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NUCLEI ON z-FRAMES
BY
ZHAO DONGSHENG

Abstract. This paper seeks for a further development of the theory

of z-frames. More deep relations between nuclei, quotients and congru-

ences on z-frames are revealed.
z-frame, which generalizes frame, o-frame, preframe and k-frame, was intro-
duced by the author in [5]. Nucleus is one of the several key structures in
frame (or locale) theory. There have been lots of discussions on this topic
for frames. The main reason for the importance of nuclei is that they can
be regarded as subobjects in the category Loc of all locales. In [5] we have
studied basic properties of nuclei on the general structure — z-frames. In this
paper, we make a further investigation into the properties of nuclei and their
connections with other structures. For a frame there are several different,
but equivalent, ways to describe a nucleus. But for z-frames those ways are
no longer equivalent. We will reveal more connections between these different
characterizations. It is well known that the poset N(A) of all nuclei on a frame
A is also a frame. So a natural problem is: Is N(A) a z-frame for any z-frame
A? We give an example to show that N(A) is not necessarily a o-frame for
a o-frame A. This answers an open problem. The next part of this paper is
to study the complete lattices Quo(A) of all quotients of A and zCong(A)
of all z-congruences relations on A which are closely related to nuclei. Al-
though Quo(A) is generally not a z-frame, but it is a pseudo-Heyting algebra.
This suggestes that we may need to take Quo(A), the set of all z-congruence

relations on A, as a replacement of N(A).
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1. z-frames

In the following, by a semilattice we will always mean a meet semilattice
which has a top element 1. A semilattice homomorphism is a mapping between
semilattice which preserves finite meets and the top element. Slat denotes the
category of all semilattice and homomorphisms.

For a subset D of a semilattice S we write | D = {z € S|3y € D,z < y}.
If D = {a} is a singleton, we just write | D as | a.

A system of sets on the category Slat is a function Z which assigns to
each semilattice S a collection Z(S) of subsets of S such that the following
conditions are satisfied:

(z1) Every D € Z(S) is down closed, i.e. D = {z € S|3y € D,z < y}. And

lae Z(S) forall a € S,

(z2) If f : S — T is a mapping between semilattice which preserves binary

meets, then | f(D) € Z(T) for all D € Z(S);

(z3) D,C € Z(S) implies DN C € Z(S);

(z4) ¥ € Z(Z(S)) implies U¥ € Z(S5).

Elements of Z(S) are called the z-ideals of S. A subset C of S is called a z-set
if | C e Z(9).

The idea of systems of sets is borrowed from Bandelt and Erne who first
introduced the set systems on the category of all posets to define z-continuous
posets. For our purpose the condition (z3) has to be attached. It is easy to
check that the condition (z3) is equivalent to that Z(S) is a semilattice.

A semilattice S is said to be z-complete if every z-ideal of S has a join in

S. This is equivalent to that every z-set has a join in S.
Definition 1.1. A z-frame is a z-complete semilattice A such that

a/\\/D:\/{a/\x|x€D}

holds for every a € A and z-ideal D (equivalently, for every z-set D).
Notice that the set {a A z|x € D} is a z-set because the mapping a A — :

S — S preserves binary meets.
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Examples 1.2.
(1) Let Z be the system of set which assigns to a semilattice S the set Z(S)

of all down closed subsets of S. Then S is a z-frame if and only if it is a
frame [1].

(2) For each semilattice S, assign Z(S) =Idl(S), the set of all ideals of S.
Then S is a z-frame if and only if it is a preframe in the sense of [2].
Preframe are also called meet-continuous semilattice.

(3) Given a regular cardinal k, define Z(S) = {| X|X C S,|X| < k} for each
semilattice S. Then z-frames are just the k-frames [3]. When k = N,, a
k-frame is also called o-frame.

A z-frame homomorphism f : A — B is a semilattice homomorphism

which preserves joins of z-sets, that is
f(VD) =Vf(D)

holds for every z-set D of A.

A subset B of a z-complete semilattice A is called a z-closed set if
(i) B is down closed, and
(i) D € Z(A) and D C B imply VD € B.

We use C.(A) to denote the poset of all z-closed subsets of A. It was
proved in [5] that for any z-frame A, C,(A) is a frame and that there is a

natural z-frame homomorphism
14" A— Cz (A)

which sends # € A to | z. Moreover, for any z-frame homomorphism f: A —
L to a frame L, there is a unique frame homomorphism f : C.(A) — L such

that
f=7"ia
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2. Nuclei and z-congruences

Nuclei were first introduced by Simmons for frames. Late on Isbell and
Simmons also studied nuclei on complete preframes [4]. In this section we
introduce nuclei on z-frames and discuss their basic properties. We also reveal

some connections between nuclei and congruences on z-frames.

Definition 2.1. A nucleus on a semilattice S is a mapping p : S — S

satisfying the following three conditions:
(i) p(z) > z, for all x € S;
(ii) p(z Ay) =p(z) Ap(y) for all z,y € S;
(iii) p* = p.
Denote by N(S) the set of all nuclei on S. N(S) is a complete lattice with

respect to the pointwise order. The bottom element is the identity mapping

and the top element is the constant mapping with value 1g.

The following proposition can be proved in a similar way as in the case

for frames.

Proposition 2.2. Let A be a z-frame, and p € N(A), then
(1) as a subposet of A, p(A) is a z-frame;
(2) the mapping p° : A — p(A) of the restriction of p to its codomain is a

z-frame homomorphism, and the inclusion
ia:p(A) = A
is right adjoint to p°.
Definition 2.3. A quotient of a z-frame is a surjective mapping
q: A— B,
where B is a semilattice and ¢ is a semilattice homomorphism such that

q(vD) = vq(D)
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for every z-set D of A.

(1)

Remarks.

For a quotient p : A — B of a z-frame A, B is not necessarily a z-
frame. Consider A which is the free semilattice generated by the set
X ={an,d,}nen. Let B ={b,,c,}nen U{lp} be the semilattice with the

order given by
by <bpgpr <<y <€ < 1p.

Then A is a preframe. Consider the mapping f : X — B defined by
f(a,) = by, f(d,) = cpyq for all n € N. Suppose f : A — B is the
extension of f over to the free semilattice A. A is clearly a preframe and
f: A — B is a quotient of this preframe A. But the chain {b,},cn has
no supremum in B, so B is not a preframe.

However it is easy to see that quotients of a k-frame are k-frames.

From the proposition 2.2, for j € N(A) there is a quotient of A
3° A — j(A).

If A is a frame, then for any quotient p : A — B, there is a unique nucleus
j € N(A) such that B is isomorphic to j(A). This is no longer true for
preframes. For instance, consider the quotient f : A — B of the preframe
A in remark (1). If there is j € N(A) such that B is isomorphic to j(A)
then B must be a preframe by example 1.2.2 and proposition 2.2. But B

is not a preframe.

Now we introduce z-congruence relations on a z-frame. Recall that a

semilattice congruence relation 7 on a semilattice S is an equivalence relation

such that a ~ b(7) and ¢ ~ d(7) imply a A ¢ ~ b Ad(7) for all a,b,c,d € S.

Here a ~ b(7) means a and b has the relation.

Definition 2.4. A z-congruence relation on a z-complete semilattice S

is a semilattice congruence relation 7 such that
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(a) If {a;}icr and {b;};cs are z-sets of S such that a; ~ b;(7) for all i € I, then

\/ a; ~ \/ bz (7')
iel il
Lemma 2.5. Let 7 be a semilattice congruence relation on a z-complete

semilattice A satisfying

(a”) for every z-set D of A and any b € A, if bAx ~ x(7) for all x € D, then
bAVD ~ VD(T).

Then T is a z-congruence relation on A.

If A is a z-frame then a semilattice congruence relation on A is a z-

congruence relation if and only if it satisfies (a’).

Proof. Suppose that 7 satisfies (a’). If {a;};cr and {b;};cs; are z-sets,
and a; ~ b;(7) for all ¢ € I, then it follows that for each j € I, a; A Vierb; ~
bj A Vierbi(T). bj A Vierh; = bj ~ a;(7) so a; A Vierb; ~ a;(7). By (a’),
Viera; A Vierb; ~ Vicra; (7). Similarly, Vicra; A Vierb; ~ Vierbi(7). Hence
Viera; ~ Vierbi(7). So T is a z-congruence relation.

Now if A is a z-frame and 7 is a z-congruence relation on A, we show
that it satisfies the condition (a’). In fact, if D is a z-set such that for each
x € D, a ANz ~ x(7), then by (a) and that {a A z|x € D} is a z-set we have
V{a A z|z € D} ~ VD(7). Since A is a z-frame, a AVD = \/{a A z|z € D},
and so a A VD ~ VD(T).

For a z-frame A let Quo(A) denote the set of all quotients of A. Define an
order < on Quo(A) by p;, < p for two quotients p: A — B and p, : A — B’
if there is a semilattice homomorphism ¢q : B' — B such that p = g o p;.

Two quotients p and p’ of A is said to be equivalent if p < p’ and p’ < p.
We will also use Quo(A) to denote the poset of all equivalence classes of
quotients of A.

As in the general case, from any z-congruence relation 7 on A, we can

construct a quotient of A
qg: A— AT,
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where A/7 is the quotient semilattice corresponding to 7, g sends = € A to
the equivalence class containing z.
Denote by zCong(A) the poset of all z-congruence relations on A.

zCong (A) is clearly a complete lattice.
Proposition 2.6. zCong is isomorphic to Quo(A).

Proof. For each 7 € zCong(A) let F(7) be the quotient F(7) =¢q: A —
A/7. Then the mapping

F:zCong(A) - Quo(A)

obviously preserves order.

Conversely, for each quotient g of A we can define a relation R(g) on A
by x ~ y(R(g)) iff g(x) = g(y). Then R(F(7)) = 7 for all 7 € zCong(A), and
F(R(g)) is equivalent to g for all ¢ € Quo(A). Thus zCong(A) is isomorphic
to Quo(A).

3. Structure of N(A)

It is well known that for every frame L, N(L) is a frame [1]. In this section
we first construct a o-frame A such that N(A) is not a o-frame. This answers

an open problem among folks. Then we discuss other properties of N(A).

Example 3.1. Let €2 be the set of all countable ordinals, and let L be
the poset {(a,8) € @ x Q: a < B} with a top element adjoined. L is clearly
a o-frame. Now define three elements j;, j,, j3 € N(L) as follows:

J1(a, B) = (o, #'), where (' is the first limit ordinal satisfying ' > ;
Ja(a, B) = (o, 3"), where " is the first non-limit ordinal satisfying 5" > 3;
Js(e, B) = (aV B, B).

Then j; V j, = 1. In fact, if j = j; V j» # 1, then 5(0,0) = (o, ) # 1.
Suppose 3 is not a limit ordinal, then j, (o, 3) > (a, ). This implies that
7(5(0,0)) > 4:1(5(0,0)) > 5(0,0). But this is impossible because j> = j.

Similarly we can show that 8 must be a limit ordinal. This contradiction
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shows that j = 1. Observe that j» A j3 = j1 Ajs = 0. As j3 # 0, so
Js N (41 V j2) # (43 Aj1) V (js A Jo). Hence N(L) is not a distributive lattice let

alone a o-frame.

Proposition 3.2. Let A be a z-frame and T € zCong(A). Then the

following conditions are equivalent:

(1) every equivalent class of T contains a mazimal element, and if x Ay ~ y(T)
then there exists x' >y, ' ~ x(7);
(2) there is a j € N(A) such that © ~ y(7) if and only if j(z) = j(y);
(3) the quotient
q: A— AT

has a right adjoint;
(4) there is a quotient g : A — B of A which has a right adjoint and for all

z,y € A, z ~y(r) iff g(z) = g(y).

The proof of this proposition is direct, we leave it to the reader.

A z-congruence relation 7 is said to be induced by a nucleus if it satisfies
the condition (2) in the above proposition. The following example shows that,
the condition that every equivalence class contains a maximal element is not

enough for 7 to be induced by a nucleus.
Example 3.3. Let K = {(a,b,i) € N x N x{0,1} : a < b} ordered by
(a,b,i) < (a',b,3")

iff a <a',b>"b and i =14. Let L be the preframe obtained by adjoining a
top element and a bottom element to K. Define a z-congruence relation 7 on

L by stating that
z~y(r) if z=y orif z,y€e K and m(z)=m(y),m(z)=msy),

where 7’s are projections. Then for each equivalence class [(a, b,1)],, [(a,b, )],
= {(a,¢,%) : ¢ € N,c > a} of which (a,a,t) is the maximal element. If 7 is

induced by a nucleus j on L, then it follows that j((a,b,)) = (a,a,7). Now



NUCLEI ON Z-FRAMES 67

7((0,0,0) A (L,1,0)) = 5((0,1,0)) = (0,0,0) # (0,0,0) A(1,1,0) = 5((0,0,0) A
7((1,1,0)). This contradicts to that j preserves binary meets.

For a k-frame A if every equivalence class of a congruence relation 7
contains a maximal element then 7 is induced by some nucleus. As a matter
of fact, suppose that z Ay ~ y(7) and 2’ is the maximal element of [z],, then
from ' = 'V (x Ay) ~ 2’ Vy(7) it follows that =’ > y and also =’ ~ z(7). By

proposition 3.2(2), 7 is induced by a nucleus.

Given a z-frame A we have a mapping
¢ : N(A) — zCong(A),

which sends j € N(A) to the z-congruence relation induced by j. ¢ is order
preserving and injective. We are interested in the cases when ¢ is surjective.

Recall that a Heyting algebra A is a semilattice and for all a € A and
b € A there is an element a — b € A such that z Aa <biff x < a — b.

Corollary. If ¢ : N(A) — zCong(A) is surjective then A is a Heyting

algebra.

Proof. For any a € A, we have a quotient
¢ A = a,

defined by ¢,(z) = = A a. By proposition 3.2, ¢, has a right adjoint, say
f 1l a— A. Now for each b € A we claim that f(a Ab) = a — b. First as ¢,
is left adjoint to f, f(a Ab) Aa =q.(f(aAb)) <aAb<b If zAa<bthen
G(z)=zNa<aAb sox < flaNb).

Lemma 3.4. Let A be a z-frame such that every equivalence class of
z-congruence relation has a mazimal element, then A is a complete lattice

provided it contains a bottom element.

Proof. Let X be any non-empty subset of A, and 7 be the minimal z-

congruence relation on A for which all the elements of X are equivalent to
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each other. We can assume that X is closed under meets, i.e. z € X,y € X
implies x A y € X. We give a transfinite construction defining 7.

First define a relation 7, on A by stating that a ~ b(7y) if either a = b or
a=uAzand b=uAy for some u € A and z,y € X. Suppose now that [ is

an ordinal and 7, has been defined for every ordinal o < (.

(i) If B is a limit ordinal, we define
an~b(rg) if a~b(r,) forsome «a<g.

(ii) If B = a4+ n, where « is a limit ordinal and n > 1 is a even integer, we
define a ~ b(7) iff there exist z-sets C and D of A such that « = VC, b= VD,
u~bAu(rg_y) forallu € C, and v ~ a Av(75_1) for all v € D.
(iii) If # = a + n with « a limit ordinal and » > 1 is an odd integer, we
define a ~ b(7s) iff there are ¢;,cs,...,cn € A such that a = ¢;, b = ¢, and
¢; ~ Cip1(m5-1) foreach i =1,2,...,m — 1.

For the reson of cardinality there is some ordinal 3, 73,1 = 7. This then
implies that 73 is a z-congruence relation and 7 = 73.

Now let m be the maximal element of the equivalence class containing all
the elements of X. We show that m = \/ X. m is obviously an up bound of X.
Let w be an arbitrary up bound of X, we claim that for any a €] w, a ~ b(7)
implies b < w. It is clear that 7; has this property. Suppose that 7, has this
property for all @ < 3, it is easy to show that 75 also has this property. Hence
7 has this property.

For each a € X, a €] w and a ~ m(7) so m < w. Hence m =\ X.

Example 3.5. Let Z be the set of all integers with the natural order of
numbers. Let A be the preframe obtained from Z by adding a top element. It
is easy to see that every equivalence class of z-congruence on the preframe A
has a maximal element. However A is not complete because it has no bottom

element.

Theorem 3.6. If the mapping ¢ : N(A) — zCong(A) is surjective then

A is a frame provided that it has a bottom element.
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Lemma 3.7. Let A be a z-frame such that ¢ : N(A) — zCong(A) is
surjective. Then for any non-empty set X C A, V X = VY where Y is the

smallest z-closed set containing X.

Proof. Let m, 7 and 75 be defined as in lemma 3.4. It is easy to check,
by an inductive argument, that for every y € Y and every u € A, u ~ y(7)
implies v € Y. Since m ~ z(7) for all z € X and m € Y. By the construction

of Y, m is an up bound of Y, som =V\Y.

In the rest of this section we assume that Z(S) contains empty set as
an element for each semilattice S. Then every z-complete semilattice has a

bottom element.

Corollary 3.8. If A is a z-frame such that ¢ : N(A) — zCong(A) is
surjective, then A is isomorphic to C.(A) via the mapping i : A — C.(A).

Proof. By lemma 3.7 for every z-closed set Y of A, Y has a maximal

element, say a, then Y =] a. Hence 7, is onto, and so is an isomorphism.

Lemma 3.9. Suppose that A is a z-frame such that A is isomorphic to

C.(A) via ia, then ¢ : N(A) — zCong(A) is surjective.

Proof. Let p: A — B be any quotient of A. Then there is a unique

frame homomorphism

f:C.(4) = A— C(B)

such that ip - p = f, where ig : B — C.(B). Let f,: C,(B) — A be the right
adjoint of f, and p, = f, - ip. Then p, is right adjoint to p. From proposition
3.2 and proposition 2.6 it follows that every z-congruence relation on A is

induced by some nucleus. So ¢ is surjective.

Theorem 3.10. For a z-frame A the following conditions are equivalent
to each other:
(1) N(A) is isomorphic to zCong(A) via ¢;
(2) A is isomorphic to C,(A) via i;
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(3) Every quotient p: A — B has a right adjoint;

(4) Every equivalence class of all z-congruence relation has a maximal ele-
ment, and for each T € zZCong(A) if z Ay ~ y(7) then there is a ' >y

such that ' ~ x(T).

Notice that each of the equivalent conditions in the above theorem implies

that A is a frame. But a frame need not satisfies those conditions.

4. Pseudo-Heyting algebra and zCong(A)

For a z-frame A, the complete lattice zCong(A) is generally not a frame
(see example 4.3). However zCong(A) has several properties very similar to
those of frames. A complete lattice is a frame if and only if it is a Heyting
algebra. Although zCong(A) is generally not a Heyting algebra, it is a pseudo-
Heyting algebra. Let us first define and discuss pseudo-Heyting algebra.

Definition 4.1. A lattice S is called a pseudo-Heyting algebra if for any
two elements a and b of S, there is an element a < b such that for any z € S,
z>b,xANa<biff t <a<—b.

So a < b is the greatest element among all those z € § that are greater

than or equale to b and z A a < b. Thus generally, a — b < a — b.

Lemma 4.2. A pseudo-Heyting algebra is a Heyting algebra if and only

of it 1s distributive.

Proof. Since every Heyting algebra is distributive, we only need to prove
the sufficiency. Let A be a distributive pseudo-Heyting algebra and let a,b be
two elements of A. We show that a < b=a — b. Forany z € A, ifx Aa < b,
then a A (z V (¢ = b)) = (aAx)V (aA(a— b)) <b. Since z V (a — b) >
a <= b > b, by the definition of a — b it follows that z V (a < b) < a < b, so

z < a — b. This shows that « — b =a — b. Hence A is a Heyting algebra.

Lemma 4.3. A pseudo-Heyting algebra is distributive if it is modular.
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Proof. Suppose A is a pseudo-Heyting algebra that is modular. If A
is not distributive, then A has a five element modular but non-distributive
sublattice, say S = {a,b,c,d,e}, where a < b <e,a <c<e a<d<e
Then b < a does not exist. Otherwise as ¢ > a, cAb=a,d >a,dANb=a
soc<b—=a d<b—a ande =cVd< b= a This implies that
(b= a)Ab>eAb=0b>a But according to the definition of b — a we
should have (b <= a) A b < a. This contradiction shows that A is distributive.

Theorem 4.4. For any z-frame A, zCong(A) is a pseudo-Heyting al-

gebra.

Proof. Let v and X be any elements of zCong(A). Define 7 by z ~ y(7)
iff whenever a ~ b(\), then x A a ~ x A b(7) if and only if y Aa ~ y A b(7).
It is easy to verify that 7 is really a semilattice congruence relation. Now we
show that it satisfies the condition (a’) of lemma 2.5. Let X be a z-set, c € A
and cAx ~ z(7) for all z € X. If a ~ b(\) and (V X) Aa ~ (V X) Ab(y),
then for all z € X, 2 Aa =2 AVXANa~zANNX)Ab=2Ab(y). So
cANxANa~cAzAb(y) forall z € X. Hence (cAV X)Aa~ (¢cAV X)Ab(7y).
Conversely, if (c AV X)Aa~ (cAVX)AD(y), then cAz Aa ~cAzAb(y)
for all z € X. From cAx ~ x(7) it follows that x Aa ~ z Ab(7y) for all z € X.
Thus V X Aa~ VX Ab(y). SoeAV X ~V X(7). Obviously v < 7.
(i) Suppose that z ~ y(7 A X), then y ~ z Ay(X). Since x Ay ~z A (z Ay)(7y)
we have y = yAy ~ yA(xAy) =z Ay(y). Similary, z ~ z Ay(y), so z ~ y(y).
This shows that AA 7 < 4.
(ii) Suppose 7" €zCong(A), 7" > v and 7' A X < . Let z ~ y(7'), we want
to show that x ~ y(7). For this, assume that a ~ b(\) and x A a ~ z A b(7y).
Then x Aa~xAb(T"),and yAa~zANa~xzANb~yAb(T'), yNa~yAb(A).
Hence y Aa ~y Ab(AAT'), s0 y Aa~yAb(y). Similarly, y Aa ~ y A b(7)
implies that x Aa ~ z Ab(7y). So x ~ y(y), and 7" < 7.

Hence 7 = A — 7, and zCong(A) is a pseudo-Heyting algebra.

Corollary. Every T € zCong(A) has a pseudo complement 7*, which is

the mazimal element of zCong(A) satisfying T A7* = 0.
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Corollary. If zCong(A) is distributive then it is a frame.
Corollary. If zCong(A) is modular, it is distributive.

Example 4.5. zCong(A) could be non-modular. Take Z as the system
of sets which assigns Id|(S) to every semilattices S. Consider the five- point
non-modular lattice A = {0,a,b,¢,1}, where 0 <a <b<1,0<c<1. Ais

obviously a preframe. zCong(A) contains a sublattice

B = {07 Ta—l,c—Oa Ta—b—O,c—la Ta—b—0; 1}3

where 7,_4_¢ 1 is the smallest z-congruence relation containing
{(a,b), (a,0),(b,0),(c,1)}. To-1.0 and 7,4 o are defined similarly. Then
0<Tsp0<Topo,e-1<1,0<71.,0<1 So B isnot amodular lattice,

and hence neither is zCong(A).

This example also shows that a pseudo-Heyting algebra is not necessarily
distributive.

For any a € A we have a 7, € zCong(A) which is determined by the
quotient

alN—:A—|aq,
that is z ~ y(7,) if aAz =a A y.

Proposition 4.6. Let A be a z-frame, then:
(1) for any a € A,

Ty = Ta

(2) For any z-set X of A, Nyex To = Tux-

Proof. (1) Suppose that z ~ y(7**) we want to show that z ~ y(7).
From the proof of theorem 4.1, ' ~ y/(7*) if and only if, whenever ¢ ~ d(7,)
(ie. ahc=aAd)thenz' Ae=2'ANdiff Y Ae =y ANd. Now if ¢ ~ d(7,)
then a Az Ac=aAzAdand a AyAc = aAyAd hold simultaneously,

sozANa ~ yAa(r*). But z Aa ~ y A a(7**) because x ~ y(7**). Hence
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xNa~yNa(T*AT*). As 7* A7* =0, so £ Aa = y A a. This shows that
7 < 71,and so 7"* = T.

(2) It is clear that 7yx < A, cx 7»- Suppose that a ~ b(A,cx 7), that is for
each z € X, a Ax = b A x. Then by the properties of z-congruence relation
we have a A \/ X = bAV X. This means that a ~ b(7yx). So Ayex 7w < Tux.

So it is proved that 7vx = A, cx Ta-

It is well known that for any frame A, B = (N(A))-- = {z € N(A)|~—z =
x} is a Boolean algebra, and A is isomorphic to a subframe of this Boolean
algebra. For a z-frame A we let B*(A) be the dual poset of {7 € Quo(A)|7** =
T}

The above lemma shows that there is an embedding from A into B*(A)
that preserves joins of z-sets. But to have a similar result for z-frames, we

still have to answer the following questions, which are open problems:

1. Is B*(A) a Boolean algebra, or some weaker form of boolean algebra?

2. Is the embedding from A into B*(A) preserves finite meets?

We also expect more deep discussions on pseudo-Heyting algebras. In
another paper we will discuss projective z-frames that are closely connected

to z-continuous posets.
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