.

Theorem 1.1. For any graph G ∈K−s(p; q); where p¿q¿2 and 06s6
(p− 1)(q− 1);

�′(G; 3)6g(p− 1; s):

In this paper, we shall improve the upper bounds for �′(G; 3), where G ∈K−s(p; q),
under the following conditions for p; q; s:

p¿q¿3 and 16s6q− 1:
Thus the above conditions are �xed throughout this paper. Note that they imply that
G is connected.
For a bipartite graph H = (A; B;E), let H ′ = (A′; B′;E′) be the graph induced by

the edge set E′ = {xy | xy 6∈ E; x∈A; y∈B}, where A′ ⊆A and B′ ⊆B. We write
H ′ = Kp;q − H , where p= |A| and q= |B|.
The upper bound given in Theorem 1.1 is not good for bipartite graphs G with

low �(G′). For example, when �(G′) = 1 and s6q − 16p − 1, �′(G; 3) = s. But
g(p−1; s)=2s−1, which is much larger than �′(G; 3) for large s. Thus it is necessary
to study the relation between �′(G; 3) and �(G′). We �rst, in Theorem 2.1, give an
upper bound for �′(G; 3) with respect to �(G′):

�′(G; 3)6g(r; s)

for any G ∈K−s(p; q), where r=max{�(G′); b(s+1)=2c}. From this result, we prove,
in Theorem 2.2, that for any G1; G2 ∈K−s(p; q), if �(G′

2)¿max{�(G′
1)+1; (s+3)=2},

then �′(G2; 3)¿�′(G1; 3). Partition K−s(p; q) into the following subsets:

Di(p; q; s) = {G ∈K−s(p; q) |�(G′) = i}; i = 1; 2; : : : ; s:

Then for any H ∈⋃
16i¡(s+3)=2Di(p; q; s) and Hi ∈Di(p; q; s), where (s + 3)=26i6s,

it follows from Theorem 2.2 that

�′(Hs; 3)¿ · · ·¿�′(Hd(s+3)=2e; 3)¿�′(H; 3):

We then use the above results to study the chromaticity of bipartite graphs. Two
graphs G and H are said to be chromatically equivalent (or simply �-equivalent),
symbolically G ∼ H , if P(G; �) = P(H; �). The equivalence class determined by G
under ∼ is denoted by [G]. A graph G is chromatically unique (or simply �-unique)
if H ∼= G whenever H ∼ G, i.e., [G]={G} up to isomorphism. For a set G of graphs,
if [G]⊆G for every G ∈G, then G is said to be �-closed. For two sets G1 and G2
of graphs, if P(G1; �) 6= P(G2; �) for every G1 ∈G1 and G2 ∈G2, then G1 and G2 are
said to be chromatically disjoint, or simply �-disjoint.
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We shall show, in Theorem 3.1, that the following sets are pairwise �-disjoint:

D1(p; q; s);
⋃

26i¡t

Di(p; q; s);Dt(p; q; s);Dt+1(p; q; s); : : : ;Ds(p; q; s);

where t = d(s + 3)=2e. This result gives a rough classi�cation of graphs in the set
K−s(p; q) by chromatic polynomials.
We have proved in [1] that every 2-connected graph in Ds(p; q; s) is �-unique. We

shall, in Theorems 4.1 and 4.2, prove that G is �-unique for every G ∈Ds−1(p; q; s),
where s¿5, or G ∈Ds−2(p; q; s), where s¿7.

2. An upper bound for �′(G; 3)

For a graph G and x∈V (G), let NG(x), or simply N (x), be the set of vertices in G
adjacent to x, and let dG(x), or simply d(x), be the degree of x in G.
For a bipartite graph G = (A; B;E) and two vertices x; y with x; y∈B (or similarly

x; y∈A), we construct a new bipartite graph, denoted by F(G; x; y) or simply F , from
G−x−y by adding two new vertices w1 and w2 and edges joining w1 to all vertices in
N (x)∪N (y) and w2 to all vertices in N (x)∩N (y). The graph F(G; x; y), say x; y∈B,
is also a bipartite graph, which can be written as (A; B′;E′), where B′=(B−{x; y})∪
{w1; w2}. Observe that F ′ = F(G′; x; y) and �(F ′)¿�(G′).
For a bipartite graph G = (A; B;E), let

�(G) = {{x; y} | x; y∈A or x; y∈B; N (x)* N (y); and N (y)* N (x)}:
In [1, Lemma 3:8], the following result was found.

Lemma 2.1. For G ∈K−s(p; q) with �(G) 6= ∅; there is a sequence of graphs
G0(=G); G1; : : : ; Gk in K−s(p; q) such that �(Gk) = ∅ and for i = 0; 1; : : : ; k − 1;
(i) Gi+1 = F(Gi; ui; vi) for some {ui; vi}∈�(Gi) with NGi(ui) ∩ NGi(vi) 6= ∅;
(ii) |�(Gi+1)|¡ |�(Gi)|; and
(iii) �′(Gi+1; 3)¿�′(Gi; 3).

For a bipartite graph G = (A; B;E), let I(G) be the set of independent sets in G
and


(G) = {Q∈I(G) |Q ∩ A 6= ∅; Q ∩ B 6= ∅}:
In [2], we found the following result.

Lemma 2.2. For G ∈K−s(p; q); �′(G; 3) = |
(G)|¿2�(G′) + s− 1− �(G′).

We now study the di�erence between �′(F; 3) and �′(G; 3).
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Lemma 2.3. For G = (A; B;E)∈K−s(p; q) with |A|= p and |B|= q; and x; y∈A or
x; y∈B; we have

�′(F; 3)− �′(G; 3)¿2c(2a−c − 1)(2b−c − 1);
where F = F(G; x; y); a= dG′(x); b= dG′(y) and c = |NG′(x) ∩ NG′(y)|.

Proof. Without loss of generality, assume that x; y∈A. Let N1 = B − NG(x);
N2 = B − NG(y) and N0 = B − (NG(x) ∪ NG(y)). Then N1 = NG′(x); N2 = NG′(y)
and N0 = NG′(x) ∩ NG′(y).
Let 
1(G)={Q∈
(G) |Q∩B⊆N0}. We �rst show that |
1(G)|=|
1(F)|. Let H be

the subgraph of G induced by A∪N0. Then 
1(G)=
(H). Similarly, 
1(F)=
(H ′),
where H ′ is the subgraph of F induced by (A − {x; y}) ∪ {w1; w2} ∪ N0. Obviously,
H ′ ∼= H . Thus |
1(G)|= |
1(F)|.
Let 
2(G) = 
(G) − 
1(G), and let Q∈
2(G). Since Q ∩ ((N1 ∪ N2) − N0) 6= ∅,

we have {x; y}* Q. We de�ne a mapping p from 
2(G) to 
2(F): for Q∈
2(G),

p(Q) =

{
Q if Q ∩ {x; y}= ∅;
(Q − {x; y}) ∪ {w2} otherwise:

We observe that

(i) for Q1; Q2 ∈
2(G), if Q1 6= Q2, then p(Q1) 6= p(Q2);
(ii) for Q∈
2(G), if x∈Q or y∈Q, then Q ∩ B⊆N1 or Q ∩ B⊆N2, respectively.
Let 
′(F) be the set of all �Q⊆N1 ∪N2 ∪{w2} such that w2 ∈ �Q; �Q∩ (N1−N0) 6= ∅

and �Q∩ (N2−N0) 6= ∅. It is clear that 
′(F) is a subset of 
2(F). By (ii), there exists
no Q∈
2(G) such that p(Q)∈
′(F). Then by (i),

|
2(F)| − |
2(G)|¿|
′(F)|:
Observe that

|
′(F)|= 2|N0|(2|N1−N0| − 1)(2|N2−N0| − 1) = 2c(2a−c − 1)(2b−c − 1):
Hence �′(F; 3)− �′(G; 3)¿2c(2a−c − 1)(2b−c − 1).

Lemma 2.4. For G = (A; B;E)∈K−s(p; q) and F = (G; x; y) for x; y∈A or x; y∈B;
we have

�′(F; 3)− �′(G; 3)¿2�(F′) − 2�(G′) − 2s−�(G′) + 2s−�(F
′)

and

�′(F; 3)− �′(G; 3)¿2�(F′) − 2�(G′)+1 + 22�(G
′)−�(F′):

Proof. Let a= dG′(x); b= dG′(y) and c = |NG′(x) ∩ NG′(y)|. By Lemma 2.3,
�′(F; 3)− �′(G; 3)¿2c(2a−c − 1)(2b−c − 1)¿0:

Recall that �(F ′)¿�(G′). The result holds when �(F ′) = �(G′). Now suppose that
�(F ′)¿�(G′).
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By the de�nition of F = F(G; x; y), �(F ′) = max{�(G′); |NG′(x) ∪ NG′(y)|}. Since
�(F ′)¿�(G′), we have �(F ′) = |NG′(x) ∪ NG′(y)| = a + b − c. It is obvious that
a; b6�(G′) and a + b6s. Since 2x is a convex function of x, it follows that
2a + 2b62�(G

′) + 2a+b−�(G
′). Therefore,

2c(2a−c − 1)(2b−c − 1) = 2a+b−c − 2a − 2b + 2c

¿ 2�(F
′) − 2�(G′) − 2a+b(2−�(G′) − 2−�(F′))

¿ 2�(F
′) − 2�(G′) − 2s(2−�(G′) − 2−�(F′))

= 2�(F
′) − 2�(G′) − 2s−�(G′) + 2s−�(F

′)

and

2c(2a−c − 1)(2b−c − 1) = 2c−a−b(2a+b−c − 2a)(2a+b−c − 2b)
= 2−�(F

′)(2�(F
′) − 2a)(2�(F′) − 2b)

¿ 2−�(F
′)(2�(F

′) − 2�(G′))(2�(F
′) − 2�(G′))

= 2�(F
′) − 2�(G′)+1 + 22�(G

′)−�(F′):

This completes the proof of the result.

In [1] (the corollary to Lemma 3:10), we have the following result.

Lemma 2.5. For G = (A; B;E)∈K−s(p; q); if �(G) = ∅; then
�′(G; 3)6g(m; s)

for each m¿�(G′).

Lemma 2.6. For G = (A; B;E)∈K−s(p; q);

�′(G; 3)6g(m; s)− (2m − 2�(G′) − 2s−�(G′) + 2s−m)

for some m with s¿m¿�(G′).

Proof. If �(G)=∅, then by Lemma 2.5, the result holds by taking m=�(G′). Now as-
sume that �(G) 6= ∅. By Lemma 2.1, there is a sequence of graphs G0(=G); G1; : : : ; Gk
in K−s(p; q) such that �(Gk) = ∅ and for i = 0; 1; : : : ; k − 1, Gi+1 = F(Gi; ui; vi) for
some {ui; vi}∈�(Gi) with NGi(ui) ∩ NGi(vi) 6= ∅.
By Lemma 2.4, for i = 0; 1; : : : ; k − 1,
�′(Gi+1; 3)− �′(Gi; 3)¿2�(G′

i+1) − 2�(G′
i ) − 2s−�(G′

i ) + 2s−�(G
′
i+1):

Hence,

�′(Gk; 3)− �′(G0; 3) =
k−1∑
i=0

(�′(Gi+1; 3)− �′(Gi; 3))

¿ 2�(G
′
k ) − 2�(G′

0) − 2s−�(G′
0) + 2s−�(G

′
k ):
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Let m=�(G′
k). Then m¿�(G

′) and �′(Gk; 3)6g(m; s) by Lemma 2.5, as �(Gk) = ∅.
The result is thus obtained.

Lemma 2.7. For integers m and s with s¿1 and s=26m6s; we have

g(m; s) = 2m + 2s−m+1 − 3:

Proof. We have s− m6m. If s− m¡m, then as s= m+ (s− m), we have
g(m; s) = 2m+1 + 2s−m+1 − 2m − 22 + 1 = 2m + 2s−m+1 − 3:

If s− m= m, we have s= 2m and
g(m; s) = 2m+2 + 22 − 2m − 23 + 1 = 2m + 2m+1 − 3 = 2m + 2s−m+1 − 3:

This completes the proof.

Theorem 2.1. For G ∈K−s(p; q);

�′(G; 3)6g(r; s);

where r =max{�(G′); b(s+ 1)=2c}.

Proof. Case 1: �(G′)¿b(s+ 1)=2c. Let r = �(G′). By Lemma 2.6,

�′(G; 3)6g(m; s)− (2m − 2�(G′) − 2s−�(G′) + 2s−m)

for some m with s¿m¿�(G′). Since m¿�(G′)¿b(s+ 1)=2c, by Lemma 2.7,
g(�(G′); s) = 2�(G

′) + 2s−�(G
′)+1 − 3;

g(m; s) = 2m + 2s−m+1 − 3:
Thus,

g(m; s)− g(�(G′); s) = 2m − 2�(G′) − 2s−�(G′)+1 + 2s−m+1

6 2m − 2�(G′) − 2s−�(G′) + 2s−m

6 g(m; s)− �′(G; 3);
which implies that �′(G; 3)6g(�(G′); s) = g(r; s).
Case 2: �(G′)¡ b(s+ 1)=2c. Let r = b(s+ 1)=2c.
Subcase 2.1: �(G)= ∅. By Lemma 2.5, �′(G; 3)6g(m; s) for each m¿�(G′). Since

�(G′)¡ b(s+ 1)=2c= r, we have �′(G; 3)6g(r; s).
Subcase 2.2: �(G) 6= ∅. By Lemma 2.1, there is a sequence of graphs G0(=G);

G1; : : : ; Gk in K−s(p; q) such that �(Gk) = ∅ and for i = 0; 1; : : : ; k − 1,
(i) Gi+1 = F(Gi; ui; vi) for some {ui; vi}∈�(Gi) with NGi(ui) ∩ NGi(vi) 6= ∅,
(ii) �(Gi+1; 3)¿�(Gi; 3).

Since �′(Gi+1; 3) − �′(Gi; 3) = �(Gi+1; 3) − �(Gi; 3), we have �′(Gi+1; 3)¿�′(Gi; 3)
for i = 0; 1; : : : ; k − 1. If �(G′

k)¡ b(s + 1)=2c = r, then by the result in Subcase 2:1,



F.M. Dong et al. / Discrete Mathematics 222 (2000) 73–88 79

�′(Gk; 3)6g(r; s). Thus �′(G; 3)6g(r; s). Now assume that �(G′
k)¿r. Since

�(G′
i)6�(G

′
i+1) for all i with 06i6k − 1, there is some i such that �(G′

i)¡r and
�(G′

i+1)¿r. Let m1 =�(G
′
i+1) and m2 =�(G

′
i). Since m1¿r, by the result in Case 1,

we have

�′(Gi+1; 3)6g(m1; s):

By Lemma 2.4, we have

�′(Gi+1; 3)− �′(Gi; 3)¿2m1 − 2m2+1 + 22m2−m1 :
By Lemma 2.7, g(m1; s) = 2m1 + 2s−m1+1 − 3. Thus

�′(Gi; 3)6 g(m1; s)− (2m1 − 2m2+1 + 22m2−m1 )

= 2m1 + 2s−m1+1 − 3− (2m1 − 2m2+1 + 22m2−m1 )

= 2s−m1+1 + 2m2+1 − 3− 22m2−m1

6 2s−m1+1 + 2m2+1 − 3:
By Lemma 2.7, g(r; s) = 2r + 2s−r+1 − 3. Since m1¿r¿m2 + 1, we have

�′(Gi; 3)62s−r+1 + 2r − 3 = g(r; s):
This completes the proof.

De�ne h(i; s) = 2i + s− i − 1.

Lemma 2.8. For s− 1¿i¿(s+ 1)=2; h(i; s)¡g(i; s)¡h(i + 1; s).

Proof. Let s − 1¿i¿(s + 1)=2. By Lemma 2.7, we have g(i; s) = 2i + 2s−i+1 − 3.
Therefore,

h(i + 1; s)− g(i; s) = 2i − 2s−i+1 + (s− i + 1)¿ 0

and

g(i; s)− h(i; s) = 2s−i+1 − 3− (s− i − 1)¿(s− i + 3)− (s− i + 2)¿ 0:

Theorem 2.2. For G1; G2 ∈K−s(p; q); if �(G′
2)¿max{�(G′

1) + 1; (s+ 3)=2}; then
�′(G2; 3)¿�′(G1; 3):

Proof. By Lemma 2.7, it is clear that g(i; s)6g(i+1; s) for any i with s=26i6s− 1.
Thus g(i; s)6g(j; s) for any i; j with s=26i¡ j6s.
By Lemma 2.2,

�′(G2; 3)¿h(�(G′
2); s):
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By Theorem 2.1,

�′(G1; 3)6g(m; s)

for m = max{�(G′
1); b(s + 1)=2c}. We now prove that g(m; s)¡h(�(G′

2); s). Since
b(s+ 1)=2c6m6�(G′

2)− 1, it follows from Lemma 2.7 that

g(m; s)6g(�(G′
2)− 1; s):

Since �(G′
2)− 1¿(s+ 1)=2, by Lemma 2.8,

g(�(G′
2)− 1; s)¡h(�(G′

2); s):

Thus g(m; s)¡h(�(G′
2); s). Therefore �

′(G1; 3)¡�′(G2; 3).

Corollary. For any H ∈⋃
16i¡(s+3)=2Di(p; q; s); and Hi ∈Di(p; q; s); where

(s+ 3)=26i6s;

�′(Hs; 3)¿�′(Hs−1; 3)¿ · · ·¿�′(Hd(s+3)=2e; 3)¿�′(H; 3):

3. Chromaticity of bipartite graphs

In this section, we use the results in Section 2 to study the chromaticity of bipartite
graphs.
For any graph G of order n, we have [3]:

P(G; �) =
n∑
k=1

�(G; k)�(�− 1) · · · (�− k + 1):

Lemma 3.1. If G ∼ H; then �(G; k) = �(H; k) for k = 1; 2; : : : .

Theorem 3.1. Let p; q; s be integers with p¿q¿3 and 16s6q − 1. The following
sets are pairwise �-disjoint:

D1(p; q; s);
⋃

26i¡t

Di(p; q; s);Dt(p; q; s);Dt+1(p; q; s); : : : ;Ds(p; q; s);

where t = d(s+ 3)=2e.

Proof. By Lemma 3.1 and the corollary to Theorem 2.2, the following sets are pairwise
�-disjoint:⋃

26i¡t

Di(p; q; s);Dt(p; q; s);Dt+1(p; q; s); : : : ;Ds(p; q; s):

The remaining work is to prove that D1(p; q; s) and Di(p; q; s) are �-disjoint for every
i¿2. Observe that �′(G; 3) = s for any G ∈D1(p; q; s) by Lemma 2.2. But for any



F.M. Dong et al. / Discrete Mathematics 222 (2000) 73–88 81

H ∈Di(p; q; s), where i¿2, we have

�′(H; 3)¿2i + s− 1− i¿ s;

by Lemma 2.2. This completes the proof.

In [1], we obtained the following result.

Theorem 3.2 (Dong et al. [1]). For p¿q¿3 and 06s6q−1; K−s
2 (p; q) is �-closed.

The following result follows immediately from Theorems 3.1 and 3.2.

Theorem 3.3. Each of the following sets is �-closed:

K−s
2 (p; q) ∩D1(p; q; s); K−s

2 (p; q) ∩
⋃

26i¡(s+3)=2

Di(p; q; s);

and

K−s
2 (p; q) ∩Di(p; q; s); i = d(s+ 3)=2e; : : : ; s:

Which graphs in K−s(p; q) are 2-connected?

Lemma 3.2 (Dong et al. [1]). If p¿q¿3 and s6p+q−4; then for any G ∈K−s(p; q)
with �(G)¿2; G is 2-connected.

Lemma 3.3. If p¿q¿3 and 06s6q− 1; then
K−s(p; q)−K−s

2 (p; q)⊆Dq−1(p; q; s):

Proof. Since s6q−1; we have s6p+q−4. For any G ∈K−s(p; q); if �(G′)6q−2;
then �(G)¿2 and by Lemma 3:2; G is 2-connected. Hence, G 6∈ K−s

2 (p; q) implies
that G ∈Dq−1(p; q; s).

By Theorem 3.3 and Lemma 3.3, the following result is obtained.

Theorem 3.4. Let p¿q¿3 and 16s6q− 1.
(i) D1(p; q; s) is �-closed.
(ii)

⋃
26i¡(s+3)=2Di(p; q; s) is �-closed for s¿2.

(iii) Di(p; q; s) is �-closed for each i with d(s+ 3)=2e6i6min{s; q− 2}.
(iv) Dq−1(p; q; s) ∩K−s

2 (p; q) is �-closed for s= q− 1.

4. � -unique bipartite graphs

We have proved in [1] that every 2-connected graph in Ds(p; q; s) is �-unique. In
this section, we shall search for �-unique graphs from Ds−1(p; q; s) ∪Ds−2(p; q; s).
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Fig. 1.

For a bipartite graph G = (A; B;E), the number of 4-independent partitions
{A1; A2; A3; A4} in G with Ai⊆A or Ai⊆B for all i = 1; 2; 3; 4 is

(2|A|−1 − 1)(2|B|−1 − 1) + 1
3!
(3|A| − 3 · 2|A| + 3) + 1

3!
(3|B| − 3 · 2|B| + 3)

=(2|A|−1 − 2)(2|B|−1 − 2) + 1
2
(3|A|−1 + 3|B|−1)− 2: (1)

De�ne �′(G; 4)= �(G; 4)− ((2|A|−1− 2)(2|B|−1− 2)+ 1
2 (3

|A|−1 + 3|B|−1)− 2). Observe
that for G;H ∈K−s(p; q), �(G; 4) = �(H; 4) i� �′(G; 4) = �′(H; 4). In [2], we found
the following two results.

Lemma 4.1. For G = (A; B;E)∈K−s(p; q) with |A|= p and |B|= q;

�′(G; 4) =
∑

Q∈
(G)
(2p−1−|Q∩A| + 2q−1−|Q∩B| − 2)

+ |{{Q1; Q2} |Q1; Q2 ∈
(G); Q1 ∩ Q2 = ∅}|:

Lemma 4.2. For a bipartite graph G = (A; B;E); if uvw is a path in G′ with
dG′(u) = 1 and dG′(v) = 2; then for any k¿2;

�(G; k) = �(G + uv; k) + �(G − {u; v}; k − 1) + �(G − {u; v; w}; k − 1):

Theorem 4.1. For any G ∈K−s
2 (p; q) with p¿q¿s+1¿6; if �(G

′)= s− 1; then G
is �-unique.

Proof. Since s¿5, we have (s + 3)=26s − 16min{s; q − 2}. By Theorem 3.4,
Ds−1(p; q; s) is �-closed. It su�ces to prove that for any G1; G2 ∈Ds−1(p; q; s), if
G1 6∼= G2, then either �′(G1; 3) 6= �′(G2; 3) or �′(G1; 4) 6= �′(G2; 4).
There are only two bipartite graphs with size s and maximum degree s−1, and they

are shown in Fig. 1. Thus, there are four graphs in the set Ds−1(p; q; s), which are
named as T1; T2; T3 and T4, displayed in Table 1.
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Table 1

For each Ti, we can �nd �′(Ti; 3) and �′(Ti; 4) by Lemmas 2.2 and 4.1, respectively.
These values are also displayed in Table 1.
Observe that for any i=1; 2 and j=3; 4, �′(Ti; 3)¿�′(Tj; 3). If p=q, then T1 ∼= T2

and T3 ∼= T4. If p¿q, then

�′(T1; 4)− �′(T2; 4) = 2p−3 − 2q−3 +
s−1∑
i=1

(
s− 1
i

)
(2p−i−1 − 2q−i−1)(1− 2i−1)

=
s−1∑
i=3

(
s− 1
i

)
(2p−i−1 − 2q−i−1)(1− 2i−1)

+
(
1−

(
s− 1
2

))
(2p−3 − 2q−3)

¡ 0 (2)

and

�′(T3; 4)− �′(T4; 4) =
s−1∑
i=1

(
s− 1
i

)
(2p−i−1 − 2q−i−1)(1− 2i−1)¡ 0:

This completes the proof of the result.
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Fig. 2.

Lemma 4.3. For any G ∈Ds−2(p; q; s); where s¿4; G′ is one of the graphs in
Fig. 2.

Theorem 4.2. For any G ∈K−s
2 (p; q) with p¿q¿s+1¿8; if �(G

′)= s− 2; then G
is �-unique.

Proof. Since s¿7; (s+ 3)=26s− 2. By Theorem 3.4 ; Ds−2(p; q; s) is �-closed.
By Lemma 4.3, if G ∈Ds−2(p; q; s), then G′ is one of the graphs in Fig. 2. Thus

Ds−2(p; q; s) contains 16 graphs, which are named as W1; W2; : : : ; W16. (See Table 2,
parts 1 and 2.) Let

S1 = {W1; W2; W3; W4};

S2 = {W5; W6; W7; W8};

S3 = {W9; W10; W11; W12; W13; W14};

S4 = {W15; W16}:

Observe that for any i; j with 16i¡ j64; �′(Wi1 ; 3)¿�′(Wj1 ; 3) if Wi1 ∈Si and
Wj1 ∈Sj. Thus each Si is �-closed. Hence, for each i, to show that all graphs in Si

are �-unique, it su�ces to show that for any two graphs Wi1 ; Wi2 ∈Si, if Wi1 6∼= Wi2 ,
then either �′(Wi1 ; 4) 6= �′(Wi2 ; 4) or �(Wi1 ; 5) 6= �(Wi2 ; 5).
The values of �′(Wi; 4) can be obtained by Lemma 4.1. We shall establish sev-

eral inequalities of the form �′(Wi; 4)¡�′(Wj; 4) for some i; j. As an example, we
use a method similar to the one for (2) and the fact that 86s + 16q to show that
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Table 2
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Table 2 (continued)
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�′(W10; 4)¡�′(W14; 4) when p¿q.

�′(W10; 4)− �′(W14; 4)

=
s−2∑
i=1

(
s− 2
i

)
(2p−i−1 − 2q−i−1 + 2q−2 − 2p−2)

+2p−3 − 2q−3 + 3 · 2s−2 − 2s−2 − 2s−3 − 3

=
s−2∑
i=1

(
s− 2
i

)
(2p−i−1 − 2q−i−1)(1− 2i−1)

+2p−3 − 2q−3 + 3 · 2s−3 − 3

¡−
(
s− 2
2

)
(2p−3 − 2q−3) + 2p−3 − 2q−3 + 3 · 2s−3

¡− 3 · (2p−3 − 2q−3) + 3 · 2s−3

¡ 0:

(1) S1.
(1.1) When p= q; W1 ∼= W2; W3 ∼= W4, and
�′(W2; 4)¡�′(W3; 4):

(1.2) When p¿q,

�′(W1; 4)¡�′(W3; 4)¡�′(W4; 4)¡�′(W2; 4):

(2) S2

(2.1) When p= q; W5 ∼= W6; W7 ∼= W8, and
�′(W7; 4)¡�′(W6; 4):

(2.2) When p¿q,

�′(W5; 4)¡�′(W7; 4)¡�′(W8; 4)¡�′(W6; 4):

(3) S3

(3.1) When p= q; W9 ∼= W12; W10 ∼= W11; W13 ∼= W14,
�′(W11; 4) = �′(W12; 4)¿�′(W13; 4);

and by Lemma 4.2,

�(W11; 5)− �(W12; 5)

=�(W11 + a1b1; 5) + �(W11 − {a1; b1}; 4) + �(W11 − {a1; b1; c1}; 4)

− (�(W12 + a2b2; 5) + �(W12 − {a2; b2}; 4) + �(W12 − {a2; b2; c2}; 4))

=�(W11 − {a1; b1; c1}; 4)− �(W12 − {a2; b2; c2}; 4)
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=�′(W11 − {a1; b1; c1}; 4)− �′(W12 − {a2; b2; c2}; 4)

=
s−2∑
i=1

(
s− 2
i

)
(2p−4 + 2q−2−i − 2)−

s−2∑
i=1

(
s− 2
i

)
(2p−3 + 2q−3−i − 2)

=
s−2∑
i=1

(
s− 2
i

)
(2q−3−i − 2p−4)

¡ 0;

since W11 + a1b1 ∼= W12 + a2b2 and W11 − {a1; b1} ∼= W12 − {a2; b2}.
(3.2) When p¿q,

�′(W9; 4)¡�′(W10; 4)¡�′(W14; 4)¡�′(W11; 4)¡�′(W12; 4)

�′(W13; 4)¡�′(W10; 4);

and

�′(W13; 4)− �′(W9; 4) = 2p−3 − 2q−3 − 2s−1 + 2s−3 + 3{
¡ 0; if p= q+ 1; q= s+ 1

¿ 0; if p¿q+ 2 or p= q+ 1¿s+ 3:

(4) S4.
(4.1) When p= q; W15 ∼= W16.
(4.2) When p¿q; �′(W15; 4)¡�′(W16; 4).
This completes the proof.
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