Chapter 1

The Principle of Inclusion and Exclusion

1.1 Introduction

For any set A, let |A| denote the number of members in A. If A_1 and A_2 are disjoint sets (i.e., $A_1 \cap A_2 = \emptyset$), then

$$label :eq1 - 1|A_1 \cup A_2| = |A_1| + |A_2|$$
(1.1)

and, in general, if A_1, A_2, \dots, A_n are pairwisely disjoint sets (i.e., $A_i \cap A_j = \emptyset$ for all i, j with $1 \le i < j \le n$), then

label :eq1 – 2
$$|A_1 \cup A_2 \cup \dots \cup A_n| = |A_1| + |A_2| + \dots + |A_n|.$$
 (1.2)

But, if $A_i \cap A_j \neq \emptyset$ for some pair *i* and *j*, then (1.2) does not hold.

Then a problem arises:

Problem 1.1.1 How can we determine $|A_1 \cup A_2 \cup \cdots \cup A_n|$ if we just know the values of $|A_{i_1} \cap A_{i_2} \cap \cdots \cap A_{i_k}|$ for all i_1, i_2, \cdots, i_k with $1 \le i_1 < i_2 < \cdots < i_k \le n$?

In this chapter we shall first develop a formula for $|A_1 \cup A_2 \cup \cdots \cup A_n|$ in terms of all $|A_{i_1} \cap A_{i_2} \cap \cdots \cap A_{i_k}|$'s. This result is called the **Principle of Inclusion and Exclusion** (or simply **PIE**). We will then extend PIE to a more general result which is named **GPIE**.

In the remaining sections of this chapter, we shall apply GPIE to study some famous counting problems, such as

(i) to find a formula for the number of surjective mappings from N_n to N_m ;

- (ii) to find a formula for the number of permutations $a_1a_2\cdots a_n$ of $\{1, 2, \cdots, n\}$ such that $a_i \neq i$; and
- (iii) to find a formula for the number of numbers a in $\{1, 2, \dots, n\}$ such that a and n are coprime, i.e., (a, n) = 1.

1.2 The Principle of Inclusion and Exclusion

Let A_1, A_2, \dots, A_n be finite sets. In this section, we shall find a formula to express $|A_1 \cup A_2 \cup \dots \cup A_n|$ in terms of $|A_{i_1} \cap A_{i_2} \cap \dots \cap A_{i_k}|$ for all i_1, i_2, \dots, i_k with $1 \leq i_1 < i_2 < \dots < i_k \leq n$.

Lemma 1.2.1 *label:* **le1-2-0** *For any two sets* A_1 *and* A_2 *, if* $A_1 \cap A_2 = \emptyset$ *, then*

$$label : eq1 - 2 - 0|A_1 \cup A_2| = |A_1| + |A_2|.$$
(1.3)

Lemma 1.2.2 *label:* **le1-2-0-1** For any two sets A_1 and A_2 , if A_2 is a subset of A_1 , then

label :eq1 - 2 - 0 - 1|
$$A_1 - A_2$$
| = | A_1 | - | A_2 |. (1.4)

Can you prove Lemma 1.2.2 by applying Lemma 1.2.1?

Note that Lemma 1.2.2 is not true if A_2 is not a subset of A_1 . For example, if $A_1 = \{1, 2, 3, 4, 5\}$ and $A_2 = \{3, 4, 5, 6, 7, 8\}$, then

$$|A_1 - A_2| = |\{1, 2\}| = 2$$

but

$$|A_1| - |A_2| = 5 - 6 = -1.$$

Is there an expression similar to Lemma 1.2.2 when A_2 is not a subset of A_1 ?

Now we apply Lemmas 1.2.1 and 1.2.2 to deduce the following well-known formula.

Lemma 1.2.3 *label:* le1-2-1 For any two sets A_1 and A_2 , we have

$$label: eq1 - 2 - 1|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|.$$
(1.5)

Proof. Since

$$label: eq1 - 2 - 2A_1 \cup A_2 = A_1 \cup (A_2 - (A_1 \cap A_2)),$$
(1.6)

and

label :eq1 – 2 – 3
$$A_1 \cap (A_2 - (A_1 \cap A_2)) = \emptyset$$
, (1.7)

by Lemmas 1.2.1, we have

label :eq1 - 2 - 4|
$$A_1 \cup A_2$$
| = | A_1 | + | $A_2 - (A_1 \cap A_2)$ |. (1.8)

Since $A_1 \cap A_2$ is a subset of A_2 , by Lemmas 1.2.1, we have

label :eq1 - 2 - 5
$$|A_2 - (A_1 \cap A_2)| = |A_2| - |A_1 \cap A_2|.$$
 (1.9)

Therefore, by (1.8) and (1.9), we have

label :eq1 – 2 – 6
$$|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|.$$
 (1.10)

Exercise 1.2.1 Let $S = \{1, 2, 3, \dots, 2000\}$. Find the number of integers in S which are of the form n^2 or n^3 , where n is an integer.

Exercise 1.2.2 Let $S = \{1, 2, 3, \dots, 2000\}$. Find the number of integers in S which are of the form n^2 but not of the form n^4 , where n is an integer.

Lemma 1.2.4 *label:* le1-2-2 For any three sets A_1, A_2 and A_3 , we have

$$label : eq1 - 2 - 7|A_1 \cup A_2 \cup A_3| = |A_1| + |A_2| + |A_3| - (|A_1 \cap A_2| + |A_1 \cap A_3| + |A_2 \cap A_3|) + |A_1 \cap A_2 \cap A_3|$$
(1.11)

Proof. We shall apply (1.5) to prove this result. Observe that

$$\begin{aligned} |A_1 \cup A_2 \cup A_3| \\ &= |(A_1 \cup A_2) \cup A_3| \\ &= |A_3| + |A_1 \cup A_2| - |A_3 \cap (A_1 \cup A_2)| \\ &= |A_3| + |A_1 \cup A_2| - |(A_3 \cap A_1) \cup (A_3 \cap A_2)| \\ &= |A_3| + |A_1| + |A_2| - |A_1 \cap A_2| - |A_3 \cap A_1| - |A_3 \cap A_2| + |(A_3 \cap A_1) \cap (A_3 \cap A_2)| \\ &= |A_1| + |A_2| + |A_3| - (|A_1 \cap A_2| + |A_1 \cap A_3| + |A_2 \cap A_3|) + |A_1 \cap A_2 \cap A_3|. \end{aligned}$$

Example 1.2.1 *label:* ex1-2-1 Determine the number of integers in $B = \{1, 2, 3, \dots, 200\}$ which are multiples of 2, 3 or 5.

Solution. For any integer $k \ge 2$, let

$$Z_k = \{ a \in B : a \text{ is divisible by } k \}.$$

We are required to determine $|Z_2 \cup Z_3 \cup Z_5|$.

Observe that for any $k \geq 2$,

$$|Z_k| = \left\lfloor \frac{200}{k} \right\rfloor.$$

Hence

$$|Z_{2}| = \left\lfloor \frac{200}{2} \right\rfloor = 100,$$

$$|Z_{3}| = \left\lfloor \frac{200}{3} \right\rfloor = 66,$$

$$|Z_{5}| = \left\lfloor \frac{200}{5} \right\rfloor = 40,$$

$$|Z_{2} \cap Z_{3}| = |Z_{6}| = \left\lfloor \frac{200}{6} \right\rfloor = 33,$$

$$|Z_{2} \cap Z_{5}| = |Z_{10}| = \left\lfloor \frac{200}{10} \right\rfloor = 20,$$

$$|Z_{3} \cap Z_{5}| = |Z_{10}| = \left\lfloor \frac{200}{15} \right\rfloor = 13,$$

$$|Z_{2} \cap Z_{3} \cap Z_{5}| = |Z_{30}| = \left\lfloor \frac{200}{30} \right\rfloor = 6.$$

Therefore, by Lemma 1.2.4, we have

$$|Z_2 \cup Z_3 \cup Z_5|$$

$$= |Z_2| + |Z_3| + |Z_5| - (|Z_2 \cap Z_3| + |Z_2 \cap Z_5| + |Z_3 \cap Z_5|) + |Z_2 \cap Z_3 \cap Z_5|$$

$$= 100 + 66 + 40 - (33 + 20 + 13) + 6$$

$$= 146.$$

Exercise 1.2.3 *label:* **exer1-2-1-0** *Determine the number of integers in* $B = \{1, 2, 3, \dots, 200\}$ which are multiples of 3, 4 or 5.

In general, we have the following result, which is called the **Principle of Inclu**sion and Exclusion (or simply **PIE**). **Theorem 1.2.1 (PIE)** *label:* th1-2-1 For any n finite sets A_1, A_2, \dots, A_n , where $n \ge 2$,

label :eq1 - 2 - 9|
$$A_1 \cup A_2 \cup \cdots \cup A_n$$
| = $\sum_{k=1}^n (-1)^{k-1} \sum_{1 \le i_1 < i_2 < \cdots < i_k \le n} |A_{i_1} \cap A_{i_2} \cap \cdots \cap A_{i_k}|.$ (1.12)

Proof. We shall this theorem by induction on n. If n = 2, then it holds by (1.5). Assume that it holds if n < m, where $m \ge 3$. Now let n = m. By (1.5), we have

$$\begin{aligned} label : \mathbf{eq1} - \mathbf{2} - \mathbf{10} & |A_1 \cup A_2 \cup \dots \cup A_n| \\ &= |(A_1 \cup A_2 \cup \dots \cup A_{n-1}) \cup A_n| \\ &= |A_1 \cup A_2 \cup \dots \cup A_{n-1}| + |A_n| - |(A_1 \cup A_2 \cup \dots \cup A_{n-1}) \cap A_n| \\ &= |A_1 \cup A_2 \cup \dots \cup A_{n-1}| + |A_n| \\ &- |(A_1 \cap A_n) \cup (A_2 \cap A_n) \cup \dots \cup (A_{n-1} \cap A_n)|. \end{aligned}$$
(1.13)

By the inductive assumption,

$$label: eq1 - 2 - 11 |A_1 \cup A_2 \cup \dots \cup A_{n-1}| = \sum_{k=1}^{n-1} (-1)^{k-1} \sum_{1 \le i_1 < i_2 < \dots < i_k \le n-1} |A_{i_1} \cap A_{i_2} \cap \dots \cap A_{i_k}|,$$
(1.14)

and

$$\begin{aligned} label := \mathbf{q1} - \mathbf{2} - \mathbf{12} & |(A_1 \cap A_n) \cup (A_2 \cap A_n) \cup \dots \cup (A_{n-1} \cap A_n)| \\ &= \sum_{k=1}^{n-1} (-1)^{k-1} \sum_{1 \le i_1 < i_2 < \dots < i_k \le n-1} |(A_{i_1} \cap A_n) \cap (A_{i_2} \cap A_n) \cap \dots \cap (A_{i_k} \cap A_n)| \\ &= \sum_{k=1}^{n-1} (-1)^{k-1} \sum_{1 \le i_1 < i_2 < \dots < i_k \le n-1} |A_{i_1} \cap A_{i_2} \cap \dots \cap A_{i_k} \cap A_n|. \end{aligned}$$
(1.15)

Then, by (1.13), (1.14) and (1.15), we have

$$\begin{aligned} label : \mathbf{eq1} - \mathbf{2} - \mathbf{13} & |A_1 \cup A_2 \cup \dots \cup A_n| \\ &= \sum_{k=1}^{n-1} (-1)^{k-1} \sum_{1 \le i_1 < i_2 < \dots < i_k \le n-1} |A_{i_1} \cap A_{i_2} \cap \dots \cap A_{i_k}| \\ &+ |A_n| - \sum_{k=1}^{n-1} (-1)^{k-1} \sum_{1 \le i_1 < i_2 < \dots < i_k \le n-1} |A_{i_1} \cap A_{i_2} \cap \dots \cap A_{i_k} \cap A_n| \\ &= \sum_{k=1}^{n-1} (-1)^{k-1} \sum_{1 \le i_1 < i_2 < \dots < i_k \le n-1} |A_{i_1} \cap A_{i_2} \cap \dots \cap A_{i_k}| \end{aligned}$$

$$+|A_{n}| + \sum_{k=1}^{n-1} (-1)^{k} \sum_{1 \le i_{1} < i_{2} < \dots < i_{k} \le n-1} |A_{i_{1}} \cap A_{i_{2}} \cap \dots \cap A_{i_{k}} \cap A_{n}|$$

$$= \sum_{k=1}^{n} (-1)^{k-1} \sum_{1 \le i_{1} < i_{2} < \dots < i_{k} < n} |A_{i_{1}} \cap A_{i_{2}} \cap \dots \cap A_{i_{k}}|$$

$$+ \sum_{k=1}^{n} (-1)^{k-1} \sum_{1 \le i_{1} < i_{2} < \dots < i_{k} \le n} |A_{i_{1}} \cap A_{i_{2}} \cap \dots \cap A_{i_{k}}|$$

$$= \sum_{k=1}^{n} (-1)^{k-1} \sum_{1 \le i_{1} < i_{2} < \dots < i_{k} \le n} |A_{i_{1}} \cap A_{i_{2}} \cap \dots \cap A_{i_{k}}|. \qquad (1.16)$$

Exercise 1.2.4 *label:* exer1-2-1 Determine the number of integers in $B = \{1, 2, 3, \dots, 200\}$ which are multiples of 2, 3, 5 or 7.

1.3 A generalization

Example 1.2.1 applies Lemma 1.2.4 (i.e., Theorem 1.2.1 for n = 3) to count the number of integers in $B = \{1, 2, \dots, 200\}$ which are multiples of 2, 3 or 5. Now we want to ask the following question:

Question 1.3.1 *label:* **qu1-3-1** *Can Theorem 1.2.1 be applied to determine di* rectly the number of integers in $B = \{1, 2, 3, \dots, 200\}$ which are divisible by

- (i) exactly one of 2, 3, 5 or
- (ii) exactly two of 2, 3, 5?

The answer to Question 1.3.1 is **NO**.

In this section, we shall find a result which can be used to solve such questions, and this result is more general than Theorem 1.2.1.

Let S be a finite set. For $i = 1, 2, \dots, k$, where $k \ge 1$, let P_i be a **property** for some elements of S. A property may be possessed by none, some or all elements of S.

For example, $S = \{1, 2, 3, \dots, 1000\}, k = 3$ and

 P_1 be the property that an integer is divisible by 3,

 P_2 be the property that an integer is divisible by 5, and

 P_3 be the property that an integer is divisible by 7.

Let $\omega(P_{i_1}P_{i_2}\cdots P_{i_s})$ be the number of elements in S which possess all the properties $P_{i_1}, P_{i_2}, \cdots, P_{i_s}$, where $1 \leq i_1 < i_2 < \cdots < i_s \leq k$.

For any s with $1 \leq s \leq k$, let

label :eq1 - 3 - 1
$$\omega(s) = \sum_{1 \le i_1 < i_2 < \dots < i_s \le k} \omega(P_{i_1} P_{i_2} \cdots P_{i_s}).$$
 (1.17)

Note that

$$\omega(1) = \omega(P_1) + \omega(P_2) + \dots + \omega(P_k),$$

$$\omega(2) = \omega(P_1P_2) + \omega(P_1P_3) + \dots + \omega(P_1P_k) + \omega(P_2P_3) + \dots + \omega(P_{k-1}P_k),$$

$$\dots$$

We also define $\omega(0)$ to be |S|.

Example 1.3.1 *label:* **ex1-3-1** *Let* $S = \{1, 2, 3, \dots, 1000\}$ *. Let*

 P_1 be the property that an integer is divisible by 3,

 P_2 be the property that an integer is divisible by 5, and

 P_3 be the property that an integer is divisible by 7.

Find

(i)
$$\omega(P_1), \omega(P_2), \omega(P_3), \omega(P_1P_2), \omega(P_1P_3), \omega(P_2P_3)$$
 and $\omega(P_1P_2P_3)$;

(ii) $\omega(0)$, $\omega(1)$, $\omega(2)$ and $\omega(3)$.

Solution. (i) We have

$$\omega(P_1) = \left\lfloor \frac{1000}{3} \right\rfloor = 333;$$

$$\omega(P_2) = \left\lfloor \frac{1000}{5} \right\rfloor = 200;$$

$$\omega(P_3) = \left\lfloor \frac{1000}{7} \right\rfloor = 142;$$

$$\omega(P_1P_2) = \left\lfloor \frac{1000}{15} \right\rfloor = 66;$$

$$\omega(P_1P_3) = \left\lfloor \frac{1000}{21} \right\rfloor = 47;$$

$$\omega(P_2P_3) = \left\lfloor \frac{1000}{35} \right\rfloor = 28;$$

$$\omega(P_1P_2P_3) = \left\lfloor \frac{1000}{105} \right\rfloor = 9$$

(ii) $\omega(0) = |S| = 1000$. By (i), we have

$$\omega(1) = \omega(P_1) + \omega(P_2) + \omega(P_3) = 333 + 200 + 142 = 675;$$

$$\omega(2) = \omega(P_1P_2) + \omega(P_1P_3) + \omega(P_2P_3) = 66 + 47 + 28 = 141;$$

$$\omega(3) = \omega(P_1P_2P_3) = 9.$$

For any integer m with $0 \le m \le k$, let E(m) denote the number of elements in S which possess *exactly* m of the k properties P_1, P_2, \dots, P_k .

For example, Let $S = \{1, 2, 3, \dots, 1000\}$. Let P_1 be the property that a number in S is divisible by 2, P_2 be the property that a number in S is divisible by 3, and P_3 be the property that a number in S is divisible by 5. Then

- E(1) is the number of integers in S which are divisible exactly one of 2, 3, 5,
- E(2) is the number of integers in S which are divisible exactly two of 2, 3, 5
- *E*(3) is the number of integers in *S* which are divisible exactly three of 2, 3, 5 (i.e., divisible by each of 2, 3, 5).

Theorem 1.3.1 (GPIE) *label:* th1-3-1 Let S be a finite set and P_1, P_2, \dots, P_k be k properties for elements in S. Then, for each $m = 0, 1, 2, \dots, k$,

label :eq1 - 3 - 2*E*(*m*) =
$$\sum_{s=m}^{k} (-1)^{s-m} {s \choose m} \omega(s).$$
 (1.18)

Proof. We just need to show that every member of S has equal contribution to both sides.

Let x be any member in S. Assume that x has exactly t properties of P_1, P_2, \dots, P_k , where $t \leq k$. Without loss of generality, assume that x possesses properties P_1, P_2, \dots, P_t , but x does not possess properties $P_{t+1}, P_{t+2}, \dots, P_k$.

Case 1:
$$t < m$$
.

The contribution of x to E(m) is 0 and to $\omega(s)$ is also 0 for all $s \ge m$. Hence x contributes 0 to both sides of (1.18).

Case 2: t = m.

The contribution of x to E(m) is 1, to $\omega(m)$ is also 1, but to $\omega(s)$ is 0 for all s > m. Hence x contributes 1 to both sides of (1.18). Case 3: t > m.

The contribution of x to E(m) is 0. The contribution of x

to
$$\omega(m)$$
 is $\binom{t}{m}$,
to $\omega(m+1)$ is $\binom{t}{m+1}$,
:
to $\omega(t)$ is $\binom{t}{t}$, and
to $\omega(s)$ is 0 for $s > t$.

Hence the contribution of x to the left-hand side is 0 and to the right-hand side is

$$label: \mathbf{eq1} - \mathbf{3} - \mathbf{3} \sum_{s=m}^{t} (-1)^{s-m} \binom{s}{m} \binom{t}{s}.$$
(1.19)

Observe that

$$\begin{aligned} label := \mathbf{q1} - \mathbf{3} - \mathbf{4} \sum_{s=m}^{t} (-1)^{s-m} {s \choose m} {t \choose s} &= \sum_{s=m}^{t} (-1)^{s-m} {t-m \choose s-m} {t \choose m} \\ &= {t \choose m} \sum_{s=m}^{t} (-1)^{s-m} {t-m \choose s-m} \\ &= {t \choose m} \sum_{i=0}^{t-m} (-1)^{i} {t-m \choose i} \\ &= {t \choose m} (1-1)^{t-m} \\ &= 0. \end{aligned}$$
(1.20)

Hence x contributes 0 to both sides of (1.18).

Since x contributes equally to both sides of (1.18) for all numbers $x \in S$, the theorem holds.

If k = 3, then by Theorem 1.3.1, we have

$$E(0) = \sum_{s=0}^{3} (-1)^{s-0} {\binom{s}{0}} \omega(s) = \sum_{s=0}^{3} (-1)^{s} \omega(s) = \omega(0) - \omega(1) + \omega(2) - \omega(3);$$

$$E(1) = \sum_{s=1}^{3} (-1)^{s-1} {\binom{s}{1}} \omega(s) = \sum_{s=1}^{3} (-1)^{s-1} s \omega(s) = \omega(1) - 2\omega(2) + 3\omega(3);$$

$$E(2) = \sum_{s=2}^{3} (-1)^{s-2} {\binom{s}{2}} \omega(s) = \sum_{s=2}^{3} (-1)^{s-2} {\binom{s}{2}} \omega(s) = \omega(2) - 3\omega(3);$$

$$E(3) = \sum_{s=3}^{3} (-1)^{s-3} {\binom{s}{3}} \omega(s) = \omega(3).$$

Exercise 1.3.1 *label:* exer1-3-2 *Let* $S = \{1, 2, 3, \dots, 1000\}$ *. Determine the number of integers in* S *which are divisible by*

- (i) exactly one of 2, 3, 5;
- (ii) exactly two of 2, 3, 5.

By considering some special cases in Theorem 1.3.1, we obtain some corollaries.

Corollary 1.3.1 *label:* **cor1-3-1** *Let* S *be a finite set and* P_1, P_2, \dots, P_k *be k* properties for elements in S. Then

label :eq1 - 3 - 5E(0) =
$$\sum_{s=0}^{k} (-1)^{s} \omega(s) = \omega(0) - \omega(1) + \omega(2) - \dots + (-1)^{k} \omega(k).$$
 (1.21)

Corollary 1.3.2 *label:* **cor1-3-2** *Let* S *be a finite set and* P_1, P_2, \dots, P_k *be* k *properties for elements in* S*. Then*

$$label : eq1 - 3 - 6E(1) = \sum_{s=1}^{k} (-1)^{s-1} s\omega(s) = \omega(1) - 2\omega(2) + 3\omega(3) - \dots + (-1)^{k-1} k\omega(k);$$

$$(1.22)$$

$$label : eq1 - 3 - 6 - 1E(2) = \sum_{s=2}^{k} (-1)^{s-2} {s \choose 2} \omega(s) = \omega(2) - 3\omega(3) + 6\omega(4) - \dots + (-1)^{k} {k \choose 2} \omega(k).$$

$$(1.23)$$

Corollary 1.3.3 *label:* **cor1-3-3** *Let* A_1, A_2, \dots, A_k *be* k *subsets of a finite set* S*. Then*

$$label : eq1 - 3 - 7 |\bar{A}_1 \cap \bar{A}_2 \cap \cdots \cap \bar{A}_k| = |S| + \sum_{s=1}^k (-1)^s \sum_{1 \le i_1 < i_2 < \cdots < i_s \le k} |A_{i_1} \cap A_{i_2} \cap \cdots \cap A_{i_s}|,$$
(1.24)

where \bar{A}_i denotes the complement of A_i in S (i.e., $\bar{A}_i = S - A_i$).

Proof. For any integer i with $1 \le i \le k$, assume that P_i is the property in S defined below:

for every $a \in S$, a has the property P_i if and only if $a \in A_i$.

Then

$$E(0) = |\bar{A}_1 \cap \bar{A}_2 \cap \dots \cap \bar{A}_k|$$

and for any i_1, i_2, \cdots, i_s with $1 \le i_1 < i_2 < \cdots < i_s \le k$,

$$\omega(P_{i_1}P_{i_2}\cdots P_{i_s})=|A_{i_1}\cap A_{i_2}\cap\cdots\cap A_{i_s}|.$$

Thus $\omega(0) = |S|$ and for any s with $1 \le s \le k$,

$$\omega(s) = \sum_{1 \le i_1 < i_2 < \dots < i_s \le k} |A_{i_1} \cap A_{i_2} \cap \dots \cap A_{i_s}|.$$

By Corollary 1.3.1,

$$E(0) = \sum_{s=0}^{k} (-1)^{s} \omega(s).$$

Hence

$$\begin{aligned} |\bar{A}_1 \cap \bar{A}_2 \cap \dots \cap \bar{A}_k| &= \omega(0) + \sum_{s=1}^k (-1)^s \omega(s) \\ &= |S| + \sum_{s=1}^k (-1)^s \sum_{1 \le i_1 < i_2 < \dots < i_s \le k} |A_{i_1} \cap A_{i_2} \cap \dots \cap A_{i_s}|. \end{aligned}$$

This completes the proof.

Exercise 1.3.2 *label:* **exer1-3-3** *Let* $S = \{1, 2, \dots, 10000\}$ *.*

- (i) Find the number of those integers in S which are not divisible by any one of 2, 3, 5.
- (ii) Find the number of those integers in S which are divisible by exactly one of 2, 3, 5;
- (iii) Find the number of those integers in S which are divisible by exactly two of 2, 3, 5.

1.4 Surjective mappings

A mapping $f : A \mapsto B$ is called a **surjective mapping** if f(A) = B, i.e., for every $b \in B$, there exists $a \in A$ such that f(a) = b.

Note that if A and B are finite sets and there is a surjective mapping from A to B, then $|A| \ge |B|$. Thus there are no surjective mapping from A to B if A and B are finite sets and |A| < |B|.

For any positive integer k, let

label :eq1 – 4 – 1
$$N_k = \{1, 2, \cdots, k\}.$$
 (1.25)

For any two positive integers n and m, let F(n,m) be the number of surjective mappings from N_n to N_m .

F(n,m) can also be regarded as the number of ways of distributing n distinct apples into m distinct boxes such that no box is empty.

In this section, we shall apply **GPIE** to establish a general formula for F(n, m). We first consider some special cases.

Lemma 1.4.1 *label:* le1-4-1 *Let* n, m *be positive integer.*

(i) F(n,m) = 0 if n < m; (ii) F(n,n) = n!; (iii) $F(n,n-1) = \binom{n}{2}(n-1)!$; and (vi) F(n,1) = 1.

Proof. (i) holds obviously, since there are no surjective mappings from N_n to N_m if n < m.

(ii) A mapping f from N_n to N_n is surjective if and only if $f(1), f(2), \dots, f(n)$ is a permutation of $1, 2, \dots, n$. Since N_n has n! permutations, we have F(n, n) = n!.

(iii) A mapping f from N_n to N_{n-1} is surjective if and only if f(i) = f(j) for some pair i, j with $1 \le i < j \le n$ and $f(1), f(2), \dots, f(j-1), f(j+1), \dots, f(n)$ is a permutation of $1, 2, \dots, n-1$. There are $\binom{n}{2}$ ways to select a pair i, j from N_n and there are (n-1)! permutations of $1, 2, \dots, n-1$. Thus (iii) holds.

(iv) Since m = 1, there is only one mapping from N_n to N_1 . This only one mapping is clearly surjective. Hence F(n, 1) = 1.

Now we are going to apply **GPIE** to find an expression for F(n, m).

Theorem 1.4.1 *label:* th1-4-1 For any two positive integers n and m,

label :eq1 - 4 - 2*F*(*n*, *m*) =
$$\sum_{k=0}^{m} (-1)^k \binom{m}{k} (m-k)^n$$
. (1.26)

Proof. Let S be the set of mappings from N_n to N_m . Define m properties P_1, P_2, \dots, P_m for members of S as follows: for $i = 1, 2, \dots, m$,

a mapping $f \in S$ is said to possess $P_i \iff i \notin f(N_n)$.

Then a mapping $f: N_n \to N_m$ is surjective if and only if f possesses none of the properties P_1, P_2, \dots, P_m . Thus F(n, m) = E(0), and we can apply Corollary 1.3.1 to determine F(n, m).

Observe that

$$\omega(0) = |S| = m^n;$$

$$\omega(1) = \sum_{i=1}^{m} \omega(P_i) = {\binom{m}{1}} (m-1)^n;$$

and for each k with $2 \leq k \leq m$, we have

$$\omega(k) = \sum_{1 \le i_1 < i_2 < \dots < i_k \le m} \omega(P_{i_1} P_{i_2} \cdots P_{i_k}) = \sum_{1 \le i_1 < i_2 < \dots < i_k \le m} (m-k)^n = \binom{m}{k} (m-k)^n.$$

Thus, By Corollary 1.3.1, we have

$$F(n,m) = E(0) = \sum_{k=0}^{m} (-1)^{k} \omega(k) = \sum_{k=0}^{m} (-1)^{k} {m \choose k} (m-k)^{n},$$

as desired.

By Lemma 1.4.1 (i) to (iii) and Theorem 1.4.1, we have

Corollary 1.4.1 For any positive integers n and m, we have

$$(i) \sum_{k=0}^{m} (-1)^{k} {\binom{m}{k}} (m-k)^{n} = 0 \text{ if } n < m;$$

$$(ii) \sum_{k=0}^{n} (-1)^{k} {\binom{n}{k}} (n-k)^{n} = n!;$$

$$(iii) \sum_{k=0}^{n-1} (-1)^{k} {\binom{n-1}{k}} (n-1-k)^{n} = (n-1)! {\binom{n}{2}}.$$

Example 1.4.1 *label:* **exa1-4-1** *Find the expression for* F(n, 2)*.*

Solution. By Theorem 1.4.1, we have

$$F(n,2) = \sum_{k=0}^{2} (-1)^{k} {\binom{2}{k}} (2-k)^{n}$$

= ${\binom{2}{0}} (2-0)^{n} - {\binom{2}{1}} (2-1)^{n} + {\binom{2}{2}} (2-2)^{n}$
= $2^{n} - 2.$

Exercise 1.4.1 *label:* exer1-4-1 *Find the expression for* F(n, 3)*.*

In the end of this section, we study the **Stirling number of the second kind**, denoted by S(n,m), defined below.

Definition 1.4.1 *label:* def1-4-1 For any positive integers n and m, let S(n,m) denote the number of ways of distributing n distinct objects into m identical boxes such that no box is empty.

By the definitions of F(n,m) and S(n,m), we have

label :eq1 – 4 – 3
$$F(n,m) = m!S(n,m)$$
. (1.27)

Thus (1.27) and Theorem 1.4.1 give a formula for S(n, m).

Theorem 1.4.2 *label:* th1-4-2 For any positive integers n and m,

label :eq1 - 4 - 4S(n,m) =
$$\frac{1}{m!} \sum_{k=0}^{m} (-1)^k \binom{m}{k} (m-k)^n.$$
 (1.28)

In the following, we introduce some properties of S(n,m). First, by Definition 1.4.1, we observe that

$$label :eq1 - 4 - 5 \begin{cases} S(n,m) = 0 & \text{if } n < m; \\ S(n,n) = 1; \\ S(n,1) = 1. \end{cases}$$
(1.29)

In general, there is a recursive expression for S(n, m).

Theorem 1.4.3 *label:* th1-4-3 For any positive integers n and m with $n \ge m$,

$$label: eq1 - 4 - 6S(n,m) = S(n-1,m-1) + mS(n-1,m).$$
(1.30)

Proof. Let a_1, a_2, \dots, a_n be *n* distinct objects. There are two different types of ways of distributing these *n* objects into *m* identical boxes such that no box is empty:

Type 1: a_1 is the only object in a box;

Type 2: a_1 is mixed with some other objects in a box.

In type 1, the other n-1 objects a_2, a_3, \dots, a_n are distributed to other m-1 identical boxes such that no box is empty, and so the number of ways to do so is

$$S(n-1, m-1).$$

In type 2, the other n-1 objects a_2, a_3, \dots, a_n must be distributed to the *m* identical boxes such that no box is empty. So, in type 2, each way consists of two steps:

Step 1: a_2, a_3, \dots, a_n are first distributed to the *m* identical boxes such that no box is empty, and the number of ways to do so is

$$S(n-1,m).$$

Step 2: a_1 is then distributed into any one of the *m* boxes, and the number of ways to do so is *m*.

Hence, in type 2, there are mS(n-1,m) ways. Therefore,

$$S(n,m) = S(n-1,m-1) + mS(n-1,m),$$

as desired.

It is clear that S(n, m) is completely determined by (1.29) and (1.30).

Corollary 1.4.2 *label:* **cor1-4-2** *The Stirling number* S(n,m) *of the second kind is determined by the recursive expression: for* $2 \le m < n$ *,*

$$S(n,m) = S(n-1,m-1) + mS(n-1,m),$$

together with the boundary conditions:

$$\begin{cases} S(n,m) = 0, & \text{if } n < m; \\ S(n,n) = 1; \\ S(n,1) = 1. \end{cases}$$

Example 1.4.2 By Corollary 1.4.2, we can obtain values of S(n,m) for $1 \le n \le 4$ and $1 \le m \le 7$, as shown in the table below.

$n \setminus m$	1	2	3	4	5	6	7
1	1	0	0	0	0	0	0
2	1	1	0	0	0	0	0
3	1	3	1	0	0	0	0
4	1	7	6	1	0	0	0
5							
6							
7							

Values of S(n,m), for $1 \le n \le 7$ and $1 \le m \le 7$

Exercise 1.4.2 Complete the above table for $5 \le n \le 7$ and $1 \le m \le 7$.

We end this section with a result on the expression of x^n in terms of $(x)_0, (x)_1, \dots, (x)_n$, where $(x)_k$ is given in the following definition.

Definition 1.4.2 *label:* def1-4-2 Let x be a variable which can be any complex number. Let $(x)_0 = 1$ and for any positive integer m,

The function $(x)_m$ is usually called a partial factorial.

The polynomial x^n can be expressed in terms of $(x)_m$'s. For example,

label :eq1 - 4 - 8
$$\begin{cases} x^1 = (x)_1; \\ x^2 = x + x(x-1) = (x)_1 + (x)_2; \\ x^3 = x + 3x(x-1) + x(x-1)(x-2) = (x)_1 + 3(x)_2 + (x)_3. \end{cases}$$
(1.32)

Theorem 1.4.4 *label:* th1-4-4 *Prove that for any integer n,*

label :eq1 - 4 - 9
$$x^n = \sum_{m=1}^n S(n,m)(x)_m.$$
 (1.33)

Proof. Assume that

label :eq1 - 4 - 10
$$x^n = \sum_{m=1}^n T(n,m)(x)_m,$$
 (1.34)

and we also assume that T(n,m) = 0 for all m with m > n. So we are required to prove that T(n,m) = S(n,m) for all positive integers n and m with $1 \le m \le n$. We shall prove it by induction on n.

We first show that T(n, 1) = 1 = S(n, 1) and T(n, n) = 1 = S(n, n) for all $n \ge 1$. Since $(1)_m = 0$ if $m \ge 2$, by (1.34), we have

$$1 = T(n, 1).$$

In (1.34), the left-hand side expression is a polynomial of degree n, the right-hand side expression is also a polynomial of degree n. This implies that T(n, n) = 1.

Hence T(n,1) = 1 = S(n,1) and T(n,n) = 1 = S(n,n). This also implies that T(n,m) = S(n,m) if $1 \le n \le 2$. Now assume that $n \ge 3$. We just need to show that T(n,m) = S(n,m) if $2 \le m \le n-1$.

By inductive assumption, T(n-1,m) = S(n-1,m) for all m with $1 \le m \le n-1$, and so

label :eq1 - 4 - 11
$$x^{n-1} = \sum_{m=1}^{n-1} S(n-1,m)(x)_m.$$
 (1.35)

By (1.35), we have

$$\begin{aligned} x^{n} &= x \times x^{n-1} \\ &= x \sum_{m=1}^{n-1} S(n-1,m)(x)_{m} \\ &= \sum_{m=1}^{n-1} S(n-1,m)((x-m)+m)(x)_{m} \\ &= \sum_{m=1}^{n-1} S(n-1,m)(x-m)(x)_{m} + \sum_{m=1}^{n-1} S(n-1,m)m(x)_{m} \\ &= \sum_{m=1}^{n-1} S(n-1,m)(x)_{m+1} + \sum_{m=1}^{n-1} mS(n-1,m)(x)_{m} \\ &= \sum_{m=2}^{n} S(n-1,m-1)(x)_{m} + \sum_{m=1}^{n-1} mS(n-1,m)(x)_{m}. \end{aligned}$$

Hence for any m with $2 \le m < n$, we have

$$T(n,m) = S(n-1,m-1) + mS(n-1,m)$$

Then, by Theorem 1.4.3, we have T(n,m) = S(t,m).

Example 1.4.3 Express $x^2 - 3x + 6$ in terms of $(x)_0, (x)_1$ and $(x)_2$.

Solution. By Theorem 1.4.4,

$$x^{2} = \sum_{m=1}^{2} S(2,m)(x)_{m} = (x)_{1} + (x)_{2}$$

and

$$x = (x)_1$$

Thus

$$x^{2} - 3x + 6 = (x)_{1} + (x)_{2} - 3(x)_{1} + 6(x)_{0} = (x)_{2} - 2(x)_{1} + 6(x)_{0}.$$

Exercise 1.4.3 Express $x^2 + 2x + 3$ in terms of $(x)_0, (x)_1$ and $(x)_2$.

Exercise 1.4.4 Express $x^3 + 2x^2 + 3x + 3$ in terms of $(x)_0, (x)_1, (x)_2$ and $(x)_3$.

1.5 Derangements

Suppose two decks, A and B, of cards are given. The cards of A are first laid out in a row, and those of B are then placed at random, one at the top on each card of Asuch that 52 pairs of cards are formed. What is the probability that no 2 cards are the same in each pair? This problem, known as "le problème des rencontres" was posed by the Frenchman Pierre Rémond de Montmort (1678-1719) in 1708, and he solved it in 1713.

To solve this problem, the pattern of cards of A laid on a row is regarded to be fixed. The total number of ways to place cards of B is 52!. If there are T ways to

Г		
L		
L	_	_

place cards of B such that no two cards in each pair are the same, then the answer for the above problem is

$$\frac{T}{52!}$$

Hence the essential part of the above problem is to determine T.

Let *n* be any positive integer. A permutation $a_1a_2 \cdots a_n$ of $N_n = \{1, 2, \cdots, n\}$ is called a **derangement** (nothing is at its right place) of N_n if $a_i \neq i$ for each $i = 1, 2, \cdots, n$. For example, the following permutations are derangement of $\{1, 2, 3\}$:

Exercise 1.5.1 Can you find all derangement of $\{1, 2, 3, 4\}$ starting with 2?

Let $D_0 = 1$ and for any positive integer n, let D_n denote the number of derangements of N_n . By this definition, we have

$$D_0 = 1, D_1 = 0, D_2 = 1, D_3 = 2.$$

What is D_n for $n \ge 4$?

Is there any general formula for D_n ? This problem was solved by N.Bernoulli and P.R. Montmort in 1713.

Theorem 1.5.1 *label:* th1-5-1 For any integer $n \ge 0$,

label :eq1 - 5 - 1D_n = n!
$$\sum_{k=0}^{n} \frac{(-1)^k}{k!} = n! \left(1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + \frac{(-1)^n}{n!} \right).$$
 (1.36)

Proof. The result is obvious when n = 0.

Let S be the set of permutations of N_n . We define n properties P_1, P_2, \dots, P_n for members of S as follows: for any $i: 1 \leq i \leq n$,

a permutation $a_1 a_2 \cdots a_n$ is said to possess the property $P_i \iff a_i = i$. Thus

$$D_n = E(0).$$

Observe that $\omega(0) = |S| = n!$ and for any $k \ge 1$, we have

$$label : eq1 - 5 - 2\omega(k) = \sum_{1 \le i_1 < i_2 < \dots < i_k \le n} \omega(P_{i_1} P_{i_2} \cdots P_{i_k}) = \sum_{1 \le i_1 < i_2 < \dots < i_k \le n} (n-k)! = \binom{n}{k} (n-k)! = \frac{n!}{k!}$$
(1.37)

By Corollary 1.3.1, we have

label :eq1 - 5 - 3
$$D_n = E(0) = \sum_{k=0}^n (-1)^k \omega(k) = \sum_{k=0}^n (-1)^k \frac{n!}{k!} = n! \sum_{k=0}^n \frac{(-1)^k}{k!},$$
(1.38)
desired.

Exercise 1.5.2 Find the values of D_n for n = 3, 4, 5, 6.

Corollary 1.5.1 *label:* cor1-5-1

label :eq1 - 5 - 4
$$\lim_{n \to \infty} \frac{D_n}{n!} = e^{-1} \approx 0.367.$$
 (1.39)

Why?

as

We end this section with some recursive expressions for D_n .

Theorem 1.5.2 For any integer $n \geq 3$,

label :eq1 - 5 - 5 - 1
$$D_n = (n-1)(D_{n-1} + D_{n-2}).$$
 (1.40)

Proof. Let $n \geq 3$ and \mathcal{D}_n be the set of all derangements $a_1 a_2 \cdots a_n$ of $\{1, 2, \cdots, n\}$.

For each member $a_1a_2\cdots a_n$ of \mathcal{D}_n , we have $1 \leq a_n \leq n-1$. Then, it suffices to show that for each integer k with $1 \leq k \leq n-1$, the number of those members $a_1a_2\cdots a_n$ of \mathcal{D}_n with $a_n = k$ is equal to $D_{n-1} + D_{n-2}$. As an example, without loss of generality, we will show that the number of those members $a_1a_2\cdots a_n$ of \mathcal{D}_n with $a_n = 1$ is equal to $D_{n-1} + D_{n-2}$.

Let \mathcal{D}' be the set those members $a_1a_2\cdots a_n$ of \mathcal{D}_n with $a_n = 1$. There are two types of members in \mathcal{D}' :

Type 1: $a_1 = n;$

Type 2: $a_1 \neq n$.

It is quite obvious that the number of members of \mathcal{D}' in type 1 is equal to D_{n-2} . It is also obvious that the number of members of \mathcal{D}' in type 2 is equal to D_{n-1} by treating n as 1.

Thus $|\mathcal{D}'| = D_{n-2} + D_{n-1}$. The proof is then completed.

Applying Theorem 1.5.1 or (1.40), we can deduce the following results.

Exercise 1.5.3 Prove that for $n \ge 2$,

label :eq1 – 5 – 5 – 2
$$D_n = nD_{n-1} + (-1)^n$$
. (1.41)

Exercise 1.5.4 Find the values of D_n for all $n = 2, 3, \dots, 10$ by (1.41).

1.6 Euler φ -function

For any two positive integers a and b, let (a, b) denote the *HCF* of a and b, where *HCF* is the *highest common factor* of a and b. If (a, b) = 1, we say a and b are **coprime**.

Example 1.6.1 *label:* **exa1-6-1** *Determine all integers* k *in* $\{1, 2, 3, \dots, 20\}$ *such that* (k, 20) = 1.

Solution. There are eight integers k in $\{1, 2, 3, \dots, 20\}$ such that (k, 20) = 1, as shown below:

For any positive integer n, let $\varphi(n)$ denote the number of integers k in $\{1, 2, 3, \dots, n\}$ such that (k, n) = 1, i.e., k and n are coprime. Thus $\varphi(20) = 8$.

The function $\varphi(n)$, called the *Euler* φ -function, was introduced by Swiss mathematician Leonard Euler (1707-1783).

Exercise 1.6.1 *label:* exal-6-2 Determine $\varphi(n)$ for $n = 5, 6, \dots, 10$.

In this section, we shall find a formula for $\varphi(n)$.

Exercise 1.6.2 *label:* **exa1-6-3** If n is prime, what is the value of $\varphi(n)$?

Exercise 1.6.3 *label:* **exa1-6-4** If n is prime, what is the value of $\varphi(n^2)$?

Exercise 1.6.4 *label:* **exa1-6-5** If n is prime and k is a positive integer, what is the value of $\varphi(n^k)$?

Exercise 1.6.5 *label:* **exa1-6-6** If $n = p_1p_2$, where p_1 and p_2 are different prime numbers, what is the value of $\varphi(n)$?

Exercise 1.6.6 *label:* **exa1-6-7** If p_1 and p_2 are different prime numbers, is it true that $\varphi(p_1p_2) = \varphi(p_1)\varphi(p_2)$?

Now we deduce a general formula for $\varphi(n)$. Let

$$label: eq1 - 6 - 1n = p_1^{m_1} p_2^{m_2} \cdots p_k^{m_k}$$
(1.42)

be the unique decomposition of n as a product of prime powers, where p_1, p_2, \dots, p_m are prime numbers and m_1, m_2, \dots, m_k are positive integers.

Theorem 1.6.1 *label:* th1-6-1 For any positive integer n,

label :eq1 - 6 - 2
$$\varphi(n) = n \prod_{i=1}^{k} \left(1 - \frac{1}{p_i}\right),$$
 (1.43)

where p_1, p_2, \dots, p_k are prime numbers determined in (1.42).

Proof. Let $S = \{1, 2, \dots, n\}$. Define k properties P_1, P_2, \dots, P_k : for any $i : 1 \le i \le k$,

$$x \in S$$
 is said to possess $P_i \iff p_i | x$,

where $p_i | x$ means that x is divisible by p_i .

It is clear that x is coprime to n if and only if $p_i \not\mid x$ for all $i = 1, 2, \dots, k$, i.e., x possesses none of properties P_1, P_2, \dots, P_k . Therefore

$$\varphi(n) = E(0).$$

Observe that $\omega(0) = |S| = n$, and for $1 \le t \le k$,

$$label :eq1 - 6 - 3\omega(t) = \sum_{1 \le i_1 < i_2 < \dots < i_t \le k} \omega(P_{i_1} P_{i_2} \cdots P_{i_t})$$
$$= \sum_{1 \le i_1 < i_2 < \dots < i_t \le k} \left\lfloor \frac{n}{p_{i_1} p_{i_2} \cdots p_{i_t}} \right\rfloor$$
$$= \sum_{1 \le i_1 < i_2 < \dots < i_t \le k} \frac{n}{p_{i_1} p_{i_2} \cdots p_{i_t}}.$$
(1.44)

Hence, by Corollary 1.3.1,

 $label: eq1 - 6 - 4\varphi(n) = E(0)$

$$= n + \sum_{t=1}^{k} (-1)^{t} \omega(t)$$

$$= n + \sum_{t=1}^{k} (-1)^{t} \sum_{1 \le i_{1} < i_{2} < \dots < i_{t} \le k} \frac{n}{p_{i_{1}} p_{i_{2}} \cdots p_{i_{t}}}$$

$$= n \left(1 + \sum_{t=1}^{k} (-1)^{t} \sum_{1 \le i_{1} < i_{2} < \dots < i_{t} \le k} \frac{1}{p_{i_{1}} p_{i_{2}} \cdots p_{i_{t}}} \right)$$

$$= n \left(1 + \sum_{t=1}^{k} \sum_{1 \le i_{1} < i_{2} < \dots < i_{t} \le k} \left(\frac{-1}{p_{i_{1}}} \right) \left(\frac{-1}{p_{i_{2}}} \right) \cdots \left(\frac{-1}{p_{i_{t}}} \right) \right)$$

$$= n \prod_{i=1}^{k} \left(1 - \frac{1}{p_{i}} \right), \qquad (1.45)$$

as desired.

Exercise 1.6.7 *label:* **exa1-6-8** If $n = p_1 p_2 \cdots p_k$, where p_1, p_2, \cdots, p_k are pairwisely different prime numbers, what is the value of $\varphi(n)$?

Exercise 1.6.8 *label:* **exa1-6-9** If p_1, p_2, \dots, p_k are pairwisely different prime numbers, is it true that

$$\varphi(p_1p_2\cdots p_k)=\varphi(p_1)\varphi(p_2)\cdots\varphi(p_k)?$$

Problems of Chapter 1^1

- Determine the number of integers in {1, 2, 3, ..., 500} which are multiples of 3, 5 or 7.
- Determine the number of integers in {1, 2, 3, · · · , 1000} which are multiples of 4, 6 or 9.
- 3. Let p, q, r be three distinct prime numbers, and k be any positive integer. Determine the number of integers in $\{1, 2, 3, \dots, kpqr\}$ which are multiples of p, q or r.
- 4. Let $S = \{1, 2, 3, \dots, 400\}$. Let
 - P_1 be the property that an integer is divisible by 2,
 - P_2 be the property that an integer is divisible by 3, and

 P_3 be the property that an integer is divisible by 5.

Find $\omega(0)$, $\omega(1)$, $\omega(2)$ and $\omega(3)$.

- 5. Let $S = \{1, 2, 3, \dots, 400\}$. Determine the number of integers in S which are divisible by
 - (a) none of 4, 6, 9;
 - (b) exactly one of 4, 6, 9;
 - (c) exactly two of 4, 6, 9;
 - (d) all of 4, 6, 9.
- 6. (a) Let A, B and C be finite sets. Show that
 - (i) $|\bar{A} \cap B| = |B| |A \cap B|;$
 - (ii) $|\bar{A} \cap \bar{B} \cap C| = |C| |A \cap C| |B \cap C| + |A \cap B \cap C|.$

(b) Find the number of integers in the set $\{1, 2, 3, 4, \dots, 1000\}$ which are not divisible by 5 nor by 7 but are divisible by 3.

7. Find the number of integers in the set $\{100, 101, 102, \dots, 1000\}$ which are divisible by exactly 'm' of the integers 2, 3, 5, 7, where m = 0, 1, 2, 3, 4.

¹Optional.

- 8. How many positive integers n are there such that n is a divisor of at least one of the numbers 10^{60} , 20^{50} and 30^{40} ?
- 9. Find the number of integers in the set $\{1, 2, 3, 4, \dots, 10000\}$ which are not of the form n^2 or n^3 .
- 10. (a) How many arrangements of *a*, *a*, *a*, *b*, *b*, *c*, *c*, *c* are there such that no three consecutive letters are the same?

(b) How many arrangements of three 1's, three 2's, \cdots , and three k's are there such that no three consecutive numbers are the same?

- 11. Find the number of ways of arranging n couples $\{H_i, W_i\}, i = 1, 2, \dots, n$, in a row such that H_i is not adjacent to W_i for each $i = 1, 2, \dots, n$.
- 12. Let r and n be positive integers with $r \ge n$.

(a) Find the number of ways of distributing r identical objects into n distinct boxes such that no box is empty.

(b) Show that

$$\sum_{i=0}^{n-1} (-1)^i \binom{n}{i} \binom{r+n-i-1}{r} = \binom{r-1}{n-1}.$$

13. Let m, n and r be positive integers with $m \leq r \leq n$.

(a) Let $A = \{1, 2, 3, \dots, n\}$ and $B = \{1, 2, 3, \dots, m\}$. Find the number of *r*-element sets *C* such that $B \subseteq C \subseteq A$.

(b) Show that

$$\binom{n-m}{n-r} = \sum_{i=0}^{m} (-1)^i \binom{m}{i} \binom{n-i}{r}.$$

- 14. (a) For any positive integer n, find the number of 0 1 binary sequences of length n which do not contain '01' as a block.
 - (b) Show that

$$n+1 = \sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} (-1)^i \binom{n-i}{i} 2^{n-2i}.$$

- 15. *n* persons are to be allocated to *q* distinct rooms. Find the number of ways that this can be done if only *m* of the *q* rooms have exactly *k* persons each, where $1 \le m \le q$ and $mk \le n$.
- 16. For any positive integer n, let C_n be the number of permutations of the set $\{1, 2, 3, \dots, n\}$ in which k is never followed immediately by k + 1 for each $k = 1, 2, \dots, n 1$.
 - (a) Find C_n ;
 - (b) Show that $C_n = D_n + D_{n-1}$.
- 17. Let m, n be positive integers with m < n. Find, in terms of D_k 's, the number of derangements $a_1 a_2 \cdots a_n$ of $\{1, 2, \cdots, n\}$ such that

$$\{a_1, a_2, \cdots, a_m\} = \{1, 2, \cdots, m\}.$$

18. label: try1 Let m and n be positive integers. Without using (1.43), show that if m|n, then

$$\varphi(mn) = m\varphi(n).$$

- 19. label: try2 (a) Let p be a prime and (p, n) = 1. Show that $\varphi(pn) = (p-1)\varphi(n)$.
 - (b) Let p_1, p_2, \dots, p_k be distinct prime numbers. Prove that

$$\varphi(p_1p_2\cdots p_k) = (p_1-1)(p_2-1)\cdots (p_k-1).$$

20. By the results of Problems 18 and 19, show that for all positive integers m, n with (m, n) = 1,

$$\varphi(mn) = \varphi(m)\varphi(n).$$

21. Show that for any positive integer n,

$$\sum_{1 \le d \le n \atop d \mid n} \varphi(d) = n.$$

22. Show that for any integer $n \ge 3$, $\varphi(n)$ is always even.