
Poset models of topological spaces

Dongsheng Zhao

Abstract. We consider poset models of topological spaces and show
that every T1-space has an bounded complete algebraic poset model,
thus give a positive answer to a question asked in a recent paper by
Waszkiewicz. It is also proved that every T1-space is homeomorphic to
the maximal point space of a d-space.

In the classic general topology, people are mainly interested in the spaces
which satisfy at least T1 separation axiom. One possible reason for this
phenomena is that in the early time, people considered only those spaces
which are subspaces of Euclidean n-spaces. Another reason is that there is
no meaningful natural examples of non T1 spaces, most of the existing non
T1 spaces are artificially constructed. It is, probably, only until the appear
of domain theory which has a deep root in computer science, people begin
to be interested in T0 spaces. The most important examples of T0 spaces are
the Scott spaces, defined originally for complete lattices by Dana Scott. For
every complete lattice L, Scott introduced a topology, σ(L) on L, which is
always T0 but not T1. Later this topology was defined for directed complete
posets (dcpos), and more recently, for arbitrary posets. The Scott topology
on a poset is not T1 unless the poset has the discrete order.

On the first look, it seems that Scott spaces are too weak in separation
to be interested by classical topologists. However, to certain extend, two
results on Scott spaces proved in the past decades have change one’s views on
the theoretical importance of such spaces. The first one was proved by Dana
Scott in [10], which characterizes the injective T0 spaces–these as exactly
the continuous lattices with their Scott topology. The second significant
result was proved in [1]: every complete metric space is homeomorphic to
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the subspace of maximal points of a continuous dcpo equipped with the
relative Scott topology.

The second result reveals that a large class of traditional spaces can be
represented as subspaces of Scott spaces in a ”normal ” way. In [6], Martin
proved that if a space is homeomorphic to the maximal point space of a
continuous dcpo, then the space must be Choquet complete ( every Choquet
complete space is Baire ). Thus not every space can be represented as the
maximal point space of some continuous dcpo. It is therefore natural to
consider the maximal point space of more general posets.

In this paper we consider the more general question: which spaces are
homeomorphic to the maximal point space of ( certain class of ) posets ?
The main result we shall prove is that every T1 space is homeomorphic to
the maximal point space of a bounded complete algebraic poset. This gives
a positive answer to a question raised in [11]. This result will allows us to
define a functor from the category of T1 spaces to the category of bounded
algebraic posets and Scott continuous functions.

1. Bounded complete algebraic posets

A nonempty subset D of a poset P is directed if for any x, y ∈ D there
is z ∈ D such that x ≤ z, y ≤ z. A directed complete poset, called dcpo for
short, is a poset whose every directed subset has a supremum.

For two elements x, y in P , x is way-below y, denoted by x << y, if for
any directed set D ⊆ P , y ≤

∨
D implies x ≤ d for some d ∈ D whenever∨

D exists in P .
A base B of a poset P is a subset of P such that for any x ∈ P,⇓ x∩B =

{y ∈ B : y � x} is a directed set and its supremum is x.
A poset P is called continuous if it has a base.
If x << x, x is called a compact element. The set of all compact elements

of P is denoted by K(P ). A poset P is called an algebraic poset if K(P ) is
a basis of P .

A poset P is bounded complete if for any D ⊆ P with an upper bound
in P , supD exists in P . This is equivalent to that every nonempty subset
of P has an infimum.

Example 1. (a) Let X be an infinite set and P0(X) be the set of all
finite subsets of X. Then (P0(X),⊆) is a bounded complete algebraic poset
which is not a dcpo.

(b) Let X be a topological space and C0(X) be the set of all nonempty
closed subsets of X. Then (C0(X),≤) is a bounded complete poset, where
for any A,B ∈ C0(X), A ≤ B if and only if B ⊆ A.

(c) The set P = [0,∞) of all nonnegative real numbers is a bounded
complete continuous poset under the ordinary order of numbers.
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If P is a poset, x, y ∈ K(P ) and x ∨ y exists in P , then x ∨ y ∈ K(P ).
This property was proved for dcpos in [2] ( See Remark I-4.4. of [2] ), but
it is easy to show that the conclusion is also valid for any poset.

A subset F of a poset P is a filter if F =↑ F = {y ∈ P : y ≥
x for some x ∈ F} and for any x, y ∈ F there is z ∈ F with z ≤ x, y.

A nonempty subset S of a complete lattice L is called an m-set of L if
0L 6∈ S and for any x, y ∈ S, x ∧ y 6= 0L implies x ∧ y ∈ S.

Lemma 1. For any m-set S of a complete lattice L, the set Filtl(S) of
all filters F of S satisfying

∧
F 6= 0L is a bounded complete algebraic poset

with respect to the inclusion order.

Proof. (i) If F = {Fi : i ∈ I} ⊆ Filtl(S) has an upper bound, say F ,
then F ⊇

⋃
F . The filter G of S generated by

⋃
F is still contained in F ,

thus
∧
G ≥

∧
F and so

∧
G 6= 0L. Obviously G is the supremum of F in

FiltL(S). Thus Filtl(S) is bounded complete.
(ii) If F = {Fi : i ∈ I} is a directed subset of Filtl(S) and supF exists

in Filtl(S), then it follows easily that supF =
⋃
F . For each x ∈ S, ↑ x ∈

Filtl(S) and since the existing supremum of a directed subset of Filtl(S) is
the union of the subsets, we see that F ∈ Filtl(S) is a compact element of
Filtl(S) iff F =↑ x for some x ∈ S.

Then for each F ∈ Filtl(S), the set of compact elements of Filtl(S)
below F equals {↑ x : x ∈ F} which is obviously directed because F is a
filter. Also F = sup{↑ x : x ∈ F}. Hence Filtl(S) is algebraic. �

Example 2. (1) Let Int(R) be the set of all non empty closed intervals of
IR including IR. Then Int(IR) is a subset of P(IR) and for any I, J ∈ Int(IR),
I ∩ J 6= ∅ implies I ∩ J ∈ Int(IR). Thus Int(IR) is an m-set of P(IR), so
Filtl(Int(IR)) is a bounded complete algebraic poset. In addition, due to the
compactness of closed intervals, every filter of Int(IR) has a nonempty inter-
section, thus Filtl(Int(IR)) = Filt(Int(IR)), and Filt(Int(IR)) is a directed
complete poset.

In general, if X is a Hausdorff space and S is the set of all nonempty
compact sets of X. Then Filtl(S) = Filt(S) is a bounded complete algebraic
dcpo.

(2) Let X be a topological space and O∗(X) = O(X)− {∅} be the set of
all nonempty open sets of X. Then (Filtl(O∗(X)),⊆) is a bounded complete
algebraic poset. Note that Filtl(O∗(X)) need not be directed complete.

If X is T0, then a filter F is an maximal element of Filtl(O∗(X)) if and
only if the intersection

⋂
F is a singleton.

It is well known that if P is an algebraic dcpo, then P is isomorphic
to the poset Idl(K(P )) of all ideals of K(P ). Thus if P and Q are two
algebraic dcpos and K(P ) is isomorphic to K(Q) as posets, then P and Q
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are isomorphic. This fact is not true for arbitrary algebraic posets. For
instance, let P = {1 − 1

n
: n ∈ N} and Q = P ∪ {1}. Then both P and

Q are algebraic posets with respect to the ordinary order of numbers. Also
K(P ) = K(Q) = P . But P and Q are obviously not isomorphic.

For a poset P , we use max(P ) to denote the set of all maximal elements
of P .

Proposition 1. A bounded complete algebraic poset P is isomorphic to
Filtl(O∗(X)) for some topological space X iff the following conditions are
satisfied:

(i) for any nonempty subset A ⊆ K(P ), it holds that infPA ∈ K(P );
(ii) for any x ∈ max(P ) and nonempty A ⊆ K(P ), infPA ≤ x implies

a ≤ x for some a ∈ A;
(iii) every element of K(P ) is the meet of some elements in max(P ).
(iv) ↑ a ∩max(P ) 6= ∅ for all a ∈ P .

Proof. If P = Filtl(O∗(X)), then it follows easily that F ∈ P is a
maximal element iff there is a point x ∈ X such that F = N(x) – the filter
of open neighbourhoods of x. And F ∈ K(P ) iff F =↑ U for some open set
U in X. Then it is straightforward to verify that all the four conditions (i)-
(iv) are satisfied.

Conversely, suppose that the four conditions are satisfied. Put X =
max(P ) and τ = {X∩ ↑ a : a ∈ K(P )} ∪ {∅}.

Then X = X∩ ↑ u ∈ τ , where u = infPK(P ). Let {X∩ ↑ xi : i ∈ I} be
any subset of τ . Put x =

∧
i∈I xi. Then x ∈ K(P ) by (i), and

⋃
{X ∩ xi :

i ∈ I} = X∩ ↑ x by (ii). So τ is closed under arbitrary unions. For any
a, b ∈ K(P ), if ↑ a∩ ↑ b 6= ∅, then a ∨ b exists in P , so a ∨ b ∈ K(P ). Thus
↑ a∩ ↑ b =↑ (a ∨ b), it follows that τ is closed under finite intersection, and
hence is a topology on X.

Now we define the mapping F : P −→ Filtl(O ∗ (X)) by F (u) = {X∩ ↑
x : x ≤ u, x ∈ K(P )}. For each u ∈ P , {x ∈ K(P ) : x ≤ u} is a
directed set, so F (u) is a filter base. Now suppose that X∩ ↑ v ∈ τ and
X∩ ↑ v ⊇ X∩ ↑ x for some x ∈ K(u) and x ≤ u, then by condition (iii),
v = sup(X∩ ↑ v) ≤ sup(X∩ ↑ x) = x ≤ u, thus X∩ ↑ v ∈ F (u). Hence
F (u) is a filter. By (iv), there is a ∈ max(P ) with a ≥ u, then a belongs to
the intersection of members of F (u). Thus F (U) ∈ Filtl(O∗(X)). Since P
is algebraic, F is an order embedding by condition (iii). Now it remains to
show that F is surjective.

Let A = {X∩ ↑ xi : xi ∈ K(P ), i ∈ I} be a filter of nonempty open
sets of X such

⋂
{X∩ ↑ xi : i ∈ I} is nonempty. Then by condition

(iii), {xi : i ∈ I} is a directed subset of K(P ) which is up bounded. Let
u = sup{xi : i ∈ I}. Then F (u) = A. The proof is completed. �
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In general, the poset Filtl(O∗(X)) is not a dcpo. As a matter of fact,
one can easily show that for a T1 space X, Filtl(O∗(X)) is a dcpo iff every
filter of nonempty open sets has nonempty intersection.

2. Models of topological spaces

A subset U of a poset P is Scott open if U is an upper set(U =↑U =
{x ∈ P : y ≤ x for some y ∈ U}) and for any directed subset D of P ,
supD ∈ U implies D ∩ U 6= ∅ whenever supD exists. All Scott open sets
form a topology on P , denoted by σ(P ), called the Scott topology on P . If
P is continuous, then the sets W (x) = {y ∈ P : x << y}, x ∈ P, form a
base of σ(P ). If P is algebraic, then the sets ↑a, a ∈ K(P ), form a base of
σ(P ). See [2] for more about Scott topology.

For a poset P , if the set max(P ) of maximal points is equipped with
the relative Scott topology on P (that is V ⊆ max(P ) is open in max(P )
iff V = U ∩max(P ) for some Scott open set U of P ), then max(P ) is called
the maximal point space of P . Following [7], a poset model of a topological
space X is a poset P together with a homeomorphism φ : X −→ max(P ).
We shall use (P, φ) to denote a poset model of X.

Note that for any poset P and any x ∈ P , ↓x is the closure of {x}
with respect to the Scott topology on P . Thus if x and y are two different
maximal points of P , then x 6∈↓ y = cl{y} and y 6∈ cl{x}. Hence max(P ) is
always a T1 space, it follows that only T1- spaces may have a poset model.

If P is a continuous poset (domain, algebraic poset ), then the model
(P, φ) of X is called a continuous ( domain, algebraic ) model of X.

A poset model (P, φ) is said to satisfy the Lawson condition if for any
x ∈ P , ↑x ∩max(P ) is closed in max(P ) (for the relative Scott topology ).

Example 3. (1) Every Hausdorff locally compact space has a domain
model. If X is locally compact, take P = K(X) to be the set of all nonempty
compact subsets of X. With the reverse inclusion order, P is a domain and
X is isomorphic to Max(P )(see Example V-6.3 of [2]).

(2) The set PI = {[a, b] : a ≤ b, a, b ∈ IR} with the inverse inclusion
order is a domain model of the real line IR. This model satisfies the Lawson
condition.

(3) For a complete metric space (X, d), let BX = X × [0,+∞) be
equipped with the order defined by

(x, r) ≤ (y, s) iff d(x, y) ≤ r − s.
Then BX is a domain and it is a model of X( see [1]).

(3) In [4], Lawson proved that a space has an ω-continuous dcpo (a con-
tinuous dcpo that has a countable base) model satisfying Lawson condition
iff it is a Polish space.



6 D. ZHAO

(4) Liang and Keimel proved in [5] that a space has a continuous poset
model satisfying the Lawson condition iff the space is Tychonoff.

(5) In [3], it is proved that a space has a bounded complete algebraic
dcpo model with a countable base iff the space has a clopen countable base
B closed under consistent finite intersections (if U ⊆ U1, · · · , Un with U ∈
B, Ui ∈ B(i = 1, 2, · · · , n) then

⋂n
i=1 Ui ∈ B) and every filtered subset of

the base has a nonempty intersection. It is also noted that every bounded
complete algebraic dcpo model satisfies the Lawson condition.

In [11], Waszkiewizc asks if every T1 space has a continuous poset model.
The following is an answer to his problem.

Theorem 1. Every T1 space has a bounded complete algebraic poset
model.

Proof. Let X be a T1 space. Take P to be the set of all filters of
nonempty open sets of X that has a nonempty intersection. Then by Lemma
1, P is a bounded complete algebraic poset. The compact elements of
P are of the form L(U) = {V ∈ O(X) : U ⊆ V }, U ∈ O(X). And
Max(P ) = {N(x) : x ∈ X}, where N(x) = {U ∈ O(X) : x ∈ U} is the
open neighbourhood filter of x ∈ X.

Define φ : X −→ P by

φ(x) = N(x), x ∈ X.
Then f is a bijection. Note that as P is algebraic, the subsets of P of the
form ↑L(U) (U ∈ O(X)) form a basis of the Scott topology on P . Now for
any U ∈ O(X), φ−1(↑L(U)) = {x : L(U) ⊆ φ(x)} = {x : U ∈ φ(x)} = U .
So φ is continuous. For any open set U of X, f(U)∩max(P ) = {φ(x) : x ∈
U} =↑L(U) ∩max(P ), which is open in max(P ). Hence f is also an open
mapping, therefore it is a homeomorphism.

�

If B is a base of the T1 space X such that U, V ∈ B, U ∩ V 6= ∅ implies
U ∩ V ∈ B, then we can also show that the set of all filters of B that have
a nonempty intersection is a bounded complete algebraic model for X.

A given topological space my have two very different models. For in-
stance, PI = {[a, b] : a ≤ b, a, b ∈ [0, 1]} is a continuous dcpo model of
I = [0, 1], which is very different from the model for I = [0, 1] constructed
in the proof of Theorem 1.

A topological space is second countable if it has a countable base.

Theorem 2. For a topological space X, the followings are equivalent:
(a) X is a second countable T1 space.
(b) X has a countably based continuous poset model.
(c) X has a countably based bounded complete algebraic model.
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Proof. Obviously (c) =⇒ (b) =⇒ (a) Now suppose that X is T1 and
is second countable. Let B be a countable base of X with ∅ 6∈ B. Take P
be the set of all filters of B that have a nonempty intersection. Then as
in Theorem 1, we can verify that P is a bounded complete algebraic poset
and max(P ) is a model for X. Since K(P ) = {↑L(U) : U ∈ B}, where
L(U) = {V ∈ B : U ⊆ V }, is a countable set, P is countably based. So (c)
is satisfied. �

By [7], a poset P is called ideal algebraic if every element of P is either
a compact or a maximal element.

Proposition 2. If X is a first countable T1 topological space, then X
has an ideal algebraic poset model.

Proof. For each x ∈ X choose a countable neighbourhood base at x,
N(x) = {U(x, n) : n ∈ N} such that U(x, n) ⊆ U(x, n + 1) for all n. Put
P = {U(x, n) : x ∈ X,n ∈ N}

⋃
{{x} : x ∈ X}. Define the order on P by

{x} ≤ U(y,m) iff x ∈ U(y,m) and U(x, n) < U(y,m) iff U(y,m) ⊆ U(x, n)
and n < m. Then

(i) each U(x, n) is a compact element of P ;
(ii) for any x ∈ X, {x} is the supremum of the directed set {U(x, n) :

n ∈ ω};
(iii) max(P ) = {{x} : x ∈ X}.
Thus P is an ideal algebraic poset.
The mapping η : X −→ max(P ) is an homeomorphism from X to

max(P ) with the relative Scott topology, where η(x) = {x}, x ∈ X.
�

It is still not known whether every T1 space have a dcpo(not necessary
continuous) model. Recall that a T0 space X is called a d-space(or monotone
convergence space) if X is a dcpo with respect to the specialization order
(x ≤ y iff x ∈ cl{y}) and every open set of X is Scott open with respect to
the specialization order.

Proposition 3. For any T1 space X there is a monotone convergence
space Y such that X is homeomorphic to the subspace max(Y ) of Y and Y
is a meet semilattice with respect to the specialization order.

Proof. Let K(X) be the set of all nonempty closed compact subsets
of X. With respect to the inverse inclusion, K(X) is a dcpo and a meet
semilattice. For each open set U of X, let L(U) = {A ∈ Y : A ⊆ U}. Then
{L(U) : U ∈ O(X)} is a base for a topology τ on K(X).

(i) If A,B ∈ K(X) and A 6= B, then A 6⊆ B or B 6⊆ A. Assume A 6⊆ B,
then there is x ∈ A − B. Now L(U), where U = X − {x} is an open set
that contains B but not A. So K(X) is T0.



8 D. ZHAO

(ii) From the proof of (i) it also follows that A ⊆ B iff for any L(U) in
the base, B ∈ L(U) implies A ∈ L(U). Thus the specialization order on
K(X) is the inverse inclusion order.

(iii) Clearly every open set L(U) in the base of τ is a Scott open set of
(K(X),⊇), thus every member of τ is Scott open. Hence (K(X), τ) is a
d-space.

Now max(K(X)) = {{x} : x ∈ X} and the mapping η : X −→
max(K(X)), sending x ∈ X to {x} is clearly a homeomorphism. �

It is yet to know whether every T1-space is homeomorphic to the maximal
point space of a d-space that is continuous with respect to the specialization
order.

In [12], a dcpo E(P ) is constructed for each poset P , called the dcpo-
completion, which is the smallest dcpo extension of P in certain sense. It is
natural to wonder how max(P ) and max(E(P ) are related. In particular, is
every maximal point of P maximal when regarded as a point of max(E(P )).
The following example shows that this is not always the case.

Example 4. Let P = {an}∞n=1 ∪ {a} ∪ {bn}∞n=1 with the order generated
by an < an+1 < a, an < bn,∀n. Then by the construction of D(P ), which
is the smallest subset of σop(P ) containing all {↓x : x ∈ P} and closed
under directed joins. The point a is in max(P ). Also ↓a is below the join
of {↓bn : n = 1, 2, · · · } in E(P ), so it is not a maximal point in D(P ).

In [5], it is proved that a space has a continuous poset model satisfying
Lawson condition if and only if it is Tychonoff. We now consider the fol-
lowing questions: which spaces have a (bounded complete) algebraic poset
model satisfying Lawson condition?

Theorem 3. A T1 space has a bounded complete algebraic poset model
that satisfies Lawson condition iff X is zero-dimensional.

Proof. Sufficiency: Assume that X is zero-dimensional and let S be a
base of X consisting of nonempty clopen sets. Then, by the remark after
Theorem 1, Filtl(S) is a model of X. Now we only need to show that for
each F ∈ Filtl(S), ↑F ∩maxFiltl(S) is closed. Suppose that x ∈ X with
φ(x) 6∈↑F , then F 6⊆ φ(X), that is there is V ∈ F , x 6∈ V . Then, as S is
a base of X consisting of clopen sets, there is U ∈ S, x ∈ U, V ∩ U = ∅.
Note that ↑U = {W ∈ S : U ⊆ W} is a compact element of Filtl(S), so
↑(↑U)∩max(Filtl(S) is open in max(Filtl(S)), φ(x) ∈↑(↑U) and ↑(↑U) ⊆↑
F . This shows that ↑F ∩max(Filtl(S)) is closed. Therefore max(Filtl(S))
is a bounded complete algebraic poset model of X, and it satisfies Lawson
condition.

Next, assume that X has a bounded complete algebraic model (P, φ)
which satisfies Lawson condition. Since P is algebraic, {↑e : e ∈ K(P )} is a
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base of the Scott topology σ(P ). Also as (P, φ) satisfies Lawson condition,
each ↑e(e ∈ K(P )) is clopen. It follows that {↑e ∩max(P ), e ∈ K(P )} is a
base of max(P ) consisting of clopensets. Thus max(P ), and therefore X is
zero-dimensional.

�

3. A functor from the category of T1 spaces to a category of
algebraic posets

In section 2, we defined a bounded complete algebraic poset for each T1

space. In this section we show that this construction can be extended to
a functor from the category TOP1 of T1-spaces to a category of bounded
complete algebraic posets.

A mapping f : P −→ Q between two posets is Scott continuous iff it is
continuous with respect to the Scott topologies on P andQ, this is equivalent
to that for any directed set D ⊆ P , f(supD) = sup f(D) whenever supD
exists in P . A local dcpo is a poset such that every subposet ↓ a (a ∈ P ) is
a dcpo, iff every upper bounded directed subset has a supremum.

Lemma 2. Let Q be a local dcpos and f : P −→ Q be a monotone
mapping from a continuous poset P to Q. Then there is a largest Scott
continuous mapping F : P −→ Q satisfying F ≤ f (that is, F (x) ≤ f(x)
for all x ∈ P ).

Proof. For each x ∈ P , let ⇓ x = {y ∈ P : y � x}. For any x ∈ P,
define F (x) = sup f(⇓ x). By the monotonicity of f and the continuity of
P , the set f(⇓ x) is directed and bounded by f(x), so sup f(⇓ x) exists in
Q. For any directed set D,⇓ supD =

⋃
{⇓ x : x ∈ D} whenever supD

exists, thus F is Scott continuous. Obviously, F (x) ≤ f(x) for all x ∈ P
and is the largest such mapping.

�

The following result is a slight generalization of Proposition 3.8 in [9].

Lemma 3. Let P be a continuous poset and Q be a bounded complete
continuous poset. If P1 ⊆ P with ↓P1 = P and f : P1 −→ Q is a continuous
mapping with respect to the relative Scott topology on P1, then f has a (Scott)
continuous extension over P .

Proof. For any x ∈ P , let g(x) = inf{f(y) : y ∈ P1, x ≤ y}. Then
g is a well defined monotone mapping from P to Q because Q is bounded
complete and for each x ∈ P, ↑x ∩ P1 6= ∅. Also g(x) = f(x) for all x ∈ P1.
Now for each x ∈ P , define F (x) = sup g(⇓ x), x ∈ P . By Lemma 2, F is
Scott continuous.
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To show that F is an extension of f , let a ∈ P1 and z << f(a). There
is w such that z << w << f(a) because Q is continuous. First note that
g(a) = f(a). The set V = {y ∈ Q : w << y} is open in Q, so f−1(V ) is open
in P1 and a ∈ f−1(V ). As P is continuous, there is r ∈ P, r << a such that
{u ∈ P : r << u} ∩ P1 ⊆ f−1(V ). Choose r′, r << r′ << a, then Obviously
g(r′) ≥ w, so g(r′) ≥ z. Thus F (a) ≥ g(r′) ≥ z for each z << f(a), hence
F (a) ≥ f(a). In addition, F (a) ≤ g(a) = f(a), therefore F (a) = f(a). �

Note that for a subset P1 of a poset P , the relative Scott topology on
P1 need not be the same as σ(P1).

Theorem 4. The assignment X to Filtl(O∗(X)) extends to a functor
from the category TOP1 of T1-spaces to the category BCALG of bounded
complete algebraic posets and Scott continuous mappings.

Proof. For any continuous map f : X −→ Y between T1-spaces, the
corresponding map sending N(x) to N(f(x)), denoted by f̂ , can be viewed
as a continuous mapping from max(Filtl(O∗(X))) to max(Filtl(O∗(Y ))).
Now note that every member of
Filtl(O∗(X)) is below a member of max(Filtl(O∗(X))), applying Lemma

3, we obtain a continuous extension of f̂ , denoted by H(f). Obviously, in
this way we obtain a functor from TOP1 to BCALG. �

The following result follows directly from Corollary 3.10 of [9].

Proposition 4. If f : X −→ X is a continuous mapping on a T1 space
which has a fixed point, then H(f) : Filtl(O∗(X)) −→ Filtl(O∗(X)) has a
smallest fixed point.
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