Chapter 1

The Principle of Inclusion and Exclusion

1.1 Introduction

For any set A, let $|A|$ denote the number of members in A. If A_{1} and A_{2} are disjoint sets (i.e., $A_{1} \cap A_{2}=\emptyset$), then

$$
\begin{equation*}
\text { label :eq1 }-1\left|A_{1} \cup A_{2}\right|=\left|A_{1}\right|+\left|A_{2}\right| \tag{1.1}
\end{equation*}
$$

and, in general, if $A_{1}, A_{2}, \cdots, A_{n}$ are pairwisely disjoint sets (i.e., $A_{i} \cap A_{j}=\emptyset$ for all i, j with $1 \leq i<j \leq n)$, then

$$
\begin{equation*}
\text { label :eq1 }-2\left|A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right|=\left|A_{1}\right|+\left|A_{2}\right|+\cdots+\left|A_{n}\right| \text {. } \tag{1.2}
\end{equation*}
$$

But, if $A_{i} \cap A_{j} \neq \emptyset$ for some pair i and j, then (1.2) does not hold.
Then a problem arises:

Problem 1.1.1 How can we determine $\left|A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right|$ if we just know the values of $\left|A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{k}}\right|$ for all $i_{1}, i_{2}, \cdots, i_{k}$ with $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n$?

In this chapter we shall first develop a formula for $\left|A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right|$ in terms of all $\left|A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{k}}\right|$'s. This result is called the Principle of Inclusion and Exclusion (or simply PIE). We will then extend PIE to a more general result which is named GPIE.

In the remaining sections of this chapter, we shall apply GPIE to study some famous counting problems, such as
(i) to find a formula for the number of surjective mappings from N_{n} to N_{m};
(ii) to find a formula for the number of permutations $a_{1} a_{2} \cdots a_{n}$ of $\{1,2, \cdots, n\}$ such that $a_{i} \neq i$; and
(iii) to find a formula for the number of numbers a in $\{1,2, \cdots, n\}$ such that a and n are coprime, i.e., $(a, n)=1$.

1.2 The Principle of Inclusion and Exclusion

Let $A_{1}, A_{2}, \cdots, A_{n}$ be finite sets. In this section, we shall find a formula to express $\left|A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right|$ in terms of $\left|A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{k}}\right|$ for all $i_{1}, i_{2}, \cdots, i_{k}$ with $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n$.

Lemma 1.2.1 label: le1-2-0 For any two sets A_{1} and A_{2}, if $A_{1} \cap A_{2}=\emptyset$, then

$$
\begin{equation*}
\text { label :eq1 }-\mathbf{2}-\mathbf{0}\left|A_{1} \cup A_{2}\right|=\left|A_{1}\right|+\left|A_{2}\right| \text {. } \tag{1.3}
\end{equation*}
$$

Lemma 1.2.2 label: le1-2-0-1 For any two sets A_{1} and A_{2}, if A_{2} is a subset of A_{1}, then

$$
\begin{equation*}
\text { label :eq1 }-2-0-1\left|A_{1}-A_{2}\right|=\left|A_{1}\right|-\left|A_{2}\right| . \tag{1.4}
\end{equation*}
$$

Can you prove Lemma 1.2.2 by applying Lemma 1.2.1?

Note that Lemma 1.2.2 is not true if A_{2} is not a subset of A_{1}. For example, if $A_{1}=\{1,2,3,4,5\}$ and $A_{2}=\{3,4,5,6,7,8\}$, then

$$
\left|A_{1}-A_{2}\right|=|\{1,2\}|=2
$$

but

$$
\left|A_{1}\right|-\left|A_{2}\right|=5-6=-1
$$

Is there an expression similar to Lemma 1.2.2 when A_{2} is not a subset of A_{1} ?
Now we apply Lemmas 1.2 .1 and 1.2 .2 to deduce the following well-known formula.

Lemma 1.2.3 label: le1-2-1 For any two sets A_{1} and A_{2}, we have

$$
\begin{equation*}
\text { label :eq1-2-1 }\left|A_{1} \cup A_{2}\right|=\left|A_{1}\right|+\left|A_{2}\right|-\left|A_{1} \cap A_{2}\right| \text {. } \tag{1.5}
\end{equation*}
$$

Proof. Since

$$
\begin{equation*}
\text { label :eq1 }-2-2 A_{1} \cup A_{2}=A_{1} \cup\left(A_{2}-\left(A_{1} \cap A_{2}\right)\right) \text {, } \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { label :eq1 }-2-3 A_{1} \cap\left(A_{2}-\left(A_{1} \cap A_{2}\right)\right)=\emptyset, \tag{1.7}
\end{equation*}
$$

by Lemmas 1.2.1, we have

$$
\begin{equation*}
\text { label :eq1 }-2-4\left|A_{1} \cup A_{2}\right|=\left|A_{1}\right|+\left|A_{2}-\left(A_{1} \cap A_{2}\right)\right| \text {. } \tag{1.8}
\end{equation*}
$$

Since $A_{1} \cap A_{2}$ is a subset of A_{2}, by Lemmas 1.2.1, we have

$$
\begin{equation*}
\text { label :eq1 }-\mathbf{2}-\mathbf{5}\left|A_{2}-\left(A_{1} \cap A_{2}\right)\right|=\left|A_{2}\right|-\left|A_{1} \cap A_{2}\right| \text {. } \tag{1.9}
\end{equation*}
$$

Therefore, by (1.8) and (1.9), we have

$$
\begin{equation*}
\text { label :eq1 }-\mathbf{2}-\mathbf{6}\left|A_{1} \cup A_{2}\right|=\left|A_{1}\right|+\left|A_{2}\right|-\left|A_{1} \cap A_{2}\right| . \tag{1.10}
\end{equation*}
$$

Exercise 1.2.1 Let $S=\{1,2,3, \cdots, 2000\}$. Find the number of integers in S which are of the form n^{2} or n^{3}, where n is an integer.

Exercise 1.2.2 Let $S=\{1,2,3, \cdots, 2000\}$. Find the number of integers in S which are of the form n^{2} but not of the form n^{4}, where n is an integer.

Lemma 1.2.4 label: le1-2-2 For any three sets A_{1}, A_{2} and A_{3}, we have
label :eq1-2-7| $A_{1} \cup A_{2} \cup A_{3}\left|=\left|A_{1}\right|+\left|A_{2}\right|+\left|A_{3}\right|-\left(\left|A_{1} \cap A_{2}\right|+\left|A_{1} \cap A_{3}\right|+\left|A_{2} \cap A_{3}\right|\right)+\left|A_{1} \cap A_{2} \cap A_{3}\right|\right.$.

Proof. We shall apply (1.5) to prove this result. Observe that

$$
\begin{aligned}
& \left|A_{1} \cup A_{2} \cup A_{3}\right| \\
= & \left|\left(A_{1} \cup A_{2}\right) \cup A_{3}\right| \\
= & \left|A_{3}\right|+\left|A_{1} \cup A_{2}\right|-\left|A_{3} \cap\left(A_{1} \cup A_{2}\right)\right| \\
= & \left|A_{3}\right|+\left|A_{1} \cup A_{2}\right|-\left|\left(A_{3} \cap A_{1}\right) \cup\left(A_{3} \cap A_{2}\right)\right| \\
= & \left|A_{3}\right|+\left|A_{1}\right|+\left|A_{2}\right|-\left|A_{1} \cap A_{2}\right|-\left|A_{3} \cap A_{1}\right|-\left|A_{3} \cap A_{2}\right|+\left|\left(A_{3} \cap A_{1}\right) \cap\left(A_{3} \cap A_{2}\right)\right| \\
= & \left|A_{1}\right|+\left|A_{2}\right|+\left|A_{3}\right|-\left(\left|A_{1} \cap A_{2}\right|+\left|A_{1} \cap A_{3}\right|+\left|A_{2} \cap A_{3}\right|\right)+\left|A_{1} \cap A_{2} \cap A_{3}\right| .
\end{aligned}
$$

Example 1.2.1 label: ex1-2-1 Determine the number of integers in $B=\{1,2,3, \cdots, 200\}$ which are multiples of 2,3 or 5 .

Solution. For any integer $k \geq 2$, let

$$
Z_{k}=\{a \in B: a \text { is divisible by } k\} .
$$

We are required to determine $\left|Z_{2} \cup Z_{3} \cup Z_{5}\right|$.
Observe that for any $k \geq 2$,

$$
\left|Z_{k}\right|=\left\lfloor\frac{200}{k}\right\rfloor .
$$

Hence

$$
\begin{aligned}
& \left|Z_{2}\right|=\left\lfloor\frac{200}{2}\right\rfloor=100, \\
& \left|Z_{3}\right|=\left\lfloor\frac{200}{3}\right\rfloor=66, \\
& \left|Z_{5}\right|=\left\lfloor\frac{200}{5}\right\rfloor=40, \\
& \left|Z_{2} \cap Z_{3}\right|=\left|Z_{6}\right|=\left\lfloor\frac{200}{6}\right\rfloor=33, \\
& \left|Z_{2} \cap Z_{5}\right|=\left|Z_{10}\right|=\left\lfloor\frac{200}{10}\right\rfloor=20, \\
& \left|Z_{3} \cap Z_{5}\right|=\left|Z_{10}\right|=\left\lfloor\frac{200}{15}\right\rfloor=13, \\
& \left|Z_{2} \cap Z_{3} \cap Z_{5}\right|=\left|Z_{30}\right|=\left\lfloor\frac{200}{30}\right\rfloor=6 .
\end{aligned}
$$

Therefore, by Lemma 1.2.4, we have

$$
\begin{aligned}
& \left|Z_{2} \cup Z_{3} \cup Z_{5}\right| \\
= & \left|Z_{2}\right|+\left|Z_{3}\right|+\left|Z_{5}\right|-\left(\left|Z_{2} \cap Z_{3}\right|+\left|Z_{2} \cap Z_{5}\right|+\left|Z_{3} \cap Z_{5}\right|\right)+\left|Z_{2} \cap Z_{3} \cap Z_{5}\right| \\
= & 100+66+40-(33+20+13)+6 \\
= & 146 .
\end{aligned}
$$

Exercise 1.2.3 label: exer1-2-1-0 Determine the number of integers in $B=$ $\{1,2,3, \cdots, 200\}$ which are multiples of 3,4 or 5 .

In general, we have the following result, which is called the Principle of Inclusion and Exclusion (or simply PIE).

Theorem 1.2.1 (PIE) label: th1-2-1 For any n finite sets $A_{1}, A_{2}, \cdots, A_{n}$, where $n \geq 2$,
label :eq1-2-9 $\left|A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right|=\sum_{k=1}^{n}(-1)^{k-1} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n}\left|A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{k}}\right|$.

Proof. We shall this theorem by induction on n. If $n=2$, then it holds by (1.5). Assume that it holds if $n<m$, where $m \geq 3$. Now let $n=m$. By (1.5), we have
label : eq1 - 2-10 $\quad\left|A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right|$

$$
\begin{align*}
= & \left|\left(A_{1} \cup A_{2} \cup \cdots \cup A_{n-1}\right) \cup A_{n}\right| \\
= & \left|A_{1} \cup A_{2} \cup \cdots \cup A_{n-1}\right|+\left|A_{n}\right|-\left|\left(A_{1} \cup A_{2} \cup \cdots \cup A_{n-1}\right) \cap A_{n}\right| \\
= & \left|A_{1} \cup A_{2} \cup \cdots \cup A_{n-1}\right|+\left|A_{n}\right| \\
& -\left|\left(A_{1} \cap A_{n}\right) \cup\left(A_{2} \cap A_{n}\right) \cup \cdots \cup\left(A_{n-1} \cap A_{n}\right)\right| . \tag{1.13}
\end{align*}
$$

By the inductive assumption,
label :eq1-2-11 $\left|A_{1} \cup A_{2} \cup \cdots \cup A_{n-1}\right|=\sum_{k=1}^{n-1}(-1)^{k-1} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n-1}\left|A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{k}}\right|$,
and
label :eq1-2-12 $\left|\left(A_{1} \cap A_{n}\right) \cup\left(A_{2} \cap A_{n}\right) \cup \cdots \cup\left(A_{n-1} \cap A_{n}\right)\right|$

$$
\begin{align*}
& =\sum_{k=1}^{n-1}(-1)^{k-1} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n-1}\left|\left(A_{i_{1}} \cap A_{n}\right) \cap\left(A_{i_{2}} \cap A_{n}\right) \cap \cdots \cap\left(A_{i_{k}} \cap A_{n}\right)\right| \\
& =\sum_{k=1}^{n-1}(-1)^{k-1} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n-1}\left|A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{k}} \cap A_{n}\right| . \tag{1.15}
\end{align*}
$$

Then, by (1.13), (1.14) and (1.15), we have
label : eq1 - 2-13 $\quad\left|A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right|$

$$
\begin{aligned}
= & \sum_{k=1}^{n-1}(-1)^{k-1} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n-1}\left|A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{k}}\right| \\
& +\left|A_{n}\right|-\sum_{k=1}^{n-1}(-1)^{k-1} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n-1}\left|A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{k}} \cap A_{n}\right| \\
= & \sum_{k=1}^{n-1}(-1)^{k-1} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n-1}\left|A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{k}}\right|
\end{aligned}
$$

$$
\begin{align*}
& +\left|A_{n}\right|+\sum_{k=1}^{n-1}(-1)^{k} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n-1}\left|A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{k}} \cap A_{n}\right| \\
= & \sum_{k=1}^{n}(-1)^{k-1} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k}<n}\left|A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{k}}\right| \\
& +\sum_{k=1}^{n}(-1)^{k-1} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k}=n}\left|A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{k}}\right| \\
= & \sum_{k=1}^{n}(-1)^{k-1} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n}\left|A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{k}}\right| . \tag{1.16}
\end{align*}
$$

Exercise 1.2.4 label: exer1-2-1 Determine the number of integers in $B=\{1,2,3, \cdots, 200\}$ which are multiples of $2,3,5$ or 7 .

1.3 A generalization

Example 1.2.1 applies Lemma 1.2.4 (i.e., Theorem 1.2.1 for $n=3$) to count the number of integers in $B=\{1,2, \cdots, 200\}$ which are multiples of 2,3 or 5 . Now we want to ask the following question:

Question 1.3.1 label: qu1-3-1 Can Theorem 1.2.1 be applied to determine directly the number of integers in $B=\{1,2,3, \cdots, 200\}$ which are divisible by
(i) exactly one of $2,3,5$ or
(ii) exactly two of $2,3,5$?

The answer to Question 1.3.1 is NO.
In this section, we shall find a result which can be used to solve such questions, and this result is more general than Theorem 1.2.1.

Let S be a finite set. For $i=1,2, \cdots, k$, where $k \geq 1$, let P_{i} be a property for some elements of S. A property may be possessed by none, some or all elements of S.

For example, $S=\{1,2,3, \cdots, 1000\}, k=3$ and
P_{1} be the property that an integer is divisible by 3 ,
P_{2} be the property that an integer is divisible by 5 , and
P_{3} be the property that an integer is divisible by 7 .
Let $\omega\left(P_{i_{1}} P_{i_{2}} \cdots P_{i_{s}}\right)$ be the number of elements in S which possess all the properties $P_{i_{1}}, P_{i_{2}}, \cdots, P_{i_{s}}$, where $1 \leq i_{1}<i_{2}<\cdots<i_{s} \leq k$.

For any s with $1 \leq s \leq k$, let

$$
\begin{equation*}
\text { label :eq1 }-\mathbf{3}-\mathbf{1} \omega(s)=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{s} \leq k} \omega\left(P_{i_{1}} P_{i_{2}} \cdots P_{i_{s}}\right) \text {. } \tag{1.17}
\end{equation*}
$$

Note that

$$
\begin{aligned}
& \omega(1)=\omega\left(P_{1}\right)+\omega\left(P_{2}\right)+\cdots+\omega\left(P_{k}\right) \\
& \omega(2)=\omega\left(P_{1} P_{2}\right)+\omega\left(P_{1} P_{3}\right)+\cdots+\omega\left(P_{1} P_{k}\right)+\omega\left(P_{2} P_{3}\right)+\cdots+\omega\left(P_{k-1} P_{k}\right)
\end{aligned}
$$

$$
\cdots
$$

We also define $\omega(0)$ to be $|S|$.

Example 1.3.1 label: ex1-3-1 Let $S=\{1,2,3, \cdots, 1000\}$. Let
P_{1} be the property that an integer is divisible by 3,
P_{2} be the property that an integer is divisible by 5, and
P_{3} be the property that an integer is divisible by 7.
Find
(i) $\omega\left(P_{1}\right), \omega\left(P_{2}\right), \omega\left(P_{3}\right), \omega\left(P_{1} P_{2}\right), \omega\left(P_{1} P_{3}\right), \omega\left(P_{2} P_{3}\right)$ and $\omega\left(P_{1} P_{2} P_{3}\right)$;
(ii) $\omega(0), \omega(1), \omega(2)$ and $\omega(3)$.

Solution. (i) We have

$$
\begin{aligned}
& \omega\left(P_{1}\right)=\left\lfloor\frac{1000}{3}\right\rfloor=333 \\
& \omega\left(P_{2}\right)=\left\lfloor\frac{1000}{5}\right\rfloor=200 \\
& \omega\left(P_{3}\right)=\left\lfloor\frac{1000}{7}\right\rfloor=142 ; \\
& \omega\left(P_{1} P_{2}\right)=\left\lfloor\frac{1000}{15}\right\rfloor=66 ; \\
& \omega\left(P_{1} P_{3}\right)=\left\lfloor\frac{1000}{21}\right\rfloor=47 \\
& \omega\left(P_{2} P_{3}\right)=\left\lfloor\frac{1000}{35}\right\rfloor=28 ; \\
& \omega\left(P_{1} P_{2} P_{3}\right)=\left\lfloor\frac{1000}{105}\right\rfloor=9
\end{aligned}
$$

(ii) $\quad \omega(0)=|S|=1000$. By (i), we have

$$
\begin{aligned}
& \omega(1)=\omega\left(P_{1}\right)+\omega\left(P_{2}\right)+\omega\left(P_{3}\right)=333+200+142=675 ; \\
& \omega(2)=\omega\left(P_{1} P_{2}\right)+\omega\left(P_{1} P_{3}\right)+\omega\left(P_{2} P_{3}\right)=66+47+28=141 ; \\
& \omega(3)=\omega\left(P_{1} P_{2} P_{3}\right)=9 .
\end{aligned}
$$

For any integer m with $0 \leq m \leq k$, let $E(m)$ denote the number of elements in S which possess exactly m of the k properties $P_{1}, P_{2}, \cdots, P_{k}$.

For example, Let $S=\{1,2,3, \cdots, 1000\}$. Let P_{1} be the property that a number in S is divisible by $2, P_{2}$ be the property that a number in S is divisible by 3, and P_{3} be the property that a number in S is divisible by 5 . Then

- $E(1)$ is the number of integers in S which are divisible exactly one of $2,3,5$,
- $E(2)$ is the number of integers in S which are divisible exactly two of $2,3,5$
- $E(3)$ is the number of integers in S which are divisible exactly three of $2,3,5$ (i.e., divisible by each of $2,3,5$).

Theorem 1.3.1 (GPIE) label: th1-3-1 Let S be a finite set and $P_{1}, P_{2}, \cdots, P_{k}$ be k properties for elements in S. Then, for each $m=0,1,2, \cdots, k$,

$$
\begin{equation*}
\text { label :eq1-3-2E(m)=} \sum_{s=m}^{k}(-1)^{s-m}\binom{s}{m} \omega(s) . \tag{1.18}
\end{equation*}
$$

Proof. We just need to show that every member of S has equal contribution to both sides.

Let x be any member in S. Assume that x has exactly t properties of $P_{1}, P_{2}, \cdots, P_{k}$, where $t \leq k$. Without loss of generality, assume that x possesses properties $P_{1}, P_{2}, \cdots, P_{t}$, but x does not possess properties $P_{t+1}, P_{t+2}, \cdots, P_{k}$.

Case 1: $t<m$.
The contribution of x to $E(m)$ is 0 and to $\omega(s)$ is also 0 for all $s \geq m$. Hence x contributes 0 to both sides of (1.18).
Case 2: $t=m$.

The contribution of x to $E(m)$ is 1 , to $\omega(m)$ is also 1 , but to $\omega(s)$ is 0 for all $s>m$. Hence x contributes 1 to both sides of (1.18).
Case 3: $t>m$.
The contribution of x to $E(m)$ is 0 . The contribution of x

$$
\begin{aligned}
& \text { to } \quad \omega(m) \quad \text { is } \quad\binom{t}{m}, \\
& \text { to } \omega(m+1) \quad \text { is } \quad\binom{t}{m+1}, \\
& \\
& \vdots \\
& \text { to } \quad \omega(t) \quad \text { is } \quad\binom{t}{t}, \quad \text { and } \\
& \text { to } \omega(s) \text { is } 0 \text { for } s>t .
\end{aligned}
$$

Hence the contribution of x to the left-hand side is 0 and to the right-hand side is

$$
\begin{equation*}
\text { label :eq1-3-3 } \sum_{s=m}^{t}(-1)^{s-m}\binom{s}{m}\binom{t}{s} . \tag{1.19}
\end{equation*}
$$

Observe that

$$
\begin{align*}
\text { label :eq1 }-3-4 \sum_{s=m}^{t}(-1)^{s-m}\binom{s}{m}\binom{t}{s} & =\sum_{s=m}^{t}(-1)^{s-m}\binom{t-m}{s-m}\binom{t}{m} \\
& =\binom{t}{m} \sum_{s=m}^{t}(-1)^{s-m}\binom{t-m}{s-m} \\
& =\binom{t}{m} \sum_{i=0}^{t-m}(-1)^{i}\binom{t-m}{i} \\
& =\binom{t}{m}(1-1)^{t-m} \\
& =0 \tag{1.20}
\end{align*}
$$

Hence x contributes 0 to both sides of (1.18).
Since x contributes equally to both sides of (1.18) for all numbers $x \in S$, the theorem holds.

If $k=3$, then by Theorem 1.3.1, we have

$$
E(0)=\sum_{s=0}^{3}(-1)^{s-0}\binom{s}{0} \omega(s)=\sum_{s=0}^{3}(-1)^{s} \omega(s)=\omega(0)-\omega(1)+\omega(2)-\omega(3) ;
$$

$$
\begin{gathered}
E(1)=\sum_{s=1}^{3}(-1)^{s-1}\binom{s}{1} \omega(s)=\sum_{s=1}^{3}(-1)^{s-1} s \omega(s)=\omega(1)-2 \omega(2)+3 \omega(3) ; \\
E(2)=\sum_{s=2}^{3}(-1)^{s-2}\binom{s}{2} \omega(s)=\sum_{s=2}^{3}(-1)^{s-2}\binom{s}{2} \omega(s)=\omega(2)-3 \omega(3) \\
E(3)=\sum_{s=3}^{3}(-1)^{s-3}\binom{s}{3} \omega(s)=\omega(3)
\end{gathered}
$$

Exercise 1.3.1 label: exer1-3-2 Let $S=\{1,2,3, \cdots, 1000\}$. Determine the number of integers in S which are divisible by
(i) exactly one of $2,3,5$;
(ii) exactly two of $2,3,5$.

By considering some special cases in Theorem 1.3.1, we obtain some corollaries.
Corollary 1.3.1 label: cor1-3-1 Let S be a finite set and $P_{1}, P_{2}, \cdots, P_{k}$ be k properties for elements in S. Then

$$
\begin{equation*}
\text { label :eq1 }-\mathbf{3}-\mathbf{5} E(0)=\sum_{s=0}^{k}(-1)^{s} \omega(s)=\omega(0)-\omega(1)+\omega(2)-\cdots+(-1)^{k} \omega(k) . \tag{1.21}
\end{equation*}
$$

Corollary 1.3.2 label: cor1-3-2 Let S be a finite set and $P_{1}, P_{2}, \cdots, P_{k}$ be k properties for elements in S. Then
label :eq1 $-\mathbf{3}-\mathbf{6} E(1)=\sum_{s=1}^{k}(-1)^{s-1} s \omega(s)=\omega(1)-2 \omega(2)+3 \omega(3)-\cdots+(-1)^{k-1} k \omega(k)$;
label :eq1 $-\mathbf{3}-\mathbf{6}-\mathbf{1} E(2)=\sum_{s=2}^{k}(-1)^{s-2}\binom{s}{2} \omega(s)=\omega(2)-3 \omega(3)+6 \omega(4)-\cdots+(-1)^{k}\binom{k}{2} \omega(k)$.

Corollary 1.3.3 label: cor1-3-3 Let $A_{1}, A_{2}, \cdots, A_{k}$ be k subsets of a finite set S. Then
label :eq1-3-7 $\left|\bar{A}_{1} \cap \bar{A}_{2} \cap \cdots \cap \bar{A}_{k}\right|=|S|+\sum_{s=1}^{k}(-1)^{s} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{s} \leq k}\left|A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{s}}\right|$,
where \bar{A}_{i} denotes the complement of A_{i} in $S\left(i . e ., \bar{A}_{i}=S-A_{i}\right)$.
Proof. For any integer i with $1 \leq i \leq k$, assume that P_{i} is the property in S defined below:

$$
\text { for every } a \in S \text {, a has the property } P_{i} \text { if and only if } a \in A_{i} \text {. }
$$

Then

$$
E(0)=\left|\bar{A}_{1} \cap \bar{A}_{2} \cap \cdots \cap \bar{A}_{k}\right|
$$

and for any $i_{1}, i_{2}, \cdots, i_{s}$ with $1 \leq i_{1}<i_{2}<\cdots<i_{s} \leq k$,

$$
\omega\left(P_{i_{1}} P_{i_{2}} \cdots P_{i_{s}}\right)=\left|A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{s}}\right| .
$$

Thus $\omega(0)=|S|$ and for any s with $1 \leq s \leq k$,

$$
\omega(s)=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{s} \leq k}\left|A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{s}}\right| .
$$

By Corollary 1.3.1,

$$
E(0)=\sum_{s=0}^{k}(-1)^{s} \omega(s) .
$$

Hence

$$
\begin{aligned}
\left|\bar{A}_{1} \cap \bar{A}_{2} \cap \cdots \cap \bar{A}_{k}\right| & =\omega(0)+\sum_{s=1}^{k}(-1)^{s} \omega(s) \\
& =|S|+\sum_{s=1}^{k}(-1)^{s} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{s} \leq k}\left|A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{s}}\right| .
\end{aligned}
$$

This completes the proof.

Exercise 1.3.2 label: exer1-3-3 Let $S=\{1,2, \cdots, 10000\}$.
(i) Find the number of those integers in S which are not divisible by any one of $2,3,5$.
(ii) Find the number of those integers in S which are divisible by exactly one of $2,3,5$;
(iii) Find the number of those integers in S which are divisible by exactly two of $2,3,5$.

1.4 Surjective mappings

A mapping $f: A \longmapsto B$ is called a surjective mapping if $f(A)=B$, i.e., for every $b \in B$, there exists $a \in A$ such that $f(a)=b$.

Note that if A and B are finite sets and there is a surjective mapping from A to B, then $|A| \geq|B|$. Thus there are no surjective mapping from A to B if A and B are finite sets and $|A|<|B|$.

For any positive integer k, let

$$
\begin{equation*}
\text { label :eq1 }-4-1 N_{k}=\{1,2, \cdots, k\} . \tag{1.25}
\end{equation*}
$$

For any two positive integers n and m, let $F(n, m)$ be the number of surjective mappings from N_{n} to N_{m}.
$F(n, m)$ can also be regarded as the number of ways of distributing n distinct apples into m distinct boxes such that no box is empty.

In this section, we shall apply GPIE to establish a general formula for $F(n, m)$. We first consider some special cases.

Lemma 1.4.1 label: le1-4-1 Let n, m be positive integer.
(i) $F(n, m)=0$ if $n<m$;
(ii) $F(n, n)=n!$;
(iii) $F(n, n-1)=\binom{n}{2}(n-1)$!; and
(vi) $F(n, 1)=1$.

Proof. (i) holds obviously, since there are no surjective mappings from N_{n} to N_{m} if $n<m$.
(ii) A mapping f from N_{n} to N_{n} is surjective if and only if $f(1), f(2), \cdots, f(n)$ is a permutation of $1,2, \cdots, n$. Since N_{n} has n ! permutations, we have $F(n, n)=n$!.
(iii) A mapping f from N_{n} to N_{n-1} is surjective if and only if $f(i)=f(j)$ for some pair i, j with $1 \leq i<j \leq n$ and $f(1), f(2), \cdots, f(j-1), f(j+1), \cdots, f(n)$ is a permutation of $1,2, \cdots, n-1$. There are $\binom{n}{2}$ ways to select a pair i, j from N_{n} and there are ($n-1$)! permutations of $1,2, \cdots, n-1$. Thus (iii) holds.
(iv) Since $m=1$, there is only one mapping from N_{n} to N_{1}. This only one mapping is clearly surjective. Hence $F(n, 1)=1$.

Now we are going to apply GPIE to find an expression for $F(n, m)$.

Theorem 1.4.1 label: th1-4-1 For any two positive integers n and m,

$$
\begin{equation*}
\text { label :eq1 }-4-2 F(n, m)=\sum_{k=0}^{m}(-1)^{k}\binom{m}{k}(m-k)^{n} . \tag{1.26}
\end{equation*}
$$

Proof. Let S be the set of mappings from N_{n} to N_{m}. Define m properties $P_{1}, P_{2}, \cdots, P_{m}$ for members of S as follows: for $i=1,2, \cdots, m$,

$$
\text { a mapping } f \in S \text { is said to possess } P_{i} \Longleftrightarrow i \notin f\left(N_{n}\right) \text {. }
$$

Then a mapping $f: N_{n} \rightarrow N_{m}$ is surjective if and only if f possesses none of the properties $P_{1}, P_{2}, \cdots, P_{m}$. Thus $F(n, m)=E(0)$, and we can apply Corollary 1.3.1 to determine $F(n, m)$.

Observe that

$$
\begin{aligned}
& \omega(0)=|S|=m^{n} ; \\
& \omega(1)=\sum_{i=1}^{m} \omega\left(P_{i}\right)=\binom{m}{1}(m-1)^{n} ;
\end{aligned}
$$

and for each k with $2 \leq k \leq m$, we have

$$
\omega(k)=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq m} \omega\left(P_{i_{1}} P_{i_{2}} \cdots P_{i_{k}}\right)=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq m}(m-k)^{n}=\binom{m}{k}(m-k)^{n} .
$$

Thus, By Corollary 1.3.1, we have

$$
\begin{aligned}
F(n, m) & =E(0) \\
& =\sum_{k=0}^{m}(-1)^{k} \omega(k) \\
& =\sum_{k=0}^{m}(-1)^{k}\binom{m}{k}(m-k)^{n},
\end{aligned}
$$

as desired.

By Lemma 1.4.1 (i) to (iii) and Theorem 1.4.1, we have
Corollary 1.4.1 For any positive integers n and m, we have
(i) $\sum_{k=0}^{m}(-1)^{k}\binom{m}{k}(m-k)^{n}=0$ if $n<m$;
(ii) $\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(n-k)^{n}=n$!;
(iii) $\sum_{k=0}^{n-1}(-1)^{k}\binom{n-1}{k}(n-1-k)^{n}=(n-1)!\binom{n}{2}$.

Example 1.4.1 label: exa1-4-1 Find the expression for $F(n, 2)$.
Solution. By Theorem 1.4.1, we have

$$
\begin{aligned}
F(n, 2) & =\sum_{k=0}^{2}(-1)^{k}\binom{2}{k}(2-k)^{n} \\
& =\binom{2}{0}(2-0)^{n}-\binom{2}{1}(2-1)^{n}+\binom{2}{2}(2-2)^{n} \\
& =2^{n}-2 .
\end{aligned}
$$

Exercise 1.4.1 label: exer1-4-1 Find the expression for $F(n, 3)$.

In the end of this section, we study the Stirling number of the second kind, denoted by $S(n, m)$, defined below.

Definition 1.4.1 label: def1-4-1 For any positive integers n and m, let $S(n, m)$ denote the number of ways of distributing n distinct objects into m identical boxes such that no box is empty.

By the definitions of $F(n, m)$ and $S(n, m)$, we have
label :eq1-4-3F(n,m)=m!S(n,m).

Thus (1.27) and Theorem 1.4.1 give a formula for $S(n, m)$.
Theorem 1.4.2 label: th1-4-2 For any positive integers n and m,

$$
\begin{equation*}
\text { label :eq1 }-4-4 S(n, m)=\frac{1}{m!} \sum_{k=0}^{m}(-1)^{k}\binom{m}{k}(m-k)^{n} . \tag{1.28}
\end{equation*}
$$

In the following, we introduce some properties of $S(n, m)$. First, by Definition 1.4.1, we observe that

$$
\text { label :eq1-4-5 }\left\{\begin{array}{l}
S(n, m)=0 \quad \text { if } n<m ; \tag{1.29}\\
S(n, n)=1 ; \\
S(n, 1)=1
\end{array}\right.
$$

In general, there is a recursive expression for $S(n, m)$.

Theorem 1.4.3 label: th1-4-3 For any positive integers n and m with $n \geq m$,

$$
\begin{equation*}
\text { label :eq1 }-4-6 S(n, m)=S(n-1, m-1)+m S(n-1, m) \text {. } \tag{1.30}
\end{equation*}
$$

Proof. Let $a_{1}, a_{2}, \cdots, a_{n}$ be n distinct objects. There are two different types of ways of distributing these n objects into m identical boxes such that no box is empty:

Type 1: a_{1} is the only object in a box;
Type 2: a_{1} is mixed with some other objects in a box.
In type 1 , the other $n-1$ objects $a_{2}, a_{3}, \cdots, a_{n}$ are distributed to other $m-1$ identical boxes such that no box is empty, and so the number of ways to do so is

$$
S(n-1, m-1) .
$$

In type 2 , the other $n-1$ objects $a_{2}, a_{3}, \cdots, a_{n}$ must be distributed to the m identical boxes such that no box is empty. So, in type 2, each way consists of two steps:

Step 1: $a_{2}, a_{3}, \cdots, a_{n}$ are first distributed to the m identical boxes such that no box is empty, and the number of ways to do so is

$$
S(n-1, m)
$$

Step 2: a_{1} is then distributed into any one of the m boxes, and the number of ways to do so is m.

Hence, in type 2, there are $m S(n-1, m)$ ways. Therefore,

$$
S(n, m)=S(n-1, m-1)+m S(n-1, m),
$$

as desired.

It is clear that $S(n, m)$ is completely determined by (1.29) and (1.30).

Corollary 1.4.2 label: cor1-4-2 The Stirling number $S(n, m)$ of the second kind is determined by the recursive expression: for $2 \leq m<n$,

$$
S(n, m)=S(n-1, m-1)+m S(n-1, m),
$$

together with the boundary conditions:

$$
\left\{\begin{array}{l}
S(n, m)=0, \quad \text { if } n<m ; \\
S(n, n)=1 ; \\
S(n, 1)=1
\end{array}\right.
$$

Example 1.4.2 By Corollary 1.4.2, we can obtain values of $S(n, m)$ for $1 \leq n \leq 4$ and $1 \leq m \leq 7$, as shown in the table below.

Values of $S(n, m)$, for $1 \leq n \leq 7$ and $1 \leq m \leq 7$

$n \backslash m$	1	2	3	4	5	6	7
1	1	0	0	0	0	0	0
2	1	1	0	0	0	0	0
3	1	3	1	0	0	0	0
4	1	7	6	1	0	0	0
5							
6							
7							

Exercise 1.4.2 Complete the above table for $5 \leq n \leq 7$ and $1 \leq m \leq 7$.
We end this section with a result on the expression of x^{n} in terms of $(x)_{0},(x)_{1}, \cdots,(x)_{n}$, where $(x)_{k}$ is given in the following definition.

Definition 1.4.2 label: def1-4-2 Let x be a variable which can be any complex number. Let $(x)_{0}=1$ and for any positive integer m,

$$
\begin{equation*}
\text { label :eq1 }-4-\mathbf{7}(x)_{m}=x(x-1) \cdots(x-m+1) . \tag{1.31}
\end{equation*}
$$

The function $(x)_{m}$ is usually called a partial factorial.
The polynomial x^{n} can be expressed in terms of $(x)_{m}$'s. For example,
label :eq1-4-8 $\left\{\begin{array}{l}x^{1}=(x)_{1} ; \\ x^{2}=x+x(x-1)=(x)_{1}+(x)_{2} ; \\ x^{3}=x+3 x(x-1)+x(x-1)(x-2)=(x)_{1}+3(x)_{2}+(x)_{3} .\end{array}\right.$

Theorem 1.4.4 label: th1-4-4 Prove that for any integer n,

$$
\begin{equation*}
\text { label :eq1-4-9 } x^{n}=\sum_{m=1}^{n} S(n, m)(x)_{m} . \tag{1.33}
\end{equation*}
$$

Proof. Assume that

$$
\begin{equation*}
\text { label :eq1 }-4-10 x^{n}=\sum_{m=1}^{n} T(n, m)(x)_{m}, \tag{1.34}
\end{equation*}
$$

and we also assume that $T(n, m)=0$ for all m with $m>n$. So we are required to prove that $T(n, m)=S(n, m)$ for all positive integers n and m with $1 \leq m \leq n$. We shall prove it by induction on n.

We first show that $T(n, 1)=1=S(n, 1)$ and $T(n, n)=1=S(n, n)$ for all $n \geq 1$.
Since $(1)_{m}=0$ if $m \geq 2$, by (1.34), we have

$$
1=T(n, 1)
$$

In (1.34), the left-hand side expression is a polynomial of degree n, the right-hand side expression is also a polynomial of degree n. This implies that $T(n, n)=1$.

Hence $T(n, 1)=1=S(n, 1)$ and $T(n, n)=1=S(n, n)$. This also implies that $T(n, m)=S(n, m)$ if $1 \leq n \leq 2$. Now assume that $n \geq 3$. We just need to show that $T(n, m)=S(n, m)$ if $2 \leq m \leq n-1$.

By inductive assumption, $T(n-1, m)=S(n-1, m)$ for all m with $1 \leq m \leq n-1$, and so

$$
\begin{equation*}
\text { label :eq1 }-4-11 x^{n-1}=\sum_{m=1}^{n-1} S(n-1, m)(x)_{m} \tag{1.35}
\end{equation*}
$$

By (1.35), we have

$$
\begin{aligned}
x^{n} & =x \times x^{n-1} \\
& =x \sum_{m=1}^{n-1} S(n-1, m)(x)_{m} \\
& =\sum_{m=1}^{n-1} S(n-1, m)((x-m)+m)(x)_{m} \\
& =\sum_{m=1}^{n-1} S(n-1, m)(x-m)(x)_{m}+\sum_{m=1}^{n-1} S(n-1, m) m(x)_{m} \\
& =\sum_{m=1}^{n-1} S(n-1, m)(x)_{m+1}+\sum_{m=1}^{n-1} m S(n-1, m)(x)_{m} \\
& =\sum_{m=2}^{n} S(n-1, m-1)(x)_{m}+\sum_{m=1}^{n-1} m S(n-1, m)(x)_{m} .
\end{aligned}
$$

Hence for any m with $2 \leq m<n$, we have

$$
T(n, m)=S(n-1, m-1)+m S(n-1, m) .
$$

Then, by Theorem 1.4.3, we have $T(n, m)=S(t, m)$.

Example 1.4.3 Express $x^{2}-3 x+6$ in terms of $(x)_{0},(x)_{1}$ and $(x)_{2}$.
Solution. By Theorem 1.4.4,

$$
x^{2}=\sum_{m=1}^{2} S(2, m)(x)_{m}=(x)_{1}+(x)_{2}
$$

and

$$
x=(x)_{1} .
$$

Thus

$$
x^{2}-3 x+6=(x)_{1}+(x)_{2}-3(x)_{1}+6(x)_{0}=(x)_{2}-2(x)_{1}+6(x)_{0} .
$$

Exercise 1.4.3 Express $x^{2}+2 x+3$ in terms of $(x)_{0},(x)_{1}$ and $(x)_{2}$.

Exercise 1.4.4 Express $x^{3}+2 x^{2}+3 x+3$ in terms of $(x)_{0},(x)_{1},(x)_{2}$ and $(x)_{3}$.

1.5 Derangements

Suppose two decks, A and B, of cards are given. The cards of A are first laid out in a row, and those of B are then placed at random, one at the top on each card of A such that 52 pairs of cards are formed. What is the probability that no 2 cards are the same in each pair? This problem, known as "le problème des rencontres" was posed by the Frenchman Pierre Rémond de Montmort (1678-1719) in 1708, and he solved it in 1713.

To solve this problem, the pattern of cards of A laid on a row is regarded to be fixed. The total number of ways to place cards of B is 52 !. If there are T ways to
place cards of B such that no two cards in each pair are the same, then the answer for the above problem is

$$
\frac{T}{52!}
$$

Hence the essential part of the above problem is to determine T.
Let n be any positive integer. A permutation $a_{1} a_{2} \cdots a_{n}$ of $N_{n}=\{1,2, \cdots, n\}$ is called a derangement (nothing is at its right place) of N_{n} if $a_{i} \neq i$ for each $i=1,2, \cdots, n$. For example, the following permutations are derangement of $\{1,2,3\}$:

$$
231,312 .
$$

Exercise 1.5.1 Can you find all derangement of $\{1,2,3,4\}$ starting with 2?
Let $D_{0}=1$ and for any positive integer n, let D_{n} denote the number of derangements of N_{n}. By this definition, we have

$$
D_{0}=1, D_{1}=0, D_{2}=1, D_{3}=2
$$

What is D_{n} for $n \geq 4$?
Is there any general formula for D_{n} ? This problem was solved by N.Bernoulli and P.R. Montmort in 1713.

Theorem 1.5.1 label: th1-5-1 For any integer $n \geq 0$,
label :eq1 $-5-1 D_{n}=n!\sum_{k=0}^{n} \frac{(-1)^{k}}{k!}=n!\left(1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\cdots+\frac{(-1)^{n}}{n!}\right)$.

Proof. The result is obvious when $n=0$.
Let S be the set of permutations of N_{n}. We define n properties $P_{1}, P_{2}, \cdots, P_{n}$ for members of S as follows: for any $i: 1 \leq i \leq n$,
a permutation $a_{1} a_{2} \cdots a_{n}$ is said to possess the property $P_{i} \Longleftrightarrow a_{i}=i$.
Thus

$$
D_{n}=E(0)
$$

Observe that $\omega(0)=|S|=n$! and for any $k \geq 1$, we have
label :eq1 $-5-2 \omega(k)=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n} \omega\left(P_{i_{1}} P_{i_{2}} \cdots P_{i_{k}}\right)=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n}(n-k)!=\binom{n}{k}(n-k)!=\frac{n!}{k!}$.

By Corollary 1.3.1, we have
label :eq1 $-\mathbf{5}-\mathbf{3} D_{n}=E(0)=\sum_{k=0}^{n}(-1)^{k} \omega(k)=\sum_{k=0}^{n}(-1)^{k} \frac{n!}{k!}=n!\sum_{k=0}^{n} \frac{(-1)^{k}}{k!}$,
as desired.

Exercise 1.5.2 Find the values of D_{n} for $n=3,4,5,6$.
Corollary 1.5.1 label: cor1-5-1

$$
\begin{equation*}
\text { label :eq1 }-5-4 \lim _{n \rightarrow \infty} \frac{D_{n}}{n!}=e^{-1} \approx 0.367 . \tag{1.39}
\end{equation*}
$$

Why?

We end this section with some recursive expressions for D_{n}.
Theorem 1.5.2 For any integer $n \geq 3$,

$$
\begin{equation*}
\text { label :eq1 }-5-5-1 D_{n}=(n-1)\left(D_{n-1}+D_{n-2}\right) . \tag{1.40}
\end{equation*}
$$

Proof. Let $n \geq 3$ and \mathcal{D}_{n} be the set of all derangements $a_{1} a_{2} \cdots a_{n}$ of $\{1,2, \cdots, n\}$.
For each member $a_{1} a_{2} \cdots a_{n}$ of \mathcal{D}_{n}, we have $1 \leq a_{n} \leq n-1$. Then, it suffices to show that for each integer k with $1 \leq k \leq n-1$, the number of those members $a_{1} a_{2} \cdots a_{n}$ of \mathcal{D}_{n} with $a_{n}=k$ is equal to $D_{n-1}+D_{n-2}$. As an example, without loss of generality, we will show that the number of those members $a_{1} a_{2} \cdots a_{n}$ of \mathcal{D}_{n} with $a_{n}=1$ is equal to $D_{n-1}+D_{n-2}$.

Let \mathcal{D}^{\prime} be the set those members $a_{1} a_{2} \cdots a_{n}$ of \mathcal{D}_{n} with $a_{n}=1$. There are two types of members in \mathcal{D}^{\prime} :

Type 1: $a_{1}=n$;
Type 2: $a_{1} \neq n$.
It is quite obvious that the number of members of \mathcal{D}^{\prime} in type 1 is equal to D_{n-2}. It is also obvious that the number of members of \mathcal{D}^{\prime} in type 2 is equal to D_{n-1} by treating n as 1 .

Thus $\left|\mathcal{D}^{\prime}\right|=D_{n-2}+D_{n-1}$. The proof is then completed.

Applying Theorem 1.5.1 or (1.40), we can deduce the following results.

Exercise 1.5.3 Prove that for $n \geq 2$,

$$
\begin{equation*}
\text { label :eq1 }-5-5-2 D_{n}=n D_{n-1}+(-1)^{n} . \tag{1.41}
\end{equation*}
$$

Exercise 1.5.4 Find the values of D_{n} for all $n=2,3, \cdots, 10$ by (1.41).

1.6 Euler φ-function

For any two positive integers a and b, let (a, b) denote the $H C F$ of a and b, where HCF is the highest common factor of a and b. If $(a, b)=1$, we say a and b are coprime.

Example 1.6.1 label: exa1-6-1 Determine all integers k in $\{1,2,3, \cdots, 20\}$ such that $(k, 20)=1$.

Solution. There are eight integers k in $\{1,2,3, \cdots, 20\}$ such that $(k, 20)=1$, as shown below:

$$
1,3,7,9,11,13,17,19 .
$$

For any positive integer n, let $\varphi(n)$ denote the number of integers k in $\{1,2,3, \cdots, n\}$ such that $(k, n)=1$, i.e., k and n are coprime. Thus $\varphi(20)=8$.

The function $\varphi(n)$, called the Euler φ-function, was introduced by Swiss mathematician Leonard Euler (1707-1783).

Exercise 1.6.1 label: exa1-6-2 Determine $\varphi(n)$ for $n=5,6, \cdots, 10$.
In this section, we shall find a formula for $\varphi(n)$.
Exercise 1.6.2 label: exa1-6-3 If n is prime, what is the value of $\varphi(n)$?
Exercise 1.6.3 label: exa1-6-4 If n is prime, what is the value of $\varphi\left(n^{2}\right)$?
Exercise 1.6.4 label: exa1-6-5 If n is prime and k is a positive integer, what is the value of $\varphi\left(n^{k}\right)$?

Exercise 1.6.5 label: exa1-6-6 If $n=p_{1} p_{2}$, where p_{1} and p_{2} are different prime numbers, what is the value of $\varphi(n)$?

Exercise 1.6.6 label: exa1-6-7 If p_{1} and p_{2} are different prime numbers, is it true that $\varphi\left(p_{1} p_{2}\right)=\varphi\left(p_{1}\right) \varphi\left(p_{2}\right)$?

Now we deduce a general formula for $\varphi(n)$. Let

$$
\begin{equation*}
\text { label :eq1 }-\mathbf{6}-\mathbf{1} n=p_{1}^{m_{1}} p_{2}^{m_{2}} \cdots p_{k}^{m_{k}} \tag{1.42}
\end{equation*}
$$

be the unique decomposition of n as a product of prime powers, where $p_{1}, p_{2}, \cdots, p_{m}$ are prime numbers and $m_{1}, m_{2}, \cdots, m_{k}$ are positive integers.

Theorem 1.6.1 label: th1-6-1 For any positive integer n,

$$
\begin{equation*}
\text { label :eq1 }-\mathbf{6}-\mathbf{2} \varphi(n)=n \prod_{i=1}^{k}\left(1-\frac{1}{p_{i}}\right) \tag{1.43}
\end{equation*}
$$

where $p_{1}, p_{2}, \cdots, p_{k}$ are prime numbers determined in (1.42).
Proof. Let $S=\{1,2, \cdots, n\}$. Define k properties $P_{1}, P_{2}, \cdots, P_{k}$: for any $i: 1 \leq i \leq$ k,

$$
x \in S \text { is said to possess } P_{i} \Longleftrightarrow p_{i} \mid x,
$$

where $p_{i} \mid x$ means that x is divisible by p_{i}.
It is clear that x is coprime to n if and only if $p_{i} \nmid x$ for all $i=1,2, \cdots, k$, i.e., x possesses none of properties $P_{1}, P_{2}, \cdots, P_{k}$. Therefore

$$
\varphi(n)=E(0) .
$$

Observe that $\omega(0)=|S|=n$, and for $1 \leq t \leq k$,

$$
\begin{align*}
\text { label :eq1 }-\mathbf{6 - 3 \omega}(t) & =\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{t} \leq k} \omega\left(P_{i_{1}} P_{i_{2}} \cdots P_{i_{t}}\right) \\
& =\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{t} \leq k}\left|\frac{n}{p_{i_{1}} p_{i_{2}} \cdots p_{i_{t}}}\right| \\
& =\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{t} \leq k} \frac{n}{p_{i_{1}} p_{i_{2}} \cdots p_{i_{t}}} . \tag{1.44}
\end{align*}
$$

Hence, by Corollary 1.3.1,

$$
\text { label :eq1 }-6-4 \varphi(n)=E(0)
$$

$$
\begin{align*}
& =n+\sum_{t=1}^{k}(-1)^{t} \omega(t) \\
& =n+\sum_{t=1}^{k}(-1)^{t} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{t} \leq k} \frac{n}{p_{i_{1}} p_{i_{2}} \cdots p_{i_{t}}} \\
& =n\left(1+\sum_{t=1}^{k}(-1)^{t} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{t} \leq k} \frac{1}{p_{i_{1}} p_{i_{2}} \cdots p_{i_{t}}}\right) \\
& =n\left(1+\sum_{t=1}^{k} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{t} \leq k}\left(\frac{-1}{p_{i_{1}}}\right)\left(\frac{-1}{p_{i_{2}}}\right) \cdots\left(\frac{-1}{p_{i_{t}}}\right)\right) \\
& =n \prod_{i=1}^{k}\left(1-\frac{1}{p_{i}}\right), \tag{1.45}
\end{align*}
$$

as desired.

Exercise 1.6.7 label: exa1-6-8 If $n=p_{1} p_{2} \cdots p_{k}$, where $p_{1}, p_{2}, \cdots, p_{k}$ are pairwisely different prime numbers, what is the value of $\varphi(n)$?

Exercise 1.6.8 label: exa1-6-9 If $p_{1}, p_{2}, \cdots, p_{k}$ are pairwisely different prime numbers, is it true that

$$
\varphi\left(p_{1} p_{2} \cdots p_{k}\right)=\varphi\left(p_{1}\right) \varphi\left(p_{2}\right) \cdots \varphi\left(p_{k}\right) ?
$$

Problems of Chapter 1^{1}

1. Determine the number of integers in $\{1,2,3, \cdots, 500\}$ which are multiples of 3,5 or 7 .
2. Determine the number of integers in $\{1,2,3, \cdots, 1000\}$ which are multiples of 4,6 or 9 .
3. Let p, q, r be three distinct prime numbers, and k be any positive integer. Determine the number of integers in $\{1,2,3, \cdots, k p q r\}$ which are multiples of p, q or r.
4. Let $S=\{1,2,3, \cdots, 400\}$. Let
P_{1} be the property that an integer is divisible by 2 , P_{2} be the property that an integer is divisible by 3 , and P_{3} be the property that an integer is divisible by 5 .

Find $\omega(0), \omega(1), \omega(2)$ and $\omega(3)$.
5. Let $S=\{1,2,3, \cdots, 400\}$. Determine the number of integers in S which are divisible by
(a) none of $4,6,9$;
(b) exactly one of $4,6,9$;
(c) exactly two of $4,6,9$;
(d) all of 4, 6, 9 .
6. (a) Let A, B and C be finite sets. Show that
(i) $|\bar{A} \cap B|=|B|-|A \cap B|$;
(ii) $|\bar{A} \cap \bar{B} \cap C|=|C|-|A \cap C|-|B \cap C|+|A \cap B \cap C|$.
(b) Find the number of integers in the set $\{1,2,3,4, \cdots, 1000\}$ which are not divisible by 5 nor by 7 but are divisible by 3 .
7. Find the number of integers in the set $\{100,101,102, \cdots, 1000\}$ which are divisible by exactly ' m ' of the integers $2,3,5,7$, where $m=0,1,2,3,4$.

[^0]8. How many positive integers n are there such that n is a divisor of at least one of the numbers $10^{60}, 20^{50}$ and 30^{40} ?
9. Find the number of integers in the set $\{1,2,3,4, \cdots, 10000\}$ which are not of the form n^{2} or n^{3}.
10. (a) How many arrangements of $a, a, a, b, b, b, c, c, c$ are there such that no three consecutive letters are the same?
(b) How many arrangements of three 1's, three 2's, \cdots, and three k 's are there such that no three consecutive numbers are the same?
11. Find the number of ways of arranging n couples $\left\{H_{i}, W_{i}\right\}, i=1,2, \cdots, n$, in a row such that H_{i} is not adjacent to W_{i} for each $i=1,2, \cdots, n$.
12. Let r and n be positive integers with $r \geq n$.
(a) Find the number of ways of distributing r identical objects into n distinct boxes such that no box is empty.
(b) Show that
$$
\sum_{i=0}^{n-1}(-1)^{i}\binom{n}{i}\binom{r+n-i-1}{r}=\binom{r-1}{n-1} .
$$
13. Let m, n and r be positive integers with $m \leq r \leq n$.
(a) Let $A=\{1,2,3, \cdots, n\}$ and $B=\{1,2,3, \cdots, m\}$. Find the number of r-element sets C such that $B \subseteq C \subseteq A$.
(b) Show that
$$
\binom{n-m}{n-r}=\sum_{i=0}^{m}(-1)^{i}\binom{m}{i}\binom{n-i}{r} .
$$
14. (a) For any positive integer n, find the number of $0-1$ binary sequences of length n which do not contain ' 01 ' as a block.
(b) Show that
$$
n+1=\sum_{i=0}^{\left\lfloor\frac{n}{2}\right\rfloor}(-1)^{i}\binom{n-i}{i} 2^{n-2 i}
$$
15. n persons are to be allocated to q distinct rooms. Find the number of ways that this can be done if only m of the q rooms have exactly k persons each, where $1 \leq m \leq q$ and $m k \leq n$.
16. For any positive integer n, let C_{n} be the number of permutations of the set $\{1,2,3, \cdots, n\}$ in which k is never followed immediately by $k+1$ for each $k=1,2, \cdots, n-1$.
(a) Find C_{n};
(b) Show that $C_{n}=D_{n}+D_{n-1}$.
17. Let m, n be positive integers with $m<n$. Find, in terms of D_{k} 's, the number of derangements $a_{1} a_{2} \cdots a_{n}$ of $\{1,2, \cdots, n\}$ such that
$$
\left\{a_{1}, a_{2}, \cdots, a_{m}\right\}=\{1,2, \cdots, m\} .
$$
18. label: try1 Let m and n be positive integers. Without using (1.43), show that if $m \mid n$, then
$$
\varphi(m n)=m \varphi(n)
$$
19. label: $\operatorname{try} 2$ (a) Let p be a prime and $(p, n)=1$. Show that $\varphi(p n)=(p-1) \varphi(n)$.
(b) Let $p_{1}, p_{2}, \cdots, p_{k}$ be distinct prime numbers. Prove that
$$
\varphi\left(p_{1} p_{2} \cdots p_{k}\right)=\left(p_{1}-1\right)\left(p_{2}-1\right) \cdots\left(p_{k}-1\right) .
$$
20. By the results of Problems 18 and 19 , show that for all positive integers m, n with $(m, n)=1$,
$$
\varphi(m n)=\varphi(m) \varphi(n)
$$
21. Show that for any positive integer n,
$$
\sum_{\substack{1 \leq d \leq n \\ d \mid n}} \varphi(d)=n
$$
22. Show that for any integer $n \geq 3, \varphi(n)$ is always even.

[^0]: ${ }^{1}$ Optional.

