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Chapter one :     Metric spaces 

Outline: 

 Definition of metric spaces, examples 

 Continuous functions 

 Open sets and closed sets 

 

1.1 Example  Let  R be the set of all real numbers.  For  any  x, y  in R, define  d(x, y)=|x-y|.  

Then  

  i)  d(x, y)≥ 0;   

  ii)  d(y, x)=0 if and only if    ___________;   

 iii)   d(x, y)   ____ d(y, x);    

 iv)  d(x, y)          d(x, z)+ d(z, y). 

1.2 Definition    A metric space  is an ordered pair  (M,  ρ )  consisting  a set M  together with 

a function  ρ: M×M→R such that for any  x, y, z M: 

 M-a)   ρ(x, y) ≥0; 

M-b)    ρ (y, x)=0  if and only if    x       y   ;    

M-c)    ρ (x, y)              ρ (y, x);                     ( Symmetric ) 

M-d)    ρ (x, y)         ρ (x, z)+ ρ (z, y).           ( Triangle Inequality ) 

If all conditions except M-b  are satisfied, the function ρ is called a pseudometric on M, and 

(M, ρ) is called a pseudometric space. 

Remark:  We may use different symbols for  the function  ρ.  For instance, d(x, y),   (x, y)  

etc. 

1.3 Examples 

a)    (R, d) is a metric space, where R is the set of all real numbers and d(x, y)=|x-y|. 

b)   Let   Rn={ (x1, x2, …, xn):  xi
’s   are real numbers }.  Define   

                    ρ((x1, x2, …, xn),  (y1, y2, …, yn) )= 



n

k

kk yx
1

2)( . 

 Then   ( Rn,  ρ)   is  a metric space  and this   function  ρ is called the usual metric on  Rn. 
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c)   For   R2,  the function ρ1( (x1, y1), (x2, y2) )=|x1-x2|+|y1-y2|  is a metric . 

d)   Let   (M,  ρ ) be a metric space and  A  be a subset of  M . Then  (A, ρ) is also a metric 

space, called the subspace of  M. 

e)   The discrete metric :  Let  X be a set.   Define  ρ(x, x)=0   and  ρ(x, y)=1  for x≠y.  Then ρ 

is a metric on X, called the discrete metric. 

 

1.4 Definition    A  function  f: M→N  from a metric space (M, ρ)  to a  metric space (N, σ) 

is continuous   at   appoint  x M  if  for any  number  ε>0, 

there  is a positive number  δ>0  such that  

             σ(f(x), f(y)) < ε   whenever  ρ(x, y)<δ. 

The function is called a continuous function if it is continuous at every point of X. 

 

 

 

 

 

 

 

1.5 Definition  Let (M, ρ ) be a metric space  and   x M . For each  number ε>0,  let  

                                            U(x, ε )={  yM:  ρ(x, y)< ε  }, 

called the  ε-disk  ( or ε-open ball ) about x.  

 

           

 

 

 

 

f 

x 
f(x) 

x 
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Exercise 

1)  In R,  determine the set   U(0, 4). 

2)  In the  Example 1.3 e),  find  U(x, 1)  and  U(x, 2). 

 

 

 

 

 

1.6 Definition  A subset  V of a metric space (M, ρ ) is an open set  if  for each  x in  U, there 

is an  ε>0   such that  U(x, ε) ⊆  V. 

A subset A is called a closed set if   it’s complement   Ac=M - A  is open. 

              

           M 

 

 

 

For example, in R, the set   U=(0, 1)∪(4, 5) is open.  

The set  [0, 1] is not open in R.  

 

1.7 Theorem ( properties of open sets )  In any  metric space  (M, ρ)  we have: 

1)  Any union of open sets  is open. 

2)  Any finite intersection of open sets is open. 

3)  The empty set and M are open. 

Proof 

 

 

U    

open  set 

A=M-U    

closed set 
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1.8 Examples 

a)  In R,  a subset  A is open if and only if it is the disjoint union of open intervals, i.e. 

                 A= ),(1 kkk ba

 ,    where  (ak,   bk) are disjoint.  

b)   Every  disk  U(x, ε) is open.  ( Exercise ) 

 c)  If  (X,  d ) is  a  discrete metric space, then  every set is open. In fact, for any subset A 

and    

               for  any   x  in A,  U(x, 1)={x})⊆A. 

d)   Every finite set is closed. 

 

 

 

1.9 Theorem  A function  f: M → N  from a metric space (M, ρ)  to a  metric space (N, σ) is 

continuous   at  x0  if and only if  for any open set W of  N  containing  f(x0), there is an open 

set  U containing  x0  such that  f(U)⊆ W. 

Proof  
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Recall that  if  f:  X   →  Y is a function, then for any subset  B⊆Y, 

                f-1(B)={ x  X:  f(x)   B }, called  the inverse image of  B  under  f. 

1.10  Corollary  function  f: M→N  from a metric space (M, ρ)  to a  metric space (N, σ) is 

continuous   if  and only if  for any open set W of N,  

                                   f-1 (W)={ xM:  f(x) W } 

is open.  

 

 

 

 

 

Hands-On- Exercise 

Let   U={ (x, y):  x>0, y>0 }. Show that U is an open set of  R2  with the usual  metric. 

 

Summary  

 A metric space is an ordered pair (M, ρ)  consisting of  a set M and a function  

ρ : M×M→R  satisfying the four conditions. 

 A function  f: M→N  from a metric space (M, ρ)  to a  metric space (N, σ) is 

continuous   at  x0   if  _____________________________________________ 

 A subset  A  is an open set  if  ______________________________________ 

 Every  disk is an open set 

 The union of any open sets is  ______________________ 

 Any finite intersection of open sets is open 
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 A function  f: M→N  from a metric space (M, ρ)  to a  metric space (N, σ) is 

continuous   if and only if  __________________________________________   

 

Exercise 1 

1.  Verify that the following function  ρ  is a metric  on Rn   

                           ρ (x, y)=max{|x1-y1|, |x2-y2|, …,  |xn - yn| }. 

2.  Let  C([0, 1])  be the set of all of all continuous functions on the interval  [0, 1]. 

  (i)  Verify that the following function σ  is  a metric on  C([0,1]).                   

                           
1

0
|)()(|),( dxxgxfgf . 

(ii)  Verify  that  the following function η  is a pseudo metric on C([0,1]) 

                     .|)2/1()2/1(|),( gfgf   

3.  Show that  every disk U(x, ε)   in a metric space is an open set. 

[ Hint: For any  y U(x, ε),  U(y, ε’) is contained in U(x, ε),  where ε’= ε- d(x, y) ] 

4.  A mapping f  from a metric space (M, ρ)  to metric space  (N, σ) is an isometry  if  f  is  a 

bijection  and   ρ (x, y)= σ(f(x), f(y)) for all x, y in M.  Two spaces M and N are isometric if 

there is an isometry between them. 

Prove 

 (i)  Every isometry f  and  its  inverse   f -1    are   continuous. 

(ii)  The subspaces [0, 1]  and  [a, b]  (  a< b)  of  R  are isomertric . 

5. Let  (M, ρ)  be a metric space. Show that a subset A is closed iff  whenever every disk 

about x meets A then x is in A. 

6.  Let  ρ  be a metric on M. Show that the following functions ρ1  and ρ2  are also metrics on 

M. 

 (i) ρ1(x, y)=2 ρ(x, y). 

(ii) ρ2(x, y)=min{ 1, ρ(x, y ) }. 

 

7*(Optional ) 

 Let Q be the set of all rational numbers and p be a prime number. For each x in Q, define  
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  |x|p=0  if x=0  and  |x|p=p-k  if   x=pk

n

m
 , where m and n are integers not divisible by p.  

Define    ρ(x, y)=|x-y|p   for any x, y in Q. 

(a)  Find  |15/9|5   and   |2.6|7. 

(b)  Show that  |xy|p=|x|p|y|p. 

(c ) Show that  |x+y|p≤max{ |x|p, |y|p}.  

[hint: Assume |x|p= max{ |x|p, |y|p}] 

(d)  Show that ρ(x, y)=|x-y|p   defines a metric on Q.  This called the p-adic metric on Q. 
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Chapter two:     Topological   Spaces 

Outline: 

 Definition of topological spaces, examples 

 Closure operator 

 Interior operator 

 Neighbourhoods,  

 Bases and subbases  

 

2.1  Topological spaces 

2.1.1 Definition A topology on a set  X  is a collection τ  of  subsets  of X such that the 

following conditions are satisfied: 

T-1)   Any union of  members  of  τ  is  a  member  of  τ;   ( closed under arbitrary  unions ) 

T-2)   any finite intersection of  members of  τ is a member of τ;  

                                                                                     ( closed under finite intersections)  

T-3)     and  X  are members of  τ.                           

If  τ  is a topology on X,  the members of τ  are called open sets of  X.   

The pair   (X, τ ) ( or just X ) is called a topological space.  

If  τ1⊆ τ2  are topologies,  then τ2  is said to be finer than τ1 . 

 

2.1.2 Example 

 a)  Let (M, ρ) be a metric space. The set of all open sets of M form a topology, called the 

metric topology and denoted by  τ ρ .  

 If  (X, τ ) is a topological space such that τ= τ ρ   for some metric ρ, then (X, τ ) is called 

metrizable. 

b)  The metric topology generated by the usual metric on any subset of Rn  is  called the usual 

topology.  Hereafter, when a topology is used on a subset of Rn without mention it is assumed 

to be the usual topology. 
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c)  Let X be any set. The power set  P(X)  ( all subsets of  X )   is a topology on X, called the 

discrete topology.  Discrete topology is the finest topology on X. 

d)  For any set X,  τ ={   , X } is a topology, called the indiscrete topology.  It is the 

coarsest topology on X. 

 

e)  Sierpinski topology . 

Let  X={ 0, 1} and let  τ={ , {1}, X }. Then  τ  is a topology.  The space (X, τ) is called the 

Sierpinski space.   

2.1.3 Definition  If  (X, τ )  is a  topological space and A⊆ X,  then A is a closed set if  its  

complement  X - A is open. 

2.1.4 Examples 

a)  Every closed interval  [a, b] is closed in R. 

b)  In the discrete topological space, every subset is closed. 

c)  In the Sierpinski space, the closed sets are  , {0} and  X 

2.1.5 Theorem  

 C-1) Any intersection of closed sets is closed; 

C-2)  any finite intersection of closed set  is closed; 

C-3)  the empty set and X are closed. 

2.1.6 Definition  The closure of a subset A of a topological space (X, τ)  is defined to be  

         KXKAclA |{)(   is  closed  and   A⊆ K }. 

Since any intersection of closed sets is closed, the closure of  a subset is closed and is the 

smallest closed set containing the set. 

Remark. 

1)  A⊆B  implies  cl(A) ⊆cl(B). 

2)  cl(X)=X. 

3)  In the discrete space, the closure of any set A is A. 

4)  In the indiscrete space  X,   cl(A)=X for any nonempty set A. 

2.1.7 Theorem  Let  A,  B and E be subsets of a topological space X. Then 

 K-1)    E ⊆ cl(E); 
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K-2)     cl(cl(E))=cl(E);  

K-3)     cl( A∪ B)=cl(A) ∪ cl(B); 

K-4)     cl(ᴓ)=ᴓ; 

K-5)     E  is closed iff  cl(E)=E. 

Proof.  

 

 

 

 

 

 

2.1.8 Definition  Let  A be a subset of a topological space X. The interior of  A in X is the 

set  

                          int(A)=Ao=∪{ U⊆A:  U is open  }. 

Remark 

1)  int(A) is the largest open set contained in A. 

2)  A⊆B  implies   int(A) ⊆ int(B). 

3)  int(A)=X-cl(X-A),  cl(A)=X-int(X-A).   ( Exercise ) 

2.1.9 Theorem Let  A, B and E be subsets of a topological space X. Then 

I-1)      int(E) ⊆  E ; 

I-2)      int(int(E))=int(E);  

K-3)     int( A∩ B)=int(A) ∩ int(B); 

K-4)     int(X)=X; 

K-5)     E  is open  iff  int(E)=E. 

Proof  ( Exercise ) 

 

2.2 Neighbourhoods 
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2.2.1 Definition  A neighbourhood  U  of  a point  x  in  a topological space is a subset  that 

contains an open V containing  x.   

 

                                                x     V       U                      X                       

 

 

 

A neighbourhood that is open is called an open neighbourhood.  The set of all 

neighbourhoods of  x  is denoted by  Nx,  called the neighbourhood system at x. 

2.2.2  Theorem  Let x be any point of a topological space X. then 

 N- 1)    for any U in Nx ,  x is in U; 

N-2 )    if  U, VNx ,  then  U∩VNx; 

N-3)      if  UNx  and   U⊆ V  then  VNx; 

N-4)      G⊆X  is open if and only if  G is a neighbourhood  of every point  in G. 

Proof 

 

 

 

 

 

 

  

2.2.3 Definition A neighbourhood base at x in a topological space X is a collection Bx  of  

neighbourhoods of x such that for any  U in Nx ,  there is V in Bx   such that  V ⊆ U. 

2.2.4 Examples 

1)    For any point  x  in a topological space X, all the open neighbourhoods of x form a 

neighbourhood base at x. 

2)   In any metrizable space X,  all disks about  x  form a neighbourhood base at x. 
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Also,  all  disks  U(x, r) with  r a positive rational number form a neighbourhood base at x. 

Thus every  x has a countable neighbourhood base. 

3)  If  X is a discrete space, then for each x,  Bx={{x}} is a neighbourhood base at x. 

Exercise  Show that for any x in R, {(x-1/n, x+1/n): n in N } is a nbhd base at x. 

 

2.2.5 Definition ( Accumulation points) An accumulation point  ( cluster point ) of a set A 

in a topological space X is a point x of X such that every neighbourhood of x contains a point 

of A, other than x. The set A’ of all cluster points of A is called the derived set of A.  

For example, the accumulation points of  (0, 1) in R  form the set [0, 1]. 

2.2.6 Theorem  For any set A in a topological space,   

                          cl(A)= AA`. 

Proof  

 

 

 

 

 

 

 

 

2.3 Bases and subbases  

Sometimes using a subfamily to define a topology is easier than directly describing the 

topology.  

2.3.1 Definition  Let (X, τ )  be a topological space.  A base B for  X  is a collection B⊆ τ ,  

such that every member U of   τ  is a union of some members of  B, 

 that is for each  U in τ, there exist { Vi : iI} ⊆ B, such that  U= iV{ :  iI}. 

2.3.2 Examples 

a)  In R, all the open intervals form a bases of the usual topology.  
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     In any metrizable space, all the open disks form a bases. 

b)  {{x}:  xX}  is a bases of the discrete space. 

c)  In R,  all the intervals  (s, r ) with s, r rational numbers form a bases of the usual topology. 

2.3.3 Theorem  A collection B of subsets of X is the base of a topology on X if and only if  

1)   X= V{ :  VB}; 

2)   if    V1, V2B  and  xV1 ∩V2,  then  there is  V in B such that  

                                 x  V  ⊆  V1 ∩V2. 

Proof  

 

 

 

 

 

 

 

 

 

2.3.4 Example  The family B={ [a, b ):  a< b,  a, b are in R } satisfies the conditions of 

Theorem 3, so it is the base of a topology. The set  R with this topology is called the 

Sorgenfrey line.  The topology of the Sogenfrey line is strictly  finer than the usual topology.  

 

2.3.5 Definition A subbase C for a topology τ  on a set X is a collection of subsets of  X such 

that all the finite intersections of members of C form a base  of  τ .  

2.3.6 Example 

 C={ (a,  ): aR } ∪{ (  , b ): bR }  is a subbase of the usual topology on R. 

 

Summary  
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 A topology  τ  on a set X is a collection of subsets of X which contains ___  and  X 

and is closed under taking  arbitrary ______  and finite ___________. 

Members of  τ are called  _____    sets 

 A subset  A  of   (X, τ ) is a closed  set  if __________ 

 The  closure  cl(A)   of set A  is  ____________ 

 The interior int(A) of set A  is  _____________ 

 A cluster point  of  A, the derive of  A 

 A base, subbase  of  a topology  

 Neighbourhoods of a point 
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Exercise 2 

1.  Let  N  be the set of all natural numbers. Let τ  be the set of all subset  U of N such that  

N-U is finite.  

 (i)  Show that  τ  is a topology  on  N.  This is called the co-finite topology. 

(ii) Find  cl({1, 2, 3})  and  cl(E), where E is the set of all even numbers. 

(iii)  Let D be the set of all odd numbers .  Is   cl(D∩E) = cl(D)∩cl(E) true? 

2.  Let  τ  and  σ be two topologies on set X. Show that  τ ∩ σ is also a topology on X. 

3. Prove for any subset A of a topological space X,  

        int(A)=X-cl(X-A)  and       cl(A)=X-int(X-A)  hold. 

4. Use the results in  exercise 3  to prove Theorem 2.1.9 . 

5.  Show that  x is in  cl(A)  if and only if every neighbourhood of x intersects  A. 

6.  Let  A be a fixed subset of a set X.   

  a)  Show that  τ ={ U⊆X:  A⊆U  } is a topology on X.  

  b)  Describe the closure of a subset B with respect to the topology τ in a). 

7.  Call a subset  U of  R2  radially open if  it contains an open line segment in each direction 

about each of its point. 

a)  Show that all the radially open set of R2  form a topology on R2.  The plane with this 

topology is called the radial plane. 

b)  Compare this topology with the usual topology. 

8.   

a)  Show that for any open set U  in a topological space  X,  

cl(int(cl(U))=cl(U).  (  or    U-o-=U-)  
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b)  Using a) to show that  for any  set A ,  there are at most 14 different sets in the following 

sequences  

                A,  Ac,  Ac-,  Ac-c,… 

                 A,  A-c,  A-c-,  A -c-c,… 

where   Ac=X-A,  B- is the closure of  B. 

9. Let  P(X) denote the  power set of X  and    σ:  P(X)→P(X) be a mapping such that for any 

A, B in P(X), 

   1)  σ(ᴓ)=ᴓ; 

   2)  A⊆σ(A)  for all subset A; 

   3)   σ(σ(A))=σ(A); 

   4)   σ(A∪B)=σ(A)∪σ(B) . 

Define  τ={ U:  σ(X-U)=X-U}.  

Show that τ  is a topology on X and for any  subset A, cl(A)=σ(A) holds. 

*A mapping   σ:  P(X)→P(X) satisfying 1) - 4) is called a closure operator on X. 
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Chapter three:  Continuous functions  
 

Outline: 

 Definition 

 Example 

 Equivalent conditions 

 Homeomorphisms 

 Subspaces 

 

3.1 Continuous functions  

 

We now define continuous function from a topological space to another space.  

Recall  by  1.10  Corollary  that  a  function f: (M, d) → (N, σ)  between two metric  space is 

continuous  if  and only if  for any open set W of N, f-1 (W)={ xM:  f(x) W } is open.  

Now  we   define continuous functions between topological spaces.  

 

 

3.1.1 Definition 

A function f: XY from a topological space (X,  ) to a topological space (Y,  ) is  

continuous at a point x0 in X if for any nbhd( abbreviation for neighbourhood)  V of  f(x0)  

there is a  nbhd  U of  x0   such that  f(U) V. 

If f is continuous at every point in X, it is said to be continuous( everywhere). 

 

 

 

 

 

 

 

3.1.2 Theorem Let f: XY be  a function from a topological space 

X to a topological space Y. Then the followings are equivalent: 

 

a)  f  is continuous; 

b)  for  each open set V of  Y, f-1(V)  is open in X; 

c)  for each closed set K of  Y,  f-1(K) is closed in X; 

d)  for each subset A of  X,  f(clX(A))  clY(f(A)). 

e)   for each subset B of  Y,  clX(f -1(B)))  f -1 (clY(B)). 

 

 

Proof: We prove the theorem by showing a) b)   c) d)e) a). 
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3.1.3 Example 

If X is a discrete space,  then every function from X to another topological space is 

continuous. 

Any function from a topological space to an indiscrete space is continuous. 

 

 

 

 

 

 

 

 

 

3.1.4 Proposition Let f: XY be  a  function from a topological space 

X to a topological space Y and  let B  be a base of  Y. Then f is continuous iff for any  

open set V in B, f-1(V) is open.  

 

Proof  
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3.1.5 Example  

The function f: RR,  defined by f(x)=|x|, is continuous with respect to the usual topology.  

 

 

 

 

 

 

 

 

 

 

 

3.1.6 Theorem If f: XY  and g:YZ  are continuous functions between topological  

spaces, then the composition g  f:  X Z  is continuous. 

Proof ( exercise ) 

 

 

 

 

3.1.7 Definition Let f: XY be  a function from a topological space X to a topological 

space Y . 

a) f is called an open function if  for any open set U of X, f(U) is an open set of Y. 

b) f  is called a closed function if  for any closed K  of X, f(K) is a closed set of Y. 

c)  f is called a clopen function if it is both open and closed. 

 

3.1.8 Theorem  A function f: XY  between topological spaces is open if and only if  

for any open set U in a base  B of  X, f(U) is open.  

 

Proof 
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3.1.9 Examples 

a)  The function  f: RR defined by f(x)=x+1 is both open and closed. 

 

 

 

 

b)  The function g: RR defined by  g(x)=x2  is continuous that is  not open. To see this, 

let U=(-1, 1). Then U is open, but g((-1, 1))=[0, 1) which is not open. 

 

 

 

 

 

c)  Every function from a space to  a discrete space is both open and closed. Thus an open 

(closed) function need not be continuous. 

 

 

Exercise 

Consider the  continuous  function f:  R  →R  given  by  f(x)=|x|.  Is  f   open ? 

Can you  

 

 

 

 

 

3.2 Homeomorphisms 

 

3.2.1 Definition  A  function f: XY between two topological spaces is called an  

homeomorphism  if  it is  a bijection and both f and  f-1   are  continuous. 

Two spaces X and Y are homeomorphic if  there is a homeomorhism between them. 

 

3.2.2 Remark 

 

a) Given two topological spaces X and Y, one often wants to know whether the two  

spaces are homeomorphic.  For example,  

i)   are R and R2  homeomorphic?  

ii)  are Q  homeomorphic to R? 

In order to prove two spaces are homeomorphic, we need to define a homeomorphism 

between them. 

 

b) A property p of topological spaces is called a topological property if  a space X  

has property p, then every space homeomorphic to X also has property p. One method  

of proving two spaces X and Y are not homeomorphic is to find a topological property  

satisfied by X but not satisfied by Y.   

 

3.2.3 Example  

The space X=(0, 1)   is homeomorphic to  any  space  Y=(a, b)  with  
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a<b, where both X and Y have the metric topology  induced by the usual metric. 

To  show this, we define f: X Y by   f(x)=a+x(b-a) for each x in X. Then f is bijective. The 

inverse  f-1: YX  sends y in (a, b) to (y-a)/(b-a) for y in Y. Thus both f and its inverse are 

continuous. 

 

3.2.4 Example The space Q of rational numbers ( with the metric topology induced by the 

usual metric)  is not homeomorphic to R. This is because Q is a countable set and R is not 

countable.  

 

 3.2.5 Proposition If X is homeomorphic to Y and Y is homeomorphic to Z, then X is 

homeomorphic to Z. 

Proof  

 

 

 

 

 

 

 

3.2.6 Theorem Let f: XY be a bijection between two topological spaces. Then the 

following statements are equivalent: 

a) f is an homeomorphism; 

b) for any G X, f(G) is open in Y iff  G is open in X; 

c) for any FX, f(F) is closed in Y iff F is closed in X; 

d)  for any  EX,  f(clX(E))=clY(f(E)). 

e)  f is clopen. 

Proof  

 

 

 

 

 

 

 

 

 

3.3 Subspaces 

 

3.3.1 Definition  Let  (X,  )  be a  topological  space  and  A be a subset  of X.  The 

collection   ’={ U  U:A  } is a topology on  A, called the relative topology for A. 

A  subset  of  X  equipped with the relative topology is called a subspace of  (X,  ). 

 

3.3.2 Examples 

a)  The  real line R  with the usual topology is a subspace of R2. 

b)  Let  Z be the set of all integers.  As a subspace of  R,  Z inherits  the  

discrete topology.  

c) Any subspace of a discrete space is discrete, and any subspace of a indiscrete space is  

indiscrete.  
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Exercise  

Show that the function iA: AX from a subspace A of X into X defined by iA(x)=x  is 

continuous. 

 

3.3.3 Theorem  Let A be a subspace of a topological space X. Then 

 

a)   H  A  is open in A iff  H=AU  for some open set U of X; 

b)  F  A  is closed  in A iff  H=AK  for some closed  set K of X; 

c)   for any  EA,  clA(E)=A clX(E);  

d)  if  Bx is a nbhd base for x in X, then {UA: UBx} is a nbhd base for x in A; 

e)  if   B  is  a base of   X, then  {UA: UB}  is a base for A. 

 

Proof: 

 

 

 

 

 

 

 

 

 

Remark Note that  intA(E)=A intX(E) need not be true for all subsets E of A. 

For example,  let X=R2,  A=E= the ox-axis. Then  intA(E)=E, while  

                                        intX(E) A= A= . 

 

If  f: XY is a function and A is a subset of  X,  then f restricts to a function from A  to 

denoted by  f|A:  AY such that  f|A(x)=f(x) for any  x in A. 

 

3.3.4  Theorem Let  f: XY  be a continuous functions between two topological spaces. 

Then for any subspace  A of  X,  the restriction function  f|A: A Y  is continuous. 

 

 

Exercise  Prove Theorem 3.3.4. 

 

 

 

 

 

Summary  

 A function f: XY between two topological spaces is continuous at  a  point  

x0   in X  if  ____________________________________________ 

 A  function  f: XY is called a continuous function if  it  is  continuous  

______________ 

 

 f: XY  is  continuous  iff  for any open set V of  Y,  __________  is  an  

     open  set of X 

 f: XY  is  continuous  iff  for any closed set V of  Y,  __________  is  a  

closed   set of X 
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 f: XY is continuous  iff  for  any  subset A of  X,   

                        clY(f(A) ________ f(clX(A) 

 

 f: XY is continuous  iff  for any subset B of  Y,  

                        clX(f-1(B)) _____   f-1(clY(B)) 

 a function f: XY between two topological spaces is a homeomorphism  

      if  f  is  a bijection such that ____________________________________ 

 A subset A of a topological space X equipped with the _________  topology is called   a   

subspace of  X. 
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Exercise 3 

 

1. Prove Theorem 3.1.6.  

 

2. Show that  f: XY is continuous iff  for any  subset  B of  Y,  

                    f-1(intY(B))     intX f-1(B). 

[hint: use Theorem 3.1.2 and note that intY(B)=B if B is open ] 

 

3. Let   A be a subspace of a topological space X and g: ZA  be a function from a space Z 

to A. Show that g  is continuous if and only if the composition  iA  g:  Z X is continuous. 

 

4. Prove:  

(a)  the composition of  two open functions is an open function; 

(b)  the composition of two closed functions  is  a  closed function. 

 

5..  Give a bijective  continuous function  f: XY such that it’s inverse f-1: YX is not 

continuous. 

 

6. Let  f: XY be a homeomorphism. 

 

(a) Show that if   X  is a discrete space then Y is discrete. 

(b)  Show that  if  X is indiscrete  then Y is indiscrete. 
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Chapter four:  

Cartesian product and quotient space 

 
Outline: 

 (finite )Cartesian product 

 Example 

 Quotient spaces 

 

 

In this lesson, we study more  methods of constructing new topological spaces  from given 

ones.  

 

4.1 Cartesian product(finite) 

 

Let  X1, X2, …, Xn be sets. The Cartesian product of  Xi
’s  is defined as 

        


n

i

i

1

X =X1×X2× …×Xn={(x1, x2, …, xn):  xiXi, i=1,…, n}. 

For any subsets  UiXi(i=1,…,n), define  

 

       U1×U2× …×Un={(x1, x2, …, xn):  xiUi, i=1,…, n}. 

 

Note: We can define the product of any collection of sets. 

 

4.1.1 Examples  

a)  {1, 2}×{a, b}={ (1, a), (1, b), (2, a), (2, b)}. 

b)   R×R={ (x, y): x, yR }=R2. 

 

If  X1, X2, …, Xn  are topological spaces, we can define a topology on their Cartesian product 

set so that it becomes a topological space. 

 

4.1.2 Lemma 

Let (X1, τ1), (X2, τ2),  …, (Xn, τn) be topological spaces. The family 

 

                       Ɓ={ U1×U2× …×Un:  Ui  τi, i=1, 2,…, n} 

 

of subsets of X= X1×X2× …×Xn  is the base of a topology on X. 

Proof  
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4.1.3 Definition  Let { (Xi, τi): i=1, 2, …, n}  be topological spaces. 

The topology τ on  X= X1×X2× …×Xn  generated by the base  Ɓ={ U1×U2× …×Un:  Ui  τi, 

i=1, 2,…, n} is called the product topology and the space (X, τ) is called the  Cartesian  

product of  (Xi, τi)’s. 

 

4.1.4  Example  If (X, τ)  and  (Y, υ) are topological spaces. Then { U×V: U  τ, V  υ} is a 

base of the product topology on X×Y.  

Thus a subset  M of  X×Y  is open if and only if for each  (x,y) in M, there are open sets U 

and V in X and Y respectively such that  xU, yV and U×VM. 

 

 4.1.5 Theorem  Let (X1, τ1), (X2, τ2),  …, (Xn, τn) be topological spaces. Assume that  for 

each i, Ɓi  is a base of  Xi (i=1, …, n). Then  

                         Ɓ’={ V1×V2× …×Vn:  Vi  Ɓ i, i=1, 2,…, n} 

is a base of the product topology. 

Proof:  

 

 

 

 

 

 

 

 

 

4.1.6 Example The real line  R has a base consisting of open intervals, so the plane  

R2=R ×R has a base  consists of  product of open intervals  (a1, b1)×(a2, b2).  

 

                                       

                                          

 

 

 

4.1.7 Example 

A  product of discrete spaces is discrete  and a product of indiscrete spaces is indiscrete. 

 

Let   X1, X2, …, Xn be sets. For each i ( i=1, 2,…, n) the projection from X=X1×X2× …×Xn  

to  Xi, denoted by     

                               pi: X1×X2× …×Xn  Xi  

 is defined by  

                               pi(x1, x2, …, xn)=xi. 

For example,    p1: X1×X2× …×Xn  X1   

                         P1(x1, x2, …, xn)=x1.   
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4.1.8 Example  

  p1: R×R  R sends  (x, y) to _________ ,  and   p2: R×R  R  sends  (x,y) to _______ 

 

Exercise  Consider X1×X2× …×Xn .  

 Let  U be a subset of  Xi.  Show that   pi
-1 (U)= X1×…×Xi-1×U×Xi+1 ×…×Xn. 

 

 

 

 

4.1.9 Theorem Let (X1, τ1), (X2, τ2),  …, (Xn, τn) be topological spaces. 

For each i, the projection from the product space X1×X2× …×Xn  to  Xi  is  continuous. 

Proof (Exercise) 

 

4.1.8 Theorem Let (X1, τ1), (X2, τ2),  …, (Xn, τn) be topological spaces and f: YX  a 

function from a space Y to the product space of Xi’s. Then f is continuous if and only if for 

each i, the composition function  pi  f: YXi  is continuous. 

 

                             f 

                    Y                X1×X2× …×Xn   

 

                                      pi 

 

                                              Xi 

 

Proof  

 

 

 

 

 

 

 

 

Note: The above theorem shows that the product space has the initial topology with respect 

to the projection functions. 

 

 

 

4.2 Quotient spaces 

 

4.2.1 Definition  

Let (X, τ) be a topological space and  f: XY be an onto function from X to a set Y. Then  

τf ={ VY:  f-1(V)   τ  } is a topology on Y, called the quotient topology induced on Y by f. 

In this case the space Y is called a quotient space of X and f is called the quotient function. 

 

 

Exercise 

Verify  that τf ={ VY:  f-1(V)   τ  } is a topology. 

 

 

fip  
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4.2.2 Remark  

Every  quotient  function  is a continuous function.  

 

 

4.2.3 Theorem  If X and Y are topological spaces and f: XY is a continuous onto 

function. Then the topology on Y is the quotient topology τf  if  f is either open or closed. 

Proof: 

 

 

 

 

 

4.2.4 Example  Let  X=[0, 2π] with the usual topology,  and  

                                 Y={(x,y) R2: x2+y2=1} 

with its usual subspace topology.  Define   f: XY  by  f(x)=(cos x, sin y). Then f is 

continuous, closed  and onto. So Y is a quotient space of X.  

 

 

 

4.2.5 Theorem Let Y have the quotient topology induced by a function  f  from X onto Y. 

Then a function  g: Y  Z is continuous if and only if the composition g  f: XZ is 

continuous. 

 

 

                               f 

                    Y                     Y   

 

                                               g 

 

                                              Z 

 

 

Proof. 

 

 

 

 

 

 

 

 

 

Summary 

 A base of the product topology  

 Each projection function from the product space is continuous 

 Quotient topology induced by a onto function 

 Properties of quotient space 
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Exercise 4 

 

1. (a) Show that each projection function  from a product space is an open function. 

    (b) Let p1: R
2R be the projection to the ox-axis. Determine if p1  is a closed function.  

 

2. Show that if  Y is a quotient space of X, and Z is a quotient space of Y, then Z is a quotient  

space of  X. 

 

3.  Let  A and B be subsets of spaces X and Y, respectively. 

  (a) Show that  cl(A×B)=cl(A) ×cl(B). 

  (b) Show that A×B is a closed set of the product space X×Y iff A and B are closed sets of X 

and Y. 

 

4. Let  A and B be subsets of spaces X and Y, respectively. 

   Show that  int(A×B)=int(A) ×int(B). 

   

5. Show that  the  function   f: X×Y Y×X is an homeomorphism, where f(x,y)=(y, x) for 

each (x, y) in X×Y. 

 

6. Let X and Y be disjoint topological spaces  and  Z=XY.  

Let υ={  U⊆Z:   U∩X is open in X and U∩Y is open  Y}. Show that υ  is a topology on Z. 

[The space Z is called the sum of X and Y] 

 

7.  Spaces of closed sets. 

For any topological space X, let Г(X) be the set of all non-empty closed subsets of X. 

For any open sets U1, U2, …, Un  of X, let   

       V(U1, U2, …, Un  )={B  Г(X): B⊆
ni

i

iU


1

  and B∩Ui≠ᴓ for each i}. 

Show that all  V(U1, U2, …, Un  ) form a base of a topology on Г(X); this topology is called 

the Vietoris topology on Г(X). 
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Chapter five:  Axioms of separation  
 

Outline: 

 T0, T1 and T2 spaces 

 Convergence in topological space 

 Regular spaces 

 Normal spaces 

 

5.1 T0, T1 and T2 spaces 

 

5.1.1 Definition(T0 space ) 

A topological space  X is a  T0  space  if  for any two distinct points  x  and y in X,  

there exists an open set containing one and not another. 

 

 

                                      x                y           

                           

  

 

or                                   x             y  

 

 

5.1.2  Example 

 

a)  Every  discrete space is T0.  A indiscrete space containing more than one point is  

      NOT T0.  

 

b) The Sierpinski  space  X={0,1} is a T0  space.  

 

c)  The real line  R is a  T0  space. 

     For any  two different points  a  and b( assume a< b),  the open set   U=(a-1, b) contains a  

but not b.  

 

 

5.1.3 Definition(T1 space) 

A topological space  X  is a  T1  space  if  for any two distinct points  x  and y in X, there is an 

open set U containing x but not y   and an open set V containing y but not x . 
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5.1.4  Example 

 

a)   Every  T1  space is T0. 

b)  The Sierpinski space  X={0, 1} is a T0  space but not  T1.  

      There is no open set U containing 0 but not 1. 

 

Exercise  Prove that   if    X  is a  T1 space  and  A is a subspace of X, then A  is T1. 

 

 

5.1.5 Theorem(Properties of  T1 spaces) 

a)  A space X is T1 iff   cl({x})={x} for any point x in X. 

b)   Every subspace of a T1  space is T1. 

c)  The product space of two T1 spaces is  T1. 

Proof:  
 

 

 

 

 

 

 

5.1.6 Definition(T2  spaces ) 

  A space  X is a T2  space  ( or Hausdorff  space ) if for any two distinct points  x and y in X,  

there exist disjoint open sets U and V such that xU and yV. 

                       
Exercise   Show that every T2  space is T1. 

 

 

 

 

 

 

 

5.1.7 Example 

U

x

y

V

x

y

V
U

x

y

and 
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a) The real line  R is   T2.    

     If     a < b,  then the open sets   U=(a-1,  (a+b)/2 )  and  V=((a+b)/2, b+1)  satisfy the 

requirement.  

 

b)  If  (X, d ) is a metric space, then for any two distinct points x and y,  

U=B(x, a), V=B(y, a) are disjoint open sets containing x and y respectively, where a=1/2d(x, 

y).   Thus every  metric space is T2. 

 

 

5.1.8 Example 

Let  X=N with the finite complement topology. Then X is T1  but not T2.  For example, if   

U is an open set containing  x=1  and V be  an open set containing  y=2. Then X-U and X-V 

are finite sets,  so  X-(U∩V)=(X-U)∪(X-V)≠X, hence  U∩V≠ᴓ.  

 

5.1.9 Theorem If  f: X→Y is a continuous function and Y is Hausdorff, then  

                                     { (x, y):  f(x)=f(y) } 

is a closed subset of X×Y. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2  Convergence  in topological spaces 

 

5.2.1  Example  

 Let  N be the set of all natural numbers and let ≤  be the ordinary order of  numbers.  Then 

the relation  ≤  is   

i)   reflexive   (  for any n,  n≤ n ), 

ii)  transitive ( n≤m, m≤k  imply  n≤k ), and 

iii)  directed ( for any two  members m and n in N, there is  k  such that  n, m≤k ). 

 

b)  Let  X be a set and  D is the set of all finite subsets of  X. Then (D, ⊆)  is a directed set. 

 

Let  D be a set. We say the set D is directed by relation ≤ ( or  (D, ≤) is a directed set ) 

If  the following conditions are satisfied:  

i)    x≤ y ≤z  imply  x≤z;  (transitive) 

ii)   for any x in D,  x≤x;  (reflexive ) 

iii)  for any x, y in D, there  is z in D such that x ≤ z  and  y ≤ z. (directed ) 
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5.2.2 Example  

a)   Let  X be a set and  D be  the set of all finite subsets of  X. Then (D, ⊆)  is a directed  

      set. 

b)   Let  x be a point of a topological space X. The neighbourhood system  N(x) of x is a   

      directed set with respect to the inverse inclusion relation  . 

c)  The set of all partitions  of  [0, 1] is a directed set, where   D1≤D2  for two partitions iff  

     D2  is finer than D1 ( D2  has more partition points ). 

d)  Let X={1} and define 1≤1. Then (X, ≤) is a directed set. 

 

5.2.3 Definition(Net and sequence) 

A net  in a topological space  X  is a function from a directed set Ʃ into X. We shall use  

S={xσ : σƩ}  (  or  {xσ}  ) to denote a net in X ), where Ʃ is called the index set of the net. 

If  Ʃ=N, then the net is called a sequence. 

 

5.2.4 Definition(Convergence of nets) 

A net S={xσ : σƩ}  in a space  X   is said to converge to a point  x  in X ( or x is a limit of   

S  ) if  for each neighbourhood   U of  x, there is  a σ0 Ʃ, such that xσU holds for all  σ≥ 

σ0.  We write  xσ → x (  or   S→ x)  to denote the net S converges to x. 

 

The set of all limits of  S is denoted by  lim S. 

A point  x is called a cluster point of  a net S={xσ : σƩ}, if for each neighbourhood U of x 

and each   σ0Ʃ, there exists σ≥ σ0, such that xσ0U.  

 

5.2.5 Example  

a)  Let  xn=1-
n

1
, for each  n in N.  Then  xn→1  in  R. 

b)  Let  X={0, 1} be the Sierpinski space. The net {x1: 1{1}} converges to both point 0 and 

1.  

So the limits of a net need not be unique. 

 

Exercise  

Show that a point x is in cl(A) iff for any neighbourhood U of x, U∩A is non-empty. 

 

 

 

 

 

 

5.2.3 Theorem  A point x is in cl(A) iff there is a net in A that converges to x. 

 

Proof: 
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5.2.4 Theorem( Net characterization of  Continuous  functions)  

 A function  f: XY between two topological spaces is continuous iff for any net  S={xσ : σ

Ʃ}  in X,  S→ x in X  implies  f(S) → f(x) in Y, where    

                                     f(S)={f(xσ) : σƩ} .  

 

 

Proof: 

 

 

 

 

 

 

 

 

 

 

5.2.5 Theorem (Property of hausdorff spaces) 

A topological space X is a Hausdorff space if and only if every net in X converges to 

 at most one point. 

 

 

 

 

 

 

 

 

 

 

Summary  

 A topological space X is a T0 space if  for any two points x and y,  

____________________________________________ 

 A topological space X is a T1 space if  for any two points x and y,  ______________ 

 

 A topological space X is a T2 space if  for any two points x and y,   

 

______________________________________________________ 
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 The product of  T0 (T1, T2) spaces is  T0 (T1, T2) . The converses are also true. 

 

 A function f: XY between two topological spaces is continuous iff  for any  

net  S in X, S x in X implies  f(S) f(x) in Y. 

 A space X is T2  if and only if  for any net S in X, Sx and  Sy imply  

___________________ 

  

       

 

 

 

Exercise 5 

1. Show that the product  X×Y   of  spaces  X and Y is   T2  if and only if  both X and Y    

    are   T2. 

 

2.  Show that a space X is Hausdorff  iff  the set  diagonal  

                                        Δ={(x, x):  xX }  

   is a closed set of  the Cartesian product  X×X.    

                

3. The Zariski topology 

For a polynomial P in n variables, let   

                             K(P)={ (x1, …, xn) Rn : P(x1, …, xn)≠ 0}. 

 

  a) Show that  {K(P): P is a polynomial in n variables  } is  a base of  a topology on Rn.    

      The corresponding topology is called the Zariski topology. 

 

  b)  Show that the Zariski topology is T1. 

 

  c)  Describe the Zariski topology on R. Is it T2? 

 

4.  Let X=R and  τ={ (a, + ): aR or a = -  }. 

   a)  Show that τ  is a topology. 

 

   b) Which separation axioms does (X, τ) satisfy? 

 

   c) Find a sequence in X that converges to infinite different points. 

 

5.  Show that a subspace of  a T2  space is T2.  

 

6. 

   a)  Let f, g: X → Y be continuous functions and Y be a T2 space, then  

                       {x |  f(x)=g(x) }  

       is a closed set of  X.  

 

   b)  A subset  A  of  space X is a dense set if  cl(A)=X ( or A is dense in X ).  

       Use a) to  deduce that  if   f, g: X → Y are  continuous functions and Y is  a T2 space  

       such that  f(x)=g(x) for all x in a dense subset A of X, then f=g.  

 

7.  Let  X be a T0  space. Define  x≤y  for x, y in X if   xcl({y}). Prove each of the following 

statements: 
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  i)     x≤ x  for all x in X  ( reflexive ); 

 ii)    x≤ y ≤z  imply  x ≤z  ( transitive ); 

 iii)    x≤ y  and y≤ x  imply  x=y  ( antisymmetric ). 

  

* A binary relation  ≤  on a  set  X   satisfying the above three conditions is called a partial 

order X.  The partial order proved above is called the specialization order on space X. 

 

 

5.3 Regularity and complete regularity 

 

5.3.1 Definition(Regular space) 

A topological space X is a regular space if for any closed set A and point x with xA, there 

are disjoint open sets U and V such that xU and AV.  

A T1  regular space is called a  T3  space. 

 

                                       
 

Remark 

1) A regular space need not be T1.  For example, every indiscrete space is regular. 

 

2) Every  T3  space is T2. This is because for each point y in a T1  space,  A=cl({y})={y}. 

 

Exercise  

Let X be a regular space. Show that  if  A is  a  closed set  which is disjoint from  B ={b1, 

b2, …, bn },  then there are  disjoint open sets U and V containing A and B respectively. 

 

 

 

 

 

 

5.3.2 Theorem  The followings are equivalent for a topological space X. 

 

a)  X is regular. 

 

b)  If  U is an open set with  xU, then there is an open set V such that  

                                         xV cl(V) U. 

 

 

 

 

 

 

VU

A

x

U 

x V cl(V) 
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Proof 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3.3 Theorem 

a) Every subspace of a regular space is regular. 

b) The product X×Y of two spaces is regular if and only  if  both X and Y are regular. 

Proof  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Let I=[0, 1] denote the closed unit interval of real numbers with its usual topology. 

 

 

5.3.4 Definition(Completely regular space) 

A topological space X is completely regular iff for any closed set A and  bA, there is a 

continuous function f: X→I=[0,1]  such that f(b)=0 and  f(A)={1}. 

A T1 completely regular space is called a Tychonoff space ( or  T
2
13   space ). 
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Remark  In the definition of  complete regular spaces, we can change the condition into: 

There is a continuous  f: X→R such that f(A)={a}, f(x)=b and a ≠ b. 

 

 

 

 

 

 

Exercise 

Show that every complete regular space is regular. 

 

 

 

 

 

 

 

 

5.3.5  Example  

Let (X, d) be a metric space, A be  a closed set  and  bA.  

Define f: X→R by  

                             f(y)=d(y, A) for each y in X ( see Exercise 6.3 ). 

 

Then f(A)={0}  and  f(x)≠0.  Thus every metric space is completely regular. 

 

In particular,  R,  R2  and Rn  are completely regular. 

 

 

 

5.3.6 Theorem 

a) Every subspace of a completely regular space is completely regular. 

b) The product of two topological  spaces is completely regular iff each factor space is      

     completely regular. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



40 
 

 

 

 

 

 

 

 

 

 

 

 

5.4  Normal spaces 

 

5.4.1 Definition( Normal space) 

A topological space X is normal if for any  two disjoint closed  sets A and B in X, there are 

disjoint open sets U and V with  AU  and BV. 

A  normal  T1 –space is called a T4  space. 

 

 

                                 
 

 

 

 

 

 

5.4.2 Examples 

  

(a)  Every discrete space is normal. 

 

 (b)  Let A and B be disjoint closed sets in a metric space (X, d). For each x in A  and   y    

       in B choose x  and  y with  U(x, x )X - B  and  U(y, y )   X - A. 

Let               U= AxxU x 


:)
3

,({  }  and     V= }:)
3

,({ ByyU
y




  }. 

Then U and V are disjoint open sets with  AU  and BV. ( Exercise ) 

Thus every metric   space is normal.  

 

 In particular, R, R2, and Rn  are all normal spaces. 

 

 

5.4.3 Remark  A topological space X is normal if for any  closed sets A  and open set U 

containing  A, there is an open set V, AV cl(V) U. 

V
U

A B



41 
 

                                           
 

 

 

 

 

 

 

5.4.4  Urysohn’s Lemma 

A space X is normal iff for any two disjoint closed sets A and B in X, there is a continuous 

function  f: X→[0, 1]  such that f(A)={0}  and f(B)={1}. 

Proof:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.4.5 Tietze’s extension theorem 

A space X is normal iff for any closed  set and continuous  f: A→R, there is an extension of  f 

on X; that is there is a continuous  F: X→R  such that  F(x)=f(x) for all x in A.  

 

 

5.4.6 Remarks 

(a) A subspace of a normal space need not be normal. 

(b) A product of two normal spaces need not be normal. 

 

 

 

 

 

 

 

Summary 

cl(V)

V

U

A
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 Regular space, T3  space 

 Completely regular space, Tychonoff space 

 Normal space, T4  space 

 Uryson’s lemma 

 Tiez’s extension theorem 
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Exercise 6 

1.  

a) Show that the real line  R with the usual topology is regular. 

b) Show that every metric topology is regular. 

 

2. Let X be a regular space. Show that for each closed set A, A is the intersection of  all open 

sets containing A. 

Is the converse conclusion true? 

 

3.  Verify the Example 5.4.2 (b). 

 

4. Show that every T4 space is T3. 

  

5. Prove Remark 5.4.3. 

 

6. Show that every closed subspace of a normal space is normal. 

 

7. Show that if X is regular, then for any point x and closed set A that does not contain x,   

    there are disjoint open sets U and V containing x and A respectively and  

                                             cl(U)∩cl(V)=ᴓ. 

[Hint: Use Theorem 5.3.2 b)  ] 

 

8.*(Optional)  A topological space X is called completely Hausdorff  if for any two distinct 

points x and y in X, there is a continuous function f: X→I=[0, 1] such that f(x)=0 and f(y)=1. 

 

   (a) Show that every completely Hausdorff space is Hausdorff. 

   (b)  Is every subspace of a completely Hausdorff space a  completely Hausdorff space? 
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Chapter six: 

Countability properties 
 

Outline 

 First countable spaces 

 Second countable spaces 

 Separable spaces  

 Lindelöff  spaces  

 

 

In this chapter we study some topological properties which are defined by means of countable 

families of sets. 

 

 

6.1 First countable spaces 

 

Recall that for a point x in a space X, N(x) denotes the set of all neighbourhoods of x.  

A neighbourhood base of x is a subset B of  N(x)  such that for each U in N(x) there is V in B 

so that  V is contained in U. 

 

 

6.1.1 Definition (First Countablility ) A space X is called first countable (C1 space)  if every 

point in X has a countable neighbourhood base. 

 

 

6.1.2 Examples 

 

(a)  The real line R with the ordinary topology is first countable. 

 

(b)  Every metric space is first countable. 
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6.1. 3 Example  

Let X be a non-countable set. Then  X with the finite complement topology is not first 

countable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.1.4 Proposition  Every  subspace of a first countable space is first countable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A base B for  a topological space (X, τ)  is a collection B  of open sets,  such that every 

member U of  τ  is a union of some members of  B. 

 

 

6.1.5 Definition  A space X is second countable (C2 space ) if it has a countable base (i.e. 

there is a base B={ Ui: iN } consisting of countable number of members). 
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6.1.6 Example 

 (a)  The real line R is second countable. The  set  B={ (r, s): r < s are rational numbers } is a   

        countable   base of R.  

 

(b)  Let  X  be a non-countable set and  X  have  the discrete  topology,  then  X  is not  

      second  countable.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If there is an  surjective  (open) continuous mapping   f: X→Y from the space X onto space 

Y, then Y is called a  continuous (open ) image of X. 

 

 

 

[Optional] 

 

6. 1.7  Theorem  

(1)  A continuous  open image of  a second countable space is second countable. 

(2) Every subspace of a second countable space is second countable. 

(3) The product of two second countable  spaces X and Y is second countable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.2  Separable spaces  
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6.2.1  Definition  

A subset  A of a topological space X is called a dense set if  cl(A)=X. 

 

 

 

 

 

 

 

 

6.2.2  Proposition  

A subset A is dense in X  iff  for any nonempty open set U of  X, AU  . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.2.3  Example  

 

(a)  The  set  Q  of all rational numbers is dense in the  real line  R.  

 

(b)   The set  R - Q (of all irrational numbers)  is also dense in R. 

 

 

 

 

 

 

 

 

6.2.4   Definition    
A topological space X is separable iff  X has a countable dense subset. 

 

 

 

 

 

6.2.5 Example  

(1) The real line  R is separable. 
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(2)  If  X is a non-countable set and X has  the discrete topology, then X  is not separable.   

 

 

 

 

 

 

 

 

 

 

6.2.6  Theorem  
a) The continuous image of a separable space is separable. 

 

b) An open subspace of a separable space is separable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.3  Lindelöff  spaces  

 

 

A collection U={ Uj: jJ} of open sets of  a space X is called an open cover if  the union  

of all Uj’s  equals X, i.e. if   

                                            X= jU{ : jJ }. 

If  U contains countable Ui, U is called a countable cover. 

 

A subcover U`  of  U is a subcollection of  U which is also a cover of X. 

 

 

 

 

 

6.3.1 Definition  A space X is called a Lindelöff  space if every open cover of X has a     

    countable subcover.  
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6.3.2  Proposition  Every closed subspace of a Lindelöff space is Lindelöff. 

[Exercise ] 

 

 

 

 

 

 

 

 

6.3.3  Theorem A regular, Lindelöff space is a normal space. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Summary  

 A topological space is first countable if  every point has a _______ 

 

 For example, ________________    are first countable. 

 

 A topological space is second countable if  it has a _______________ 

 

 Every second countable space is  _________________ 

 

 The product of  _______     spaces is __________ 

 

 A subspace of  a  _________  space   is  ___________ 

 

 A space X is a Lindelöff space if ___________________________________ 
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 A _________ and _____________ is normal. 

 

 

 

 

 

 

 

 

 

Exercise 7 

 

1. Show that the product XY of spaces X and Y is first countable iff  both X and Y are  

   first countable. 

 

2. Prove that every second countable space is first countable. 

  [Hint: Let B be a base of X. For each x in X, consider Bx={UB: x U }] 

 

3. Show that a subset A of X is dense in X iff  for any nonempty open set U  in a base  B  

    of X,  AU  . 

 

4. Show that a discrete space X is separable iff  X is a countable set. 

 

5. Let X be second countable and B={Ui: iN } be a countable base of X. Show that X is    

    separable. 

[ Hint: Choose a point bi from each Ui , then consider the subset A={bi: iN} ] 

 

6. Show that the product XY of two separable spaces is separable. 

Is the converse also true? 

[Hint: Let A and B be countable dense subsets of X and Y. Show AB is dense in the 

product space ] 

 

7. Show that if X is second countable, then it is Lindelöff. 

[Hint: Let B be a countable base for X. Suppose U is any open cover of X. For each  

U in U and x in U, choose some Bx, U in B such that x  Bx, UU. Then B’={ Bx, U : x

 U,U U} is countable because it is a subset of B. Assume B’={ Bx1, U1, Bx2, U2, ….. }. 

Show {U1, U2,… } is a subcover of U ] 
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Chapter 7 :   Compactness 

Outline: 

 Definition and examples 

 Tychonoff Theorem 

 Continuous functions on compact spaces 

 

7.1 Definition (Compact space)  

A topological space X is compact if  every open cover of X has a finite subcover. 

 

 

7.2 Example 

1)  The family   U={ (n,  + ):  n=0, -1, -2, … }  is an open cover of  real line  R, but it has   

no finite  subcover. Thus R is not compact. 

 

2)  The subspace I=[0,1]  of R is compact. In fact,  if  U  is an open cover of  I. Let  K be the 

set of all points c such that a finite subcover of  U  covers  [0, c]. Then  0 is in  K  and if   

d<c and c is in K then d is in K. Thus K is an interval.  If  K=[0, c], then c must equal 1. In 

fact , assume   c<1  we can choose a member U of U  that contains c, then  there is  0

such that  c(c-  , c+  )U. Since [0, c] is covered by finite number members of U, [0, 


2
1c ] is also covered by finite number of members of  U, so c+ 

2
1  is also in K, which 

contradicts that  K=[0, c]. On the other hand, if K=[0, c), let c be contained in a member Uc  

of  U  and  c(c-  , c+  )Uc, then [0, c- 
2
1 ] i1s covered by finite numbers of members of 

U ( as c- 
2
1  c- 

2
1  is in K), so [0, c] is also covered by finite numbers of members of  U , 

which implies  c is in K , a contradiction. All these show that K=[0,1]=I, that is I is covered 

by a finite number of members of  U.  So I is compact. 
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3) The subspace E = (0, 1) of  I is not compact. The open cover  

                       U  ={ (
nn
11 1  ,  ) : n=1,2,3 …}  

of  E does not have a finite subcover. 

Thus a subspace of a compact space need not be compact. 

 

 

 

4)  Every indiscrete space is compact. A discrete space X is compact iff X is a finite  

set. 

 

 

 

7.3 Definition  A family E of subsets of X has the finite intersection property if  

the intersection of any finite numbers of members of  E is nonempty.  

 

 

7.4 Example 

  (1) The family  {(r,  ): r R } has the finite intersection property. 

  (2) The family  { A:  A is a subset of  N and  N-A  is finite} has the finite intersection  

        property. 

  (3)  The family { (r, s):  r< s and r and s are rational numbers } does not have the finite  

        intersection property. 

 

 

Recall that a net S={xσ : σƩ}    in a topological space  X  is a function from a directed set Ʃ 

into X. A point  x is called a cluster point of  a net S={xσ : σƩ}, if for each neighbourhood 

U of x and each   σ0Ʃ, there exists σ≥ σ0, such that xσ0U.  
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7.5 Theorem  For a topological space X, the following statements  are equivalent. 

(1)  X is compact. 

(2)  Every family E of closed subsets of  X with the finite intersection property has a  

      nonempty intersection. 

(3) Every net in X has a cluster point. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

A subset A of a topological space is called a compact subset of X if the subspace A is 

compact. A subset A of X is compact iff  any open cover of A has a finite subcover. 
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7.6 Theorem  

(1) Every closed subset of a compact space is compact. 

(2) A compact subset of a Hausdorff space is a closed set. 

Proof: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.7 Corollary  A subset  B of  the real line  R is  compact  iff  B is a bounded ( i.e.  

     B   [-n, n] for some positive number n ) closed subset. 
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Recall that if there is an onto continuous function f: XY, then Y is called a continuous  

image of X. 

 

 

 

 

7.8 Theorem The continuous image of a compact space is compact. 

Proof:  

 

 

 

 

 

 

 

 

 

 

 

7.9 Theorem (Tychonoff ) The product of  topological spaces is compact  

     iff each factor space is compact. 
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Let X be a Hausdorff space and A, B be closed subsets of X.   Then both A and B are 

compact subsets of X by Theorem 6.6. 

By Exercise 8.2, there are disjoint open sets containing A and B respectively.  So we have 

 

7.10 Theorem Every  compact Hausdorff space is normal. 

 

 

Recall that in calculus we learned that every continuous function  f: [0, 1]R is bounded 

and f achieves its maximal and minimal values at some points. The following is a more 

general result. 

 

 

 

7.11 Theorem Every continuous real function defined on a compact space is bounded. 

 

 

 

 

 

Summary 

 A topological space X is compact if every open cover of X has a __________ 

 X is compact iff every net in X has a __________ 

 X is compact iff every family of closed with the _____________ property has  

____________ intersection 

 Closed subsets of compact space are _______ 

 Ever compact subset of a Hausdorff space is ________ 
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 The product of spaces is compact iff each ____________ 

 Every Hausdorff compact space is _____________ 

 Every continuous real function on  a compact space is _________ 

 

 

Exercise 8 

1. Let X be a Hausdorff  space. Prove that for any compact subset A of X and a point x not in 

A, there are disjoint open sets  U and V such that U contains x and V contains A. 

 2. Let  A and B be two disjoint compact subsets of a Hausdorff  space X. Show that there are 

disjoint open sets U and V containing A and B respectively. 

3. Let AB be a compact subset of  XY  contained in an open set W of XY. Show that 

there are open sets U of X and open sets V of Y such that ABUVW. 

4. Show that  a subset of  R2  is compact iff it is closed bounded. 

5. Prove Theorem 6.11. 

[Hint: Let  f: XR. Consider the open cover { f-1(-n, n): nN }] 

6. Let A and B be two compact subsets of a Hausdorff space X.  

(a) Show that A B is compact. 

(b) Show that AB is compact. 
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Chapter 8:  

Connectedness  of  topological spaces 

Outline 

 Definition, examples and basic properties 

 More properties 

 Some applications 

 

 

 

8.1  Connected spaces  
Consider the subspaces   of   real  line  R: 

              X=[0, 1] ,      Y=[0, 1/2) ⋃  (1/2,  1]  

Are   the subspaces X  and  Y  of R  homeomorphism ?  

That is, is there a  bijection   f  :  X  →Y  such that  both  f  and  f
-1

 :  Y →X are  continuous? 

 

 

The space  Y  can  be expressed  the  union  of  two disjoint, non-empty  open  subsets 

( closed sets ).   

But   X  cannot be expressed as the union of  two disjoint, non-empty open subsets. 

 

8.1.1 Definition 
A topological space  X  is  called   connected  if   there are  no  closed  subsets  F  and  E  

such that   

 (i)    X= F  ⋃  E; 

(ii)   F E= ; 

(iii)  F and  E  are non-empty. 

 

 

 

8.1.2  Example 
 (1)  The real line R  is  connected.  (See  Appendix 1  for the proof .) 

 (2)  The subspace  I=[0, 1]  of  R  is  connected. 

 (3)  Every  indiscrete  space   is  connected, as  it  has    only one  non-empty  closed  set.  
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8.1.3  Example 

 (1)  The subspace  Y=[0, 1] ⋃ [3, 4]  of   R  is not  connected. 

      This is because   F=[0, 1] = Y∩ [-1,  2]   and    E=[3, 4]= Y∩ [2,  5]  

      are  non-empty, disjoint  closed  sets  of  Y  and    Y=  F  ⋃ E. 

 

(2)  The  subspace   Q  of    R  consisting  of  all rational numbers   is  not connected.    

 

Exercise:    
Express   Q   as the union  of  two disjoint, non-empty  closed  sets. 

 

 

 

8.1.4 Remark 
A  subspace   X   of    the real line   R   is   connected  if and only  if   it  is  an  interval (finite  

or  infinite)  

 

8.1.5  Lemma   Let  X  be   a  topological  space. Then the following statements  are 

equivalent: 

 1)  X  is  not  connected. 

 2)  X  is  the union  of  two disjoint, non-empty  open sets. 

 3)  There is  a  non-empty, proper  subset that is both closed  and  open. 

 

8.1.6  Definition   
A  subset   A  of  a topological  space   X  is  called  a  connected  subset  of  X, if  A  is    

connected  with respect to the subspace topology.   

 

8.1.7  Example 
 (a)   Q  is  not a  connected  subset  of  R. 

 (b)   Every  closed interval  [a,  b]  is a connected  subset  of   R. 

 (c )   The  square   [0, 1] × [0, 1]={  (x, y):  0 ≤  x,  y  ≤  1 } is a  connected subset   of    R2 
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8.2 More properties  

8.2.1  Proposition 
 If  f: X→ Y is a continuous function  and  X  is  connected,  then  f(X)  is  a connected subset 

of  Y. 

 

Proof   We prove by contradiction. 

Assume that  f(X)  is  not  connected. 

There   are   open sets  U, V  of   Y   such  that  

             f(X)= (U∩f(X)) ⋃ (V∩ f(X),   

 U’=  U∩f(X)   and  V’= V∩ f(X)  are  non-empty  and  disjoint. 

 

Now    X= f-1 ( U’ ⋃  V’ ) 

               =  f-1( U’) ⋃ f-1 (V’ ) 

               =  f-1 (U∩f(X))  ⋃  f-1 (V∩ f(X) ) 

               = [f-1 (U)∩ f-1 (
 

f (X))]  ⋃ [ f-1 (V) ∩ f-1 (f(X) )] 

               = f-1U)∩ X  ⋃  f-1 (V) ∩ X 

               = f-1 (U)  ⋃  f-1 (V) . 

 

f-1 (U)   and     f-1 (V)  are   open  sets  as  f  is continuous,  

they are non-empty  and disjoint.   

This contradicts the assumption  that  X  is connected.  Hence  f(X) must  be connected.   
 

 

8.2.2 Corollary    
Let   X  and   Y  be  connected spaces. For any   a  in  X,   {a} × Y  is  a  connected   subset  

of   X× Y. 

Similarly,   X ×{b}  is  connected  for any  b  in  Y. 

 

8.2.3 Theorem   If   X  and   Y  are  connected, then  the product  space   X × Y  is  

connected.  

 

Sketch   of   the proof: 

 (i)  For any  points  A=(x, y), B= (x’, y’), if they have a common  component,  then  there is a 

connected  subset   

C(A, B)  of  the product space  containing  them 

Note that   

f-1 (f(X) )=X 
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 (ii) Fixed  a  point  A =(a, b) . For any   B=(z, w), 

 let  D=(b, z).  Then  C(A, D) and  C(D, B) are disjoint  connected  sets.  Then  C(A, D) ⋃ 
C(D, B) ( denote  it  by  F(A, B) ) is  a connected   set  containing   A  and   B. 

(iii)  Now  X× Y = ⋃ {  F(A, B): B  is an arbitrary point  in  X× Y,  is  connected  by  Lemma 
2.1  
 

By  Induction, we can  show the product of any finite  number of  connected spaces is 

connected. 

 

8.2.4  Corollary  
 (1)  R2

   

 and   any   Rn   are connected   spaces. 

 (2) The  square   [0, 1] × [0, 1]={  (x, y):  0 ≤  x,  y  ≤  1 } is   connected .   

 

                                  

 

 

(3) The cub [0, 1]3 is  connected.  

 

                                         

 

 

 

8.3 Some applications 

8. 3. 1  Theorem (Intermediate Value Theorem) 

 If  f :   [0, 1] → R    is   a  continuous  function,  and m is a number between  f(0)  and  f(1), 

then there is a  c ∈ [0, 1] such that f(c) = m. 

 

 

 

 

 

 

 

 

 



62 
 

 

 

 

 

 

 

 

 

 

8.3.2  Theorem ( Fixed point Theorem ) 

 If  f:  [0, 1]  →  [0, 1]  is  a continuous  function, then f has  a  fixed  point, that is there is  x
0
  

in  [0, 1]   such that   f(x
0
)= x

0  
.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

There are  hundreds different  fixed points theorems. The one we proved just now  for  [0, 1]  

is called the Brouwer fixed point theorem, named after  Luitzen Brouwer. There are many 

other  proofs  for this theorem. 

The  fixed point theorem also true for  any  closed convex set  of   R
n.
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See   http://en.wikipedia.org/wiki/Brouwer_fixed_point_theorem  for  more  about  this.
 

 

 

 

 

 

 

Appendix: 
The  real line R  is  connected. 

 

Proof:   

Assume that  R  is  not connected.  Then  R=A ⋃ B  where A and  B are non-empty  

and disjoint  closed sets  of  R.  Choose  a  in  A  and  b  in  B.  Then a   and  b  are 

different  points, assume that  a< b.  Let  A’ = A∩[a,  b] , B’ =B∩[a,  b].  Then  

A’  has  an upper bound ( e.g.  B ),  so  A’ has  a  supremum, say  b’.   It  can be  

shown that  b’  is in the closure  of  A’,  so  b’  must be in A’ ( as A’ is closed ). 

Then  b’<b ( otherwise  b=b’  is  in  both A and B ).  Also  (b’, b]  must be  

contained  in  B (otherwise  there is  a  d  in  (b’, b]  which is in  A’,  contradicting   

the assumption  of  b’ ).   But  then   cl((b’, b])=[b’, b]   is contained  in  B’,   

implying  b’  is  in  B’. Then   A ∩ B is   non-empty,  a contradiction. 

 

 Here  we use the property  of real  numbers:  

 Every  upper ( lower ) bounded subset  has  a supremum (infimum). 

 

 

Summary 

 A topological space X is connected  if ________________________ 

 

 If  f: X→Y is a continuous mapping  and X is connected then ________________ 

 

 The product of   ________________ spaces  is ____________________ 

 

 A subset  A  of the real line R is connected if and only if  __________________ 

 

 

http://en.wikipedia.org/wiki/Brouwer_fixed_point_theorem
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Exercise  9 

 

1.  Let   X   be   a discrete  space.  Show that  X  is  connected   iff   X  contains  just one    

     element. 

     [ Hint:   If    X   has more than   one  point , then  X= {a}  ⋃  (X- {a}).]  

 

2.  Show that  if   A  and  B  are  connected subsets  of   a topological space  X   such that    

     A ∩ B≠ᴓ   then   A⋃ B  is  connected.     

 

3.  (The Intermediate Value Theorem  for  connected spaces)  

     Let  X  be  connected     and    f : X  →   R   be   a  continuous  real  valued  function.  

    Assume that     a,  b are  points  in  X  such that    f(a)  <   m   <  f(b).  Show that   there is a 

    point   c   in  X   such that  f( c)  = m. 

    [Hint:  Every   connected  subset  of  R  is  an interval .]  

 

4.  Prove that  a  subspace   X   of    the real line   R   is   connected  if and only  if   it  is  an    

    interval (finite  or  infinite). 

 

5. Show that if  A is a connected subset of X, then cl(A) is also connected.  If cl(A) is   

    connected, can we deduce  that  A must be connected? 

 

 

 

 

 

 

 

 


