DISCRETE MATHEMATICS

An attempt to classify bipartite graphs by chromatic polynomials

F.M. Dong ${ }^{\text {a, },}$, K.M. Koh ${ }^{\text {b }}$, K.L. Teo ${ }^{\text {a }}$, C.H.C. Little ${ }^{\text {a }}$, M.D. Hendy ${ }^{\text {a }}$
${ }^{a}$ Institute of Fundamental Sciences (Mathematics), Massey University, Palmerston North, New Zealand
${ }^{\mathrm{b}}$ Department of Mathematics, National University of Singapore, Singapore

Received 9 September 1998; revised 30 July 1999; accepted 29 November 1999

Abstract

For integers p, q, s with $p \geqslant q \geqslant 3$ and $1 \leqslant s \leqslant q-1$, let $\mathscr{K}^{-s}(p, q)$ (resp. $\mathscr{K}_{2}^{-s}(p, q)$) denote the set of connected (resp. 2-connected) bipartite graphs which can be obtained from $K_{p, q}$ by deleting a set of s edges. In this paper, we first find an upper bound for the 3 -independent partition number of a graph $G \in \mathscr{K}^{-s}(p, q)$ with respect to the maximum degree $\Delta\left(G^{\prime}\right)$ of G^{\prime}, where $G^{\prime}=K_{p, q}-G$. By using this result, we show that the set $\left\{G \mid G \in \mathscr{K}_{2}^{-s}(p, q), \Delta\left(G^{\prime}\right)=i\right\}$ is closed under the chromatic equivalence for every integer i with $s \geqslant i \geqslant(s+3) / 2$. From this result, we prove that for any $G \in \mathscr{K}_{2}^{-s}(p, q)$ with $p \geqslant q \geqslant 3$, if $5 \leqslant s \leqslant q-1$ and $\Delta\left(G^{\prime}\right)=s-1$, or $7 \leqslant s \leqslant q-1$ and $\Delta\left(G^{\prime}\right)=s-2$, then G is chromatically unique. (c) 2000 Elsevier Science B.V. All rights reserved.

Keywords: Bipartite graphs; Chromatic polynomials; Chromatic equivalence

1. Introduction

All graphs considered here are simple graphs. For a graph G, let $V(G), E(G), \delta(G)$, $\Delta(G)$ and $P(G, \lambda)$ be the vertex set, edge set, minimum degree, maximum degree and the chromatic polynomial of G, respectively.

For integers p, q, s with $p \geqslant q \geqslant 2$ and $s \geqslant 0$, let $\mathscr{K}^{-s}(p, q)$ (resp. $\mathscr{K}_{2}^{-s}(p, q)$) denote the connected (resp. 2-connected) bipartite graphs which can be obtained from $K_{p, q}$ by deleting a set of s edges.

For a graph G and a positive integer k, a partition $\left\{A_{1}, A_{2}, \ldots, A_{k}\right\}$ of $V(G)$ is called a k-independent partition in G if each A_{i} is a non-empty independent set of G. Let $\alpha(G, k)$ denote the number of k-independent partitions in G. For any bipartite graph $G=(A, B ; E)$ with bipartition A and B and edge set E, let

$$
\alpha^{\prime}(G, 3)=\alpha(G, 3)-\left(2^{|A|-1}+2^{|B|-1}-2\right)
$$

[^0]For integers s and m with $m \geqslant 1$ and $s \geqslant 0$, define

$$
g(m, s)=2^{a+m}+2^{a+d}-2^{m}-2^{a+1}+1,
$$

where a and d are integers determined by $s=a m+d, a \geqslant 0$ and $0 \leqslant d \leqslant m-1$. In [1 , Theorem 3.1], we obtained the following result.

Theorem 1.1. For any graph $G \in \mathscr{K}^{-s}(p, q)$, where $p \geqslant q \geqslant 2$ and $0 \leqslant s \leqslant$ $(p-1)(q-1)$,

$$
\alpha^{\prime}(G, 3) \leqslant g(p-1, s)
$$

In this paper, we shall improve the upper bounds for $\alpha^{\prime}(G, 3)$, where $G \in \mathscr{K}^{-s}(p, q)$, under the following conditions for p, q, s :

$$
p \geqslant q \geqslant 3 \quad \text { and } \quad 1 \leqslant s \leqslant q-1 .
$$

Thus the above conditions are fixed throughout this paper. Note that they imply that G is connected.

For a bipartite graph $H=(A, B ; E)$, let $H^{\prime}=\left(A^{\prime}, B^{\prime} ; E^{\prime}\right)$ be the graph induced by the edge set $E^{\prime}=\{x y \mid x y \notin E, x \in A, y \in B\}$, where $A^{\prime} \subseteq A$ and $B^{\prime} \subseteq B$. We write $H^{\prime}=K_{p, q}-H$, where $p=|A|$ and $q=|B|$.

The upper bound given in Theorem 1.1 is not good for bipartite graphs G with low $\Delta\left(G^{\prime}\right)$. For example, when $\Delta\left(G^{\prime}\right)=1$ and $s \leqslant q-1 \leqslant p-1, \alpha^{\prime}(G, 3)=s$. But $g(p-1, s)=2^{s}-1$, which is much larger than $\alpha^{\prime}(G, 3)$ for large s. Thus it is necessary to study the relation between $\alpha^{\prime}(G, 3)$ and $\Delta\left(G^{\prime}\right)$. We first, in Theorem 2.1, give an upper bound for $\alpha^{\prime}(G, 3)$ with respect to $\Delta\left(G^{\prime}\right)$:

$$
\alpha^{\prime}(G, 3) \leqslant g(r, s)
$$

for any $G \in \mathscr{K}^{-s}(p, q)$, where $r=\max \left\{\Delta\left(G^{\prime}\right),\lfloor(s+1) / 2\rfloor\right\}$. From this result, we prove, in Theorem 2.2, that for any $G_{1}, G_{2} \in \mathscr{K}^{-s}(p, q)$, if $\Delta\left(G_{2}^{\prime}\right) \geqslant \max \left\{\Delta\left(G_{1}^{\prime}\right)+1,(s+3) / 2\right\}$, then $\alpha^{\prime}\left(G_{2}, 3\right)>\alpha^{\prime}\left(G_{1}, 3\right)$. Partition $\mathscr{K}^{-s}(p, q)$ into the following subsets:

$$
\mathscr{D}_{i}(p, q, s)=\left\{G \in \mathscr{K}^{-s}(p, q) \mid \Delta\left(G^{\prime}\right)=i\right\}, \quad i=1,2, \ldots, s .
$$

Then for any $H \in \bigcup_{1 \leqslant i<(s+3) / 2} \mathscr{D}_{i}(p, q, s)$ and $H_{i} \in \mathscr{D}_{i}(p, q, s)$, where $(s+3) / 2 \leqslant i \leqslant s$, it follows from Theorem 2.2 that

$$
\alpha^{\prime}\left(H_{s}, 3\right)>\cdots>\alpha^{\prime}\left(H_{\lceil(s+3) / 2\rceil}, 3\right)>\alpha^{\prime}(H, 3)
$$

We then use the above results to study the chromaticity of bipartite graphs. Two graphs G and H are said to be chromatically equivalent (or simply χ-equivalent), symbolically $G \sim H$, if $P(G, \lambda)=P(H, \lambda)$. The equivalence class determined by G under \sim is denoted by [G]. A graph G is chromatically unique (or simply χ-unique) if $H \cong G$ whenever $H \sim G$, i.e., $[G]=\{G\}$ up to isomorphism. For a set \mathscr{G} of graphs, if $[G] \subseteq \mathscr{G}$ for every $G \in \mathscr{G}$, then \mathscr{G} is said to be χ-closed. For two sets \mathscr{G}_{1} and \mathscr{G}_{2} of graphs, if $P\left(G_{1}, \lambda\right) \neq P\left(G_{2}, \lambda\right)$ for every $G_{1} \in \mathscr{G}_{1}$ and $G_{2} \in \mathscr{G}_{2}$, then \mathscr{G}_{1} and \mathscr{G}_{2} are said to be chromatically disjoint, or simply χ-disjoint.

We shall show, in Theorem 3.1, that the following sets are pairwise χ-disjoint:

$$
\mathscr{D}_{1}(p, q, s), \bigcup_{2 \leqslant i<t} \mathscr{D}_{i}(p, q, s), \mathscr{D}_{t}(p, q, s), \mathscr{D}_{t+1}(p, q, s), \ldots, \mathscr{D}_{s}(p, q, s),
$$

where $t=\lceil(s+3) / 2\rceil$. This result gives a rough classification of graphs in the set $\mathscr{K}^{-s}(p, q)$ by chromatic polynomials.

We have proved in [1] that every 2 -connected graph in $\mathscr{D}_{s}(p, q, s)$ is χ-unique. We shall, in Theorems 4.1 and 4.2, prove that G is χ-unique for every $G \in \mathscr{D}_{s-1}(p, q, s)$, where $s \geqslant 5$, or $G \in \mathscr{D}_{s-2}(p, q, s)$, where $s \geqslant 7$.

2. An upper bound for $\alpha^{\prime}(G, 3)$

For a graph G and $x \in V(G)$, let $N_{G}(x)$, or simply $N(x)$, be the set of vertices in G adjacent to x, and let $d_{G}(x)$, or simply $d(x)$, be the degree of x in G.

For a bipartite graph $G=(A, B ; E)$ and two vertices x, y with $x, y \in B$ (or similarly $x, y \in A$), we construct a new bipartite graph, denoted by $F(G, x, y)$ or simply F, from $G-x-y$ by adding two new vertices w_{1} and w_{2} and edges joining w_{1} to all vertices in $N(x) \cup N(y)$ and w_{2} to all vertices in $N(x) \cap N(y)$. The graph $F(G, x, y)$, say $x, y \in B$, is also a bipartite graph, which can be written as $\left(A, B^{\prime} ; E^{\prime}\right)$, where $B^{\prime}=(B-\{x, y\}) \cup$ $\left\{w_{1}, w_{2}\right\}$. Observe that $F^{\prime}=F\left(G^{\prime}, x, y\right)$ and $\Delta\left(F^{\prime}\right) \geqslant \Delta\left(G^{\prime}\right)$.

For a bipartite graph $G=(A, B ; E)$, let

$$
\Phi(G)=\{\{x, y\} \mid x, y \in A \text { or } x, y \in B, N(x) \nsubseteq N(y), \text { and } N(y) \nsubseteq N(x)\} .
$$

In [1, Lemma 3.8], the following result was found.

Lemma 2.1. For $G \in \mathscr{K}^{-s}(p, q)$ with $\Phi(G) \neq \emptyset$, there is a sequence of graphs $G_{0}(=G), G_{1}, \ldots, G_{k}$ in $\mathscr{K}^{-s}(p, q)$ such that $\Phi\left(G_{k}\right)=\emptyset$ and for $i=0,1, \ldots, k-1$,
(i) $G_{i+1}=F\left(G_{i}, u_{i}, v_{i}\right)$ for some $\left\{u_{i}, v_{i}\right\} \in \Phi\left(G_{i}\right)$ with $N_{G_{i}}\left(u_{i}\right) \cap N_{G_{i}}\left(v_{i}\right) \neq \emptyset$,
(ii) $\left|\Phi\left(G_{i+1}\right)\right|<\left|\Phi\left(G_{i}\right)\right|$, and
(iii) $\alpha^{\prime}\left(G_{i+1}, 3\right) \geqslant \alpha^{\prime}\left(G_{i}, 3\right)$.

For a bipartite graph $G=(A, B ; E)$, let $\mathscr{I}(G)$ be the set of independent sets in G and

$$
\Omega(G)=\{Q \in \mathscr{I}(G) \mid Q \cap A \neq \emptyset, Q \cap B \neq \emptyset\} .
$$

In [2], we found the following result.
Lemma 2.2. For $G \in \mathscr{K}^{-s}(p, q), \alpha^{\prime}(G, 3)=|\Omega(G)| \geqslant 2^{\Delta\left(G^{\prime}\right)}+s-1-\Delta\left(G^{\prime}\right)$.

We now study the difference between $\alpha^{\prime}(F, 3)$ and $\alpha^{\prime}(G, 3)$.

Lemma 2.3. For $G=(A, B ; E) \in \mathscr{K}^{-s}(p, q)$ with $|A|=p$ and $|B|=q$, and $x, y \in A$ or $x, y \in B$, we have

$$
\alpha^{\prime}(F, 3)-\alpha^{\prime}(G, 3) \geqslant 2^{c}\left(2^{a-c}-1\right)\left(2^{b-c}-1\right)
$$

where $F=F(G, x, y), a=d_{G^{\prime}}(x), b=d_{G^{\prime}}(y)$ and $c=\left|N_{G^{\prime}}(x) \cap N_{G^{\prime}}(y)\right|$.
Proof. Without loss of generality, assume that $x, y \in A$. Let $N_{1}=B-N_{G}(x)$, $N_{2}=B-N_{G}(y)$ and $N_{0}=B-\left(N_{G}(x) \cup N_{G}(y)\right)$. Then $N_{1}=N_{G^{\prime}}(x), N_{2}=N_{G^{\prime}}(y)$ and $N_{0}=N_{G^{\prime}}(x) \cap N_{G^{\prime}}(y)$.

Let $\Omega_{1}(G)=\left\{Q \in \Omega(G) \mid Q \cap B \subseteq N_{0}\right\}$. We first show that $\left|\Omega_{1}(G)\right|=\left|\Omega_{1}(F)\right|$. Let H be the subgraph of G induced by $A \cup N_{0}$. Then $\Omega_{1}(G)=\Omega(H)$. Similarly, $\Omega_{1}(F)=\Omega\left(H^{\prime}\right)$, where H^{\prime} is the subgraph of F induced by $(A-\{x, y\}) \cup\left\{w_{1}, w_{2}\right\} \cup N_{0}$. Obviously, $H^{\prime} \cong H$. Thus $\left|\Omega_{1}(G)\right|=\left|\Omega_{1}(F)\right|$.

Let $\Omega_{2}(G)=\Omega(G)-\Omega_{1}(G)$, and let $Q \in \Omega_{2}(G)$. Since $Q \cap\left(\left(N_{1} \cup N_{2}\right)-N_{0}\right) \neq \emptyset$, we have $\{x, y\} \nsubseteq Q$. We define a mapping p from $\Omega_{2}(G)$ to $\Omega_{2}(F)$: for $Q \in \Omega_{2}(G)$,

$$
p(Q)= \begin{cases}Q & \text { if } Q \cap\{x, y\}=\emptyset \\ (Q-\{x, y\}) \cup\left\{w_{2}\right\} & \text { otherwise }\end{cases}
$$

We observe that
(i) for $Q_{1}, Q_{2} \in \Omega_{2}(G)$, if $Q_{1} \neq Q_{2}$, then $p\left(Q_{1}\right) \neq p\left(Q_{2}\right)$;
(ii) for $Q \in \Omega_{2}(G)$, if $x \in Q$ or $y \in Q$, then $Q \cap B \subseteq N_{1}$ or $Q \cap B \subseteq N_{2}$, respectively.

Let $\Omega^{\prime}(F)$ be the set of all $\bar{Q} \subseteq N_{1} \cup N_{2} \cup\left\{w_{2}\right\}$ such that $w_{2} \in \bar{Q}, \bar{Q} \cap\left(N_{1}-N_{0}\right) \neq \emptyset$ and $\bar{Q} \cap\left(N_{2}-N_{0}\right) \neq \emptyset$. It is clear that $\Omega^{\prime}(F)$ is a subset of $\Omega_{2}(F)$. By (ii), there exists no $Q \in \Omega_{2}(G)$ such that $p(Q) \in \Omega^{\prime}(F)$. Then by (i),

$$
\left|\Omega_{2}(F)\right|-\left|\Omega_{2}(G)\right| \geqslant\left|\Omega^{\prime}(F)\right|
$$

Observe that

$$
\left|\Omega^{\prime}(F)\right|=2^{\left|N_{0}\right|}\left(2^{\left|N_{1}-N_{0}\right|}-1\right)\left(2^{\left|N_{2}-N_{0}\right|}-1\right)=2^{c}\left(2^{a-c}-1\right)\left(2^{b-c}-1\right) .
$$

Hence $\alpha^{\prime}(F, 3)-\alpha^{\prime}(G, 3) \geqslant 2^{c}\left(2^{a-c}-1\right)\left(2^{b-c}-1\right)$.

Lemma 2.4. For $G=(A, B ; E) \in \mathscr{K}^{-s}(p, q)$ and $F=(G, x, y)$ for $x, y \in A$ or $x, y \in B$, we have

$$
\alpha^{\prime}(F, 3)-\alpha^{\prime}(G, 3) \geqslant 2^{\Delta\left(F^{\prime}\right)}-2^{\Delta\left(G^{\prime}\right)}-2^{s-\Delta\left(G^{\prime}\right)}+2^{s-\Delta\left(F^{\prime}\right)}
$$

and

$$
\alpha^{\prime}(F, 3)-\alpha^{\prime}(G, 3) \geqslant 2^{\Delta\left(F^{\prime}\right)}-2^{\Delta\left(G^{\prime}\right)+1}+2^{2 \Delta\left(G^{\prime}\right)-\Delta\left(F^{\prime}\right)}
$$

Proof. Let $a=d_{G^{\prime}}(x), b=d_{G^{\prime}}(y)$ and $c=\left|N_{G^{\prime}}(x) \cap N_{G^{\prime}}(y)\right|$. By Lemma 2.3,

$$
\alpha^{\prime}(F, 3)-\alpha^{\prime}(G, 3) \geqslant 2^{c}\left(2^{a-c}-1\right)\left(2^{b-c}-1\right) \geqslant 0 .
$$

Recall that $\Delta\left(F^{\prime}\right) \geqslant \Delta\left(G^{\prime}\right)$. The result holds when $\Delta\left(F^{\prime}\right)=\Delta\left(G^{\prime}\right)$. Now suppose that $\Delta\left(F^{\prime}\right)>\Delta\left(G^{\prime}\right)$.

By the definition of $F=F(G, x, y), \Delta\left(F^{\prime}\right)=\max \left\{\Delta\left(G^{\prime}\right),\left|N_{G^{\prime}}(x) \cup N_{G^{\prime}}(y)\right|\right\}$. Since $\Delta\left(F^{\prime}\right)>\Delta\left(G^{\prime}\right)$, we have $\Delta\left(F^{\prime}\right)=\left|N_{G^{\prime}}(x) \cup N_{G^{\prime}}(y)\right|=a+b-c$. It is obvious that $a, b \leqslant \Delta\left(G^{\prime}\right)$ and $a+b \leqslant s$. Since 2^{x} is a convex function of x, it follows that $2^{a}+2^{b} \leqslant 2^{\Delta\left(G^{\prime}\right)}+2^{a+b-\Delta\left(G^{\prime}\right)}$. Therefore,

$$
\begin{aligned}
2^{c}\left(2^{a-c}-1\right)\left(2^{b-c}-1\right) & =2^{a+b-c}-2^{a}-2^{b}+2^{c} \\
& \geqslant 2^{\Delta\left(F^{\prime}\right)}-2^{\Delta\left(G^{\prime}\right)}-2^{a+b}\left(2^{-\Delta\left(G^{\prime}\right)}-2^{-\Delta\left(F^{\prime}\right)}\right) \\
& \geqslant 2^{\Delta\left(F^{\prime}\right)}-2^{\Delta\left(G^{\prime}\right)}-2^{s}\left(2^{-\Delta\left(G^{\prime}\right)}-2^{-\Delta\left(F^{\prime}\right)}\right) \\
& =2^{\Delta\left(F^{\prime}\right)}-2^{\Delta\left(G^{\prime}\right)}-2^{s-\Delta\left(G^{\prime}\right)}+2^{s-\Delta\left(F^{\prime}\right)}
\end{aligned}
$$

and

$$
\begin{aligned}
2^{c}\left(2^{a-c}-1\right)\left(2^{b-c}-1\right) & =2^{c-a-b}\left(2^{a+b-c}-2^{a}\right)\left(2^{a+b-c}-2^{b}\right) \\
& =2^{-\Delta\left(F^{\prime}\right)}\left(2^{\Delta\left(F^{\prime}\right)}-2^{a}\right)\left(2^{\Delta\left(F^{\prime}\right)}-2^{b}\right) \\
& \geqslant 2^{-\Delta\left(F^{\prime}\right)}\left(2^{\Delta\left(F^{\prime}\right)}-2^{\Delta\left(G^{\prime}\right)}\right)\left(2^{\Delta\left(F^{\prime}\right)}-2^{\Delta\left(G^{\prime}\right)}\right) \\
& =2^{\Delta\left(F^{\prime}\right)}-2^{\Delta\left(G^{\prime}\right)+1}+2^{2 \Delta\left(G^{\prime}\right)-\Delta\left(F^{\prime}\right)} .
\end{aligned}
$$

This completes the proof of the result.
In [1] (the corollary to Lemma 3.10), we have the following result.
Lemma 2.5. For $G=(A, B ; E) \in \mathscr{K}^{-s}(p, q)$, if $\Phi(G)=\emptyset$, then

$$
\alpha^{\prime}(G, 3) \leqslant g(m, s)
$$

for each $m \geqslant \Delta\left(G^{\prime}\right)$.
Lemma 2.6. For $G=(A, B ; E) \in \mathscr{K}^{-s}(p, q)$,

$$
\alpha^{\prime}(G, 3) \leqslant g(m, s)-\left(2^{m}-2^{\Delta\left(G^{\prime}\right)}-2^{s-\Delta\left(G^{\prime}\right)}+2^{s-m}\right)
$$

for some m with $s \geqslant m \geqslant \Delta\left(G^{\prime}\right)$.
Proof. If $\Phi(G)=\emptyset$, then by Lemma 2.5, the result holds by taking $m=\Delta\left(G^{\prime}\right)$. Now assume that $\Phi(G) \neq \emptyset$. By Lemma 2.1, there is a sequence of graphs $G_{0}(=G), G_{1}, \ldots, G_{k}$ in $\mathscr{K}^{-s}(p, q)$ such that $\Phi\left(G_{k}\right)=\emptyset$ and for $i=0,1, \ldots, k-1, G_{i+1}=F\left(G_{i}, u_{i}, v_{i}\right)$ for some $\left\{u_{i}, v_{i}\right\} \in \Phi\left(G_{i}\right)$ with $N_{G_{i}}\left(u_{i}\right) \cap N_{G_{i}}\left(v_{i}\right) \neq \emptyset$.

By Lemma 2.4, for $i=0,1, \ldots, k-1$,

$$
\alpha^{\prime}\left(G_{i+1}, 3\right)-\alpha^{\prime}\left(G_{i}, 3\right) \geqslant 2^{\Delta\left(G_{i+1}^{\prime}\right)}-2^{\Delta\left(G_{i}^{\prime}\right)}-2^{s-\Delta\left(G_{i}^{\prime}\right)}+2^{s-\Delta\left(G_{i+1}^{\prime}\right)} .
$$

Hence,

$$
\begin{aligned}
\alpha^{\prime}\left(G_{k}, 3\right)-\alpha^{\prime}\left(G_{0}, 3\right) & =\sum_{i=0}^{k-1}\left(\alpha^{\prime}\left(G_{i+1}, 3\right)-\alpha^{\prime}\left(G_{i}, 3\right)\right) \\
& \geqslant 2^{\Delta\left(G_{k}^{\prime}\right)}-2^{\Delta\left(G_{0}^{\prime}\right)}-2^{s-\Delta\left(G_{0}^{\prime}\right)}+2^{s-\Delta\left(G_{k}^{\prime}\right)}
\end{aligned}
$$

Let $m=\Delta\left(G_{k}^{\prime}\right)$. Then $m \geqslant \Delta\left(G^{\prime}\right)$ and $\alpha^{\prime}\left(G_{k}, 3\right) \leqslant g(m, s)$ by Lemma 2.5 , as $\Phi\left(G_{k}\right)=\emptyset$. The result is thus obtained.

Lemma 2.7. For integers m and s with $s \geqslant 1$ and $s / 2 \leqslant m \leqslant s$, we have

$$
g(m, s)=2^{m}+2^{s-m+1}-3
$$

Proof. We have $s-m \leqslant m$. If $s-m<m$, then as $s=m+(s-m)$, we have

$$
g(m, s)=2^{m+1}+2^{s-m+1}-2^{m}-2^{2}+1=2^{m}+2^{s-m+1}-3 .
$$

If $s-m=m$, we have $s=2 m$ and

$$
g(m, s)=2^{m+2}+2^{2}-2^{m}-2^{3}+1=2^{m}+2^{m+1}-3=2^{m}+2^{s-m+1}-3 .
$$

This completes the proof.

Theorem 2.1. For $G \in \mathscr{K}^{-s}(p, q)$,

$$
\alpha^{\prime}(G, 3) \leqslant g(r, s)
$$

where $r=\max \left\{\Delta\left(G^{\prime}\right),\lfloor(s+1) / 2\rfloor\right\}$.
Proof. Case 1: $\Delta\left(G^{\prime}\right) \geqslant\lfloor(s+1) / 2\rfloor$. Let $r=\Delta\left(G^{\prime}\right)$. By Lemma 2.6,

$$
\alpha^{\prime}(G, 3) \leqslant g(m, s)-\left(2^{m}-2^{\Delta\left(G^{\prime}\right)}-2^{s-\Delta\left(G^{\prime}\right)}+2^{s-m}\right)
$$

for some m with $s \geqslant m \geqslant \Delta\left(G^{\prime}\right)$. Since $m \geqslant \Delta\left(G^{\prime}\right) \geqslant\lfloor(s+1) / 2\rfloor$, by Lemma 2.7,

$$
\begin{aligned}
& g\left(\Delta\left(G^{\prime}\right), s\right)=2^{\Delta\left(G^{\prime}\right)}+2^{s-\Delta\left(G^{\prime}\right)+1}-3 \\
& g(m, s)=2^{m}+2^{s-m+1}-3
\end{aligned}
$$

Thus,

$$
\begin{aligned}
g(m, s)-g\left(\Delta\left(G^{\prime}\right), s\right) & =2^{m}-2^{\Delta\left(G^{\prime}\right)}-2^{s-\Delta\left(G^{\prime}\right)+1}+2^{s-m+1} \\
& \leqslant 2^{m}-2^{\Delta\left(G^{\prime}\right)}-2^{s-\Delta\left(G^{\prime}\right)}+2^{s-m} \\
& \leqslant g(m, s)-\alpha^{\prime}(G, 3),
\end{aligned}
$$

which implies that $\alpha^{\prime}(G, 3) \leqslant g\left(\Delta\left(G^{\prime}\right), s\right)=g(r, s)$.
Case 2: $\Delta\left(G^{\prime}\right)<\lfloor(s+1) / 2\rfloor$. Let $r=\lfloor(s+1) / 2\rfloor$.
Subcase 2.1: $\Phi(G)=\emptyset$. By Lemma 2.5, $\alpha^{\prime}(G, 3) \leqslant g(m, s)$ for each $m \geqslant \Delta\left(G^{\prime}\right)$. Since $\Delta\left(G^{\prime}\right)<\lfloor(s+1) / 2\rfloor=r$, we have $\alpha^{\prime}(G, 3) \leqslant g(r, s)$.

Subcase 2.2: $\Phi(G) \neq \emptyset$. By Lemma 2.1, there is a sequence of graphs $G_{0}(=G)$, G_{1}, \ldots, G_{k} in $\mathscr{K}^{-s}(p, q)$ such that $\Phi\left(G_{k}\right)=\emptyset$ and for $i=0,1, \ldots, k-1$,
(i) $G_{i+1}=F\left(G_{i}, u_{i}, v_{i}\right)$ for some $\left\{u_{i}, v_{i}\right\} \in \Phi\left(G_{i}\right)$ with $N_{G_{i}}\left(u_{i}\right) \cap N_{G_{i}}\left(v_{i}\right) \neq \emptyset$,
(ii) $\alpha\left(G_{i+1}, 3\right) \geqslant \alpha\left(G_{i}, 3\right)$.

Since $\alpha^{\prime}\left(G_{i+1}, 3\right)-\alpha^{\prime}\left(G_{i}, 3\right)=\alpha\left(G_{i+1}, 3\right)-\alpha\left(G_{i}, 3\right)$, we have $\alpha^{\prime}\left(G_{i+1}, 3\right) \geqslant \alpha^{\prime}\left(G_{i}, 3\right)$ for $i=0,1, \ldots, k-1$. If $\Delta\left(G_{k}^{\prime}\right)<\lfloor(s+1) / 2\rfloor=r$, then by the result in Subcase 2.1,
$\alpha^{\prime}\left(G_{k}, 3\right) \leqslant g(r, s)$. Thus $\alpha^{\prime}(G, 3) \leqslant g(r, s)$. Now assume that $\Delta\left(G_{k}^{\prime}\right) \geqslant r$. Since $\Delta\left(G_{i}^{\prime}\right) \leqslant \Delta\left(G_{i+1}^{\prime}\right)$ for all i with $0 \leqslant i \leqslant k-1$, there is some i such that $\Delta\left(G_{i}^{\prime}\right)<r$ and $\Delta\left(G_{i+1}^{\prime}\right) \geqslant r$. Let $m_{1}=\Delta\left(G_{i+1}^{\prime}\right)$ and $m_{2}=\Delta\left(G_{i}^{\prime}\right)$. Since $m_{1} \geqslant r$, by the result in Case 1 , we have

$$
\alpha^{\prime}\left(G_{i+1}, 3\right) \leqslant g\left(m_{1}, s\right)
$$

By Lemma 2.4, we have

$$
\alpha^{\prime}\left(G_{i+1}, 3\right)-\alpha^{\prime}\left(G_{i}, 3\right) \geqslant 2^{m_{1}}-2^{m_{2}+1}+2^{2 m_{2}-m_{1}}
$$

By Lemma 2.7, $g\left(m_{1}, s\right)=2^{m_{1}}+2^{s-m_{1}+1}-3$. Thus

$$
\begin{aligned}
\alpha^{\prime}\left(G_{i}, 3\right) & \leqslant g\left(m_{1}, s\right)-\left(2^{m_{1}}-2^{m_{2}+1}+2^{2 m_{2}-m_{1}}\right) \\
& =2^{m_{1}}+2^{s-m_{1}+1}-3-\left(2^{m_{1}}-2^{m_{2}+1}+2^{2 m_{2}-m_{1}}\right) \\
& =2^{s-m_{1}+1}+2^{m_{2}+1}-3-2^{2 m_{2}-m_{1}} \\
& \leqslant 2^{s-m_{1}+1}+2^{m_{2}+1}-3
\end{aligned}
$$

By Lemma 2.7, $g(r, s)=2^{r}+2^{s-r+1}-3$. Since $m_{1} \geqslant r \geqslant m_{2}+1$, we have

$$
\alpha^{\prime}\left(G_{i}, 3\right) \leqslant 2^{s-r+1}+2^{r}-3=g(r, s) .
$$

This completes the proof.

Define $h(i, s)=2^{i}+s-i-1$.

Lemma 2.8. For $s-1 \geqslant i \geqslant(s+1) / 2, h(i, s)<g(i, s)<h(i+1, s)$.

Proof. Let $s-1 \geqslant i \geqslant(s+1) / 2$. By Lemma 2.7, we have $g(i, s)=2^{i}+2^{s-i+1}-3$. Therefore,

$$
h(i+1, s)-g(i, s)=2^{i}-2^{s-i+1}+(s-i+1)>0
$$

and

$$
g(i, s)-h(i, s)=2^{s-i+1}-3-(s-i-1) \geqslant(s-i+3)-(s-i+2)>0 .
$$

Theorem 2.2. For $G_{1}, G_{2} \in \mathscr{K}^{-s}(p, q)$, if $\Delta\left(G_{2}^{\prime}\right) \geqslant \max \left\{\Delta\left(G_{1}^{\prime}\right)+1,(s+3) / 2\right\}$, then

$$
\alpha^{\prime}\left(G_{2}, 3\right)>\alpha^{\prime}\left(G_{1}, 3\right) .
$$

Proof. By Lemma 2.7, it is clear that $g(i, s) \leqslant g(i+1, s)$ for any i with $s / 2 \leqslant i \leqslant s-1$. Thus $g(i, s) \leqslant g(j, s)$ for any i, j with $s / 2 \leqslant i<j \leqslant s$.

By Lemma 2.2,

$$
\alpha^{\prime}\left(G_{2}, 3\right) \geqslant h\left(\Delta\left(G_{2}^{\prime}\right), s\right)
$$

By Theorem 2.1,

$$
\alpha^{\prime}\left(G_{1}, 3\right) \leqslant g(m, s)
$$

for $m=\max \left\{\Delta\left(G_{1}^{\prime}\right),\lfloor(s+1) / 2\rfloor\right\}$. We now prove that $g(m, s)<h\left(\Delta\left(G_{2}^{\prime}\right), s\right)$. Since $\lfloor(s+1) / 2\rfloor \leqslant m \leqslant \Delta\left(G_{2}^{\prime}\right)-1$, it follows from Lemma 2.7 that

$$
g(m, s) \leqslant g\left(\Delta\left(G_{2}^{\prime}\right)-1, s\right)
$$

Since $\Delta\left(G_{2}^{\prime}\right)-1 \geqslant(s+1) / 2$, by Lemma 2.8 ,

$$
g\left(\Delta\left(G_{2}^{\prime}\right)-1, s\right)<h\left(\Delta\left(G_{2}^{\prime}\right), s\right) .
$$

Thus $g(m, s)<h\left(\Delta\left(G_{2}^{\prime}\right), s\right)$. Therefore $\alpha^{\prime}\left(G_{1}, 3\right)<\alpha^{\prime}\left(G_{2}, 3\right)$.
Corollary. For any $\quad H \in \bigcup_{1 \leqslant i<(s+3) / 2} \mathscr{D}_{i}(p, q, s)$, and $\quad H_{i} \in \mathscr{D}_{i}(p, q, s)$, where $(s+3) / 2 \leqslant i \leqslant s$,

$$
\alpha^{\prime}\left(H_{s}, 3\right)>\alpha^{\prime}\left(H_{s-1}, 3\right)>\cdots>\alpha^{\prime}\left(H_{\lceil(s+3) / 2\rceil}, 3\right)>\alpha^{\prime}(H, 3) .
$$

3. Chromaticity of bipartite graphs

In this section, we use the results in Section 2 to study the chromaticity of bipartite graphs.

For any graph G of order n, we have [3]:

$$
P(G, \lambda)=\sum_{k=1}^{n} \alpha(G, k) \lambda(\lambda-1) \cdots(\lambda-k+1) .
$$

Lemma 3.1. If $G \sim H$, then $\alpha(G, k)=\alpha(H, k)$ for $k=1,2, \ldots$.

Theorem 3.1. Let p, q, s be integers with $p \geqslant q \geqslant 3$ and $1 \leqslant s \leqslant q-1$. The following sets are pairwise χ-disjoint:

$$
\mathscr{D}_{1}(p, q, s), \bigcup_{2 \leqslant i<t} \mathscr{D}_{i}(p, q, s), \mathscr{D}_{t}(p, q, s), \mathscr{D}_{t+1}(p, q, s), \ldots, \mathscr{D}_{s}(p, q, s),
$$

where $t=\lceil(s+3) / 2\rceil$.

Proof. By Lemma 3.1 and the corollary to Theorem 2.2, the following sets are pairwise χ-disjoint:

$$
\bigcup_{2 \leqslant i<t} \mathscr{D}_{i}(p, q, s), \mathscr{D}_{t}(p, q, s), \mathscr{D}_{t+1}(p, q, s), \ldots, \mathscr{D}_{s}(p, q, s)
$$

The remaining work is to prove that $\mathscr{D}_{1}(p, q, s)$ and $\mathscr{D}_{i}(p, q, s)$ are χ-disjoint for every $i \geqslant 2$. Observe that $\alpha^{\prime}(G, 3)=s$ for any $G \in \mathscr{D}_{1}(p, q, s)$ by Lemma 2.2. But for any
$H \in \mathscr{D}_{i}(p, q, s)$, where $i \geqslant 2$, we have

$$
\alpha^{\prime}(H, 3) \geqslant 2^{i}+s-1-i>s,
$$

by Lemma 2.2. This completes the proof.

In [1], we obtained the following result.

Theorem 3.2 (Dong et al. [1]). For $p \geqslant q \geqslant 3$ and $0 \leqslant s \leqslant q-1, \mathscr{K}_{2}^{-s}(p, q)$ is χ-closed.
The following result follows immediately from Theorems 3.1 and 3.2.
Theorem 3.3. Each of the following sets is χ-closed:

$$
\mathscr{K}_{2}^{-s}(p, q) \cap \mathscr{D}_{1}(p, q, s), \mathscr{K}_{2}^{-s}(p, q) \cap \bigcup_{2 \leqslant i<(s+3) / 2} \mathscr{D}_{i}(p, q, s),
$$

and

$$
\mathscr{K}_{2}^{-s}(p, q) \cap \mathscr{D}_{i}(p, q, s), \quad i=\lceil(s+3) / 2\rceil, \ldots, s .
$$

Which graphs in $\mathscr{K}^{-s}(p, q)$ are 2-connected?

Lemma 3.2 (Dong et al. [1]). If $p \geqslant q \geqslant 3$ and $s \leqslant p+q-4$, then for any $G \in \mathscr{K}^{-s}(p, q)$ with $\delta(G) \geqslant 2, G$ is 2 -connected.

Lemma 3.3. If $p \geqslant q \geqslant 3$ and $0 \leqslant s \leqslant q-1$, then

$$
\mathscr{K}^{-s}(p, q)-\mathscr{K}_{2}^{-s}(p, q) \subseteq \mathscr{D}_{q-1}(p, q, s) .
$$

Proof. Since $s \leqslant q-1$, we have $s \leqslant p+q-4$. For any $G \in \mathscr{K}^{-s}(p, q)$, if $\Delta\left(G^{\prime}\right) \leqslant q-2$, then $\delta(G) \geqslant 2$ and by Lemma 3.2, G is 2-connected. Hence, $G \notin \mathscr{K}_{2}^{-s}(p, q)$ implies that $G \in \mathscr{D}_{q-1}(p, q, s)$.

By Theorem 3.3 and Lemma 3.3, the following result is obtained.
Theorem 3.4. Let $p \geqslant q \geqslant 3$ and $1 \leqslant s \leqslant q-1$.
(i) $\mathscr{D}_{1}(p, q, s)$ is χ-closed.
(ii) $\bigcup_{2 \leqslant i<(s+3) / 2} \mathscr{D}_{i}(p, q, s)$ is χ-closed for $s \geqslant 2$.
(iii) $\mathscr{D}_{i}(p, q, s)$ is χ-closed for each i with $\lceil(s+3) / 2\rceil \leqslant i \leqslant \min \{s, q-2\}$.
(iv) $\mathscr{D}_{q-1}(p, q, s) \cap \mathscr{K}_{2}^{-s}(p, q)$ is χ-closed for $s=q-1$.

4. χ-unique bipartite graphs

We have proved in [1] that every 2 -connected graph in $\mathscr{D}_{s}(p, q, s)$ is χ-unique. In this section, we shall search for χ-unique graphs from $\mathscr{D}_{s-1}(p, q, s) \cup \mathscr{D}_{s-2}(p, q, s)$.

Fig. 1.

For a bipartite graph $G=(A, B ; E)$, the number of 4-independent partitions $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ in G with $A_{i} \subseteq A$ or $A_{i} \subseteq B$ for all $i=1,2,3,4$ is

$$
\begin{align*}
& \left(2^{|A|-1}-1\right)\left(2^{|B|-1}-1\right)+\frac{1}{3!}\left(3^{|A|}-3 \cdot 2^{|A|}+3\right)+\frac{1}{3!}\left(3^{|B|}-3 \cdot 2^{|B|}+3\right) \\
& \quad=\left(2^{|A|-1}-2\right)\left(2^{|B|-1}-2\right)+\frac{1}{2}\left(3^{|A|-1}+3^{|B|-1}\right)-2 \tag{1}
\end{align*}
$$

Define $\alpha^{\prime}(G, 4)=\alpha(G, 4)-\left(\left(2^{|A|-1}-2\right)\left(2^{|B|-1}-2\right)+\frac{1}{2}\left(3^{|A|-1}+3^{|B|-1}\right)-2\right)$. Observe that for $G, H \in \mathscr{K}^{-s}(p, q), \alpha(G, 4)=\alpha(H, 4)$ iff $\alpha^{\prime}(G, 4)=\alpha^{\prime}(H, 4)$. In [2], we found the following two results.

Lemma 4.1. For $G=(A, B ; E) \in \mathscr{K}^{-s}(p, q)$ with $|A|=p$ and $|B|=q$,

$$
\begin{aligned}
\alpha^{\prime}(G, 4)= & \sum_{Q \in \Omega(G)}\left(2^{p-1-|Q \cap A|}+2^{q-1-|Q \cap B|}-2\right) \\
& +\left|\left\{\left\{Q_{1}, Q_{2}\right\} \mid Q_{1}, Q_{2} \in \Omega(G), Q_{1} \cap Q_{2}=\emptyset\right\}\right| .
\end{aligned}
$$

Lemma 4.2. For a bipartite graph $G=(A, B ; E)$, if uvw is a path in G^{\prime} with $d_{G^{\prime}}(u)=1$ and $d_{G^{\prime}}(v)=2$, then for any $k \geqslant 2$,

$$
\alpha(G, k)=\alpha(G+u v, k)+\alpha(G-\{u, v\}, k-1)+\alpha(G-\{u, v, w\}, k-1) .
$$

Theorem 4.1. For any $G \in \mathscr{K}_{2}^{-s}(p, q)$ with $p \geqslant q \geqslant s+1 \geqslant 6$, if $\Delta\left(G^{\prime}\right)=s-1$, then G is χ-unique.

Proof. Since $s \geqslant 5$, we have $(s+3) / 2 \leqslant s-1 \leqslant \min \{s, q-2\}$. By Theorem 3.4, $\mathscr{D}_{s-1}(p, q, s)$ is χ-closed. It suffices to prove that for any $G_{1}, G_{2} \in \mathscr{D}_{s-1}(p, q, s)$, if $G_{1} \not \neq G_{2}$, then either $\alpha^{\prime}\left(G_{1}, 3\right) \neq \alpha^{\prime}\left(G_{2}, 3\right)$ or $\alpha^{\prime}\left(G_{1}, 4\right) \neq \alpha^{\prime}\left(G_{2}, 4\right)$.

There are only two bipartite graphs with size s and maximum degree $s-1$, and they are shown in Fig. 1. Thus, there are four graphs in the set $\mathscr{D}_{s-1}(p, q, s)$, which are named as T_{1}, T_{2}, T_{3} and T_{4}, displayed in Table 1.

Table 1

name of graph	$\begin{aligned} & \text { graphs } T_{i}^{\prime} \\ & \left(T_{i}^{\prime}=K_{p, q}-T_{i}\right) \\ & (\|A\|=p,\|B\|=q) \end{aligned}$	$\alpha^{\prime}\left(T_{i}, 3\right)$	$\alpha^{\prime}\left(T_{i}, 4\right)$
T_{1}		$2^{s-1}+1$	$\begin{aligned} & \sum_{i=1}^{s-1}\binom{s-1}{i}\left(2^{p-i-1}+2^{q-2}-2\right) \\ & +\left(2^{p-2}+2^{q-2}-2\right) \\ & +\left(2^{p-2}+2^{q-3}-2\right) \\ & +2^{s-2}-1 \end{aligned}$
T_{2}	A B	$2^{s-1}+1$	$\begin{aligned} & \sum_{i=1}^{s-1}\binom{s-1}{i}\left(2^{q-i-1}+2^{p-2}-2\right) \\ & +\left(2^{p-2}+2^{q-2}-2\right) \\ & +\left(2^{p-3}+2^{q-2}-2\right) \\ & +2^{s-2}-1 \end{aligned}$
T_{3}	A B	2^{s-1}	$\begin{aligned} & \sum_{i=1}^{s-1}\binom{s-1}{i}\left(2^{p-i-1}+2^{q-2}-2\right) \\ & +\left(2^{p-2}+2^{q-2}-2\right) \\ & +2^{s-1}-1 \end{aligned}$
T_{4}		2^{s-1}	$\begin{aligned} & \sum_{i=1}^{s-1}\binom{s-1}{i}\left(2^{q-i-1}+2^{p-2}-2\right) \\ & +\left(2^{p-2}+2^{q-2}-2\right) \\ & +2^{s-1}-1 \end{aligned}$

For each T_{i}, we can find $\alpha^{\prime}\left(T_{i}, 3\right)$ and $\alpha^{\prime}\left(T_{i}, 4\right)$ by Lemmas 2.2 and 4.1, respectively. These values are also displayed in Table 1.

Observe that for any $i=1,2$ and $j=3,4, \alpha^{\prime}\left(T_{i}, 3\right)>\alpha^{\prime}\left(T_{j}, 3\right)$. If $p=q$, then $T_{1} \cong T_{2}$ and $T_{3} \cong T_{4}$. If $p>q$, then

$$
\begin{align*}
\alpha^{\prime}\left(T_{1}, 4\right)-\alpha^{\prime}\left(T_{2}, 4\right)= & 2^{p-3}-2^{q-3}+\sum_{i=1}^{s-1}\binom{s-1}{i}\left(2^{p-i-1}-2^{q-i-1}\right)\left(1-2^{i-1}\right) \\
= & \sum_{i=3}^{s-1}\binom{s-1}{i}\left(2^{p-i-1}-2^{q-i-1}\right)\left(1-2^{i-1}\right) \\
& +\left(1-\binom{s-1}{2}\right)\left(2^{p-3}-2^{q-3}\right) \\
< & 0 \tag{2}
\end{align*}
$$

and

$$
\alpha^{\prime}\left(T_{3}, 4\right)-\alpha^{\prime}\left(T_{4}, 4\right)=\sum_{i=1}^{s-1}\binom{s-1}{i}\left(2^{p-i-1}-2^{q-i-1}\right)\left(1-2^{i-1}\right)<0
$$

This completes the proof of the result.

Fig. 2.

Lemma 4.3. For any $G \in \mathscr{D}_{s-2}(p, q, s)$, where $s \geqslant 4, G^{\prime}$ is one of the graphs in Fig. 2.

Theorem 4.2. For any $G \in \mathscr{K}_{2}^{-s}(p, q)$ with $p \geqslant q \geqslant s+1 \geqslant 8$, if $\Delta\left(G^{\prime}\right)=s-2$, then G is χ-unique.

Proof. Since $s \geqslant 7,(s+3) / 2 \leqslant s-2$. By Theorem 3.4, $\mathscr{D}_{s-2}(p, q, s)$ is χ-closed.
By Lemma 4.3, if $G \in \mathscr{D}_{s-2}(p, q, s)$, then G^{\prime} is one of the graphs in Fig. 2. Thus $\mathscr{D}_{s-2}(p, q, s)$ contains 16 graphs, which are named as $W_{1}, W_{2}, \ldots, W_{16}$. (See Table 2, parts 1 and 2.) Let

$$
\begin{aligned}
& \mathscr{S}_{1}=\left\{W_{1}, W_{2}, W_{3}, W_{4}\right\}, \\
& \mathscr{S}_{2}=\left\{W_{5}, W_{6}, W_{7}, W_{8}\right\}, \\
& \mathscr{S}_{3}=\left\{W_{9}, W_{10}, W_{11}, W_{12}, W_{13}, W_{14}\right\}, \\
& \mathscr{S}_{4}=\left\{W_{15}, W_{16}\right\} .
\end{aligned}
$$

Observe that for any i, j with $1 \leqslant i<j \leqslant 4, \alpha^{\prime}\left(W_{i_{1}}, 3\right)>\alpha^{\prime}\left(W_{j_{1}}, 3\right)$ if $W_{i_{1}} \in \mathscr{S}_{i}$ and $W_{j_{1}} \in \mathscr{S}_{j}$. Thus each \mathscr{S}_{i} is χ-closed. Hence, for each i, to show that all graphs in \mathscr{S}_{i} are χ-unique, it suffices to show that for any two graphs $W_{i_{1}}, W_{i_{2}} \in \mathscr{S}_{i}$, if $W_{i_{1}} \neq W_{i_{2}}$, then either $\alpha^{\prime}\left(W_{i_{1}}, 4\right) \neq \alpha^{\prime}\left(W_{i_{2}}, 4\right)$ or $\alpha\left(W_{i_{1}}, 5\right) \neq \alpha\left(W_{i_{2}}, 5\right)$.

The values of $\alpha^{\prime}\left(W_{i}, 4\right)$ can be obtained by Lemma 4.1. We shall establish several inequalities of the form $\alpha^{\prime}\left(W_{i}, 4\right)<\alpha^{\prime}\left(W_{j}, 4\right)$ for some i, j. As an example, we use a method similar to the one for (2) and the fact that $8 \leqslant s+1 \leqslant q$ to show that

Table 2

name of graph	$\begin{aligned} & \text { graphs } W_{i}^{\prime} \\ & \left(W_{i}^{\prime}=K_{p, q}-W_{i}\right) \\ & (\|A\|=p,\|B\|=q) \end{aligned}$	$\alpha^{\prime}\left(W_{i}, 3\right)$	$\alpha^{\prime}\left(W_{i}, 4\right)$
W_{1}		$2^{s-2}+5$	$\begin{aligned} & \sum_{i=1}^{s-2}\binom{s-2}{i}\left(2^{p-i-1}+2^{q-2}-2\right) \\ & +2^{p}+2^{q}+2^{p-2}+2^{q-3} \\ & +5 \cdot 2^{s-4}-15 \end{aligned}$
W_{2}		$2^{s-2}+5$	$\begin{aligned} & \sum_{i=1}^{s-2}\binom{s-2}{i}\left(2^{q-i-1}+2^{p-2}-2\right) \\ & +2^{p}+2^{q}+2^{p-3}+2^{q-2} \\ & +5 \cdot 2^{s-4}-15 \end{aligned}$
W_{3}		$2^{s-2}+5$	$\begin{aligned} & \sum_{i=1}^{s-2}\binom{s-2}{i}\left(2^{p-i-1}+2^{q-2}-2\right) \\ & +2^{p}+2^{q}+2^{p-1}-2^{q-4} \\ & +3 \cdot 2^{s-3}-15 \end{aligned}$
W_{4}		$2^{s-2}+5$	$\begin{aligned} & \sum_{i=1}^{s-2}\binom{s-2}{i}\left(2^{q-i-1}+2^{p-2}-2\right) \\ & +2^{p}+2^{q}-2^{p-4}+2^{q-1} \\ & +3 \cdot 2^{s-3}-15 \end{aligned}$
W_{5}		$2^{s-2}+3$	$\begin{aligned} & \sum_{i=1}^{s-2}\binom{s-2}{i}\left(2^{p-i-1}+2^{q-2}-2\right) \\ & +2^{p}+2^{q}-2^{p-3}-2^{q-3} \\ & +2^{s-1}-11 \end{aligned}$
W_{6}		$2^{s-2}+3$	$\begin{aligned} & \sum_{i=1}^{s-2}\binom{s-2}{i}\left(2^{q-i-1}+2^{p-2}-2\right) \\ & +2^{p}+2^{q}-2^{p-3}-2^{q-3} \\ & +2^{s-1}-11 \end{aligned}$
W_{7}		$2^{s-2}+3$	$\begin{aligned} & \sum_{i=1}^{s-2}\binom{s-2}{i}\left(2^{p-i-1}+2^{q-2}-2\right) \\ & +2^{p}+2^{q}-2^{q-2} \\ & +2^{s-2}-7 \end{aligned}$
W_{8}		$2^{s-2}+3$	$\begin{aligned} & \sum_{i=1}^{s-2}\binom{s-2}{i}\left(2^{q-i-1}+2^{p-2}-2\right) \\ & +2^{p}+2^{q}-2^{p-2} \\ & +2^{s-2}-7 \end{aligned}$

Table 2 (continued)

name of graph	graphs W_{i}^{\prime} $\begin{aligned} & \left(W_{i}^{\prime}=K_{p, q}-W_{i}\right) \\ & (\|A\|=p,\|B\|=q) \end{aligned}$	$\alpha^{\prime}\left(W_{i}, 3\right)$	$\alpha^{\prime}\left(W_{i}, 4\right)$
W_{9}		$2^{s-2}+2$	$\begin{aligned} & \sum_{i=1}^{s-2}\binom{s-2}{i}\left(2^{p-i-1}+2^{q-2}-2\right) \\ & +5\left(2^{p-3}+2^{q-3}\right) \\ & +2^{q-3}+3 \cdot 2^{s-2}-9 \end{aligned}$
W_{10}		$2^{s-2}+2$	$\begin{aligned} & \sum_{i=1}^{s-2}\binom{s-2}{i}\left(2^{p-i-1}+2^{q-2}-2\right) \\ & +5\left(2^{p-3}+2^{q-3}\right) \\ & +2^{p-3}+3 \cdot 2^{s-2}-9 \end{aligned}$
W_{11}		$2^{s-2}+2$	$\begin{aligned} & \sum_{i=1}^{s-2}\binom{s-2}{i}\left(2^{q-i-1}+2^{p-2}-2\right) \\ & +5\left(2^{p-3}+2^{q-3}\right) \\ & +2^{q-3}+3 \cdot 2^{s-2}-9 \end{aligned}$
W_{12}		$2^{s-2}+2$	$\begin{aligned} & \sum_{i=1}^{s-2}\binom{s-2}{i}\left(2^{q-i-1}+2^{p-2}-2\right) \\ & +5\left(2^{p-3}+2^{q-3}\right) \\ & +2^{p-3}+3 \cdot 2^{s-2}-9 \end{aligned}$
W_{13}		$2^{s-2}+2$	$\begin{aligned} & \sum_{i=1}^{s-2}\binom{s-2}{i}\left(2^{p-i-1}+2^{q-2}-2\right) \\ & +5\left(2^{p-3}+2^{q-3}\right) \\ & +2^{p-3}+2^{s-2}+2^{s-3}-6 \end{aligned}$
W_{14}		$2^{s-2}+2$	$\begin{aligned} & \sum_{i=1}^{s-2}\binom{s-2}{i}\left(2^{q-i-1}+2^{p-2}-2\right) \\ & +5\left(2^{p-3}+2^{q-3}\right) \\ & +2^{q-3}+2^{s-2}+2^{s-3}-6 \end{aligned}$
W_{15}		$2^{s-2}+1$	$\begin{aligned} & \sum_{i=1}^{s-2}\binom{s-2}{i}\left(2^{p-i-1}+2^{q-2}-2\right) \\ & +2\left(2^{p-2}+2^{q-2}-2\right) \\ & +2\left(2^{s-2}-1\right)+1 \end{aligned}$
W_{16}		$2^{s-2}+1$	$\begin{aligned} & \sum_{i=1}^{s-2}\binom{s-2}{i}\left(2^{q-i-1}+2^{p-2}-2\right) \\ & +2\left(2^{p-2}+2^{q-2}-2\right) \\ & +2\left(2^{s-2}-1\right)+1 \end{aligned}$

$$
\begin{aligned}
& \alpha^{\prime}\left(W_{10}, 4\right)< \alpha^{\prime}\left(W_{14}, 4\right) \text { when } p>q . \\
& \alpha^{\prime}\left(W_{10}, 4\right)-\alpha^{\prime}\left(W_{14}, 4\right) \\
&= \sum_{i=1}^{s-2}\binom{s-2}{i}\left(2^{p-i-1}-2^{q-i-1}+2^{q-2}-2^{p-2}\right) \\
&+2^{p-3}-2^{q-3}+3 \cdot 2^{s-2}-2^{s-2}-2^{s-3}-3 \\
&= \sum_{i=1}^{s-2}\binom{s-2}{i}\left(2^{p-i-1}-2^{q-i-1}\right)\left(1-2^{i-1}\right) \\
&+2^{p-3}-2^{q-3}+3 \cdot 2^{s-3}-3 \\
&<-\binom{s-2}{2}\left(2^{p-3}-2^{q-3}\right)+2^{p-3}-2^{q-3}+3 \cdot 2^{s-3} \\
&<-3 \cdot\left(2^{p-3}-2^{q-3}\right)+3 \cdot 2^{s-3} \\
&< 0 .
\end{aligned}
$$

(1) \mathscr{S}_{1}.
(1.1) When $p=q, W_{1} \cong W_{2}, W_{3} \cong W_{4}$, and $\alpha^{\prime}\left(W_{2}, 4\right)<\alpha^{\prime}\left(W_{3}, 4\right)$.
(1.2) When $p>q$,

$$
\alpha^{\prime}\left(W_{1}, 4\right)<\alpha^{\prime}\left(W_{3}, 4\right)<\alpha^{\prime}\left(W_{4}, 4\right)<\alpha^{\prime}\left(W_{2}, 4\right)
$$

(2) \mathscr{S}_{2}
(2.1) When $p=q, W_{5} \cong W_{6}, W_{7} \cong W_{8}$, and

$$
\alpha^{\prime}\left(W_{7}, 4\right)<\alpha^{\prime}\left(W_{6}, 4\right)
$$

(2.2) When $p>q$,

$$
\alpha^{\prime}\left(W_{5}, 4\right)<\alpha^{\prime}\left(W_{7}, 4\right)<\alpha^{\prime}\left(W_{8}, 4\right)<\alpha^{\prime}\left(W_{6}, 4\right)
$$

(3) \mathscr{S}_{3}
(3.1) When $p=q, W_{9} \cong W_{12}, W_{10} \cong W_{11}, W_{13} \cong W_{14}$,

$$
\alpha^{\prime}\left(W_{11}, 4\right)=\alpha^{\prime}\left(W_{12}, 4\right)>\alpha^{\prime}\left(W_{13}, 4\right)
$$

and by Lemma 4.2,

$$
\begin{aligned}
& \alpha\left(W_{11}, 5\right)-\alpha\left(W_{12}, 5\right) \\
&= \alpha\left(W_{11}+a_{1} b_{1}, 5\right)+\alpha\left(W_{11}-\left\{a_{1}, b_{1}\right\}, 4\right)+\alpha\left(W_{11}-\left\{a_{1}, b_{1}, c_{1}\right\}, 4\right) \\
&-\left(\alpha\left(W_{12}+a_{2} b_{2}, 5\right)+\alpha\left(W_{12}-\left\{a_{2}, b_{2}\right\}, 4\right)+\alpha\left(W_{12}-\left\{a_{2}, b_{2}, c_{2}\right\}, 4\right)\right) \\
&= \alpha\left(W_{11}-\left\{a_{1}, b_{1}, c_{1}\right\}, 4\right)-\alpha\left(W_{12}-\left\{a_{2}, b_{2}, c_{2}\right\}, 4\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\alpha^{\prime}\left(W_{11}-\left\{a_{1}, b_{1}, c_{1}\right\}, 4\right)-\alpha^{\prime}\left(W_{12}-\left\{a_{2}, b_{2}, c_{2}\right\}, 4\right) \\
& =\sum_{i=1}^{s-2}\binom{s-2}{i}\left(2^{p-4}+2^{q-2-i}-2\right)-\sum_{i=1}^{s-2}\binom{s-2}{i}\left(2^{p-3}+2^{q-3-i}-2\right) \\
& =\sum_{i=1}^{s-2}\binom{s-2}{i}\left(2^{q-3-i}-2^{p-4}\right) \\
& <0
\end{aligned}
$$

since $W_{11}+a_{1} b_{1} \cong W_{12}+a_{2} b_{2}$ and $W_{11}-\left\{a_{1}, b_{1}\right\} \cong W_{12}-\left\{a_{2}, b_{2}\right\}$.
(3.2) When $p>q$,

$$
\begin{aligned}
& \alpha^{\prime}\left(W_{9}, 4\right)<\alpha^{\prime}\left(W_{10}, 4\right)<\alpha^{\prime}\left(W_{14}, 4\right)<\alpha^{\prime}\left(W_{11}, 4\right)<\alpha^{\prime}\left(W_{12}, 4\right) \\
& \alpha^{\prime}\left(W_{13}, 4\right)<\alpha^{\prime}\left(W_{10}, 4\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\alpha^{\prime}\left(W_{13}, 4\right)-\alpha^{\prime}\left(W_{9}, 4\right)= & 2^{p-3}-2^{q-3}-2^{s-1}+2^{s-3}+3 \\
& \begin{cases}<0, & \text { if } p=q+1, q=s+1 \\
>0, & \text { if } p \geqslant q+2 \text { or } p=q+1 \geqslant s+3 .\end{cases}
\end{aligned}
$$

(4) \mathscr{S}_{4}.
(4.1) When $p=q, W_{15} \cong W_{16}$.
(4.2) When $p>q, \alpha^{\prime}\left(W_{15}, 4\right)<\alpha^{\prime}\left(W_{16}, 4\right)$.

This completes the proof.

Acknowledgements

The authors thank the referees for helpful comments.

References

[1] F.M. Dong, K.M. Koh, K.L. Teo, C.H.C. Little, M.D. Hendy, Sharp bounds for the number of 3-partitions and the chromaticity of bipartite graphs, submitted.
[2] F.M. Dong, K.M. Koh, K.L. Teo, C.H.C. Little, M.D. Hendy, Chromatically unique bipartite graphs with lower 3-independent partition numbers, submitted.
[3] R.C. Read, W.T. Tutte, Chromatic polynomials, in: L.W. Beineke, R.J. Wilson (Eds.), Selected Topics in Graph Theory III, Academic Press, New York, 1988, pp. 15-42.

[^0]: * Corresponding author.

 E-mail address: f.m.dong@massey.ac.nz (F.M. Dong).

