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DIRECTED COMPLETE POSETS DETERMINED BY SCOTT
CLOSED SET LATTICES AND RELATED WORK
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Abstract. Let F be an assignment that associates each object C of a category
C with an object F (C) in a category D, such that F (C1) is isomorphic to F (C2)
whenever C1 is isomorphic to C2. An object C of C is called F -determined if for
any object A of C, F (C) ∼= F (A) if and only if C ∼= A. Such objects have been
studied in various different categories and for various assignments F , such as the
category of all topological spaces and the assignment that sends each space to the
ring of all continuous real valued functions; the category of all topological spaces
and the assignment that sends each space to its closed set lattice; the category
of all topological spaces and the assignment that sends each space to the lattice
of all lower semicontinuous functions. Recently, such objects in the category of
directed complete posets for the assignment that sends a directed complete poset
to its Scott open set lattice have also been studied. In this paper, we shall try
to present a panoramic survey on such work in various mathematics disciplines,
especially those about directed complete posets. Some problems will be posed
and elaborated for further work.
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For any T0 space X, let Γ(X) be the lattice of all closed sets of X. Using a result
by Drake and Thron in [6], one deduces the following result: A topological space X
has the property that Γ(X) isomorphic to Γ(Y ) implies X is homeomorphic to Y
iff X is sober and TD (every derived set d({x}) = cl({x})− {x} of point x ∈ X is
closed)(see also [23], line 11-13, page 504). Some similar results have been obtained
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in other fields of mathematics. For example, the countable infinite cyclic group C∞
has the property that for any group G, C∞ is isomorphic to G if and only if the
lattices Sub(C∞) and Sub(G) are isomorphic, where Sub(G) denotes the lattice of
all subgroups of G [1].

In this paper, we first present a survey on such results in some classical cat-
egories. Then we focus on the category of all directed complete posets, review
the recent work and list some open problems for further work. Hope this survey
will provide the reader with a relatively complete picture on such work carried out
independently in various different mathematics disciplines.

This paper is an expansion and refinement of an invited talk given at the 8th
International Symposium on Domain Theory and Its Applications.

1. General F-determined objects

Two objects C and D in a category are isomorphic, denoted by C ∼= D, if there
are morphisms p : C → D, q : D → C such that 1C = q ◦ p and 1D = p ◦ q.

Definition 1. Let C and D be two categories. Assume that F is an assignment that
associates each object C of C with an object F (C) of D such that F (C) ∼= F (C ′)
whenever C ∼= C ′. Such an assignment F will be called an “isomorphism preserving
assignment” from category C to category D.

(1) An object A of C is called F-determined if for any object B in C,

F (A) ∼= F (B) implies A ∼= B.

(2) A class A of objects of C is called F-faithful if for any two objects A1, A2 in
A,

F (A1) ∼= F (A2) implies A1
∼= A2.

Remark 1. Let F be an isomorphsm preserving assignment from a category C to
a category D.

Two objects C1 and C2 of C are said to be F -equivalent, written C1 ≡F C2, if
F (C1) ∼= F (C2).

A property p of objects in C is F-equivalent invariant if for any two F -equivalent
objects C1 and C2, C1 has p iff C2 has p.

A subcategory C1 of C is called F -equivalent closed if an object C is in C1 whenever
it is F-equivalent to an object in C1.

For any subcategory C1 of C, there is a smallest F -equivalent closed subcategory
containing C1 (consisting of all those objects that are F -equivalent to some objects
in C1).

The following are some general problems on a given F .

(1) Which classes of objects are F -faithful?
(2) Which objects are F -determined?
(3) Which properties are F -equivalent invariant?
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Clearly if C is F -determined and C ∼= C ′, then C ′ is also F -determined.
In the following, all subcategories considered will be assumed to be isomorphic

closed: if C ∼= C ′ and C is in the subcategory, then so is C ′.

Lemma 1. If C1 is a subcategory of a category C such that for any object C in C,
there is an object C1 in C1 that is F -equivalent to C, then all F -determined objects
of C belong to C1.

Proof. Let A be an F -determined object of C. There is an object A1 in C1 such that
F (A) ∼= F (A1). Since A is F -determined, we have A ∼= A1, thus A is in C1. !

2. Groups determined by subgroup lattices

Let GRP be the category of all groups and group homomorphisms, and LAT be
the category of lattices and lattice homomorphisms.

For each group G, let Sub(G) be the set of all subgroups of G. As the intersection
of any collection of subgroups of G is a subgroup of G, Sub(G) is a (complete)
lattice with respect to the inclusion order ⊆. The assignment G (→ Sub(G) is
isomorphism preserving. The book [20] provides a complete information on Sub(G)
for various different types of groups G. The following are some results related to
Sub-determined objects.

Note that all infinite cyclic groups are isomorphic to the additive group (Z,+)
of integers.

Theorem 1 ([1]). The infinite cyclic group is Sub-determined.

Note that the additive group (Q,+) of all rational numbers is not cyclic.

Theorem 2 ([9]). The additive group Q of all rational numbers is Sub-determined.

The alternating group A4 is the group of all even permutations on four elements.

Theorem 3 ([20]). The alternating group A4 is Sub-determined.

Let M = [mij]1≤i,j≤n be a symmetric n × n matrix with entries from N ∪ {∞}
such that mii = 1 for all i ≤ n and mij > 1 whenever i -= j. The finite Coxeter
group of type M is the group given by the following representation:

W (M) = 〈s1, · · · , sn|(sisj)mij = 1, 1 ≤ i, j ≤ n,mij < ∞〉.

Theorem 4 ([24]). Every finite Coxeter group of rank not less than 3 is Sub-
determined.

Recall that a simple group is a group whose only normal subgroups are the
trivial subgroups.

Theorem 5 ([17]). Every finite simple group of Lie type of rank greater than or
equal 2 is Sub-determined.
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The following are some Sub-equivalent invariant properties for groups.
Recall that a locally cyclic group is a group in which every finitely generated

subgroup is cyclic (equivalently, the subgroup generated by any two elements of
the group is cyclic). A group is locally cyclic if and only if it is isomorphic to a
subquotient (i.e., a quotient group of a subgroup) of the group of rational numbers.

Theorem 6 ([20]). A group G is locally cyclic if and only if Sub(G) is a distributive
lattice.

Theorem 7 ([20]). A group G is cyclic iff Sub(G) is distributive and satisfies the
ascending chain condition.

Up to date, there is still no a complete characterization of Sub-determined
groups. We even do not know any necessary condition for such groups.

Problem 1. Which groups are exactly the Sub-determined groups?

3. Topological spaces determined by the rings of continuous
functions

Topology and algebra are two of the fundamental structures in mathematics.
For each topological space, the set C(X) (C∗(X)) of all real valued (bounded) con-
tinuous functions is an algebra in several senses. The basic algebraic structure on
C(X) are the ordinary addition and product of functions and C(X) is a commuta-
tive ring with respect to such operations. The assignment of C(X) to X establishes
a strong bridge between algebra and topology. As pointed out in the Prospectus
of the book [10], “One of the main problems will be to specify conditions under
which X is determined as a topological space by the algebraic structure of C(X)
(C∗(X)). In other words, what restrictions on X and Y , if any are needed at all,
will allow us to conclude that X is homeomorphic with Y , when we are given that
C(X) is isomorphic to C(Y )?”

In this section, we shall retract some results in [10] concerning the C-determined
spaces. The two categories we are concerned are the category TOP of all topological
spaces and continuous mappings and the category Ring of all commutative rings
and ring homomorphisms.

Theorem 8 ([10]). For any topological space X, there is a completely regular space
Y such that C(X) ∼= C(Y ) (as rings).

By Lemma 1 and the above theorem we deduce the following.

Corollary 1. If a space X is C-determined, then X is completely regular.

Since there exists non-completely regular spaces, we have the following.

Corollary 2. The class TOP of all topological spaces is not C-faithful.
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As such, in the study of the rings of continuous functions, it is enough to consider
only completely regular spaces.

The following is the famous Gelfand - Kolmogorov Theorem (Theorem 4.9, [10]).

Theorem 9. Two compact spaces X and Y are homeomorphic iff C(X) and C(Y )
are isomorphic.

Corollary 3. The class of all compact spaces is C-faithful.

Hewitt introduced the notion of realcompact space, and showed that to a very
large extent these spaces play the same role in the theory of C(X) that the compact
spaces do in the theory of C∗(X)(the ring of all bounded real continuous functions
on X).

Definition 2. A topological space X is realcompact if it is homeomorphic to a
closed subspace of a product space of R′s. Here R is the set of real numbers with
the usual topology.

Remark 2. (1) A space is Lindelöf if its every open cover has a countable
subcover. Every Lindelöf space is realcompact. In particular, every subspace
of Rn is realcompact.

(2) A Hausdorff space is compact if and only if it is realcompact and pseudo-
compact (C(X) = C∗(X)) [7].

(3) Every realcompact space is completely regular.

The following theorem is clearly a generalization of the Gelfand-Kolmogorov
theorem.

Theorem 10 ([10]). For any two realcompact spaces X and Y , X is homeomorphic
to Y iff C(X) is isomorphic to C(Y ).

Corollary 4. The class of all realcompact spaces is C-faithful.

Theorem 11 (Realcompactification). Let X be a completely regular space.
(1) There is a realcompact space νX such that X can be embedded in it as a dense

subset.
(2) C(X) ∼= C(νX).

The space νX is called a Hewitt realcompactification of X. Since there exists
a completely regular space that is not realcompect, thus we have the following
conclusions.

Corollary 5. The class of all completely regular spaces is not C-faithful.

Corollary 6. All realcompact spaces form a maximal C-faithful class of topological
spaces.

Again, by Theorem 11 and Lemma 1 we deduce the following necessary condition
for C-determined spaces.
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Corollary 7. Every C-determined space is realcompact.

Unfortunately, we still haven’t seen a necessary and sufficient conditions for C-
determined space.

Problem 2. Which spaces are exactly the C-determined spaces?
Problem 3. Is every compact Hausdorff space C-determined?

Recently, Deb Ray et al. considered the ring B1(X) of all Baire one functions
on a space X (a function f : X−→R is Baire one if it is the pointwise limit of a
sequence of continuous functions) and obtained some similar results[3, 4, 5].

4. Topological spaces determined by closed set lattices

For each topological space X, let Γ(X) be the set of all closed sets of X. With
the inclusion order, Γ(X) is a complete lattice. Thus Γ assigns a complete lattice
to each topological space, which is clearly isomorphism preserving.

Note that for any two spacesX and Y , Γ(X) ∼= Γ(Y ) if and only ifO(X) ∼= O(Y ),
where O(X) is the lattice of all open sets of X.

A non-empty subset A of a topological space X is irreducible if for any two closed
sets F1, F2 of X, A ⊆ F1 ∪ F2 implies A ⊆ F1 or A ⊆ F2.

A non-empty closed set A of X is strongly irreducible if for any collection {Bi :
i ∈ I} of closed sets B′

is, A = cl(
⋃
{Bi : i ∈ I}) implies A = Bi for some i ∈ I.

This is clearly equivalent to that if A = cl(B) for some set B, then A = cl({b}) for
some b ∈ B.

A T0 space is sober if for every irreducible closed set F , there is a (unique) point
x such that F = cl({x}).

Let sX = {F : F is a closed irreducible set of X}. The sets 0U = {F ∈ sX :
F ∩ U -= ∅} (U is an open set in X) form a topology on sX. The set sX with this
topology is sober, usually called the sobrification of X, and Γ(X) ∼= Γ(sX). Thus
we have the following classic result.

Theorem 12. For any T0 space X, there is a sober space Y such that Γ(X) ∼= Γ(Y )
(as lattices).

Since there are non sober T0 spaces, we have the following corollary.

Corollary 8. The class of all T0 spaces is not Γ-faithful.

The following result shows that the sober spaces play the similar roles in the
theory of Γ-determined objects as realcompact spaces in that of C-determined
objects (see Theorem 11 and Theorem 9).

Theorem 13. If X and Y are sober spaces, then X is homeomorphic to Y if and
only if Γ(X) ∼= Γ(Y ).

Corollary 9. The class of all sober spaces form a maximal Γ-faithful class.

A nice thing about the Γ-objects is that they have a complete characterization.
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Definition 3. A topological space X is called a TD space if for each x ∈ X,
cl({x})− {x} is a closed set.

Every T1 space is a TD space and there are TD spaces which are not T1.
The following result can be proved directly.

Lemma 2. A T0 space X is TD if and only if every point closure cl({x}) is strongly
irreducible.

If X is a TD space, then X is homeomorphic to the subspace Irrs(X) of sX
consisting of all strongly closed irreducible sets of X. Hence one can deduce the
following result.

Theorem 14. If X and Y are TD spaces, then X and Y are homeomorphic if and
only if Γ(X) and Γ(Y ) are isomorphic.

Corollary 10. For any two T1 spaces X and Y , X is homeomorphic to Y if and
only if Γ(X) is isomorphic to Γ(Y ).

Corollary 11. The class of all TD spaces is Γ-faithful.

The following characterization of Γ-determined spaces was obtained by Drake
and Thron [6] (they stated this in a different and equivalent form).

Theorem 15. A topological space X is Γ-determined if and only if its every irre-
ducible closed set is strongly irreducible.

Lemma 3. (1) A T0 space X is TD if and only if every point closure cl({x}) is
strongly irreducible.

(2) A T0 space is both sober and TD if and only if every irreducible closed set is
strongly irreducible.

See Appendix of [28] for a direct and detailed proof of (2).
The combination of the above results leads to the following nice characterization

of Γ-determined spaces.

Theorem 16. A topological space X is Γ-determined if and only if it is both sober
and TD.

5. Topological spaces determined by the lattices of lower
semicontinuous functions

The set S = {0, 1} with the topology {∅, S, {1}} is called the Sierpinski space.
For any topological space X, the set C(X,S) of all continuous mappings f : X−→S
with the pointwise order is isomorphic to the lattice Γ(X) under the mapping
F : C(X,S)−→Γ(X) sending f to f−1({0}). Now consider the partially ordered
set R of all reals with the lower topology {(a,+∞) : a ∈ R}∪{∅,R}. This is actually
the Scott topology σ(R) on the poset (R,≤) (see the definition of Scott topology in
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Section 7). The Sierpinski space is clearly a subspace of the space (R,σ(R)). The
set of all continuous functions from a space X to (R,σ(R)) coincides with the set
LS(X) of all lower semicontinuous functions on X, which is a lattice with respect
to the pointwise order.

Now we have another assignment that associates the lattice LS(X) to each space
X. In [23], Thornton studied the LS-determined spaces and obtained a complete
characterization of such spaces.

A family G of open sets of a space is an open filter if it is closed under finite
intersections and G ∈ G, G ⊆ U ∈ O(X) imply U ∈ G.

Definition 4. A subset A of a space X has the filter countable intersection prop-
erty, or FCI-property, if every open filter {Gλ : λ ∈ Λ} in X with Gλ ∩ A -= ∅
for each λ has nonempty countable intersections (every countable subfamily has a
nonempty intersection).

Remark 3. By Lemma 4.1 of [19], A ⊆ X has the FCI-property iff every lower
semicontinuous function f : X−→R is upper bounded on A.

For any point x ∈ X, cl({x}) has the FCI-property.

Definition 5. A T0 space X is called an fc space if every irreducible closed set with
the FCI-property is the closure of a point.

For a T0 space X, let Irrs(X), cl(X), Irrf (X) and Irr(X) denote the set of all
strongly irreducible closed sets, all point closures, all closed irreducible sets with
the FCI-property and all irreducible closed sets, respectively. Then we have the
following inclusions:

Irrs(X) ⊆ cl(X) ⊆ Irrf (X) ⊆ Irr(X).

Hence every sober space is an fc space.
The following is the Theorem 4.3 in [19].

Theorem 17. The subcategory consisting of all fc spaces is epireflecitive in the
category of all T0 spaces.

Remark 4. By the above theorem, one deduces that for any T0 space X, there is
an fc space φX and a continuous map φX : X−→φX such that for any continuous
map f : X−→Y with Y an fc space there is a unique continuous map f̂ : φX−→Y
such that f = f̂ ◦φX . In addition, as pointed out in [19], φX can be identified with
a subspace of the sobrification sX of X.

Recall that for any T0 space X, there is a sober space sX such that Γ(X) is
isomorphic to Γ(sX). Also, if X and Y are sober spaces then X is homeomorphic
to Y if and only if Γ(X) is isomorphic to Γ(Y ). For fc property, there exist similar
results.

The result below is the Theorem 4.5 in [19].
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Theorem 18. For any T0 space X, the lattices LS(X) and LS(φX) are isomorphic.
If X and Y are fc spaces, then X and Y are homeomorphic iff LS(X) and LS(Y )

are isomorphic.

Definition 6. A T0 space X is called a TP space if for any point x, {x} is a Gδ-set
or cl({x})− {x} is closed.

Clearly, every TD space is TP .
The following result is the Theorem 16 in [23].

Theorem 19. For any two TP spaces X and Y , X is homeomorphic to Y if and
only if LS(X) is isomorphic to LS(Y ).

Corollary 12. The class of all TP spaces is LS-faithful.

The following is the remarkable characterization of LS-determined spaces (The-
orem 15 in [23]), similar to that of Γ-determined spaces.

Theorem 20. A T0 space X is LS-determined iff it is both fc and TP .

Example 1. The set N of all positive integers with the co-finite topology τcof
(U ∈ τcof iff either U = ∅ or N − U is a finite set) is both TP and fc. Hence it is
SL-determined.

Note that (N, τcof ) is not sober.
The set R of reals with the co-countable topology is neither fc nor TP .

For any T0 space X, the b-topology on X (introduced by Skula in [21]) has
{U ∩ V c : U, V ∈ O(X)} as a base. Clearly, {U ∩ cl({x}) : x ∈ X,U ∈ O(X)} is
also a base of the b-topology. It is easy to verify that a space is TD if and only if
its b-topology is discrete.

The b-topology is called the front topology in [19]. A subset B of a space X is
b-closed if it is closed with respect to the b-topology.

Remark 5. The following are some more interesting properties of sober spaces
(also called pc spaces) and fc spaces in terms of b-topology proved in [19].

(1) A b-closed subspace of a sober space is sober.
(2) A sober subspace of a T0 space Y is b-closed.
(3) A T0 space is sober if and only if it is homeomorphic to a b-closed subspace

of some cub SI , where S is the Sierpinski space.
(4) A T0 space is fc if and only if it is homeomorphic to a b-closed subspace

of some cub RI , where R is the real line with the Scott topology {R, ∅} ∪
{(a,+∞) : a ∈ R}.

6. Directed complete posets determined by Scott closed set
lattices

Given a poset P , one may define various different intrinsic topologies on P . The
most important such topologies in domain theory is the Scott topology. In this
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section, we consider the Cσ-determined posets, where Cσ(P ) is the set of all Scott
closed sets of a poset P .

A nonempty subset D of a poset (P,≤) is directed if any two elements in D has
an upper bound in D (for any d1, d2 ∈ D, there is a d3 ∈ D such that d1 ≤ d3, d2 ≤
d3). A subset U of a poset (P,≤) is Scott open if i) U is an upper set (that is,
U = ↑U = {x ∈ P : y≤x for some y∈U}), and ii) for any directed subset D⊆P ,∨
D∈U implies D ∩U -=∅ whenever

∨
D exists. The Scott open sets of a poset P

form a topology on P , denoted by σ(P ) and called the Scott topology on P . The
space (P,σ(P )) is denoted by ΣP , called the Scott space of P . We shall use Cσ(P )
to denote the set of all Scott closed sets of P (it is a complete lattice with respect
to the set inclusion order).

One can easily show that two posets are isomorphic if and only if their Scott
spaces are homeomorphic.

A poset is called a directed complete poset (dcpo, for short) if every directed
subset of the poset has a supremum. A mapping f : P−→Q between posets is
Scott continuous if it is continuous with respect to the Scott topologies on P and
Q. It is well known that f : P−→Q is Scott continuous if and only if it preserves
existing suprema of directed sets: for any directed set D ⊆ P with

∨
D existing,

it holds that f(
∨

D) =
∨

f(D).
For more about the Scott topology and dcpos, see [8] and [11].
Let POSd be the category of all posets and Scott continuous mappings and

DCPOd be the full subcategory of POSd consisting of all directed complete posets.
Then P (→ Cσ(P ) defines an isomorphism preserving assignment from POSd

(DCPOd, resp.) to the category LAT of lattices and lattice homomorphisms.
The following result shows that every poset is Cσ-equivalent to a directed com-

plete poset.

Theorem 21 ([27]). For any poset P , there is a directed complete poset E(P ) such
that Cσ(P ) is isomorphic to Cσ(E(P )).

The dcpo E(P ) in the above theorem is called the dcpo-completion of P which
has the following property: there is a Scott continuous mapping ηP : P−→E(P )
such that for any Scott continuous f : P−→Q to a dcpo Q, there is a unique Scott
continuous mapping f̂ : E(D)−→Q satisfying f = f̂ ◦ ηP .

Corollary 13. The class of all posets is not Cσ-faithful.

Corollary 14. Every Cσ-determined poset is directed complete.

A poset P is called bounded complete if every upper bounded subset has a
supremum. In particular, every complete lattice is bounded complete.

Theorem 22 ([13]). Two bounded complete lattices L and M are isomorphic if
and only if Cσ(L) and Cσ(Q) are isomorphic.

Thus the class of all bounded complete lattices is Cσ-faithful.
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It is then natural to ask whether the class of all dcpos is Cσ-faithful.

Example 2. In [12], the authors constructed a dcpo P whose Scott space is not
sober, yet the soberification of ΣP is the Scott space of another dcpo Q. Hence
Cσ(P ) and Cσ(Q) are isomorphic but P and Q are not.

This example also shows the existence of non Cσ-determined dcpo.

A dcpo P is called sober if its Scott space is sober. Thus by the above coun-
terexample, a sober dcpo need not be Cσ-determined.

Corollary 15. The class of all dcpos is not Cσ-faithful.

For two elements x and y in a poset P , x is way-below y, denoted by x 4 y, if
for any directed subset D of P with

∨
D existing, y ≤

∨
D implies D ∩ ↑x -= ∅.

Let "x = {y ∈ P : x 4 y} and #x = {y ∈ P : y 4 x}. A poset P is continuous,
if for any x ∈ P , the set #x is directed and x =

∨
#x. A continuous dcpo is also

called a domain.
Continuous dcpos (domains) are the most important order structures in domain

theory.

Remark 6. The following are some well-known results about domains (see [8] and
[11]).

(1) For any domain P , the Scott space ΣP is sober.
(2) A dcpo P is continuous if and only if the lattice Cσ(P ) is a completely

distributive lattice.
A complete lattice L is completely distributive if it satisfies the most gen-

eral distributivity: for any family {Ai : i ∈ I} of subsets of L, it holds
that ∧

i∈I

∨
Ai =

∨

f∈Πi∈IAi

∧
{f(i) : i ∈ I}.

In the following, to simplify statements, we shall regard Cσ as an assignment
from the category DCPOd to the category of complete lattices. Thus a dcpo P is
Cσ-determined if and only if for any dcpo Q, Cσ(P ) is isomorphic to Cσ(Q) if and
only if P is isomorphic to Q.

Theorem 23. Let P be a domain. Then for any dcpo Q, Cσ(P ) is isomorphic to
Cσ(Q) if and only if P is isomorphic to Q.

Proof. Assume that Cσ(P ) is isomorphic to Cσ(Q), then Cσ(P ) is a completely
distributive lattice, hence so is Cσ(Q). Thus Q is a domain, therefore ΣQ is sober.
Now Cσ(P ) is isomorphic to Cσ(Q), thus the open set lattices σ(P ) and σ(Q)
are isomorphic, hence by Theorem 13, ΣP is homeomorphic to ΣQ. Thus P is
isomorphic to Q. The other direction of implication is trivial. !

Corollary 16. Every domain is Cσ-determined.
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In general, assume that r is a property of dcpos and s is a property of complete
lattices such that (i) if a dcpo P has property r then ΣP is sober, (ii) P has
property r if and only if Cσ(P ) has property s. Then every dcpo with the property
r is Cσ-determined.

Another such type of dcpos are the quasicontinuous dcpos.
A finite subset F of a dcpo P is way-below an element a ∈ P , denoted by

F 4 a, if for any directed subset D ⊆ P , a ≤
∨

D implies D∩ ↑F -= ∅. A dcpo P
is quasicontinuous if for any x ∈ P , the family

fin(x) = {F : F is finite and F 4 x}

is a directed family (for any F1, F2 ∈ fin(x) there is F ∈ fin(x) such that
F ⊆↑F1 ∩ ↑F2) and for any x -≤ y there is F ∈ fin(x) satisfying y -∈↑F (see
Definition III-3.2 of [8]).

Qusicontinuous dcpos have the following properties:

(i) Every domain is quasicontinuous;
(ii) every quasicontinuous dcpo is sober;
(iii) a dcpo P is quasicontinuous iff the Scott open set lattice σ(P ) of P is

hypercontinuous (Theorem VII-3.9 of [8]).

Thus by the remarks after the Corollary 16 (just note that the Scott open set
lattice σ(P ) is dual to Cσ(P ), hence σ(P ) ∼= σ(Q) if and only if Cσ(P ) ∼= Cσ(Q)),
we obtain the following more general result.

Theorem 24. Every quasicontinuous dcpo is Cσ-determined.

Recall that every Γ-determined topological space is sober. Thus a natural ques-
tion arising is:

Is every Cσ-determined dcpo sober?
The answer is no.
An element a of a dcpo P is quasicontinuous if the subdcpo ↓ a = {x ∈ P :

x ≤ a} is quasicontinuous. Trivially, every element of a quasicontinuous dcpo is a
quasicontinuous element.

A T0 space X is called bounded sober if every upper bounded closed irreducible
subset F (i.e. there is an x ∈ X such that F ⊆ cl({x})) is the closure of a
point. Every sober space is bounded sober. The set of all positive integers with
the co-finite topology is bounded sober but not sober.

The following is the Theorem 3.9 of [28], where the Cσ-determined dcpos are
called Cσ-unique dcpos.

Theorem 25. A dcpo P is Cσ-determined if it satisfies the following conditions:

(a) the Scott space ΣP is bounded sober;
(b) for every element a ∈ P , there is a directed set D ⊆ P consisting of quasi-

continuous elements such that a =
∨

D.
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Example 3. In [15], Peter Johnstone constructed the first non sober dcpo as
J = N× (N ∪ {∞}) with the partial order ≤ defined by

(m,n) ≤ (m′, n′) ⇔ either m = m′ and n ≤ n′or n′ = ∞ and n ≤ m′.

(i) (J,≤) is a dcpo.
(ii) The largest Scott closed set J is irreducible and J -⊆ cl({x}) for any x ∈ J

(i.e. it is not upper bounded).
(iii) If F is a proper irreducible Scott closed set of J, then F =↓(m,n) =

cl({(m,n)}) for some (m,n) ∈ X. Hence ΣJ is bounded sober.
(iv) If n -= ∞, the subdcpo ↓(m,n) is a finite chain, hence continuous (thus also

quasicontinuous), implying that (m,n) is a quasicontinuous element.
(v) If n = ∞, then (m,n) is the supremum of the chain {(m, k) : k -= ∞} whose

members are quasicontinuous elements.

Hence by Theorem 25, we deduce that the dcpo J = N×(N∪{∞}) is Cσ-determined.
Thus a Cσ-determined dcpo need not be sober. We can also verify that the Scott

space ΣJ is not a TD space.

One can easily verify that the Scott space ΣP of a dcpo P is a TD space if and
only if P is Noetherian (it does not contain an infinite ascending chain).

Thus, by Theorem 16 we have the following result (note that if the Scott space
ΣP of a dcpo P is Γ-determined, then P is Cσ-determined).

Proposition 1. If P is a Noetherian and sober dcpo, then P is Γ-determined and
thus Cσ-determined.

To answer the question whether every well-filtered Scott space is sober, Kou
constructed another non sober dcpo [16] whose Scott space is well-filtered but not
sober. One can check that Kou’s dcpo also satisfies the conditions (a) and (b) in
Theorem 25, thus it is Cσ-determined.

A dcpo P is called locally quasicontinuous if every subdcpo ↓x (x ∈ P ) is
quasicontinuous (i.e. every element is quasicontinuous). It is easy to see that
every locally quasicontinuous dcpo is bounded sober. By Theorem 25 we deduce
the following result [25].

Corollary 17. Every locally quasicontinuous dcpo is Cσ-determined.

Note that Johnstone’s dcpo J is locally quasicontinuous.
Any finite product of locally quasicontinuous dcpos is locally quasicontinuous.

Thus for any n, the product dcpo Jn is Cσ-determined.
See [25] for more recent development on the study of Cσ-determined dcpos.

7. Some problems on Cσ-determined dcpos

We now list and elaborate some problems on Cσ-determined dcpos.
Problem 4. Which dcpos are exactly the Cσ-determined dcpos?
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At the moment we have obtained some sufficient conditions for a dcpo to be
Cσ-determined. However, we still do not have any necessary condition for such
dcpos, not to mention a complete characterization. It would be desirable if an
order characterization of Cσ-determined dcpos can be find.

Problem 5. Is every complete lattice Cσ-determined?

In [12], two non isomorphic dcpos are constructed such that they have isomorphic
Scott closed set lattices. But no one of these dcpos is a complete lattice. Although
by Theorem 22 if both L and M are complete lattices, they are isomorphic if Cσ(L)
is isomorphic to Cσ(M), we do not know if the conclusion still hold if only one of
them is a complete lattice. In [14], Isbell constructed a non sober complete lattice.
One may like to check whether this complete lattice is Cσ-determined first.

The following relevant problem may have a positive answer.

Problem 6. Is every sober countable complete lattice Cσ-determined?
Problem 7. What does a maximal Cσ-faithful class consist of?

A maximal Cσ-faithful class M of dcpos has the following properties:

(i) for any dcpo P , there is a dcpo P ∈ M such that Cσ(P ) is isomorphic to
Cσ(P );

(ii) M is Cσ-faithful.

By the definition, a maximal Cσ-faithful class contains all Cσ-determined dcpos
(such as all quasicontinuous dcpos and J).

Note that such maximal classes have been explicitly described for the assignment
Γ(X) by Corollary 9 as well as for the assignment C(X) by Theorem 6.

Problem 8. Is the product of two Cσ-determined dcpos also Cσ-determined?

It is well know that the product of two quasicontinuous dcpos is quasicontinuous
[11]. The product of any two of the Cσ-determined dcpos, we have identified so
far, are Cσ-determined. Thus it is natural to consider the above problem.

Problem 9. Is the product JN of countable copies of J Cσ-determined?

Since the dcpo J is locally quasicontinuous, any product of finite copies of J is
locally quasicontinuous, thus Cσ-determined. But we do not know whether the
product JN of countable copies of J is Cσ-determined. If the answer is yes, we
would have a much simpler example of non Cσ-determined dcpo.

Problem 10. Is the product of two sober dcpos also a sober dcpo?

In order to determine whether the product of two dcpos satisfying the conditions
(a) and (b) in Theorem 25 also satisfies these conditions (hence the product is Cσ-
determined), we need to know whether the product of two bounded sober dcpos is
bounded sober. But this is equivalent to whether the product of two sober dcpos
is a sober dcpo. This problem was also posed in [26].

It is well known that the product of any collection of sober topological spaces is
sober. Given two sober dcpos P and Q, the set P ×Q with the product topology
(generated by U×V , U ∈ σ(P ), V ∈ σ(Q)) is sober. However the product topology
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on P × Q need not equal the Scott topology on P × Q, that is, σ(P × Q) =
O(ΣP × ΣQ) need not hold. Hence the product of two sober dcpos may not be
sober, but we do not have a counterexample yet. By Theorem II-4.13 [8], if the
lattice σ(P ) is a continuous lattice, then for any dcpo Q, σ(P ×Q) = O(ΣP ×ΣQ)
holds. Hence it follows that if σ(P ) is continuous (in particular, if P is a domain)
and P is sober, then P ×Q is sober for any sober dcpo Q.

Problem 11. Which dcpos P have the property that P ×Q is sober for any sober
dcpo Q?

It is well known that a sober space X is locally compact if and only if its open
set lattice (O(X),⊆) is a continuous poset (such a space is called core-compact).
By the remarks following Problem 10, it follows that if P is a dcpo whose Scott
space ΣP is both sober and locally compact, then P × Q is sober for any sober
dcpo Q. It is natural to wonder whether the converse implication also holds.
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