Chapter 1

The Principle of Inclusion and
Exclusion

1.1 Introduction

For any set A, let |A| denote the number of members in A. If A; and A, are disjoint
sets (i.e., Ay N Ay = (), then

label :eql — ]_|A1 U A2| = |A1| + |A2| (11)

and, in general, if Ay, As,---, A, are pairwisely disjoint sets (i.e., A;NA; = 0 for all
i,7 with 1 <4 < j <n), then

But, if A; N A; # 0 for some pair ¢ and j, then (1.2) does not hold.

Then a problem arises:

Problem 1.1.1  How can we determine |A; U Ay U ---U A, | if we just know the
values of |Ay, MA, M-+~ NA;,| for all iy,ig, -+, ix with 1 < iy <ig <--- <ip <n?

In this chapter we shall first develop a formula for |[A; U Ay U---U A,| in terms
of all |A;, N A;, N--- N A;|'s. This result is called the Principle of Inclusion
and Exclusion (or simply PIE). We will then extend PIE to a more general result
which is named GPIE.

In the remaining sections of this chapter, we shall apply GPIE to study some

famous counting problems, such as

(i) to find a formula for the number of surjective mappings from N,, to N,,;
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(ii) to find a formula for the number of permutations ajay---a, of {1,2,---,n}

such that a; # i; and
(iii) to find a formula for the number of numbers a in {1,2,---,n} such that a and

n are coprime, i.e., (a,n) = 1.

1.2 The Principle of Inclusion and Exclusion

Let Ay, A, ---, A, be finite sets. In this section, we shall find a formula to express
|A; U Ay U -+ U A, in terms of [A;, N A;, N---N A | for all iy,d9,---, 4 with

1<y << <1 <n.
Lemma 1.2.1 label: 1e1-2-0  For any two sets Ay and As, if Ay N Ay =0, then
label :eql — 2 — 0|A; U As| = |A1] + |Aal. (1.3)

Lemma 1.2.2 [abel: 1e1-2-0-1 For any two sets Ay and As, if Ay is a subset of
Ay, then
label :eql —2 — 0 — 1|A; — As| = |A4] — |Ag]. (1.4)

Can you prove Lemma 1.2.2 by applying Lemma 1.2.17

Note that Lemma 1.2.2 is not true if A5 is not a subset of A;. For example, if

Ay = {1,2,3,4,5} and A, = {3,4,5,6,7,8}, then
| A1 — Ag| = {1,2}| =2

but
|A1] — Ay =5—6=—1.

Is there an expression similar to Lemma 1.2.2 when A, is not a subset of A;?
Now we apply Lemmas 1.2.1 and 1.2.2 to deduce the following well-known for-

mula.
Lemma 1.2.3 label: 1le1-2-1  For any two sets Ay and As, we have

label qu]. —2— 1‘/41 U A2| = ’A1| + ’A2| - |A1 N A2| (15)



Proof.  Since
label :eql -2 2A1 U AQ = A1 U (A2 - (Al N AQ)), (16)

and
label :eql -2 3141 N (A2 — (Al N AQ)) = @, (17)

by Lemmas 1.2.1, we have

label :eql — 2 — 4|A; U As| = |A1| + |A2 — (A1 N Ag)|. (1.8)
Since A; N Ay is a subset of A,, by Lemmas 1.2.1, we have

label :eql — 2 — 5|Ay — (A1 N Ag)| = |As| — |A1 N Asl. (1.9)
Therefore, by (1.8) and (1.9), we have

label qu]_ -2 - 6‘141 U A2| = ’Aﬂ + ’A2| - |A1 N Ag‘ (110)

O

Exercise 1.2.1 Let S ={1,2,3,---,2000}. Find the number of integers in S which

are of the form n* or n3, where n is an integer.

Exercise 1.2.2 Let S = {1,2,3,---,2000}. Find the number of integers in S which

are of the form n? but not of the form n*, where n is an integer.
Lemma 1.2.4 [abel: 1€1-2-2  For any three sets A1, Ay and As, we have

label :eql -2 7|A1UA2UA3’ == |A1|+|A2|+|A3|—(|A1ﬂA2|+|A1ﬂA3|+|A2ﬂA3|)+’A10A2ﬂA3|.
(1.11)

Proof. 'We shall apply (1.5) to prove this result. Observe that
|A; U Ay U As
= [(A1U A;) U Ay
= |As] + A1 U As| — |A3 N (A U Ay)|
= |As]+ A1 U As| — [(AsNA;) U (A3 N Ay
= [As| + [A1] + [Ao] = [A1 N Ag| — |A3 N As| — [A3 N Aa| + (A3 N A1) N (A3 N Ap)l
= Ay + |Aa] + |As] — (JA1 N As| + | A1 N As| + | A2 N As]) + [A; N A N Asl.



Example 1.2.1 [abel: ex1-2-1  Determine the number of integers in B = {1, 2, 3,
which are multiples of 2,3 or 5.

Solution. For any integer k > 2, let
Zr ={a € B : ais divisible by k}.

We are required to determine |Zy U Z3 U Z;|.
Observe that for any k > 2,
200
| Zk| = {TJ :

1 Z,| = | 22| = 100,

Hence

|Zs| = | %5°] = 66,

1 Zs| = | 22| = 40,

| ZyN Zs| = | Zg| = | 2| = 33,
|Zo 0 Zs| = | Z1o| = |3} = 20,

| Z3 0 Zs| = | Zvo| = | 22| =13,
|ZoN Z3 N Zs| = | Zso| = | 35| = 6.

Therefore, by Lemma 1.2.4, we have

| Zy U Z3 U Zs|
= |Zo| +|Z3| + | Zs| — (|Zo N Z3| + | Zo N Zs| + | Z3 N Zs|) + | Zo N Z3 N Zs|
= 100+ 66+ 40 — (33 +20+ 13) 4+ 6
= 146.

--+,200}

Exercise 1.2.3 label: exerl-2-1-0 Determine the number of integers in B =

{1,2,3,---,200} which are multiples of 3,4 or 5.

In general, we have the following result, which is called the Principle of Inclu-

sion and Exclusion (or simply PIE).



Theorem 1.2.1 (PIE) [abel: th1-2-1 For anyn finite sets Ay, Ay, - -+, A, where

n>2,

label :eql — 2 — 9| AjUAU- - -UA,| = > (—1)F! > |Ai,NALN---NA;, .
k=1 1< <ig << <n

(1.12)

Proof. 'We shall this theorem by induction on n. If n = 2, then it holds by (1.5).
Assume that it holds if n < m, where m > 3. Now let n = m. By (1.5), we have

label :eql — 2 — 10 |[AyU AU -~ U A,
= |(AyUAU---UA, 1)UA,|
= |[AJUAU---UA, 4|+ A = [(ALUAU---UA,_1) N A,
= |AjUAU---UA, 1]+ A,
—[(A1NA,)U (AN A)U---U(A,m1 NA). (1.13)

By the inductive assumption,

n—1
label :eql -2 - 11|A1UA2U' : 'UAn71| = Z(-l)kil Z ’AilﬂAizﬂ' . 'ﬂAik|,
k=1 1< << <1 <n—1
(1.14)
and
label :eql — 2 — 12 [(AiNA)U(A2NA,)U---U (A1 N A
n—1
= > (-n¥! > I(As, NAL) N (A, NA) NN (A, NA)
k=1 1<i1 <o < <ip<n—1
n—1
= > (-n¥! > |A;, MA, N NA, NA, (1.15)
k=1 1<i1 <9< <ip<n—1
Then, by (1.13), (1.14) and (1.15), we have
label :eql — 2 — 13 |[AfUAsU---U A,
n—1
= > (-p¥! > |Ai, M A, NN A
k=1 1< <ip < <ip<n—1
n—1
AL = (D! > |Ai, N A, NN A, NA|
k=1 1< <ig << <n—1
n—1
= (—1)F1 > |Ai, MA, NN A
k=1 1< <ip < <ip<n-—1
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n—1
A+ ) (-1 > |A;, N A, NN A, DA,
k=1 1< <ig << <n—1

= S0t Y A n4pn- N4y

k=1 1<i1 <t <<t <n

+3 (-1 > |4, N Ay NN A
k=1 1< <o < <ip=n

= > (- > |A;, M A, NN A (1.16)

k=1 1< <2< <1<

Exercise 1.2.4 [abel: exerl-2-1  Determine the number of integers in B = {1,2,3,---,200}
which are multiples of 2,3,5 or 7.

1.3 A generalization

Example 1.2.1 applies Lemma 1.2.4 (i.e., Theorem 1.2.1 for n = 3) to count the
number of integers in B = {1,2,---,200} which are multiples of 2,3 or 5. Now we

want to ask the following question:

Question 1.3.1 label: qul-3-1 Can Theorem 1.2.1 be applied to determine di-
rectly the number of integers in B = {1,2,3,---,200} which are divisible by

(i) exactly one of 2,3,5 or

(i) exactly two of 2,3,5%

The answer to Question 1.3.1 is NO.
In this section, we shall find a result which can be used to solve such questions,

and this result is more general than Theorem 1.2.1.

Let S be a finite set. For i =1,2,--- k, where k > 1, let P; be a property for
some elements of S. A property may be possessed by none, some or all elements of
S.

For example, S ={1,2,3,---,1000}, kK = 3 and

P, be the property that an integer is divisible by 3,

P, be the property that an integer is divisible by 5, and



P; be the property that an integer is divisible by 7.

Let w(P;, P, - -+ P;,) be the number of elements in S which possess all the prop-
erties P, Py, -+, P, where 1 <) <iy < - <1, < k.

For any s with 1 < s <k, let

label -eql — 3 — 1w(s) = > w(P, P, ---P,). (1.17)

1<i1<ig<-<is<k

Note that

w(l) = wP)+wP)+- -+ w(P),
w2) = wPP)+wPPs)+ - +w(PPy) +w(PePs) + -+ w(Pr1Fy),

We also define w(0) to be |S].

Example 1.3.1 [abel: ex1-3-1 Let S ={1,2,3,---,1000}. Let
Py be the property that an integer is divisible by 3,
P be the property that an integer is divisible by 5, and

Ps be the property that an integer is divisible by 7.
Find

(Z) w(Pl), W(P2>7 W(Pg), W(Plpg), W(Plpg), W(P2P3> and W(Plpgpg);
(i1) w(0), w(l), w(2) and w(3).

Solution. (i) We have

(,U(P1P2P3) = L%J =9.
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(i) w(0) =S| = 1000. By (i), we have
w(1) = w(P)) + w(Py) + w(Ps) = 333 + 200 + 142 = 675;

W(g) = CU(P1P2P3) =9.

For any integer m with 0 < m < k, let E(m) denote the number of elements in
S which possess ezxactly m of the k properties Py, Py, - -+, Py.

For example, Let S ={1,2,3,---,1000}. Let P, be the property that a number
in S is divisible by 2, P; be the property that a number in S is divisible by 3, and
P be the property that a number in S is divisible by 5. Then

e FE(1) is the number of integers in S which are divisible exactly one of 2,3, 5,
e F(2) is the number of integers in S which are divisible exactly two of 2,3,5

e FE(3) is the number of integers in S which are divisible exactly three of 2,3,5
(i.e., divisible by each of 2,3,5).

Theorem 1.3.1 (GPIE) [abel: th1-3-1 Let S be a finite set and Py, Py, -, Py
be k properties for elements in S. Then, for each m =0,1,2,---,k,

S

label :eql — 3 — 2E(m) = Y (—1)"™" (m)w(s). (1.18)

s=m

Proof. We just need to show that every member of S has equal contribution to
both sides.
Let = be any member in S. Assume that x has exactly ¢ properties of Py, Py, - - | Py,

where t < k. Without loss of generality, assume that x possesses properties Py, Py, - -, P,

but = does not possess properties Py 1, Piyo, -+, Pg.
Case 1: t <m.

The contribution of x to E(m) is 0 and to w(s) is also 0 for all s > m. Hence =
contributes 0 to both sides of (1.18).

Case 2: t =m.



The contribution of z to E(m) is 1, to w(m) is also 1, but to w(s) is 0 for all
s > m. Hence x contributes 1 to both sides of (1.18).
Case 3: t > m.

The contribution of z to E(m) is 0. The contribution of x

to wim) s (;)

to wm+1) s ( t )

m+1

to w(s) is 0 for s>t.

Hence the contribution of x to the left-hand side is 0 and to the right-hand side is

label :eql —3 — 3 ;(—1)5—7” (;) (z) (1.19)

Observe that

label -eql — 3 — 4 zt:(—l)S‘m <;) C) = Zt:(—UH” (z _ 7:1) (7;)

(S
- () ze(
(e
= 0. (1.20)

Hence x contributes 0 to both sides of (1.18).
Since x contributes equally to both sides of (1.18) for all numbers x € S, the
theorem holds. O

If kK = 3, then by Theorem 1.3.1, we have

B(0) = 1§ )ols) = So(-10%(6) = w(0) (1) 4 (2) (3]

s=0



o 1
B(2) = Z( I WECE i(—l)“ (5)t) =2 - 3003)

B(3) = 822(—1)“’ (5)) =0

Exercise 1.3.1 [abel: exerl-3-2 Let S ={1,2,3,---,1000}. Determine the num-
ber of integers in S which are divisible by

(i) exactly one of 2,3,5;

(i) exactly two of 2,3,5.

By considering some special cases in Theorem 1.3.1, we obtain some corollaries.

Corollary 1.3.1 label: corl-3-1 Let S be a finite set and Py, Py, -+, P, be k

properties for elements in S. Then

k
label :eql —3 — 5E(0) = Z(—l)sw(s) =w(0) —w(1) +w(2) — -+ (=) w(k).
= (1.21)
|

Corollary 1.3.2 [abel: corl-3-2 Let S be a finite set and Py, Py, -+, P, be k

properties for elements in S. Then

k
label :eql —3 — 6E(1) = Z(—l)s’lsw(s) = w(1)—2w(2)+3w(3)—- - -+(=1)* T hw(k);
. (1.22)
label :eql —3 — 6 — 1E(2) = Y (—=1)""” (;)w(s) = w(2)—3w(3)+6w(4)—---+(-1)F (g)w(k).
= (1.23)
|

Corollary 1.3.3 label: corl-3-3 Let Ay, Ay, -+, Ay be k subsets of a finite set S.
Then

Y

k
label :eql — 3 — T|A;NAxN- - -NAL| = |S[+> (—1)° > |A; NA,N- - -NA;,
s=1 1<i1 <ig<---<is<k

(1.24)
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where A; denotes the complement of A; in S (i.e., A; = S — A;).

Proof.  For any integer ¢ with 1 <17 < k, assume that P, is the property in S defined

below:
for every a € S, a has the property P; if and only if a € A;.
Then
EO)=]A,NnAyN---N A
and for any 41,49, -+, i, with 1 <17 < iy < -+ <15 <k,

w(Py, Py, -+ P,)=|A;, NA,N---NA,
Thus w(0) = |S| and for any s with 1 < s <k,

W(S>: Z |A110A12ﬂﬂAzs|

1<i1<io<-<is<k

By Corollary 1.3.1,

k
E(0) =) (=1)°w(s)
s=0
Hence
B B B k
AN Ay N A = w(0)+ ) (—1)w(s)
s=1
k
= S|+ (-1 > |A;, N A, NN AL
s=1 1<i1 <io<-<is<k

This completes the proof. 0

Exercise 1.3.2 [abel: exer1-3-3 Let S = {1,2,---,10000}.

(i) Find the number of those integers in S which are not divisible by any one of

2,3, 5.

(ii) Find the number of those integers in S which are divisible by exactly one of

2,3,5;

(iii) Find the number of those integers in S which are divisible by exactly two of

2,3,5.
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1.4 Surjective mappings

A mapping f : A+—— B is called a surjective mapping if f(A) = B, i.e., for every
b € B, there exists a € A such that f(a) = b.

Note that if A and B are finite sets and there is a surjective mapping from A to
B, then |A| > |B|. Thus there are no surjective mapping from A to B if A and B
are finite sets and |A| < |B].

For any positive integer k, let
label :eql —4 — 1N, = {1,2,--- k}. (1.25)

For any two positive integers n and m, let F(n,m) be the number of surjective
mappings from N, to N,,.

F(n,m) can also be regarded as the number of ways of distributing n distinct
apples into m distinct boxes such that no box is empty.

In this section, we shall apply GPIE to establish a general formula for F'(n,m).

We first consider some special cases.

Lemma 1.4.1 [abel: le1-4-1  Let n,m be positive integer.
(i) F(n,m) =0 ifn < m;
(ii) F(n,n) =n!;
(iti) F(n,n—1) = (3)(n—1)!; and
(vi) F(n,1) = 1.

Proof. (i) holds obviously, since there are no surjective mappings from N,, to N,
if n < m.

(ii) A mapping f from N, to N, is surjective if and only if f(1), f(2),---, f(n)
is a permutation of 1,2, -+, n. Since N,, has n! permutations, we have F(n,n) = nl.

(iii) A mapping f from N, to N,_; is surjective if and only if f(:) = f(j) for
some pair 4, j with 1 <i < j <nand f(1), f(2),---, f(=1), f(j+1), -+, f(n)is a
permutation of 1,2,---,n — 1. There are (;) ways to select a pair 7, j from N, and
there are (n — 1)! permutations of 1,2, -+, n — 1. Thus (iii) holds.

(iv) Since m = 1, there is only one mapping from N, to N;. This only one

mapping is clearly surjective. Hence F'(n,1) = 1. 0O

Now we are going to apply GPIE to find an expression for F'(n,m).
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Theorem 1.4.1 [abel: th1-4-1 For any two positive integers n and m,

m

label :eql — 4 — 2F (n,m) = i(—n’“(k) (m — k)™ (1.26)

Proof. Let S be the set of mappings from N,, to NV,,,. Define m properties Py, Py, -+, P,
for members of S as follows: for i =1,2,--- ,m,
a mapping f € S is said to possess P, <= i & f(N,).
Then a mapping f : N,, — N, is surjective if and only if f possesses none of the
properties Py, Py, -+, P,,. Thus F(n,m) = E(0), and we can apply Corollary 1.3.1
to determine F'(n,m).

Observe that

and for each k£ with 2 < k < m, we have

N CED SRy R A T S (R

1< <t <<, <m 1< <t <<, <m

Thus, By Corollary 1.3.1, we have

F(n,m) = E(0)

as desired. 0

By Lemma 1.4.1 (i) to (iii) and Theorem 1.4.1, we have

Corollary 1.4.1 For any positive integers n and m, we have

(i) kio(—mk(f,j) (m—k)" =0 ifn < m;
(i) éo(—m(g)(n R =l

(iii) g(—l)k(”gl)(n —1—k)"=(n-1!(3). O
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Example 1.4.1 label: exal-4-1 Find the expression for F(n,2).

Solution. By Theorem 1.4.1, we have

F(n,2) = 22:(—1)’f(2) (2— k)"

Exercise 1.4.1 label: exerl-4-1 Find the expression for F(n,3).

In the end of this section, we study the Stirling number of the second kind,

denoted by S(n,m), defined below.

Definition 1.4.1 label: defl-4-1 For any positive integers n and m, let S(n, m)
denote the number of ways of distributing n distinct objects into m identical boxes

such that no box is empty.
By the definitions of F(n,m) and S(n,m), we have
label :eql — 4 — 3F (n,m) = m!S(n,m). (1.27)
Thus (1.27) and Theorem 1.4.1 give a formula for S(n,m).

Theorem 1.4.2 [abel: th1-4-2  For any positive integers n and m,

label :eql — 4 —4S(n,m) = — Em:(—l)k <m) (m — k)" (1.28)
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In the following, we introduce some properties of S(n,m). First, by Defini-
tion 1.4.1, we observe that
S(n,m)=0 ifn<m;
label :eql —4 —5< S(n,n) =1; (1.29)
S(n,1) =1.

In general, there is a recursive expression for S(n,m).

Theorem 1.4.3 label: th1-4-3 For any positive integers n and m with n > m,
label :eql —4 —6S(n,m) = S(n—1,m —1) +mS(n—1,m). (1.30)

Proof. Let ay,as, -, a, ben distinct objects. There are two different types of ways
of distributing these n objects into m identical boxes such that no box is empty:
Type 1: a; is the only object in a box;
Type 2: a; is mixed with some other objects in a box.
In type 1, the other n — 1 objects as, as, - -, a, are distributed to other m — 1

identical boxes such that no box is empty, and so the number of ways to do so is
S(n—1,m—1).

In type 2, the other n—1 objects as, as, - - -, a, must be distributed to the m identical
boxes such that no box is empty. So, in type 2, each way consists of two steps:
Step 1: ao,agz, - - -, a, are first distributed to the m identical boxes such that no

box is empty, and the number of ways to do so is
S(n—1,m).

Step 2: ay is then distributed into any one of the m boxes, and the number of
ways to do so is m.

Hence, in type 2, there are mS(n — 1, m) ways. Therefore,
S(n,m)=8n—1,m—1)+mS(n—1,m),
as desired. 0

It is clear that S(n,m) is completely determined by (1.29) and (1.30).
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Corollary 1.4.2 label: corl-4-2  The Stirling number S(n,m) of the second kind

1s determined by the recursive expression: for 2 < m < n,
S(n,m)=Smn—-1,m—1)+mS(n—1,m),

together with the boundary conditions:

S(n,m) =0, ifn<m;
S(n,n) =1;
S(n,1) =1.

Example 1.4.2 By Corollary 1.4.2, we can obtain values of S(n,m) for 1 <n <4

and 1 < m <7, as shown in the table below.

Values of S(n,m), for 1 <n<T7and 1 <m <7

n\m|1]2]3]4][5]6]7
1 [1]o]ojo0]0][0]0
2 |[1]1]0]0]0|0]0
3 |[1]3|1]0]0|0]0
4 [1]7]6[1]0]0]0
5
6
7

Exercise 1.4.2 Complete the above table for 5 <n <7 and1 <m <7.

We end this section with a result on the expression of 2" in terms of (z)o, (z)1, - -, (¥)n,

where () is given in the following definition.

Definition 1.4.2 /[abel: defl-4-2 Let x be a variable which can be any complex
number. Let (x)o =1 and for any positive integer m,

label :eql —4 —7(z)p, =2(x —1)--- (z —m +1). (1.31)
The function (), is usually called a partial factorial.

The polynomial 2™ can be expressed in terms of (z),,’s. For example,
! = (2);
label :eql —4 — 8¢ > =z +x(x —1) = (2); + (2)s;
=x+3x(x—1)+x(x—1)(r—-2)=(2); +3(x)2 + (2)s.
(1.32)
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Theorem 1.4.4 [abel: th1-4-4  Prove that for any integer n,

label :eql — 4 — 92" = Z S(n, m)(x)m. (1.33)
m=1

Proof.  Assume that

label :eql — 4 — 102" = Z T(n,m)(z)m, (1.34)

m=1
and we also assume that T'(n,m) = 0 for all m with m > n. So we are required to
prove that T'(n,m) = S(n,m) for all positive integers n and m with 1 < m < n.
We shall prove it by induction on n.
We first show that T'(n,1) =1 = S(n,1) and T'(n,n) = 1 = S(n,n) for alln > 1.
Since (1),, = 0 if m > 2, by (1.34), we have

1=T(n,1).

In (1.34), the left-hand side expression is a polynomial of degree n, the right-hand
side expression is also a polynomial of degree n. This implies that T'(n,n) = 1.
Hence T'(n,1) =1 = S(n,1) and T'(n,n) = 1 = S(n,n). This also implies that
T(n,m) = S(n,m) if 1 <n < 2. Now assume that n > 3. We just need to show
that T'(n,m) = S(n,m) if2<m <n-—1.
By inductive assumption, T'(n—1,m) = S(n—1,m) for allm with 1 <m < n-—1,

and so
label :eql — 4 — 112" ! = Z S(n —1,m)(x)m. (1.35)
By (1.35), we have N
" = xxa"!
= xZS(n—l,m)(m)m
— iS(n— Lm)((x —m)+m)(x)n
= iS(n—l,m)(x—m)(x)m-l-is(n—1am)m<x>m
- is(n_ 1,m)(gg)m+1—|—im5(n— L,m)(x)m
= ZS(n—1,m—1)(x)m+im5(n—17m)<$>m



Hence for any m with 2 < m < n, we have
T(n,m)=Sn—1,m—1)+mS(n—1,m).

Then, by Theorem 1.4.3, we have T'(n,m) = S(t, m). O

Example 1.4.3 FExpress x* — 3z + 6 in terms of (x)o, ()1 and (z),.

Solution. By Theorem 1.4.4,

2= 5(2.m)(@)m = (@) + (2)s

m=1

and

Thus

Exercise 1.4.3 FEzxpress x* 4+ 2x + 3 in terms of (x)o, (z)1 and (z),.

Exercise 1.4.4 Express x® 4+ 22% + 3x + 3 in terms of (x)o, (2)1, (z)2 and (z)3.

1.5 Derangements

Suppose two decks, A and B, of cards are given. The cards of A are first laid out in
a row, and those of B are then placed at random, one at the top on each card of A
such that 52 pairs of cards are formed. What is the probability that no 2 cards are
the same in each pair? This problem, known as “le probleme des rencontres” was
posed by the Frenchman Pierre Rémond de Montmort (1678-1719) in 1708, and he
solved it in 1713.

To solve this problem, the pattern of cards of A laid on a row is regarded to be

fixed. The total number of ways to place cards of B is 52!. If there are T" ways to
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place cards of B such that no two cards in each pair are the same, then the answer

for the above problem is
T

521"
Hence the essential part of the above problem is to determine T'.
Let n be any positive integer. A permutation ajas---a, of N,, = {1,2,---,n}
is called a derangement (nothing is at its right place) of N, if a; # i for each

i=1,2,---,n. For example, the following permutations are derangement of {1, 2, 3}:
231, 312.
Exercise 1.5.1 Can you find all derangement of {1,2,3,4} starting with 27

Let Dy = 1 and for any positive integer n, let D,, denote the number of derange-

ments of N,,. By this definition, we have
Do == 1,D1 == O,DQ = 1,D3 = 2

What is D,, for n > 47
Is there any general formula for D,? This problem was solved by N.Bernoulli

and P.R. Montmort in 1713.

Theorem 1.5.1 [abel: th1-5-1 For any integer n > 0,
1 1 1 (=)™
1— — - — )
( 1! + 2! 3! o n! )
(1.36)

label :eql — 5 — 1D,

Proof.  The result is obvious when n = 0.
Let S be the set of permutations of N,,. We define n properties P, P, -+, P,
for members of S as follows: for any i : 1 <17 < n,
a permutation ajas - - - a, is said to possess the property P, <= a; = 1.
Thus
D,, = E(0).

Observe that w(0) = |S| = n! and for any k > 1, we have

label :eql — 5 — 2w(k) = Z w(Py, Py, -+ Py,) = Z (n—Fk)! = (Z) (n—k)! = Z_:

1< <t << <n 1<i1 <2< <1 <n

(1.37)
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By Corollary 1.3.1, we have

label :eql —5 — 3D, = E(0) = i(—l)kw(k) _ i(_l)kz_: — ~ (—1)*

k=0 k=0 ’ k=0

as desired. O

Exercise 1.5.2 Find the values of D,, forn = 3,4,5,6.
Corollary 1.5.1 [abel: corl-5-1

D,
label :eql — 5 — 4 lim — = e ~ 0.367. (1.39)

n—oo n!

Why?

We end this section with some recursive expressions for D,,.
Theorem 1.5.2 For any integer n > 3,
label :eql —5—5—1D,, = (n—1)(Dy_1 + D, _2). (1.40)

Proof. Let n > 3 and D,, be the set of all derangements ajas - - - a, of {1,2,--- ,n}.
For each member aqas---a, of D,, we have 1 < a,, < n — 1. Then, it suffices
to show that for each integer k with 1 < k£ < n — 1, the number of those members
aias - - - a, of D, with a, = k is equal to D,,_1 + D,,_». As an example, without loss
of generality, we will show that the number of those members aqas - - - a,, of D,, with
a, = 11is equal to D,,_1 + D,,_».
Let D’ be the set those members ajas - --a, of D, with a, = 1. There are two

types of members in D'

Type 1: ay = n;

Type 2: a; # n.

It is quite obvious that the number of members of D’ in type 1 is equal to D,,_».
It is also obvious that the number of members of D’ in type 2 is equal to D,,_; by
treating n as 1.

Thus |D'| = D,,—2 + D, 1. The proof is then completed. 0O

Applying Theorem 1.5.1 or (1.40), we can deduce the following results.
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Exercise 1.5.3  Prove that for n > 2,
label :eql —5 —5— 2D, =nD, 1+ (—=1)". (1.41)

Exercise 1.5.4 Find the values of D,, for alln =2,3,---,10 by (1.41).

1.6 Euler p-function

For any two positive integers a and b, let (a,b) denote the HC'F of a and b, where
HCF is the highest common factor of a and b. If (a,b) = 1, we say a and b are

coprime.

Example 1.6.1 [abel: exal-6-1 Determine all integers k in {1,2,3,---,20} such
that (k,20) = 1.

Solution. There are eight integers k in {1,2,3,---,20} such that (k,20) = 1, as
shown below:

1,3,7,9,11,13,17, 19.
[

For any positive integer n, let ¢o(n) denote the number of integers kin {1,2,3,--- ,n}
such that (k,n) =1, i.e., k and n are coprime. Thus ¢(20) = 8.

The function ¢(n), called the Euler o-function, was introduced by Swiss math-
ematician Leonard Euler (1707-1783).

Exercise 1.6.1 label: exal-6-2 Determine ¢(n) forn =5,6,---,10.

In this section, we shall find a formula for ¢(n).
Exercise 1.6.2 label: exal-6-3 If n is prime, what is the value of p(n)?
Exercise 1.6.3 label: exal-6-4 If n is prime, what is the value of p(n?)?

Exercise 1.6.4 [abel: exal-6-5 Ifn is prime and k is a positive integer, what is

the value of p(n*)?

Exercise 1.6.5 label: exal-6-6 If n = pips, where py and py are different prime

numbers, what is the value of p(n)?
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Exercise 1.6.6 [abel: exal-6-7 If p1 and py are different prime numbers, is it

true that @(pip2) = ¢(p1)p(p2) ?

Now we deduce a general formula for p(n). Let

label :eql — 6 — 1n = p"py'? .- - pl™* (1.42)
be the unique decomposition of n as a product of prime powers, where py, pa, -, Pm
are prime numbers and mq, mo, - - -, My, are positive integers.

Theorem 1.6.1 [abel: th1-6-1 For any positive integer n,

k
1
label :eql — 6 — 2p(n) =n ][ (1 - —) , (1.43)
, pi
i=1
where py, pa, -+, pr are prime numbers determined in (1.42).

Proof. Let S ={1,2,---,n}. Define k properties Py, Py, -+, Py: forany i: 1 <i <
k,

x € S is said to possess P, <= p;|z,

where p;|z means that z is divisible by p;.
It is clear that z is coprime to n if and only if p; fx for alli=1,2,--- k, ie., z

possesses none of properties Py, Ps, -+, P,. Therefore

Observe that w(0) = |S| =n, and for 1 <t <k,

label :eql — 6 — 3w(t) = Z w(P, P, Fy,)

1<i1 <ig <<t <k

n
B Z L%’lpig s 'pitJ

1<iy <o <<t <k

— > PRI (1.44)

1<ig<ig <<t <k PirPi

Hence, by Corollary 1.3.1,
label :eql — 6 — 4p(n) = FE(0)
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k
= n+ )y (~w)

= n—l—Z(—l)t Z n

1§i1<i2<---<it§k pllp’LQ pZt

= n (1 + g(—nt > ;>

1<ty <ig<--<it <k Pir Pi Pi

- n<1+i 2 (_1> (_1> (_1>)
t=1 1<iq <io<--<it<k Diy Diy Di,

= nf[l(1— 1), (1.45)

pi
as desired. 0O
Exercise 1.6.7 label: exal-6-8 If n = pipy---pr, where py,pa, -+, pr are pair-

wisely different prime numbers, what is the value of p(n)?

Exercise 1.6.8 label: exal-6-9 Ifpy,pa,- -+, pr are patrwisely different prime num-

bers, is it true that

o(P1p2 - k) = P(P1)eP2) - - 2 (pr)?
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Problems of Chapter 1!

1. Determine the number of integers in {1,2,3,---,500} which are multiples of

3,5 or 7.

2. Determine the number of integers in {1,2,3,---,1000} which are multiples of
4,6 or 9.

3. Let p,q,r be three distinct prime numbers, and k£ be any positive integer.

Determine the number of integers in {1,2,3,- -+, kpgr} which are multiples of
p,q Or 7.
4. Let S ={1,2,3,---,400}. Let
Py be the property that an integer is divisible by 2,
P; be the property that an integer is divisible by 3, and
Ps be the property that an integer is divisible by 5.
Find w(0), w(1), w(2) and w(3).

5. Let S = {1,2,3,---,400}. Determine the number of integers in S which are
divisible by

(
(

a) none of 4,6,9;

)

b) exactly one of 4,6, 9;

(c) exactly two of 4,6, 9;
)

(d) all of 4,6,9.

6. (a) Let A, B and C be finite sets. Show that
() |AN B| = |B| - |AN B
(i) [ANBNC|=|C|-|ANC|—|BNC|+|AnBNC].
(b) Find the number of integers in the set {1,2,3,4,---,1000} which are not

divisible by 5 nor by 7 but are divisible by 3.

7. Find the number of integers in the set {100,101,102,---,1000} which are
divisible by exactly ‘m’ of the integers 2,3,5,7, where m = 0,1, 2, 3, 4.

LOptional.
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10.

11.

12.

13.

14.

How many positive integers n are there such that n is a divisor of at least one

of the numbers 100, 20°° and 30497

. Find the number of integers in the set {1,2,3,4,---,10000} which are not of

the form n? or n3.

(a) How many arrangements of a, a, a, b, b, b, ¢, ¢, ¢ are there such that no three
consecutive letters are the same?
(b) How many arrangements of three 1’s, three 2’s, - - -, and three k’s are there

such that no three consecutive numbers are the same?

Find the number of ways of arranging n couples {H;, W;},i=1,2,--- ,n,in a

row such that H; is not adjacent to W, for each ¢ =1,2,---,n.

Let r and n be positive integers with r > n.

(a) Find the number of ways of distributing r identical objects into n distinct

boxes such that no box is empty.

S =00

Let m,n and r be positive integers with m < r < n.

(b) Show that

(a) Let A = {1,2,3,---,n} and B = {1,2,3,---,m}. Find the number of
r-element sets C' such that B C C C A.

o) = ()

(a) For any positive integer n, find the number of 0 — 1 binary sequences of

(b) Show that

length n which do not contain ‘01" as a block.

(b) Show that
3]

nt1=Y (-1) (" . Z) on—2

=0
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15.

16.

17.

18.

19.

20.

21.

22.

n persons are to be allocated to ¢ distinct rooms. Find the number of ways
that this can be done if only m of the ¢ rooms have exactly k£ persons each,
where 1 < m < g and mk < n.

For any positive integer n, let C,, be the number of permutations of the set
{1,2,3,---,n} in which k is never followed immediately by k + 1 for each
E=1,2,---,n—1.

(a) Find Cy;

(b) Show that C,, = D,, + D,,_;.

Let m,n be positive integers with m < n. Find, in terms of Dy’s, the number

of derangements ajas - - - a, of {1,2,---,n} such that
{a17a27"'aa'm} = {1727"'am}'

label: tryl Let m and n be positive integers. Without using (1.43), show that
if m|n, then

p(mn) = me(n).
label: try2 (a) Let p be a prime and (p,n) = 1. Show that ¢(pn) = (p—1)p(n).

(b) Let p1,pa,- -+, pr be distinct prime numbers. Prove that
e(pip2---pe) = (01 — ) (p2 = 1) -+ (e — 1).

By the results of Problems 18 and 19, show that for all positive integers m,n
with (m,n) =1,

p(mn) = p(m)p(n).

Show that for any positive integer n,

Y eld)=n.

1<d<n
dln

Show that for any integer n > 3, p(n) is always even.
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