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Chapter one :  Metric spaces
Outline:

e Definition of metric spaces, examples
e Continuous functions
e Open sets and closed sets

1.1 Example Let R be the set of all real numbers. For any X,y in R, define d(x, y)=|x-y|.
Then

i) d(x, y)=0;

ii) d(y, x)=0if and only if ;
i) d(x,y) ___d(y,x);

iv) d(x,y) d(x, 2)+d(z, ).

1.2 Definition A metric space is an ordered pair (M, p) consisting a set M together with
a function p: MxM—R such that for any X,y,z € M:

M-a) p(x,y) 20;

M-b) p(y,x)=0 ifandonlyif x vy ;

M-c) p(XY) p (Y, X); ( Symmetric)

M-d) p (X, Y) p @ z)+p(zy). ( Triangle Inequality )

If all conditions except M-b are satisfied, the function p is called a pseudometric on M, and
(M, p) is called a pseudometric space.

Remark: We may use different symbols for the function p. For instance, d(x,y), A(X,Y)
etc.

1.3 Examples
a) (R, d) isa metric space, where R is the set of all real numbers and d(x, y)=|x-y|.

b) Let R"={ (X1, X2, ..., xn): Xi's are real numbers }. Define

P X ), O Ve s 37))= [ (6 = Y0)°

Then (R", p) is ametric space and this function p is called the usual metric on R".
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¢) For R? the function pi( (X1, y1), (X2, Y2) )=|X1-X2|+|y1-y2| is a metric .

d) Let (M, p)be ametric space and A be a subset of M. Then (A, p) is also a metric
space, called the subspace of M.

e) The discrete metric: Let X be aset. Define p(x, X)=0 and p(X, y)=1 for x#y. Then p
is a metric on X, called the discrete metric.

1.4 Definition A function f: M—N from a metric space (M, p) to a metric space (N, o)
is continuous at appoint X e M if for any number £>0,

there is a positive number 6>0 such that
o(f(x), f(y)) <& whenever p(X, y)<d.

The function is called a continuous function if it is continuous at every point of X.

© [ (e

1.5 Definition Let (M, p ) be a metric space and X € M . For each number £>0, let

Ux, e)={ yeM: p(x,y)<e j,

called the e-disk ( or e-open ball ) about x.




Exercise
1) InR, determine the set U(O0, 4).

2) Inthe Example 1.3 e), find U(x, 1) and U(x, 2).

1.6 Definition A subset V of a metric space (M, p ) is an open set if for each xin U, there
isan €>0 such that U(x, ) € V.

A subset A is called a closed set if it's complement Ac=M - A is open.

M U
open set

A=M-U
closed set

For example, in R, the set U=(0, 1)u(4, 5) is open.

The set [0, 1] is not open in R.

1.7 Theorem ( properties of open sets ) In any metric space (M, p) we have:
1) Any union of open sets is open.

2) Any finite intersection of open sets is open.

3) The empty set and M are open.

Proof



1.8 Examples

a) In R, asubset A isopen if and only if it is the disjoint union of open intervals, i.e.
A=U7, (a,,b.), where (ax, by) are disjoint.
b) Every disk U(x, €) is open. ( Exercise )

c) If (X, d)is a discrete metric space, then every set is open. In fact, for any subset A
and

for any x in A, U(x, 1)={x})<CA.

d) Every finite set is closed.

1.9 Theorem A function f: M — N from a metric space (M, p) to a metric space (N, 6) is
continuous at Xo if and only if for any open set W of N containing f(xo), there is an open
set U containing Xo such that f(U)c W.

Proof



Recall that if f: X — Y is a function, then for any subset BCY,
f1(B)={xe X: f(x) € B}, called the inverse image of B under f.

1.10 Corollary function f: M—N from a metric space (M, p) to a metric space (N, o) is
continuous if and only if for any open set W of N,

L (W)={ xe M: f(x) eW }

IS open.

Hands-On- Exercise

Let U={(x,y): x>0, y>0 }. Show that U is an open set of R? with the usual metric.

Summary
e A metric space is an ordered pair (M, p) consisting of a set M and a function
p : MxM—R satisfying the four conditions.

e A function f: M—N from a metric space (M, p) to a metric space (N, o) is
continuous at Xo if

e Asubset A isanopen set if

e Every disk is an open set

e The union of any open sets is

¢ Any finite intersection of open sets is open



e A function f: M—N from a metric space (M, p) to a metric space (N, o) is
continuous if and only if

Exercise 1
1. Verify that the following function p is a metric on R"
p (x, y)=max{|x1-yi|, |Xo-y2|, ..., |xn-ynl }-
2. Let C([O, 1]) be the set of all of all continuous functions on the interval [0, 1].

(1) Verify that the following function o is a metric on C([0,1]).

o(f.9)= [}| (0 -g0x) ] dx.
(if) Verify that the following function n is a pseudo metric on C([0,1])
n(f.9)= f(1/2)-g/2)].
3. Show that every disk U(x, €) ina metric space is an open set.
[ Hint: For any y € U(x, €), U(y, €’) is contained in U(X, €), where &’=¢- d(X, y) ]

4. A mapping f from a metric space (M, p) to metric space (N, o) is an isometry if f is a
bijection and p (x, y)= o(f(x), f(y)) for all x, y in M. Two spaces M and N are isometric if
there is an isometry between them.

Prove
(i) Everyisometry f and its inverse f are continuous.
(if) The subspaces [0, 1] and [a, b] ( a<b) of R are isomertric .

5. Let (M, p) be ametric space. Show that a subset A is closed iff whenever every disk
about x meets A then x is in A.

6. Let p be a metric on M. Show that the following functions p1 and p2 are also metrics on
M.

(1) p1(x, ¥)=2 p(x, y).

(i1) p2(x, y)=min{ 1, p(x, y ) }.

7*(Optional )

Let Q be the set of all rational numbers and p be a prime number. For each x in Q, define



m
X]p=0 if x=0 and |x|y=p™ if x=p“7; 'where mand n are integers not divisible by p.

Define  p(X, y)=|x-y|p foranyx,yin Q.
(@) Find |15/9]5 and |2.6}.

(b) Show that [xylo=|Xlplylp-

(c) Show that |[x+ylp<max{ [X|p, |y|p}-
[hint: Assume |x|p= max{ [X|p, |Y|p}]

(d) Show that p(x, y)=|x-y|p defines a metric on Q. This called the p-adic metric on Q.



Chapter two: Topological Spaces
Outline:

e Definition of topological spaces, examples
e Closure operator

e Interior operator

e Neighbourhoods,

e Bases and subbases

2.1 Topological spaces

2.1.1 Definition A topology on a set X is a collection t of subsets of X such that the
following conditions are satisfied:

T-1) Any union of members of t is a member of t; (closed under arbitrary unions)
T-2) any finite intersection of members of T is a member of t;
( closed under finite intersections)
T-3) & and X are members of .
If T is atopology on X, the members of T are called open sets of X.
The pair (X, t) (orjust X ) is called a topological space.

If 1€ 1> are topologies, then t. is said to be finer than t; .

2.1.2 Example

a) Let (M, p) be a metric space. The set of all open sets of M form a topology, called the
metric topology and denoted by 7 ,,.

If (X, 1) is atopological space such that =1, for some metric p, then (X, 1) is called
metrizable.

b) The metric topology generated by the usual metric on any subset of R" is called the usual
topology. Hereafter, when a topology is used on a subset of R" without mention it is assumed
to be the usual topology.



c) Let X be any set. The power set P(X) (all subsets of X) isa topology on X, called the
discrete topology. Discrete topology is the finest topology on X.

d) Foranyset X, t={ &, X }isatopology, called the indiscrete topology. Itis the
coarsest topology on X.

e) Sierpinski topology .

Let X={0, 1} and let =={J, {1}, X }. Then t is a topology. The space (X, 1) is called the
Sierpinski space.

2.1.3 Definition If (X, t) isa topological space and AC X, then Ais a closed set if its
complement X - A is open.

2.1.4 Examples

a) Every closed interval [a, b] is closed in R.

b) In the discrete topological space, every subset is closed.
c) In the Sierpinski space, the closed sets are &, {0} and X
2.1.5 Theorem

C-1) Any intersection of closed sets is closed,;

C-2) any finite intersection of closed set is closed,;

C-3) the empty set and X are closed.

2.1.6 Definition The closure of a subset A of a topological space (X, t) is defined to be
A=cl(A) ={K < X |K is closed and AS K }.

Since any intersection of closed sets is closed, the closure of a subset is closed and is the
smallest closed set containing the set.

Remark.

1) ACB implies cl(A) Scl(B).

2) cl(X)=X.

3) In the discrete space, the closure of any set A is A.

4) In the indiscrete space X, cl(A)=X for any nonempty set A.

2.1.7 Theorem Let A, B and E be subsets of a topological space X. Then
K-1) E C cl(E);

10



K-2)  cl(cl(E))=cl(E);

K-3) cl( Au B)=cl(A) u cl(B);
K-4) cl(s)=s;

K-5) E isclosed iff cl(E)=E.

Proof.

2.1.8 Definition Let A be a subset of a topological space X. The interior of Ain Xis the
set

int(A)=A°=u{ UCA: Uisopen }.
Remark
1) int(A) is the largest open set contained in A.
2) ACB implies int(A) € int(B).
3) int(A)=X-cl(X-A), cl(A)=X-int(X-A). (Exercise)
2.1.9 Theorem Let A, B and E be subsets of a topological space X. Then
I-1) int(E) <€ E;
[-2)  int(int(E))=int(E);
K-3) int( An B)=int(A) n int(B);
K-4) int(X)=X;
K-5) E isopen iff int(E)=E.

Proof ( Exercise)

2.2 Neighbourhoods
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2.2.1 Definition A neighbourhood U of apoint x in atopological space is a subset that
contains an open V containing x.

A neighbourhood that is open is called an open neighbourhood. The set of all
neighbourhoods of x is denoted by Ny, called the neighbourhood system at x.

2.2.2 Theorem Let x be any point of a topological space X. then

N-1) forany U in Ny, xisinU;

N-2) if U, VeNx, then UnVe Nx;

N-3) if UeNx and UZSV then Ve Nx;

N-4) GgEX is open if and only if G is a neighbourhood of every point in G.

Proof

2.2.3 Definition A neighbourhood base at x in a topological space X is a collection By of
neighbourhoods of x such that for any U in Nx, thereisVV in Bx suchthat V C U.

2.2.4 Examples

1) For any point x in a topological space X, all the open neighbourhoods of x form a
neighbourhood base at x.

2) Inany metrizable space X, all disks about x form a neighbourhood base at x.

12



Also, all disks U(x, r) with r a positive rational number form a neighbourhood base at x.

Thus every x has a countable neighbourhood base.

3) If Xisadiscrete space, then for each x, Bx={{x}} is a neighbourhood base at x.

Exercise Show that for any x in R, {(x-1/n, x+1/n): n in N } is a nbhd base at x.

2.2.5 Definition ( Accumulation points) An accumulation point ( cluster point ) of a set A
in a topological space X is a point x of X such that every neighbourhood of x contains a point
of A, other than x. The set A’ of all cluster points of A is called the derived set of A.

For example, the accumulation points of (0, 1) in R form the set [0, 1].
2.2.6 Theorem For any set A in a topological space,
cl(A)=AUA".

Proof

2.3 Bases and subbases

Sometimes using a subfamily to define a topology is easier than directly describing the
topology.

2.3.1 Definition Let (X, t) be atopological space. A base B for X is a collection BS t,
such that every member U of 1t is a union of some members of B,

that is for each U in 1, there exist { Vi : ie I} € B, such that U=U{V,: i€l}.

2.3.2 Examples

a) In R, all the open intervals form a bases of the usual topology.

13



In any metrizable space, all the open disks form a bases.
b) {{x}: xe X} is a bases of the discrete space.
¢) InR, all the intervals (s, r) with s, r rational numbers form a bases of the usual topology.
2.3.3 Theorem A collection B of subsets of X is the base of a topology on X if and only if
1) X=U{V: VeB},
2) if Vi, V2eB and xeVinVy, then thereis V in B such that
xe V € VinVa.

Proof

2.3.4 Example The family B={[a, b): a<b, a, b are in R } satisfies the conditions of
Theorem 3, so it is the base of a topology. The set R with this topology is called the
Sorgenfrey line. The topology of the Sogenfrey line is strictly finer than the usual topology.

2.3.5 Definition A subbase C for a topology t on a set X is a collection of subsets of X such
that all the finite intersections of members of C form a base of t.

2.3.6 Example

C={(a, +w):a€R}U{(-,b):bER} isasubbase of the usual topology on R.

Summary
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A topology t on aset X is a collection of subsets of X which contains ___ and X
and is closed under taking arbitrary and finite

Members of t are called sets
A subset A of (X,t)isaclosed set if

The closure cl(A) of set A is

The interior int(A) of set A is

A cluster point of A, the derive of A
A base, subbase of atopology

Neighbourhoods of a point
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Exercise 2
1. Let N be the set of all natural numbers. Let T be the set of all subset U of N such that
N-U is finite.

(i) Show that t is a topology on N. This is called the co-finite topology.
(it) Find cl({1, 2, 3}) and cl(E), where E is the set of all even numbers.
(ii1)) Let D be the set of all odd numbers . Is cl(DNE) = cl(D)Ncl(E) true?
2. Let t and o be two topologies on set X. Show that T N o is also a topology on X.
3. Prove for any subset A of a topological space X,

int(A)=X-cl(X-A) and cl(A)=X-int(X-A) hold.

4. Use the results in exercise 3 to prove Theorem 2.1.9 .
5. Show that xisin cl(A) if and only if every neighbourhood of x intersects A.
6. Let A be a fixed subset of a set X.

a) Show that T ={ USX: ACU }is a topology on X.

b) Describe the closure of a subset B with respect to the topology 1 in a).

7. Call asubset U of R? radially open if it contains an open line segment in each direction
about each of its point.

a) Show that all the radially open set of R? form a topology on R?. The plane with this
topology is called the radial plane.

b) Compare this topology with the usual topology.

8.

a) Show that for any open set U in a topological space X,
cl(int(cl(U))=cl(U). ( or U“=U)
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b) Using a) to show that for any set A, there are at most 14 different sets in the following
sequences

A, At AS ASC .
A, A€ AT ATCC. .
where A°=X-A, B is the closure of B.

9. Let P(X) denote the power set of X and o: P(X)—P(X) be a mapping such that for any
A, B in P(X),

1) o(e)=s;
2) ACSo(A) for all subset A;
3) o(a(A))=o(A);
4) o(AUB)=c(A)Uc(B) .
Define ={ U: o(X-U)=X-U}.
Show that t is a topology on X and for any subset A, cl(A)=c(A) holds.

*A mapping o: P(X)—P(X) satisfying 1) - 4) is called a closure operator on X.
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Chapter three: Continuous functions

Outline:

e Definition
Example
Equivalent conditions
Homeomorphisms
Subspaces

3.1 Continuous functions

We now define continuous function from a topological space to another space.

Recall by 1.10 Corollary that a function f: (M, d) — (N, 6) between two metric space is
continuous if and only if for any open set W of N, f1 (W)={ xe M: f(x) e W } is open.
Now we define continuous functions between topological spaces.

3.1.1 Definition

A function f: X —Y from a topological space (X, t) to a topological space (Y, o) is
continuous at a point Xo in X if for any nbhd( abbreviation for neighbourhood) V of f(xo)
there isa nbhd U of xo such that f(U) c V.

If f is continuous at every point in X, it is said to be continuous( everywhere).

3.1.2 Theorem Let f: X —Y be a function from a topological space
X to a topological space Y. Then the followings are equivalent:

a) f iscontinuous;

b) for each open set V of Y, f1(V) is open in X;

c) for each closed set K of Y, f1(K) is closed in X;

d) for each subset A of X, f(cIx(A)) ccly(f(A)).

e) for each subset B of Y, clx(f 1(B))) <f*(clv(B)).

Proof: We prove the theorem by showing a) =b) = ¢) =d)=¢e) =a).
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3.1.3 Example
If X is a discrete space, then every function from X to another topological space is

continuous.
Any function from a topological space to an indiscrete space is continuous.

3.1.4 Proposition Let f: X —Y be a function from a topological space
X to a topological space Y and let B be a base of Y. Then f is continuous iff for any
open set V in B, (V) is open.

Proof
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3.1.5 Example
The function f: R —>R, defined by f(x)=|x|, is continuous with respect to the usual topology.

3.1.6 Theorem If f: X —Y and g:Y —Z are continuous functions between topological
spaces, then the composition gof: X — Z is continuous.
Proof ( exercise )

3.1.7 Definition Let f: X —Y be a function from a topological space X to a topological
space Y .

a) fis called an open function if for any open set U of X, f(U) is an open set of Y.

b) f is called a closed function if for any closed K of X, f(K) is a closed set of Y.

c) fis called a clopen function if it is both open and closed.

3.1.8 Theorem A function f: X —Y between topological spaces is open if and only if
for any open set U in a base B of X, f(U) is open.

Proof
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3.1.9 Examples
a) The function f: R —R defined by f(x)=x+1 is both open and closed.

b) The function g: R —R defined by g(x)=x? is continuous that is not open. To see this,
let U=(-1, 1). Then U is open, but g((-1, 1))=[0, 1) which is not open.

c) Every function from a space to a discrete space is both open and closed. Thus an open
(closed) function need not be continuous.

Exercise
Consider the continuous function f: R —R given by f(x)=|x|. Is f open?
Can you

3.2 Homeomorphisms

3.2.1 Definition A function f: X —Y between two topological spaces is called an
homeomorphism if itis a bijection and both fand f* are continuous.
Two spaces X and Y are homeomorphic if there is a homeomorhism between them.

3.2.2 Remark

a) Given two topological spaces X and Y, one often wants to know whether the two
spaces are homeomorphic. For example,

i) are Rand R? homeomorphic?

i) are Q homeomorphic to R?

In order to prove two spaces are homeomorphic, we need to define a homeomorphism
between them.

b) A property p of topological spaces is called a topological property if a space X

has property p, then every space homeomorphic to X also has property p. One method
of proving two spaces X and Y are not homeomorphic is to find a topological property
satisfied by X but not satisfied by Y.

3.2.3 Example
The space X=(0, 1) is homeomorphic to any space Y=(a, b) with
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a<b, where both X and Y have the metric topology induced by the usual metric.

To show this, we define f: X — Y by f(x)=a+x(b-a) for each x in X. Then f is bijective. The
inverse 1Y —X sendsy in (a, b) to (y-a)/(b-a) for y in Y. Thus both f and its inverse are
continuous.

3.2.4 Example The space Q of rational numbers (' with the metric topology induced by the
usual metric) is not homeomorphic to R. This is because Q is a countable set and R is not
countable.

3.2.5 Proposition If X is homeomorphic to Y and Y is homeomorphic to Z, then X is
homeomorphic to Z.
Proof

3.2.6 Theorem Let f: X - be a bijection between two topological spaces. Then the
following statements are equivalent:

a) fis an homeomorphism;

b) forany G < X, f(G) isopen in Y iff G isopenin X;

c) for any Fc X, f(F) is closed in Y iff F is closed in X;

d) forany Ec X, f(cIx(E))=clv(f(E)).

e) fis clopen.

Proof

3.3 Subspaces

3.3.1 Definition Let (X, t) bea topological space and A be asubset of X. The
collection t’={UNA:Uet }isatopology on A, called the relative topology for A.

A subset of X equipped with the relative topology is called a subspace of (X, 1).

3.3.2 Examples

a) The real line R with the usual topology is a subspace of R?.

b) Let Z be the set of all integers. As a subspace of R, Z inherits the

discrete topology.

¢) Any subspace of a discrete space is discrete, and any subspace of a indiscrete space is
indiscrete.
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Exercise
Show that the function ia: A— X from a subspace A of X into X defined by ia(x)=x is
continuous.

3.3.3 Theorem Let A be a subspace of a topological space X. Then

a) Hc A isopenin A iff H=AN U for some open set U of X;

b) F< A isclosed in A iff H=AN K for some closed set K of X;

c) forany EcA, cla(E)=Anclx(E);

d) if Bxisanbhd base for x in X, then {U " A: Ue Bx} is a nbhd base for x in A,
e) if B is abaseof X, then {UnA:UeB} isabase for A.

Proof:

Remark Note that inta(E)=A n intx(E) need not be true for all subsets E of A.
For example, let X=R?, A=E= the ox-axis. Then inta(E)=E, while
intx(E) NnA= N A=J.

If f: X—>Y isafunction and A is a subset of X, then f restricts to a function from A to
denoted by fla: A—Y such that fla(x)=f(x) for any xin A.

3.3.4 Theorem Let f: X —Y be a continuous functions between two topological spaces.
Then for any subspace A of X, the restriction function fla: A —Y is continuous.

Exercise Prove Theorem 3.3.4.

Summary
e Afunction f: X —Y between two topological spaces is continuous at a point
Xo In X if
e A function f: X—Y is called a continuous function if it is continuous

e f:X—Y is continuous iff forany opensetV of Y, is an
open set of X
e f:X—>Y is continuous iff forany closed set V of Y, is a

closed set of X
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f: X—Y is continuous iff for any subset A of X,
clv(f(A) f(cIx(A)

f: X =Y is continuous iff for any subset B of Y,
clx(fF1(B)) f1(clv(B))

a function f: X —Y between two topological spaces is a homeomorphism

if f is abijection such that

A subset A of a topological space X equipped with the
subspace of X.

24
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Exercise 3

1. Prove Theorem 3.1.6.

2. Show that f: X—Y is continuous iff for any subset B of Y,
fl(inty(B)) < intx f1(B).

[hint: use Theorem 3.1.2 and note that inty(B)=B if B is open ]

3. Let A Dbe a subspace of a topological space X and g: Z— A be a function from a space Z
to A. Show that g is continuous if and only if the composition iao g: Z— X is continuous.

4. Prove:
(@) the composition of two open functions is an open function;
(b) the composition of two closed functions is a closed function.

5.. Give a bijective continuous function f: X —Y such that it’s inverse f1: Y — X is not
continuous.

6. Let f: X—Y be a homeomorphism.

(a) Show that if X is a discrete space then Y is discrete.

(b) Show that if X is indiscrete then Y is indiscrete.
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Chapter four:
Cartesian product and quotient space

Outline:
e (finite )Cartesian product
e Example
e Quotient spaces

In this lesson, we study more methods of constructing new topological spaces from given
ones.
4.1 Cartesian product(finite)

Let Xi, Xz, ..., Xn be sets. The Cartesian product of Xi's is defined as
[ IXi =XaxXax . xXn={(x1, Xa. .., xn): Xi€ Xi, i=1,..., n}.
i=1
For any subsets U;c Xi(i=1,...,n), define
UixUzx .. . xUn={(X1, X2, ..., xn): Xi€ Ui, i=1,..., n}.
Note: We can define the product of any collection of sets.
4.1.1 Examples
a) {1, 2}x{a, b}={ (1, a), (1, b), (2, a), (2, b)}.
b) RxR={ (X, y): X, yeR }=R2

If X1, Xo, ..., Xn are topological spaces, we can define a topology on their Cartesian product
set so that it becomes a topological space.

4.1.2 Lemma
Let (X1, 11), (X2, 12), ..., (Xn, Tn) be topological spaces. The family

B={ UixUzx ...xUn: Ui€ 1, i=1,2,...,n}

of subsets of X= X;xXzx ...xX, is the base of a topology on X.
Proof
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4.1.3 Definition Let { (X, ti): i=1, 2, ..., n} be topological spaces.

The topology T on X= X1xXzx ...xX, generated by the base B={ UixU.x ...xUn: Uje T,
i=1, 2,..., n} is called the product topology and the space (X, 7) is called the Cartesian
product of (Xi, Ti)’s.

4.1.4 Example If (X, 1) and (Y, v) are topological spaces. Then { UxV: Ue 1, Ve v} isa
base of the product topology on XxY.

Thus a subset M of XxY is open if and only if for each (x,y) in M, there are open sets U
and V in X and Y respectively such that xe U, ye V and UxV c M.

4.1.5 Theorem Let (X1, 11), (X2, 72), ..., (Xn, Tn) be topological spaces. Assume that for
each i, Bi isabase of X (i=1, ..., n). Then
B’={ V1xVox ... xVpn: Vije Bj,i=1,2,...,n}
is a base of the product topology.
Proof:

4.1.6 Example The real line R has a base consisting of open intervals, so the plane
R?=R xR has a base consists of product of open intervals (a1, b1)x(az, b2).

4.1.7 Example
A product of discrete spaces is discrete and a product of indiscrete spaces is indiscrete.

Let Xi, Xo, ..., Xn be sets. For each i (i=1, 2,..., n) the projection from X=X1xXox ...xXp
to Xj denoted by
Pi: X1xXox ... xXpn —Xi
is defined by
pi(X1, X2, ..., Xn)=Xi.
For example, p1: XixXox ... xXn —X1
P1(X1, X2, ..., Xn)=X1.

27



4.1.8 Example
p1: RXR — R sends (x,y) to , and p2: RXR — R sends (x,y) to

Exercise Consider XixXzx ...xXj .
Let U be asubset of Xi. Show that pit (U)= X1x...xXij1xUxXis x...xXn.

4.1.9 Theorem Let (X4, 1), (X2, 12), ..., (Xn, Tn) be topological spaces.
For each i, the projection from the product space X1xXox ...xXn to Xi is continuous.
Proof (Exercise)

4.1.8 Theorem Let (X4, t1), (X2, 12), ..., (Xn, Tn) be topological spacesand f: Y —X a
function from a space Y to the product space of Xi’s. Then f'is continuous if and only if for
each i, the composition function piof: Y —X; is continuous.

f
Y —» XyxXpx ... %Xy

p\f\ l P
Xi

Proof

Note: The above theorem shows that the product space has the initial topology with respect
to the projection functions.

4.2 Quotient spaces

4.2.1 Definition

Let (X, 1) be a topological space and f: X —Y be an onto function from X to a set Y. Then
w={VcY: fY(V) € t } is a topology on Y, called the quotient topology induced on Y by f.
In this case the space Y is called a quotient space of X and f is called the quotient function.

Exercise
Verify that r={ VcY: f(V) € 1 } is a topology.
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4.2.2 Remark
Every quotient function is a continuous function.

4.2.3 Theorem If X and Y are topological spaces and f: X —Y is a continuous onto
function. Then the topology on Y is the quotient topology t¢ if fis either open or closed.
Proof:

4.2.4 Example Let X=[0, 2n] with the usual topology, and

Y={(x,y) € R% x>+y*=1}
with its usual subspace topology. Define f: X—Y by f(x)=(cos X, siny). Then fis
continuous, closed and onto. So Y is a quotient space of X.

4.2.5 Theorem Let Y have the quotient topology induced by a function f from X onto Y.
Then a function g: Y — Zis continuous if and only if the composition gof: X —>Z is
continuous.

Proof.

Summary

A base of the product topology

Each projection function from the product space is continuous
Quotient topology induced by a onto function

Properties of quotient space
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Exercise 4

1. (@) Show that each projection function from a product space is an open function.
(b) Let p1: RZ—R be the projection to the ox-axis. Determine if p1 is a closed function.

2. Show that if Y is a quotient space of X, and Z is a quotient space of Y, then Z is a quotient
space of X.

3. Let A and B be subsets of spaces X and Y, respectively.

() Show that cl(AxB)=cl(A) xcl(B).

(b) Show that AxB is a closed set of the product space XxY iff A and B are closed sets of X
and Y.

4. Let A and B be subsets of spaces X and Y, respectively.
Show that int(AxB)=int(A) xint(B).

5. Show that the function f: XxY —YxX is an homeomorphism, where f(x,y)=(y, x) for
each (x, y) in XxY.

6. Let X and Y be disjoint topological spaces and Z=XUY.
Letv={ UcSZ: UNXisopenin X and UNY is open Y}. Show thatv is a topology on Z.
[The space Z is called the sum of X and Y]

7. Spaces of closed sets.
For any topological space X, let I'(X) be the set of all non-empty closed subsets of X.
For any open sets Uy, Uz, ..., Un of X, let

V(Uy, Uz, ..., Un )={Be T(X): BE| JU, and BnUss for each i}.
i=1
Show that all V(U1, Uy, ..., Un ) form a base of a topology on I'(X); this topology is called
the Vietoris topology on I'(X).
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Chapter five: Axioms of separation

Outline:
e To, T1and T2 spaces
e Convergence in topological space
e Regular spaces
e Normal spaces

5.1 To, T1 and T2 spaces
5.1.1 Definition(To space )

A topological space Xisa To space if for any two distinct points x andy in X,
there exists an open set containing one and not another.

@y

5.1.2 Example

a) Every discrete space is To. A indiscrete space containing more than one point is
NOT To.

b) The Sierpinski space X={0,1}isa To space.
c) Thereal line Risa To space.

For any two different points a and b( assume a< b), the open set U=(a-1, b) contains a
but not b.

5.1.3 Definition(T1 space)
A topological space X isa Ti1 space if for any two distinct points x andy in X, there is an
open set U containing x but noty and an open set V containing y but not x .
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5.1.4 Example

a) Every Ti space is To.
b) The Sierpinski space X={0, 1} isa To space but not Ti.
There is no open set U containing 0 but not 1.

Exercise Prove that if X isa Tispace and A isa subspace of X, then A is Ti.

5.1.5 Theorem(Properties of T1 spaces)

a) Aspace Xis T1iff cl({x})={x} for any point x in X.
b) Every subspace of a T1 spaceis Tu.

c) The product space of two T1 spaces is Ti.

Proof:

5.1.6 Definition(T2 spaces)
A space XisaT. space (orHausdorff space) if for any two distinct points x and y in X,
there exist disjoint open sets U and V such that xe U and ye V.

° y
X

\%
U

Exercise Show that every T, space is Ti.

5.1.7 Example
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a) Thereal line Ris Ta.
If a<b, thenthe opensets U=(a-1, (a+b)/2) and V=((a+b)/2, b+1) satisfy the
requirement.

b) If (X, d) is ametric space, then for any two distinct points x and y,
U=B(x, a), V=B(y, a) are disjoint open sets containing x and y respectively, where a=1/2d(x,
y). Thus every metric space is Ta.

5.1.8 Example

Let X=N with the finite complement topology. Then X is T1 but not T>. For example, if

U is an open set containing x=1 and V be an open set containing y=2. Then X-U and X-V
are finite sets, so X-(UNV)=(X-U)U(X-V)£X, hence UNV#a.

5.1.9 Theorem If f: X—Y is a continuous function and Y is Hausdorff, then

{ (% y): f)=f(y) }

is a closed subset of XxY.

5.2 Convergence in topological spaces

5.2.1 Example

Let N be the set of all natural numbers and let < be the ordinary order of numbers. Then
the relation < is

1) reflexive ( foranyn, n<n),

i1) transitive ( n<m, m<k imply n<k ), and

iii) directed ( for any two members m and n in N, there is k such that n, m<k ).

b) Let X beasetand D is the set of all finite subsets of X. Then (D, ) is a directed set.

Let D be a set. We say the set D is directed by relation < (or (D, <) is a directed set )
If the following conditions are satisfied:

1) x<y<z imply x<z; (transitive)

i1) forany x in D, x<x; (reflexive )

ii1) for any x, y in D, there is z in D such that x <z and y <z. (directed )
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5.2.2 Example

a) Let X beasetand D be the set of all finite subsets of X. Then (D, €) is a directed
set.

b) Let x be a point of a topological space X. The neighbourhood system N(x) of x is a
directed set with respect to the inverse inclusion relation o.

c) The set of all partitions of [0, 1] is a directed set, where D:<D, for two partitions iff
D is finer than D1 ( D2 has more partition points ).

d) Let X={1} and define 1<I. Then (X, <) is a directed set.

5.2.3 Definition(Net and sequence)

A net in a topological space X is a function from a directed set X into X. We shall use
S={Xs: 06X} ( or {Xs} ) todenote a net in X ), where X is called the index set of the net.
If X=N, then the net is called a sequence.

5.2.4 Definition(Convergence of nets)

Anet S={X,: ceX} inaspace X issaidtoconverge toa point x in X (or xis a limit of
S ) if for each neighbourhood U of x, there is a oo € X, such that X, U holds for all >
co. We write Xs— x ( or S— x) to denote the net S converges to x.

The set of all limits of S is denoted by lim S.
A point x is called a cluster point of a net S={X,: o€ X}, if for each neighbourhood U of x
and each oope X, there exists 6> oo, such that x.0e U.

5.2.5 Example

a) Let xnzl-l,for each ninN. Then x,—1 in R.
n

b) Let X={0, 1} be the Sierpinski space. The net {x1: 1 {1}} converges to both point 0 and
1.
So the limits of a net need not be unique.

Exercise
Show that a point x is in cl(A) iff for any neighbourhood U of x, UNA is non-empty.

5.2.3 Theorem A point x is in cl(A) iff there is a net in A that converges to X.

Proof:
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5.2.4 Theorem( Net characterization of Continuous functions)
A function f: X —Y between two topological spaces is continuous iff for any net S={x;: o
eX} in X, S— xin X implies f(S) — f(x) in Y, where

f(S)={f(xs): € X}.

Proof:

5.2.5 Theorem (Property of hausdorff spaces)
A topological space X is a Hausdorff space if and only if every net in X converges to
at most one point.

Summary
e Atopological space X is a To space if for any two points x and vy,

e Atopological space X is a T1 space if for any two points x and vy,

e Atopological space X is a T» space if for any two points x and y,
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e The product of To (T1, T2) spacesis To (T, T2) . The converses are also true.

e Afunction f: X —Y between two topological spaces is continuous iff for any
net Sin X, S —xin X implies f(S) —f(x)in.
e Aspace Xis Tz ifand only if foranynetSin X, S—xand S—y imply

Exercise 5
1. Show that the product XxY of spaces X and Y is T if and only if both X and Y
are Toa.

2. Show that a space X is Hausdorff iff the set diagonal

A={(x, x): xe X }
is a closed set of the Cartesian product XxX.

3. The Zariski topology
For a polynomial P in n variables, let
K(P)={ (X1, ..., xn) €R": P(X4, ..., xn)# 0}.

a) Show that {K(P): P is a polynomial in n variables } is a base of atopology on R".
The corresponding topology is called the Zariski topology.

b) Show that the Zariski topology is Ti.
c) Describe the Zariski topology on R. Is it T2?

4. Let X=R and 7={ (a, +o):acRora=-o }.
a) Show that t is a topology.

b) Which separation axioms does (X, t) satisfy?
¢) Find a sequence in X that converges to infinite different points.
5. Show that a subspace of a T» space is Ta.

6.
a) Letf, g: X — Y be continuous functions and Y be a T> space, then

{x] f)=a(x) }

is a closed set of X.

b) Asubset A of space X isadense setif cl(A)=X (or Aisdensein X).
Use a) to deduce that if f, g: X — Y are continuous functions and Y is a T2 space
such that f(x)=g(x) for all x in a dense subset A of X, then f=g.

7. Let X beaTo space. Define x<y forx,yin X if xecl({y}). Prove each of the following
statements:
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i) x<x forall xin X (reflexive);
i) x<y <z imply x <z (transitive);
iii) x<y and y<x imply x=y (‘antisymmetric ).

* A binary relation < ona set X satisfying the above three conditions is called a partial
order X. The partial order proved above is called the specialization order on space X.

5.3 Regularity and complete regularity

5.3.1 Definition(Regular space)
A topological space X is a regular space if for any closed set A and point x with x¢ A, there
are disjoint open sets U and V such that xe U and Ac V.
A Ty regular space is called a Tz space.

X- @

u v

Remark
1) A regular space need not be T1. For example, every indiscrete space is regular.

2) Every T3 space is To. This is because for each point y ina T1 space, A=cl({y})={y}.
Exercise

Let X be a regular space. Show that if Ais a closed set which is disjoint from B ={b,
ba, ..., bn }, then there are disjoint open sets U and V containing A and B respectively.

5.3.2 Theorem The followings are equivalent for a topological space X.
a) Xisregular.

b) If Uisan open set with xe U, then there is an open set V such that
xeVccl(V) cU.




Proof

5.3.3 Theorem

a) Every subspace of a regular space is regular.

b) The product XxY of two spaces is regular if and only if both X and Y are regular.
Proof

Let I=[0, 1] denote the closed unit interval of real numbers with its usual topology.

5.3.4 Definition(Completely regular space)

A topological space X is completely regular iff for any closed set A and bg A, there is a
continuous function f: X—I=[0,1] such that f(b)=0 and f(A)={1}.

A T1 completely regular space is called a Tychonoff space (or T34 space).
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Remark In the definition of complete regular spaces, we can change the condition into:
There is a continuous f: X—R such that f(A)={a}, f(xX)=b and a # b.

Exercise
Show that every complete regular space is regular.

5.3.5 Example
Let (X, d) be a metric space, A be a closed set and bgA.
Define f: X—R by
f(y)=d(y, A) for each y in X ( see Exercise 6.3).

Then f(A)={0} and f(x)#0. Thus every metric space is completely regular.

In particular, R, R? and R" are completely regular.

5.3.6 Theorem

a) Every subspace of a completely regular space is completely regular.

b) The product of two topological spaces is completely regular iff each factor space is
completely regular.
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5.4 Normal spaces

5.4.1 Definition( Normal space)

A topological space X is normal if for any two disjoint closed sets A and B in X, there are
disjoint open sets U and V with AcU and Bc V.

A normal Ty -space is called a T4 space.

©)QO)

C

5.4.2 Examples
(@) Every discrete space is normal.

(b) Let A and B be disjoint closed sets in a metric space (X, d). Foreachxin A and y
in B choose 6, and &, with U(x, 3,)=X-B and U(y, 3,) < X-A.

Let U=U{U(x,%x):XEA} and V:U{U(y,s—;):yeB} }

Then U and V are disjoint open sets with Ac U and Bc V. ( Exercise )
Thus every metric space is normal.

In particular, R, R?, and R" are all normal spaces.

5.4.3 Remark A topological space X is normal if for any closed sets A and open set U
containing A, there is an opensetV, AcVccl(V) cU.
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5.4.4 Urysohn’s Lemma

A space X is normal iff for any two disjoint closed sets A and B in X, there is a continuous
function f: X—[0, 1] such that f(A)={0} and f(B)={1}.

Proof:

5.4.5 Tietze’s extension theorem
A space X is normal iff for any closed set and continuous f: A—R, there is an extension of f
on X; that is there is a continuous F: X—R such that F(x)=f(x) for all x in A.

5.4.6 Remarks
(a) A subspace of a normal space need not be normal.
(b) A product of two normal spaces need not be normal.

Summary
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Regular space, T3 space

Completely regular space, Tychonoff space
Normal space, T4 space

Uryson’s lemma

Tiez’s extension theorem
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Exercise 6

1.

a) Show that the real line R with the usual topology is regular.
b) Show that every metric topology is regular.

2. Let X be a regular space. Show that for each closed set A, A is the intersection of all open

sets containing A.

Is the converse conclusion true?

3. Verify the Example 5.4.2 (b).

4. Show that every T4 space is Ts.

5. Prove Remark 5.4.3.

6. Show that every closed subspace of a normal space is normal.

7. Show that if X is regular, then for any point x and closed set A that does not contain X,
there are disjoint open sets U and V containing x and A respectively and

cl(U)Ncl(V)=s.
[Hint: Use Theorem 5.3.2 b) ]

8.*(Optional) A topological space X is called completely Hausdorff if for any two distinct
points X and y in X, there is a continuous function f: X—I=[0, 1] such that f(x)=0 and f(y)=1.

(@) Show that every completely Hausdorff space is Hausdorff.
(b) Is every subspace of a completely Hausdorff space a completely Hausdorff space?
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Chapter six:
Countability properties

Outline

First countable spaces
Second countable spaces
Separable spaces
Lindeloff spaces

In this chapter we study some topological properties which are defined by means of countable
families of sets.

6.1 First countable spaces
Recall that for a point x in a space X, N(x) denotes the set of all neighbourhoods of x.

A neighbourhood base of x is a subset B of N(x) such that for each U in N(x) there is V in B
so that V is contained in U.

6.1.1 Definition (First Countablility ) A space X is called first countable (C1 space) if every
point in X has a countable neighbourhood base.

6.1.2 Examples
(@) The real line R with the ordinary topology is first countable.

(b) Every metric space is first countable.
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6.1. 3 Example
Let X be a non-countable set. Then X with the finite complement topology is not first
countable.

6.1.4 Proposition Every subspace of a first countable space is first countable.

A base B for atopological space (X, t) is a collection B of open sets, such that every
member U of t is a union of some members of B.

6.1.5 Definition A space X is second countable (C2 space ) if it has a countable base (i.e.
there is a base B={ Ui: ie N } consisting of countable number of members).
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6.1.6 Example
(@) The real line R is second countable. The set B={ (r, s): r < s are rational numbers } is a

countable base of R.

(b) Let X be anon-countable setand X have the discrete topology, then X is not
second countable.

If there is an surjective (open) continuous mapping f: X—Y from the space X onto space
Y, then Y is called a continuous (open ) image of X.

[Optional]

6. 1.7 Theorem

(1) A continuous open image of a second countable space is second countable.
(2) Every subspace of a second countable space is second countable.

(3) The product of two second countable spaces X and Y is second countable.

6.2 Separable spaces
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6.2.1 Definition
A subset A of a topological space X is called a dense set if cl(A)=X.

6.2.2 Proposition
A subset A is dense in X iff for any nonempty open set U of X, AnU .

6.2.3 Example
(@) The set Q of all rational numbers is dense in the real line R.

(b) Theset R -Q (of all irrational numbers) is also dense in R.

6.2.4 Definition
A topological space X is separable iff X has a countable dense subset.

6.2.5 Example
(1) The real line R is separable.
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(2) If Xis anon-countable set and X has the discrete topology, then X is not separable.

6.2.6 Theorem
a) The continuous image of a separable space is separable.

b) An open subspace of a separable space is separable.

6.3 Lindeloff spaces

A collection U={ Uj: je J} of open sets of a space X is called an open cover if the union
of all Uy’s equals X, i.e. if

X=U{U;:jel }.
If U contains countable U;, U is called a countable cover.

A subcover U" of U is a subcollection of U which is also a cover of X.

6.3.1 Definition A space X is called a Lindel6ff space if every open cover of X has a
countable subcover.
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6.3.2 Proposition Every closed subspace of a Lindel6ff space is Lindel6ff.
[Exercise ]

6.3.3 Theorem A regular, Lindel6ff space is a normal space.

Summary
e A topological space is first countable if every point has a

e For example, are first countable.

e A topological space is second countable if it has a

e Every second countable space is

e The product of spaces is
e A subspace of a space is

e A space X is a Lindeloff space if
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e A and is normal.

Exercise 7

1. Show that the product Xx Y of spaces X and Y is first countable iff both X and Y are
first countable.

2. Prove that every second countable space is first countable.
[Hint: Let B be a base of X. For each x in X, consider Bx={UeB: xe U }]

3. Show that a subset A of X is dense in X iff for any nonempty open set U in a base B
of X, AnU =J.

4. Show that a discrete space X is separable iff X is a countable set.

5. Let X be second countable and B={Ui: i€ N } be a countable base of X. Show that X is
separable.
[ Hint: Choose a point bi from each Ui, then consider the subset A={bi: ie N} ]

6. Show that the product Xx Y of two separable spaces is separable.

Is the converse also true?

[Hint: Let A and B be countable dense subsets of X and Y. Show Ax B is dense in the
product space ]

7. Show that if X is second countable, then it is Lindel6ff.

[Hint: Let B be a countable base for X. Suppose U is any open cover of X. For each

U in U and x in U, choose some By, u in B such that xe By, uc U. Then B’={ By u : X

e U,U e U} is countable because it is a subset of B. Assume B’={ Bx1, u1, Bx2, u2, ..... }.
Show {U1, U2,... } is a subcover of U ]
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Chapter 7 : Compactness
Outline:

e Definition and examples
e Tychonoff Theorem
e Continuous functions on compact spaces

7.1 Definition (Compact space)

A topological space X is compact if every open cover of X has a finite subcover.

7.2 Example

1) The family U={(n, +=): n=0, -1, -2, ... } isan open cover of real line R, but it has
no finite subcover. Thus R is not compact.

2) The subspace 1=[0,1] of R is compact. In fact, if ¢/ is an open cover of I. Let K be the
set of all points ¢ such that a finite subcover of ¢/ covers [0, c]. Then Oisin K and if
d<cand cisin Kthendisin K. Thus K is an interval. If K=[0, c], then ¢ must equal 1. In
fact , assume c<1 we can choose a member U of ¢// that contains c, then thereis £>0
such that ce (c-¢, c+¢)cU. Since [0, c] is covered by finite number members of ¢/ [0,
c++¢] is also covered by finite number of members of U, so c+1e is also in K, which
contradicts that K=[0, c]. On the other hand, if K=[0, c), let ¢ be contained in a member U,
of @/ and ce(c-¢, cte)cUe, then [0, c-2 €] ils covered by finite numbers of members of

((asc-3¢ c-1¢ isin K), so [0, c] is also covered by finite numbers of members of </,

which implies cis in K, a contradiction. All these show that K=[0,1]=I, that is I is covered
by a finite number of members of @/ So I is compact.
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3) The subspace E = (0, 1) of 1 is not compact. The open cover
@={(:,1-1):n=123 ...}
of E does not have a finite subcover.

Thus a subspace of a compact space need not be compact.

4) Every indiscrete space is compact. A discrete space X is compact iff X is a finite

set.

7.3 Definition A family E of subsets of X has the finite intersection property if

the intersection of any finite numbers of members of E is nonempty.

7.4 Example
(1) The family {(r, «): r € R } has the finite intersection property.
(2) The family { A: Alisasubset of N and N-A is finite} has the finite intersection
property.
(3) The family { (r, s): r<sandr and s are rational numbers } does not have the finite

intersection property.

Recall that a net S={x,: 6 X} inatopological space X is a function from a directed set
into X. A point x is called a cluster point of a net S={X,: o€ X}, if for each neighbourhood
U of x and each oo X, there exists 6> oo, such that Xsoe€ U.
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7.5 Theorem For a topological space X, the following statements are equivalent.

(1) X'is compact.

(2) Every family E of closed subsets of X with the finite intersection property has a
nonempty intersection.

(3) Every net in X has a cluster point.

A subset A of a topological space is called a compact subset of X if the subspace A is
compact. A subset A of X is compact iff any open cover of A has a finite subcover.
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7.6 Theorem
(1) Every closed subset of a compact space is compact.
(2) A compact subset of a Hausdorff space is a closed set.

Proof:

7.7 Corollary A subset B of the real line R is compact iff B is abounded (i.e.

B < [-n, n] for some positive number n) closed subset.
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Recall that if there is an onto continuous function f: X =Y, then Y is called a continuous

image of X.

7.8 Theorem The continuous image of a compact space is compact.

Proof:

7.9 Theorem (Tychonoff ) The product of topological spaces is compact

iff each factor space is compact.
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Let X be a Hausdorff space and A, B be closed subsets of X. Then both A and B are
compact subsets of X by Theorem 6.6.

By Exercise 8.2, there are disjoint open sets containing A and B respectively. So we have

7.10 Theorem Every compact Hausdorff space is normal.

Recall that in calculus we learned that every continuous function f: [0, 1] —R is bounded
and f achieves its maximal and minimal values at some points. The following is a more
general result.

7.11 Theorem Every continuous real function defined on a compact space is bounded.

Summary
e Atopological space X is compact if every open cover of X has a
e X s compact iff every net in X has a

e X s compact iff every family of closed with the property has

intersection

e Closed subsets of compact space are

e Ever compact subset of a Hausdorff space is
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e The product of spaces is compact iff each

e Every Hausdorff compact space is

e Every continuous real function on a compact space is

Exercise 8

1. Let X be a Hausdorff space. Prove that for any compact subset A of X and a point x not in
A, there are disjoint open sets U and V such that U contains x and V contains A.

2. Let A and B be two disjoint compact subsets of a Hausdorff space X. Show that there are
disjoint open sets U and V containing A and B respectively.

3. Let AxB be a compact subset of XxY contained in an open set W of XxY. Show that
there are open sets U of X and open sets V of Y such that AxBcUxVcW.

4. Show that a subset of R? is compact iff it is closed bounded.
5. Prove Theorem 6.11.

[Hint: Let f: X —R. Consider the open cover { f1(-n,n):neN }]
6. Let A and B be two compact subsets of a Hausdorff space X.
(@) Show that AU B is compact.

(b) Show that A~ B is compact.
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Chapter 8:
Connectedness of topological spaces

Outline
e Definition, examples and basic properties
e More properties
e Some applications

8.1 Connected spaces
Consider the subspaces of real line R:
X=[0,1], Y=[0,1/2)U (1/2, 1]

Are the subspaces X and Y of R homeomorphism ?
1

That is, is there a bijection f : X —Y such that both f and f : Y —X are continuous?

The space Y can be expressed the union of two disjoint, non-empty open subsets
( closed sets ).
But X cannot be expressed as the union of two disjoint, non-empty open subsets.

8.1.1 Definition

A topological space X is called connected if there are no closed subsets F and E
such that

(i) X=F U E;

(i) FNnE=;

(iii)) Fand E are non-empty.

8.1.2 Example

(1) The real line R is connected. (See Appendix 1 for the proof'.)

(2) The subspace I=[0, 1] of R is connected.

(3) Every indiscrete space is connected, as it has only one non-empty closed set.
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8.1.3 Example

(1) The subspace Y=[0, 1] U [3,4] of R isnot connected.
This is because F=[0, 1]=YN [-1, 2] and E=[3,4]=YN[2, 5]
are non-empty, disjoint closed sets of Y and Y= F UE.

(2) The subspace Q of R consisting of all rational numbers is not connected.

Exercise:
Express Q asthe union of two disjoint, non-empty closed sets.

8.1.4 Remark
A subspace X of therealline R is connected if and only if it is an interval (finite
or infinite)

8.1.5 Lemma Let X be a topological space. Then the following statements are
equivalent:

1) X is not connected.

2) X is the union of two disjoint, non-empty open sets.

3) There is a non-empty, proper subset that is both closed and open.

8.1.6 Definition
A subset A of atopological space X is called a connected subset of X, if A is
connected with respect to the subspace topology.

8.1.7 Example

(a) Q is nota connected subset of R.

(b) Every closed interval [a, b] is a connected subset of R.

(c) The square [0,1]x[0,1]={ (x,»): 0< x, y < 1}isa connected subset of R?
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8.2 More properties

8.2.1 Proposition
If f: X— Y is a continuous function and X is connected, then f(X) is a connected subset
of Y.

Proof We prove by contradiction.
Assume that f(X) is not connected.
There are opensets U,V of Y such that
f(X)=(UNf(X)) U (VN f(X),
U= UNf(X) and V’=VN f(X) are non-empty and disjoint.

Now X=f!'(U'U V")

= fl( U U f! V*) Note that
= fl (UNf(X)) U £ (VN (X))

= [f'1 Un ! (fX)] U[ f! VN f! (f(X))] 1 (f(X) )=X
=f1U)ﬂX U f! V)yNnX

=1 (U) U 1 (V).

f1(U) and f!(V) are open sets as f is continuous,
they are non-empty and disjoint.
This contradicts the assumption that X is connected. Hence f(X) must be connected.

8.2.2 Corollary

Let X and Y be connected spaces. Forany « in X, {a} XY is a connected subset
of XxY.

Similarly, X x{b} is connected forany b in Y.

8.2.3 Theorem If X and Y are connected, then the product space X XY is
connected.

Sketch of the proof:

(1) For any points A=(x, y), B=(x’, »*), if they have a common component, then there is a
connected subset

C(A, B) of the product space containing them
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(i1) Fixed a point A =(a, b) . For any B=(z, w),

let D=(b, z). Then C(A, D) and C(D, B) are disjoint connected sets. Then C(A, D) U
C(D, B) (denote it by F(A, B) ) is a connected set containing A and B.

(iii)) Now XxY =U { F(A, B): B isan arbitrary point in XX Y, is connected by Lemma
2.1

By Induction, we can show the product of any finite number of connected spaces is
connected.

8.2.4 Corollary
(1) R? and any R" are connected spaces.
(2) The square [0, 1]*x[0,1]={ (x,»): 0< x, y < 1}is connected.

(3) The cub [0, 1] is connected.

8.3 Some applications

8. 3.1 Theorem (Intermediate Value Theorem)
If f: [0,1] >R 1is a continuous function, and m is a number between f(0) and f(1),
then there is a ¢ € [0, 1] such that f{c) = m.
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8.3.2 Theorem ( Fixed point Theorem )
If f: [0, 1] — [0, 1] is acontinuous function, then fhas a fixed point, that is there is X,

in [0, 1] such that f(x0)= X

There are hundreds different fixed points theorems. The one we proved just now for [0, 1]
is called the Brouwer fixed point theorem, named after Luitzen Brouwer. There are many
other proofs for this theorem.

n

The fixed point theorem also true for any closed convex set of R .
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See http://en.wikipedia.org/wiki/Brouwer fixed point_theorem for more about this.

Appendix:
The real line R is connected.

Proof:

Assume that R is not connected. Then R=A U B where A and B are non-empty
and disjoint closed sets of R. Choose a in A and b in B. Thena and b are
different points, assume that a< b. Let A’=AN[a, b], B’ =BN[a, b]. Then

A’ has an upper bound (e.g. B), so A’has a supremum, say b’ It canbe
shown that b’ is in the closure of A’, so b’ mustbein A’ (as A’is closed ).
Then b’<b ( otherwise b=b’ is in both Aand B). Also (b’, b] must be
contained in B (otherwise thereis a d in (b’, b] whichisin A’, contradicting
the assumption of »’). But then cl((b’, b])=[b’, b] is contained in B’
implying b’ is in B’. Then AN Bis non-empty, a contradiction.

Here we use the property of real numbers:
Every upper ( lower ) bounded subset has a supremum (infimum).

Summary

e Atopological space X is connected if

e If f: X—Y is a continuous mapping and X is connected then

e The product of spaces is

e Asubset A of the real line R is connected if and only if
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http://en.wikipedia.org/wiki/Brouwer_fixed_point_theorem

Exercise 9

1. Let X be adiscrete space. Show that X is connected iff X contains just one
element.

[ Hint: If X has more than one point, then X={a} U (X- {a}).]

2. Show that if A and B are connected subsets of a topological space X such that
AN B#s then AU B is connected.

3. (The Intermediate Value Theorem for connected spaces)
Let X be connected and f:X — R be a continuous real valued function.
Assume that a, bare points in X suchthat f(a) < m < f(b). Show that thereisa
point ¢ in X suchthat f(c) =m.
[Hint: Every connected subset of R is an interval .]

4. Prove that a subspace X of therealline R 1is connected if and only if it is an
interval (finite or infinite).

5. Show that if A is a connected subset of X, then cl(A) is also connected. If cl(A) is
connected, can we deduce that A must be connected?
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