Introduction to general topology

Zhao Dongsheng

Aug 2012

Chapter one : Metric spaces

Outline:

- Definition of metric spaces, examples
- Continuous functions
- Open sets and closed sets

1.1 Example Let **R** be the set of all real numbers. For any *x*, *y* in **R**, define d(x, y)=|x-y|. Then

- i) $d(x, y) \ge 0;$
- ii) d(y, x)=0 if and only if _____;
- iii) $d(x, y) __d(y, x);$
- iv) d(x, y) = d(x, z) + d(z, y).

1.2 Definition A metric space is an ordered pair (M, ρ) consisting a set M together with a function $\rho: M \times M \rightarrow R$ such that for any $x, y, z \in M$:

M-a) $\rho(x, y) \ge 0;$ M-b) $\rho(y, x)=0$ if and only if x = y = ;M-c) $\rho(x, y) = \rho(y, x);$ (Symmetric) M-d) $\rho(x, y) = \rho(x, z) + \rho(z, y).$ (Triangle Inequality)

If all conditions except M-b are satisfied, the function ρ is called a <u>pseudometric</u> on M, and (M, ρ) is called a <u>pseudometric space</u>.

Remark: We may use different symbols for the function ρ . For instance, d(*x*, *y*), $\lambda(x, y)$ etc.

1.3 Examples

- a) (**R**, d) is a metric space, where **R** is the set of all real numbers and d(x, y) = |x-y|.
- b) Let $\mathbf{R}^n = \{ (x_1, x_2, \dots, x_n): x_i \text{ 's are real numbers } \}$. Define

$$\rho((x_1, x_2, ..., x_n), (y_1, y_2, ..., y_n)) = \sqrt{\sum_{k=1}^n (x_k - y_k)^2}.$$

Then (\mathbf{R}^n, ρ) is a metric space and this function ρ is called the usual metric on \mathbf{R}^n .

c) For **R**², the function $\rho_1((x_1, y_1), (x_2, y_2)) = |x_1 - x_2| + |y_1 - y_2|$ is a metric.

d) Let (M, ρ) be a metric space and A be a subset of M. Then (A, ρ) is also a metric space, called the subspace of M.

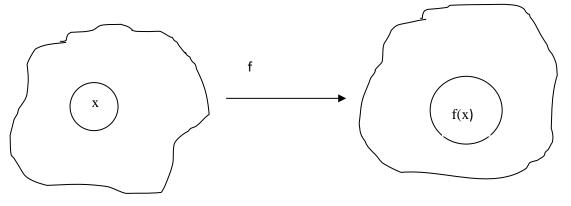
e) The discrete metric : Let X be a set. Define $\rho(x, x)=0$ and $\rho(x, y)=1$ for $x\neq y$. Then ρ is a metric on X, called the **discrete metric**.

1.4 Definition A function f: $M \rightarrow N$ from a metric space (M, ρ) to a metric space (N, σ) is *continuous* at appoint $x \in M$ if for any number $\varepsilon > 0$,

there is a positive number $\delta > 0$ such that

 $\sigma(f(x), f(y)) < \varepsilon$ whenever $\rho(x, y) < \delta$.

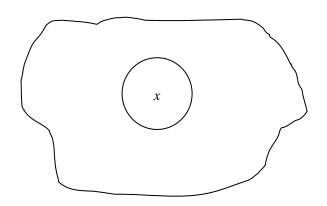
The function is called a continuous function if it is continuous at every point of X.



1.5 Definition Let (M, ρ) be a metric space and $x \in M$. For each number $\varepsilon > 0$, let

$$U(x, \varepsilon) = \{ y \in M: \rho(x, y) \le \varepsilon \},\$$

called the ε -disk (or ε -open ball) about *x*.

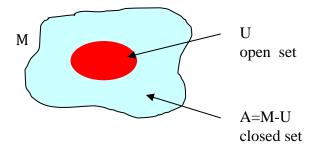


Exercise

- 1) In **R**, determine the set U(0, 4).
- 2) In the Example 1.3 e), find U(x, 1) and U(x, 2).

1.6 Definition A subset V of a metric space (M, ρ) is an **open set** if for each x in U, there is an $\varepsilon > 0$ such that $U(x, \varepsilon) \subseteq V$.

A subset A is called a **closed set** if it's complement $A^c=M - A$ is open.



For example, in **R**, the set $U=(0, 1)\cup(4, 5)$ is open.

The set [0, 1] is not open in **R**.

1.7 Theorem (properties of open sets) In any metric space (M, ρ) we have:

- 1) Any union of open sets is open.
- 2) Any finite intersection of open sets is open.
- 3) The empty set and M are open.

Proof

1.8 Examples

a) In **R**, a subset A is open if and only if it is the disjoint union of open intervals, i.e.

A= $\bigcup_{k=1}^{\infty} (a_k, b_k)$, where (a_k, b_k) are disjoint.

b) Every disk $U(x, \varepsilon)$ is open. (Exercise)

c) If (X, d) is a **discrete metric space**, then every set is open. In fact, for any subset A and

for any x in A, $U(x, 1) = \{x\} \subseteq A$.

d) Every finite set is closed.

1.9 Theorem A function $f: M \to N$ from a metric space (M, ρ) to a metric space (N, σ) is *continuous* at x_0 if and only if for any open set W of N containing $f(x_0)$, there is an open set U containing x_0 such that $f(U) \subseteq W$.

Proof

Recall that if f: X \rightarrow Y is a function, then for any subset B \subseteq Y,

 $f^{-1}(B) = \{ x \in X : f(x) \in B \}$, called the inverse image of B under f.

1.10 Corollary function f: $M \rightarrow N$ from a metric space (M, ρ) to a metric space (N, σ) is continuous if and only if for any open set W of N,

$$f^{-1}(W) = \{ x \in M : f(x) \in W \}$$

is open.

Hands-On- Exercise

Let U={ (x, y): x>0, y>0 }. Show that U is an open set of \mathbf{R}^2 with the usual metric.

Summary

- A metric space is an ordered pair (M, ρ) consisting of a set M and a function
 ρ: M×M→R satisfying the four conditions.
- A subset A is an open set if _____
- Every disk is an open set
- The union of any open sets is ______
- Any finite intersection of open sets is open

Exercise 1

1. Verify that the following function ρ is a metric on \mathbf{R}^n

$$\rho(x, y) = \max\{|x_1-y_1|, |x_2-y_2|, ..., |x_n-y_n|\}.$$

- 2. Let C([0, 1]) be the set of all of all continuous functions on the interval [0, 1].
- (i) Verify that the following function σ is a metric on C([0,1]).

$$\sigma(f,g) = \int_0^1 |f(x) - g(x)| dx$$

(ii) Verify that the following function η is a pseudo metric on C([0,1])

$$\eta(f,g) = |f(1/2) - g(1/2)|.$$

3. Show that every disk $U(x, \varepsilon)$ in a metric space is an open set.

[Hint: For any $y \in U(x, \varepsilon)$, $U(y, \varepsilon')$ is contained in $U(x, \varepsilon)$, where $\varepsilon' = \varepsilon - d(x, y)$]

4. A mapping f from a metric space (M, ρ) to metric space (N, σ) is an **isometry** if f is a bijection and $\rho(x, y) = \sigma(f(x), f(y))$ for all x, y in M. Two spaces M and N are isometric if there is an isometry between them.

Prove

- (i) Every isometry f and its inverse f^{-1} are continuous.
- (ii) The subspaces [0, 1] and [a, b] (a < b) of **R** are isomertric.

5. Let (M, ρ) be a metric space. Show that a subset A is closed iff whenever every disk about *x* meets A then *x* is in A.

6. Let ρ be a metric on M. Show that the following functions ρ_1 and ρ_2 are also metrics on M.

(i)
$$\rho_1(x, y) = 2 \rho(x, y)$$
.

(ii) $\rho_2(x, y) = \min\{ 1, \rho(x, y) \}.$

7*(Optional)

Let Q be the set of all rational numbers and p be a prime number. For each x in Q, define

 $|x|_p=0$ if x=0 and $|x|_p=p^{-k}$ if $x=p^k\frac{m}{n}$, where m and n are integers not divisible by p.

Define $\rho(x, y) = |x-y|_p$ for any x, y in Q.

- (a) Find $|15/9|_5$ and $|2.6|_7$.
- (b) Show that $|xy|_p = |x|_p |y|_p$.
- (c) Show that $|x+y|_p \le \max\{ |x|_p, |y|_p\}.$
- [hint: Assume $|\mathbf{x}|_p = \max\{ |\mathbf{x}|_p, |\mathbf{y}|_p\}$]
- (d) Show that $\rho(x, y) = |x-y|_p$ defines a metric on Q. This called the p-adic metric on Q.

Chapter two: Topological Spaces

Outline:

- Definition of topological spaces, examples
- Closure operator
- Interior operator
- Neighbourhoods,
- Bases and subbases

2.1 Topological spaces

2.1.1 Definition A topology on a set X is a collection τ of subsets of X such that the following conditions are satisfied:

- T-1) Any union of members of τ is a member of τ ; (closed under arbitrary unions)
- T-2) any finite intersection of members of τ is a member of τ ;

(closed under finite intersections)

T-3) \varnothing and X are members of τ .

If τ is a topology on X, the members of τ are called **open sets** of X.

The pair (X, τ) (or just X) is called a topological space.

If $\tau_1 \subseteq \tau_2$ are topologies, then τ_2 is said to be finer than τ_1 .

2.1.2 Example

a) Let (M, ρ) be a metric space. The set of all open sets of M form a topology, called the metric topology and denoted by τ_{ρ} .

If (X, τ) is a topological space such that $\tau = \tau_{\rho}$ for some metric ρ , then (X, τ) is called **metrizable.**

b) The metric topology generated by the usual metric on any subset of \mathbb{R}^n is called the usual topology. Hereafter, when a topology is used on a subset of \mathbb{R}^n without mention it is assumed to be the usual topology.

c) Let X be any set. The power set P(X) (all subsets of X) is a topology on X, called the **discrete topology**. Discrete topology is the finest topology on X.

d) For any set X, $\tau = \{ \emptyset, X \}$ is a topology, called the **indiscrete topology**. It is the coarsest topology on X.

e) Sierpinski topology.

Let X={ 0, 1} and let $\tau = \{ \emptyset, \{1\}, X \}$. Then τ is a topology. The space (X, τ) is called the Sierpinski space.

2.1.3 Definition If (X, τ) is a topological space and $A \subseteq X$, then A is a closed set if its complement X - A is open.

2.1.4 Examples

a) Every closed interval [a, b] is closed in R.

b) In the discrete topological space, every subset is closed.

c) In the Sierpinski space, the closed sets are \emptyset , $\{0\}$ and X

2.1.5 Theorem

C-1) Any intersection of closed sets is closed;

C-2) any finite intersection of closed set is closed;

C-3) the empty set and X are closed.

2.1.6 Definition The <u>closure</u> of a subset A of a topological space (X, τ) is defined to be

 $A = cl(A) = \bigcap \{ K \subseteq X \mid K \text{ is closed and } A \subseteq K \}.$

Since any intersection of closed sets is closed, the closure of a subset is closed and is the smallest closed set containing the set.

Remark.

- 1) $A \subseteq B$ implies $cl(A) \subseteq cl(B)$.
- 2) cl(X)=X.
- 3) In the discrete space, the closure of any set A is A.
- 4) In the indiscrete space X, cl(A)=X for any nonempty set A.

2.1.7 Theorem Let A, B and E be subsets of a topological space X. Then

K-1) $E \subseteq cl(E);$

- K-2) cl(cl(E))=cl(E);
- K-3) $cl(A \cup B)=cl(A) \cup cl(B);$
- K-4) cl(a)=a;
- K-5) E is closed iff cl(E)=E.

Proof.

2.1.8 Definition Let A be a subset of a topological space X. The **interior** of A in X is the set

$$int(A)=A^{\circ}=\cup\{ U\subseteq A: U \text{ is open } \}.$$

Remark

- 1) int(A) is the largest open set <u>contained</u> in A.
- 2) $A \subseteq B$ implies $int(A) \subseteq int(B)$.

3) int(A)=X-cl(X-A), cl(A)=X-int(X-A). (Exercise)

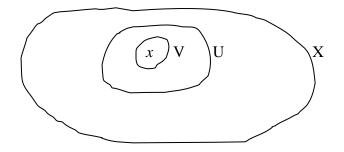
2.1.9 Theorem Let A, B and E be subsets of a topological space X. Then

- I-1) $int(E) \subseteq E$;
- I-2) int(int(E))=int(E);
- K-3) $int(A \cap B)=int(A) \cap int(B);$
- K-4) int(X)=X;
- K-5) E is open iff int(E)=E.

Proof (Exercise)

2.2 Neighbourhoods

2.2.1 Definition A neighbourhood U of a point x in a topological space is a subset that contains an open V containing x.



A neighbourhood that is open is called an open neighbourhood. The set of all neighbourhoods of x is denoted by N_x , called the neighbourhood system at x.

2.2.2 Theorem Let *x* be any point of a topological space X. then

N-1) for any U in N_x , x is in U;

N-2) if U, $V \in \mathbf{N}_x$, then $U \cap V \in \mathbf{N}_x$;

N-3) if $U \in \mathbf{N}_x$ and $U \subseteq V$ then $V \in \mathbf{N}_x$;

N-4) $G \subseteq X$ is open if and only if G is a neighbourhood of every point in G.

Proof

2.2.3 Definition A neighbourhood <u>base</u> at *x* in a topological space X is a collection \mathbf{B}_x of neighbourhoods of *x* such that for any U in \mathbf{N}_x , there is V in \mathbf{B}_x such that $V \subseteq U$.

2.2.4 Examples

1) For any point x in a topological space X, all the open neighbourhoods of x form a neighbourhood base at x.

2) In any metrizable space X, all disks about x form a neighbourhood base at x.

Also, all disks U(x, r) with r a positive rational number form a neighbourhood base at x.

Thus every x has a <u>countable neighbourhood base</u>.

3) If X is a discrete space, then for each x, $B_x = \{\{x\}\}\$ is a neighbourhood base at x.

Exercise Show that for any x in R, {(x-1/n, x+1/n): n in N } is a nbhd base at x.

2.2.5 Definition (Accumulation points) An **accumulation point** (cluster point) of a set A in a topological space X is a point x of X such that every neighbourhood of x contains a point of A, other than x. The set A' of all cluster points of A is called the <u>derived</u> set of A.

For example, the accumulation points of (0, 1) in R form the set [0, 1].

2.2.6 Theorem For any set A in a topological space,

 $cl(A) = A \cup A^{}$.

Proof

2.3 Bases and subbases

Sometimes using a subfamily to define a topology is easier than directly describing the topology.

2.3.1 Definition Let (X, τ) be a topological space. A base **B** for X is a collection $B \subseteq \tau$, such that every member U of τ is a union of some members of **B**,

that is for each U in τ , there exist { $V_i : i \in I$ } $\subseteq B$, such that U= $\bigcup \{V_i : i \in I\}$.

2.3.2 Examples

a) In R, all the open intervals form a bases of the usual topology.

In any metrizable space, all the open disks form a bases.

- b) $\{\{x\}: x \in X\}$ is a bases of the discrete space.
- c) In R, all the intervals (s, r) with s, r rational numbers form a bases of the usual topology.

2.3.3 Theorem A collection B of subsets of X is the base of a topology on X if and only if

1) $X=\bigcup\{V: V\in \mathbf{B}\};$

2) if $V_1, V_2 \in \mathbf{B}$ and $x \in V_1 \cap V_2$, then there is V in B such that

 $x \in \mathbf{V} \subseteq \mathbf{V}_1 \cap \mathbf{V}_2.$

Proof

2.3.4 Example The family $B = \{ [a, b] : a < b, a, b are in R \}$ satisfies the conditions of Theorem 3, so it is the base of a topology. The set R with this topology is called the Sorgenfrey line. The topology of the Sogenfrey line is strictly finer than the usual topology.

2.3.5 Definition A subbase C for a topology τ on a set X is a collection of subsets of X such that all the <u>finite intersections</u> of members of C form a base of τ .

2.3.6 Example

C={ $(a, +\infty)$: $a \in \mathbb{R}$ } \cup { $(-\infty, b)$: $b \in \mathbb{R}$ } is a subbase of the usual topology on \mathbb{R} .

Summary

• A topology τ on a set X is a collection of subsets of X which contains _____ and X and is closed under taking arbitrary ______ and finite _____.

Members of τ are called _____ sets

- A subset A of (X, τ) is a closed set if _____
- The closure cl(A) of set A is _____
- The interior int(A) of set A is _____
- A cluster point of A, the derive of A
- A base, subbase of a topology
- Neighbourhoods of a point

Exercise 2

1. Let N be the set of all natural numbers. Let τ be the set of all subset U of N such that N-U is finite.

- (i) Show that τ is a topology on N. This is called the co-finite topology.
- (ii) Find $cl(\{1, 2, 3\})$ and cl(E), where E is the set of all even numbers.
- (iii) Let D be the set of all odd numbers. Is $cl(D \cap E) = cl(D) \cap cl(E)$ true?
- 2. Let τ and σ be two topologies on set X. Show that $\tau \cap \sigma$ is also a topology on X.
- 3. Prove for any subset A of a topological space X,

int(A)=X-cl(X-A) and cl(A)=X-int(X-A) hold.

- 4. Use the results in exercise 3 to prove Theorem 2.1.9.
- 5. Show that x is in cl(A) if and only if every neighbourhood of x intersects A.
- 6. Let A be a fixed subset of a set X.
- a) Show that $\tau = \{ U \subseteq X : A \subseteq U \}$ is a topology on X.
- b) Describe the closure of a subset B with respect to the topology τ in a).

7. Call a subset U of R^2 radially open if it contains an open line segment in each direction about each of its point.

a) Show that all the radially open set of R^2 form a topology on R^2 . The plane with this topology is called the radial plane.

b) Compare this topology with the usual topology.

8.

a) Show that for any open set U in a topological space X,

 $cl(int(cl(U))=cl(U). (or U^{-o}=U^{-})$

b) Using a) to show that for any set A, there are at most 14 different sets in the following sequences

where $A^c=X-A$, B⁻ is the closure of B.

9. Let P(X) denote the power set of X and $\sigma: P(X) \rightarrow P(X)$ be a mapping such that for any A, B in P(X),

- 1) $\sigma(a)=a;$
- 2) $A \subseteq \sigma(A)$ for all subset A;
- 3) $\sigma(\sigma(A))=\sigma(A);$
- 4) $\sigma(A \cup B) = \sigma(A) \cup \sigma(B)$.

Define $\tau = \{ U: \sigma(X-U)=X-U \}.$

Show that τ is a topology on X and for any subset A, $cl(A)=\sigma(A)$ holds.

*A mapping $\sigma: P(X) \rightarrow P(X)$ satisfying 1) - 4) is called a closure operator on X.

Chapter three: Continuous functions

Outline:

- Definition
- Example
- Equivalent conditions
- Homeomorphisms
- Subspaces

3.1 Continuous functions

We now define continuous function from a topological space to another space. Recall by 1.10 Corollary that a function f: $(M, d) \rightarrow (N, \sigma)$ between two metric space is continuous if and only if for any open set W of N, f⁻¹ (W)={ x \in M: f(x) \in W } is open. Now we define continuous functions between topological spaces.

3.1.1 Definition

A function f: $X \rightarrow Y$ from a topological space (X, τ) to a topological space (Y, σ) is continuous at a point x_0 in X if for any nbhd(abbreviation for neighbourhood) V of $f(x_0)$ there is a nbhd U of x_0 such that $f(U) \subseteq V$.

If f is continuous at every point in X, it is said to be continuous(everywhere).

3.1.2 Theorem Let $f: X \rightarrow Y$ be a function from a topological space X to a topological space Y. Then the followings are equivalent:

- a) f is continuous;
- b) for each open set V of Y, $f^{-1}(V)$ is open in X;
- c) for each closed set K of Y, $f^{-1}(K)$ is closed in X;
- d) for each subset A of X, $f(cl_X(A)) \subseteq cl_Y(f(A))$.
- e) for each subset B of Y, $cl_X(f^{-1}(B))) \subseteq f^{-1}(cl_Y(B))$.

Proof: We prove the theorem by showing a) \Rightarrow b) \Rightarrow c) \Rightarrow d) \Rightarrow e) \Rightarrow a).

3.1.3 Example

If X is a discrete space, then every function from X to another topological space is continuous.

Any function from a topological space to an indiscrete space is continuous.

3.1.4 Proposition Let $f: X \to Y$ be a function from a topological space X to a topological space Y and let **B** be a **base** of Y. Then f is continuous iff for any open set V in **B**, $f^{-1}(V)$ is open.

Proof

3.1.5 Example

The function f: $R \rightarrow R$, defined by f(x)=|x|, is continuous with respect to the usual topology.

3.1.6 Theorem If $f: X \to Y$ and $g: Y \to Z$ are continuous functions between topological spaces, then the composition $g \circ f: X \to Z$ is continuous. **Proof** (exercise)

3.1.7 Definition Let $f: X \to Y$ be a function from a topological space X to a topological space Y.

a) f is called an open function if for any open set U of X, f(U) is an open set of Y.b) f is called a closed function if for any closed K of X, f(K) is a closed set of Y.c) f is called a clopen function if it is both open and closed.

c) i is caned a cropen function if it is both open and crosed.

3.1.8 Theorem A function $f: X \rightarrow Y$ between topological spaces is open if and only if for any open set U in a base **B** of X, f(U) is open.

Proof

3.1.9 Examples

a) The function f: $R \rightarrow R$ defined by f(x)=x+1 is both open and closed.

b) The function g: $R \rightarrow R$ defined by $g(x)=x^2$ is continuous that is not open. To see this, let U=(-1, 1). Then U is open, but g((-1, 1))=[0, 1) which is not open.

c) Every function from a space to a discrete space is both open and closed. Thus an open (closed) function need not be continuous.

Exercise

Consider the continuous function f: $R \rightarrow R$ given by f(x)=|x|. Is f open? Can you

3.2 Homeomorphisms

3.2.1 Definition A function $f: X \rightarrow Y$ between two topological spaces is called an homeomorphism if it is a bijection and both f and f^{-1} are continuous. Two spaces X and Y are homeomorphic if there is a homeomorphism between them.

3.2.2 Remark

a) Given two topological spaces X and Y, one often wants to know whether the two spaces are homeomorphic. For example,

- i) are R and R^2 homeomorphic?
- ii) are Q homeomorphic to R?

In order to prove two spaces are homeomorphic, we need to define a homeomorphism between them.

b) A property p of topological spaces is called a topological property if a space X has property p, then every space homeomorphic to X also has property p. One method of proving two spaces X and Y are <u>not homeomorphic</u> is to find a topological property satisfied by X but not satisfied by Y.

3.2.3 Example

The space X=(0, 1) is homeomorphic to any space Y=(a, b) with

a
b, where both X and Y have the metric topology induced by the usual metric.
To show this, we define f: $X \rightarrow Y$ by f(x)=a+x(b-a) for each x in X. Then f is bijective. The
inverse f⁻¹: $Y \rightarrow X$ sends y in (a, b) to (y-a)/(b-a) for y in Y. Thus both f and its inverse are
continuous.

3.2.4 Example The space Q of rational numbers (with the metric topology induced by the usual metric) is not homeomorphic to R. This is because Q is a countable set and R is not countable.

3.2.5 Proposition If X is homeomorphic to Y and Y is homeomorphic to Z, then X is homeomorphic to Z. **Proof**

3.2.6 Theorem Let f: $X \rightarrow Y$ be a bijection between two topological spaces. Then the following statements are equivalent:

a) f is an homeomorphism;

b) for any $G \subseteq X$, f(G) is open in Y iff G is open in X;

c) for any $F \subseteq X$, f(F) is closed in Y iff F is closed in X;

d) for any $E \subseteq X$, $f(cl_X(E))=cl_Y(f(E))$.

e) f is clopen.

Proof

3.3 Subspaces

3.3.1 Definition Let (X, τ) be a topological space and A be a subset of X. The collection $\tau' = \{ U \cap A : U \in \tau \}$ is a topology on A, called the relative topology for A. A subset of X equipped with the relative topology is called a **subspace** of (X, τ) .

3.3.2 Examples

a) The real line R with the usual topology is a subspace of R^2 .

b) Let Z be the set of all integers. As a subspace of R, Z inherits the discrete topology.

c) Any subspace of a discrete space is discrete, and any subspace of a indiscrete space is indiscrete.

Exercise

Show that the function $i_A: A \rightarrow X$ from a subspace A of X into X defined by $i_A(x)=x$ is continuous.

3.3.3 Theorem Let A be a subspace of a topological space X. Then

- a) $H \subseteq A$ is open in A iff $H=A \cap U$ for some open set U of X;
- b) $F \subseteq A$ is closed in A iff $H=A \cap K$ for some closed set K of X;
- c) for any $E \subseteq A$, $cl_A(E) = A \cap cl_X(E)$;
- d) if \mathbf{B}_x is a nbhd base for x in X, then $\{U \cap A: U \in \mathbf{B}_x\}$ is a nbhd base for x in A;
- e) if B is a base of X, then $\{U \cap A: U \in B\}$ is a base for A.

Proof:

Remark Note that $int_A(E)=A \cap int_X(E)$ need not be true for all subsets E of A. For example, let $X=R^2$, A=E= the ox-axis. Then $int_A(E)=E$, while $int_X(E) \cap A=\emptyset \cap A=\emptyset$.

If f: $X \rightarrow Y$ is a function and A is a subset of X, then f restricts to a function from A to denoted by $f|_A$: $A \rightarrow Y$ such that $f|_A(x)=f(x)$ for any x in A.

3.3.4 Theorem Let $f: X \to Y$ be a continuous functions between two topological spaces. Then for any subspace A of X, the restriction function $f|_A: A \to Y$ is continuous.

Exercise Prove Theorem 3.3.4.

Summary

- A function f: X→Y between two topological spaces is continuous at a point x₀ in X if ______
- A function f: $X \rightarrow Y$ is called a continuous function if it is continuous
- f: X→Y is continuous iff for any open set V of Y, _____ is an open set of X
- f: X→Y is continuous iff for any closed set V of Y, _____ is a closed set of X

- $f: X \rightarrow Y$ is continuous iff for any subset A of X, $cl_Y(f(A) _ f(cl_X(A))$
- $f: X \rightarrow Y$ is continuous iff for any subset B of Y, $cl_X(f^{-1}(B)) _ f^{-1}(cl_Y(B))$
- A subset A of a topological space X equipped with the ______ topology is called a subspace of X.

Exercise 3

1. Prove Theorem 3.1.6.

2. Show that $f: X \rightarrow Y$ is continuous iff for any subset B of Y, $f^{-1}(int_Y(B)) \subseteq int_X f^{-1}(B).$

[hint: use Theorem 3.1.2 and note that $int_Y(B)=B$ if B is open]

3. Let A be a subspace of a topological space X and g: $Z \rightarrow A$ be a function from a space Z to A. Show that g is continuous if and only if the composition $i_{A \circ}$ g: $Z \rightarrow X$ is continuous.

4. Prove:

(a) the composition of two open functions is an open function;

(b) the composition of two closed functions is a closed function.

5.. Give a bijective continuous function $f: X \rightarrow Y$ such that it's inverse $f^1: Y \rightarrow X$ is not continuous.

6. Let $f: X \rightarrow Y$ be a homeomorphism.

(a) Show that if X is a discrete space then Y is discrete.

(b) Show that if X is indiscrete then Y is indiscrete.

Chapter four: Cartesian product and quotient space

Outline:

- (finite)Cartesian product
- Example
- Quotient spaces

In this lesson, we study more methods of constructing new topological spaces from given ones.

4.1 Cartesian product(finite)

Let $X_1, X_2, ..., X_n$ be sets. The Cartesian product of X_i 's is defined as

$$\prod_{i=1}^{n} X_{i} = X_{1} \times X_{2} \times \ldots \times X_{n} = \{(x_{1}, x_{2}, \ldots, x_{n}): x_{i} \in X_{i}, i=1,\ldots, n\}.$$

For any subsets $U_i \subseteq X_i$ (i=1,...,n), define

 $U_1 \times U_2 \times ... \times U_n = \{(x_1, x_2, ..., x_n): x_i \in U_i, i=1,..., n\}.$

Note: We can define the product of any collection of sets.

4.1.1 Examples

a) $\{1, 2\} \times \{a, b\} = \{(1, a), (1, b), (2, a), (2, b)\}.$ b) $R \times R = \{(x, y): x, y \in R\} = R^2.$

If $X_1, X_2, ..., X_n$ are topological spaces, we can define a topology on their Cartesian product set so that it becomes a topological space.

4.1.2 Lemma

Let $(X_1, \tau_1), (X_2, \tau_2), \dots, (X_n, \tau_n)$ be topological spaces. The family

B={
$$U_1 \times U_2 \times ... \times U_n$$
: $U_i \in \tau_i, i=1, 2, ..., n$ }

of subsets of $X = X_1 \times X_2 \times ... \times X_n$ is the base of a topology on X. **Proof**

4.1.3 Definition Let { (X_i, τ_i) : i=1, 2, ..., n} be topological spaces.

The topology τ on $X = X_1 \times X_2 \times ... \times X_n$ generated by the base $\mathbf{B} = \{ U_1 \times U_2 \times ... \times U_n : U_i \in \tau_i, i=1, 2, ..., n \}$ is called the **product topology** and the space (X, τ) is called the Cartesian product of (X_i, τ_i) 's.

4.1.4 Example If (X, τ) and (Y, υ) are topological spaces. Then $\{U \times V : U \in \tau, V \in \upsilon\}$ is a base of the product topology on $X \times Y$.

Thus a subset M of X×Y is open if and only if for each (x, y) in M, there are open sets U and V in X and Y respectively such that $x \in U$, $y \in V$ and $U \times V \subseteq M$.

4.1.5 Theorem Let $(X_1, \tau_1), (X_2, \tau_2), \dots, (X_n, \tau_n)$ be topological spaces. Assume that for each *i*, \mathbf{B}_i is a base of X_i (*i*=1, ..., n). Then $\mathbf{B'} = \{ V_1 \times V_2 \times \dots \times V_n : V_i \in \mathbf{B}_i, i=1, 2, \dots, n \}$

is a base of the product topology. **Proof:**

4.1.6 Example The real line R has a base consisting of open intervals, so the plane $R^2=R \times R$ has a base consists of product of open intervals $(a_1, b_1) \times (a_2, b_2)$.

4.1.7 Example

A product of discrete spaces is discrete and a product of indiscrete spaces is indiscrete.

Let $X_1, X_2, ..., X_n$ be sets. For each i (i=1, 2,..., n) the *projection* from $X=X_1 \times X_2 \times ... \times X_n$ to X_i , denoted by

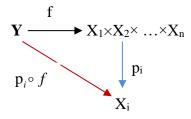
 $p_i: X_1 \times X_2 \times \ldots \times X_n \to X_i$ is defined by For example, $p_i(x_1, x_2, \ldots, x_n) = x_i.$ $p_1: X_1 \times X_2 \times \ldots \times X_n \to X_1$ $P_1(x_1, x_2, \ldots, x_n) = x_1.$

4.1.8 Example

 $p_1: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ sends (x, y) to _____, and $p_2: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ sends (x, y) to _____

4.1.9 Theorem Let $(X_1, \tau_1), (X_2, \tau_2), \ldots, (X_n, \tau_n)$ be topological spaces. For each *i*, the projection from the product space $X_1 \times X_2 \times \ldots \times X_n$ to X_i is continuous. Proof (Exercise)

4.1.8 Theorem Let (X_1, τ_1) , (X_2, τ_2) , ..., (X_n, τ_n) be topological spaces and f: $Y \rightarrow X$ a function from a space Y to the product space of X_i 's. Then f is continuous if and only if for each i, the composition function $p_i \circ f$: $Y \rightarrow X_i$ is continuous.



Proof

Note: The above theorem shows that the product space has the initial topology with respect to the projection functions.

4.2 Quotient spaces

4.2.1 Definition

Let (X, τ) be a topological space and f: $X \rightarrow Y$ be an onto function from X to a set Y. Then $\tau_f = \{ V \subseteq Y : f^{-1}(V) \in \tau \}$ is a topology on Y, called the quotient topology induced on Y by f. In this case the space Y is called a quotient space of X and f is called the quotient function.

Exercise

Verify that $\tau_f = \{ V \subseteq Y : f^{-1}(V) \in \tau \}$ is a topology.

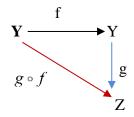
4.2.2 Remark

Every quotient function is a continuous function.

4.2.3 Theorem If X and Y are topological spaces and f: $X \rightarrow Y$ is a continuous onto function. Then the topology on Y is the quotient topology τ_f if f is either open or closed. Proof:

4.2.4 Example Let X=[0, 2π] with the usual topology, and Y={(x,y) ∈ R²: x²+y²=1} with its usual subspace topology. Define f: X→Y by f(x)=(cos x, sin y). Then f is continuous, closed and onto. So Y is a quotient space of X.

4.2.5 Theorem Let Y have the quotient topology induced by a function f from X onto Y. Then a function $g: Y \to Z$ is continuous if and only if the composition $g \circ f: X \to Z$ is continuous.



Proof.

Summary

- A base of the product topology
- Each projection function from the product space is continuous
- Quotient topology induced by a onto function
- Properties of quotient space

Exercise 4

1. (a) Show that each projection function from a product space is an open function.
(b) Let p₁: R²→R be the projection to the ox-axis. Determine if p₁ is a closed function.

2. Show that if Y is a quotient space of X, and Z is a quotient space of Y, then Z is a quotient space of X.

3. Let A and B be subsets of spaces X and Y, respectively.

(a) Show that $cl(A \times B) = cl(A) \times cl(B)$.

(b) Show that $A \times B$ is a closed set of the product space $X \times Y$ iff A and B are closed sets of X and Y.

4. Let A and B be subsets of spaces X and Y, respectively. Show that $int(A \times B)=int(A) \times int(B)$.

5. Show that the function $f: X \times Y \rightarrow Y \times X$ is an homeomorphism, where f(x,y)=(y, x) for each (x, y) in $X \times Y$.

6. Let X and Y be disjoint topological spaces and $Z=X \cup Y$. Let $v=\{ U\subseteq Z: U\cap X \text{ is open in } X \text{ and } U\cap Y \text{ is open } Y \}$. Show that v is a topology on Z. [The space Z is called the sum of X and Y]

7. Spaces of closed sets.

For any topological space X, let $\Gamma(X)$ be the set of all non-empty closed subsets of X. For any open sets $U_1, U_2, ..., U_n$ of X, let

 $\mathbf{V}(\mathbf{U}_1, \mathbf{U}_2, ..., \mathbf{U}_n) = \{ \mathbf{B} \in \Gamma(\mathbf{X}) \colon \mathbf{B} \subseteq \bigcup_{i=1}^{i=n} U_i \text{ and } \mathbf{B} \cap \mathbf{U}_i \neq \mathfrak{A} \text{ for each } i \}.$

Show that all $V(U_1, U_2, ..., U_n)$ form a base of a topology on $\Gamma(X)$; this topology is called the Vietoris topology on $\Gamma(X)$.

Chapter five: Axioms of separation

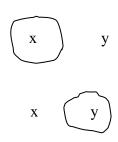
Outline:

- T₀, T₁ and T₂ spaces
- Convergence in topological space
- Regular spaces
- Normal spaces

5.1 T₀, T₁ and T₂ spaces

5.1.1 Definition(T₀ space)

A topological space X is a T_0 space if for any **two distinct points** x and y in X, there exists an open set containing one and not another.



or

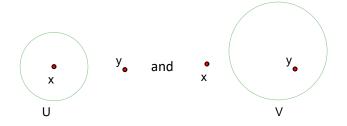
5.1.2 Example

- a) Every discrete space is T_0 . A indiscrete space containing more than one point is NOT T_0 .
- b) The Sierpinski space $X=\{0,1\}$ is a T_0 space.
- c) The real line R is a T_0 space.

For any two different points a and b(assume a < b), the open set U=(a-1, b) contains a but not b.

5.1.3 Definition(T₁ space)

A topological space X is a T_1 space if for any two distinct points x and y in X, there is an open set U containing x but not y **and** an open set V containing y but not x.



5.1.4 Example

- a) Every T_1 space is T_0 .
- b) The Sierpinski space $X=\{0, 1\}$ is a T_0 space but not T_1 . There is no open set U containing 0 but not 1.

Exercise Prove that if X is a T_1 space and A is a subspace of X, then A is T_1 .

5.1.5 Theorem(Properties of T₁ spaces)

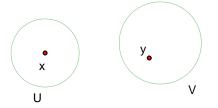
- a) A space X is T_1 iff $cl({x})={x}$ for any point x in X.
- b) Every subspace of a T_1 space is T_1 .

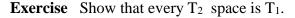
c) The product space of two T_1 spaces is T_1 .

Proof:

5.1.6 Definition(T₂ spaces)

A space X is a T₂ space (or Hausdorff space) if for any two distinct points x and y in X, there exist **disjoint open sets** U and V such that $x \in U$ and $y \in V$.





5.1.7 Example

a) The real line R is T_2 .

If a < b, then the open sets U=(a-1, (a+b)/2) and V=((a+b)/2, b+1) satisfy the requirement.

b) If (X, d) is a metric space, then for any two distinct points x and y, U=B(x, a), V=B(y, a) are disjoint open sets containing x and y respectively, where a=1/2d(x, y). Thus every metric space is T₂.

5.1.8 Example

Let X=N with the finite complement topology. Then X is T₁ but not T₂. For example, if U is an open set containing x=1 and V be an open set containing y=2. Then X-U and X-V are finite sets, so $X-(U\cap V)=(X-U)\cup(X-V)\neq X$, hence $U\cap V\neq \infty$.

5.1.9 Theorem If f: $X \rightarrow Y$ is a continuous function and Y is Hausdorff, then { (x, y): f(x)=f(y) } is a closed subset of $X \times Y$.

5.2 Convergence in topological spaces

5.2.1 Example

Let N be the set of all natural numbers and let \leq be the ordinary order of numbers. Then the relation \leq is

- i) reflexive (for any n, $n \le n$),
- ii) transitive ($n \le m, m \le k$ imply $n \le k$), and
- iii) directed (for any two members m and n in N, there is k such that n, $m \le k$).

b) Let X be a set and D is the set of all finite subsets of X. Then (D, \subseteq) is a directed set.

Let D be a set. We say the set D is directed by relation \leq (or (D, \leq) is a directed set) If the following conditions are satisfied:

- i) $x \le y \le z$ imply $x \le z$; (transitive)
- ii) for any x in D, $x \le x$; (reflexive)
- iii) for any x, y in D, there is z in D such that $x \le z$ and $y \le z$. (directed)

5.2.2 Example

- a) Let X be a set and D be the set of all finite subsets of X. Then (D, ⊆) is a directed set.
- b) Let x be a point of a topological space X. The neighbourhood system N(x) of x is a directed set with respect to the inverse inclusion relation \supseteq .
- c) The set of all partitions of [0, 1] is a directed set, where $D_1 \leq D_2$ for two partitions iff D_2 is finer than D_1 (D_2 has more partition points).
- d) Let $X = \{1\}$ and define $1 \le 1$. Then (X, \le) is a directed set.

5.2.3 Definition(Net and sequence)

A **net** in a topological space X is a function from a directed set Σ into X. We shall use $S = \{x_{\sigma} : \sigma \in \Sigma\}$ (or $\{x_{\sigma}\}$) to denote a net in X), where Σ is called the index set of the net. If $\Sigma = N$, then the net is called a **sequence**.

5.2.4 Definition(Convergence of nets)

A net $S = \{x_{\sigma} : \sigma \in \Sigma\}$ in a space X is said to **converge** to a point x in X (or x is a limit of S) if for each neighbourhood U of x, there is a $\sigma_0 \in \Sigma$, such that $x_{\sigma} \in U$ holds for all $\sigma \geq \sigma_0$. We write $x_{\sigma} \to x$ (or $S \to x$) to denote the net S converges to x.

The set of all limits of S is denoted by lim S.

A point x is called a cluster point of a net $S = \{x_{\sigma} : \sigma \in \Sigma\}$, if for each neighbourhood U of x and each $\sigma_0 \in \Sigma$, there exists $\sigma \ge \sigma_0$, such that $x_{\sigma 0} \in U$.

5.2.5 Example

a) Let $x_n=1-\frac{1}{n}$, for each n in N. Then $x_n \rightarrow 1$ in R.

b) Let $X=\{0, 1\}$ be the Sierpinski space. The net $\{x_1: 1 \in \{1\}\}$ converges to both point 0 and 1.

So the limits of a net **need not be unique**.

Exercise

Show that a point x is in cl(A) iff for any neighbourhood U of x, U $\cap A$ is non-empty.

5.2.3 Theorem A point x is in cl(A) iff there is a net in A that converges to x.

Proof:

5.2.4 Theorem(Net characterization of Continuous functions) A function f: $X \rightarrow Y$ between two topological spaces is continuous iff for any net $S = \{x_{\sigma} : \sigma \in \Sigma\}$ in X, $S \rightarrow x$ in X implies $f(S) \rightarrow f(x)$ in Y, where $f(S) = \{f(x_{\sigma}) : \sigma \in \Sigma\}$.

Proof:

5.2.5 Theorem (Property of hausdorff spaces) A topological space X is a Hausdorff space if and only if every net in X converges to **at most one point**.

Summary

- A topological space X is a T₀ space if for any two points x and y,
- A topological space X is a T₁ space if for any two points x and y, _____
- A topological space X is a T₂ space if for any two points x and y,

- The product of $T_0(T_1, T_2)$ spaces is $T_0(T_1, T_2)$. The converses are also true.
- A function f: X→Y between two topological spaces is continuous iff for any net S in X, S →x in X implies f(S) →f(x) in Y.
- A space X is T_2 if and only if for any net S in X, $S \rightarrow x$ and $S \rightarrow y$ imply

Exercise 5

- 1. Show that the product $X \times Y$ of spaces X and Y is T_2 if and only if both X and Y are T_2 .
- 2. Show that a space X is Hausdorff iff the set diagonal $\Delta = \{(x, x): x \in X \}$ is a closed set of the Cartesian product X×X.
- 3. The Zariski topology For a polynomial P in n variables, let

 $K(P) = \{ (x_1, ..., x_n) \in \mathbb{R}^n : P(x_1, ..., x_n) \neq 0 \}.$

- a) Show that {K(P): P is a polynomial in n variables } is a base of a topology on Rⁿ. The corresponding topology is called the Zariski topology.
- b) Show that the Zariski topology is T₁.
- c) Describe the Zariski topology on R. Is it T₂?
- 4. Let X=R and $\tau = \{ (a, +\infty) : a \in \mathbb{R} \text{ or } a = -\infty \}.$
 - a) Show that τ is a topology.
 - b) Which separation axioms does (X, τ) satisfy?
 - c) Find a sequence in X that converges to infinite different points.
- 5. Show that a subspace of a T_2 space is T_2 .

6.

- a) Let f, g: X → Y be continuous functions and Y be a T₂ space, then {x | f(x)=g(x) }
 is a closed set of X.
- b) A subset A of space X is a dense set if cl(A)=X (or A is dense in X).
 Use a) to deduce that if f, g: X → Y are continuous functions and Y is a T₂ space such that f(x)=g(x) for all x in a dense subset A of X, then f=g.

7. Let X be a T₀ space. Define $x \le y$ for x, y in X if $x \in cl(\{y\})$. Prove each of the following statements:

- i) $x \le x$ for all x in X (reflexive);
- ii) $x \le y \le z$ imply $x \le z$ (transitive);
- iii) $x \le y$ and $y \le x$ imply x = y (antisymmetric).

* A binary relation \leq on a set X satisfying the above three conditions is called a partial order X. The partial order proved above is called the **specialization order** on space X.

5.3 Regularity and complete regularity

5.3.1 Definition(Regular space) A topological space X is a **regular space** if for any closed set A and point x with $x \notin A$, there are disjoint open sets U and V such that $x \in U$ and $A \subseteq V$. A T₁ regular space is called a T₃ space.

Remark

1) A regular space need not be T_1 . For example, every indiscrete space is regular.

2) Every T₃ space is T₂. This is because for each point y in a T₁ space, $A=cl(\{y\})=\{y\}$.

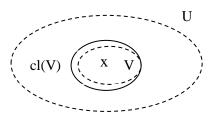
Exercise

Let X be a regular space. Show that if A is a closed set which is disjoint from $B = \{b_1, b_2, ..., b_n\}$, then there are disjoint open sets U and V containing A and B respectively.

5.3.2 Theorem The followings are equivalent for a topological space X.

a) X is regular.

b) If U is an open set with $x \in U$, then there is an open set V such that $x \in V \subseteq cl(V) \subseteq U$.



Proof

5.3.3 Theorem

a) Every subspace of a regular space is regular.b) The product X×Y of two spaces is regular if and only if both X and Y are regular.Proof

Let I=[0, 1] denote the closed unit interval of real numbers with its usual topology.

5.3.4 Definition(Completely regular space) A topological space X is **completely regular** iff for any closed set A and $b \notin A$, there is a continuous function f: $X \rightarrow I=[0,1]$ such that f(b)=0 and $f(A)=\{1\}$. A T₁ completely regular space is called a **Tychonoff** space (or $T3\frac{1}{2}$ space). **Remark** In the definition of complete regular spaces, we can change the condition into: There is a continuous f: X \rightarrow R such that f(A)={a}, f(x)=b and $a \neq b$.

Exercise

Show that every complete regular space is regular.

5.3.5 Example

Let (X, d) be a metric space, A be a closed set and $b \notin A$. Define f: X \rightarrow R by f(y)=d(y, A) for each y in X (see Exercise 6.3).

Then $f(A)=\{0\}$ and $f(x)\neq 0$. Thus every metric space is completely regular.

In particular, \mathbf{R} , \mathbf{R}^2 and \mathbf{R}^n are completely regular.

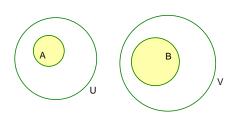
5.3.6 Theorem

a) Every subspace of a completely regular space is completely regular.

b) The product of two topological spaces is completely regular iff each factor space is completely regular.

5.4 Normal spaces

5.4.1 Definition(Normal space) A topological space X is **normal** if for any *two disjoint closed* sets A and B in X, there are disjoint open sets U and V with $A \subseteq U$ and $B \subseteq V$. A normal T_1 -space is called a T_4 space.



5.4.2 Examples

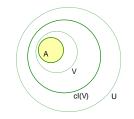
- (a) Every discrete space is normal.
- (b) Let A and B be disjoint closed sets in a metric space (X, d). For each x in A and y in B choose δ_x and δ_y with U(x, δ_x) \subseteq X B and U(y, δ_y) \subseteq X A.

Let $U = \bigcup \{ U(x, \frac{\delta_x}{3}) : x \in A \}$ and $V = \bigcup \{ U(y, \frac{\delta_y}{3}) : y \in B \} \}.$

Then U and V are disjoint open sets with $A \subseteq U$ and $B \subseteq V$. (Exercise) Thus every metric space is normal.

In particular, **R**, \mathbf{R}^2 , and \mathbf{R}^n are all normal spaces.

5.4.3 Remark A topological space X is normal if for any closed sets A and open set U containing A, there is an open set V, $A \subseteq V \subseteq cl(V) \subseteq U$.



5.4.4 Urysohn's Lemma

A space X is normal iff for any two disjoint closed sets A and B in X, there is a continuous function $f: X \rightarrow [0, 1]$ such that $f(A) = \{0\}$ and $f(B) = \{1\}$. **Proof:**

5.4.5 Tietze's extension theorem

A space X is normal iff for any closed set and continuous $f: A \rightarrow R$, there is an *extension* of f on X; that is there is a continuous $F: X \rightarrow R$ such that F(x)=f(x) for all x in A.

5.4.6 Remarks

- (a) A subspace of a normal space need not be normal.
- (b) A product of two normal spaces need not be normal.

Summary

- Regular space, T₃ space
- Completely regular space, Tychonoff space
- Normal space, T₄ space
- Uryson's lemma
- Tiez's extension theorem

Exercise 6

- 1.
- a) Show that the real line **R** with the usual topology is regular.
- b) Show that every metric topology is regular.

2. Let X be a regular space. Show that for each closed set A, A is the intersection of all open sets containing A.

Is the converse conclusion true?

- 3. Verify the Example 5.4.2 (b).
- 4. Show that every T_4 space is T_3 .
- 5. Prove Remark 5.4.3.
- 6. Show that every closed subspace of a normal space is normal.
- 7. Show that if X is regular, then for any point x and closed set A that does not contain x, there are disjoint open sets U and V containing x and A respectively and $cl(U)\cap cl(V)=\infty$.

[Hint: Use Theorem 5.3.2 b)]

8.*(Optional) A topological space X is called **completely Hausdorff** if for any two distinct points x and y in X, there is a continuous function f: $X \rightarrow I=[0, 1]$ such that f(x)=0 and f(y)=1.

- (a) Show that every completely Hausdorff space is Hausdorff.
- (b) Is every subspace of a completely Hausdorff space a completely Hausdorff space?

Chapter six: Countability properties

Outline

- First countable spaces
- Second countable spaces
- Separable spaces
- Lindelöff spaces

In this chapter we study some topological properties which are defined by means of countable families of sets.

6.1 First countable spaces

Recall that for a point x in a space X, N(x) denotes the set of all neighbourhoods of x. A <u>neighbourhood base</u> of x is a subset **B** of N(x) such that for each U in N(x) there is V in **B** so that V is contained in U.

6.1.1 Definition (First Countablility) A space X is called <u>first countable</u> (C1 space) if every point in X has a countable neighbourhood base.

6.1.2 Examples

- (a) The real line **R** with the ordinary topology is first countable.
- (b) Every metric space is first countable.

6.1.3 Example

Let X be a non-countable set. Then X with the **finite complement** topology is not first countable.

6.1.4 Proposition Every *subspace* of a first countable space is first countable.

A base **B** for a topological space (X, τ) is a collection **B** of open sets, such that every member U of τ is a union of some members of **B**.

6.1.5 Definition A space X is second countable (C2 space) if it has a countable base (i.e. there is a base $B = \{ U_i : i \in N \}$ consisting of countable number of members).

6.1.6 Example

- (a) The real line **R** is second countable. The set **B**={ (r, s): r < s are rational numbers } is a countable base of **R**.
- (b) Let X be a non-countable set and X have the discrete topology, then X is not second countable.

If there is an surjective (open) continuous mapping $f: X \rightarrow Y$ from the space X onto space Y, then Y is called a continuous (open) image of X.

[Optional]

6.1.7 Theorem

- (1) A continuous open image of a second countable space is second countable.
- (2) Every subspace of a second countable space is second countable.
- (3) The product of two second countable spaces X and Y is second countable.

6.2 Separable spaces

6.2.1 Definition

A subset A of a topological space X is called a dense set if cl(A)=X.

6.2.2 Proposition A subset A is dense in X iff for any nonempty open set U of X, $A \cap U \neq \emptyset$.

6.2.3 Example

- (a) The set Q of all rational numbers is dense in the real line \mathbf{R} .
- (b) The set $\mathbf{R} \mathbf{Q}$ (of all irrational numbers) is also dense in \mathbf{R} .

6.2.4 Definition

A topological space X is separable iff X has a **countable dense subset**.

6.2.5 Example

(1) The real line \mathbf{R} is separable.

(2) If X is a non-countable set and X has the discrete topology, then X is not separable.

6.2.6 Theorem

a) The continuous image of a separable space is separable.

b) An open subspace of a separable space is separable.

6.3 Lindelöff spaces

A collection $U=\{U_j: j \in J\}$ of open sets of a space X is called an <u>open cover</u> if the union of all U_j 's equals X, i.e. if

$$X = \bigcup \{ U_i : j \in J \}.$$

If U contains countable U_i, U is called a countable cover.

A subcover \mathbf{U}° of \mathbf{U} is a subcollection of \mathbf{U} which is also a cover of \mathbf{X} .

6.3.1 Definition A space X is called a Lindelöff space if every open cover of X has a *countable subcover*.

6.3.2 Proposition Every closed subspace of a Lindelöff space is Lindelöff. [Exercise]

6.3.3 Theorem A regular, Lindelöff space is a normal space.

Summary

- A topological space is first countable if every point has a _____
- For example, _____ are first countable.
- A topological space is second countable if it has a _____
- Every second countable space is _____
- The product of _____ spaces is _____
- A subspace of a _____ space is _____
- A space X is a Lindelöff space if ______

• A _____ and _____ is normal.

Exercise 7

- 1. Show that the product $X \times Y$ of spaces X and Y is first countable iff both X and Y are first countable.
- 2. Prove that every second countable space is first countable. [Hint: Let **B** be a base of X. For each x in X, consider $B_x = \{U \in B : x \in U\}$]
- 3. Show that a subset A of X is dense in X iff for any nonempty open set U in a base **B** of X, $A \cap U \neq \emptyset$.
- 4. Show that a discrete space X is separable iff X is a countable set.
- 5. Let X be second countable and $\mathbf{B} = \{U_i : i \in N\}$ be a countable base of X. Show that X is separable.
- [Hint: Choose a point b_i from each U_i , then consider the subset $A = \{b_i: i \in N\}$]

6. Show that the product $X \times Y$ of two separable spaces is separable.

Is the converse also true?

[Hint: Let A and B be countable dense subsets of X and Y. Show $A \times B$ is dense in the product space]

7. Show that if X is second countable, then it is Lindelöff.

[Hint: Let B be a countable base for X. Suppose U is any open cover of X. For each U in U and x in U, choose some $B_{x, U}$ in B such that $x \in B_{x, U} \subseteq U$. Then $B'=\{B_{x, U} : x \in U, U \in U\}$ is countable because it is a subset of B. Assume $B'=\{B_{x1, U1}, B_{x2, U2}, \dots\}$. Show {U1, U2,...} is a subcover of U]

Chapter 7: Compactness

Outline:

- Definition and examples
- Tychonoff Theorem
- Continuous functions on compact spaces

7.1 Definition (Compact space)

A topological space X is compact if every open cover of X has a finite subcover.

7.2 Example

1) The family $U=\{(n, +\infty): n=0, -1, -2, ...\}$ is an open cover of real line **R**, but it has no finite subcover. Thus **R** is not compact.

2) The subspace I=[0,1] of R is compact. In fact, if \mathscr{U} is an open cover of I. Let K be the set of all points c such that a finite subcover of \mathscr{U} covers [0, c]. Then 0 is in K and if d < c and c is in K then d is in K. Thus K is an interval. If K=[0, c], then c must equal 1. In fact, assume c<1 we can choose a member U of \mathscr{U} that contains c, then there is $\varepsilon > 0$ such that $c \in (c - \varepsilon, c + \varepsilon) \subseteq U$. Since [0, c] is covered by finite number members of $\mathscr{U}_{\epsilon}[0, c + \frac{1}{2}\varepsilon]$ is also covered by finite number of members of U, so $c + \frac{1}{2}\varepsilon$ is also in K, which contradicts that K=[0, c]. On the other hand, if K=[0, c), let c be contained in a member U_c of \mathscr{U} and $c \in (c - \varepsilon, c + \varepsilon) \subseteq U_c$, then $[0, c - \frac{1}{2}\varepsilon]$ ils covered by finite numbers of members of \mathscr{U}_{ϵ} , which implies c is in K), so [0, c] is also covered by finite numbers of members of \mathscr{U}_{ϵ} , which implies c is in K, a contradiction. All these show that K=[0,1]=I, that is I is covered by a finite number of members of \mathscr{U}_{ϵ} So I is compact.

3) The subspace E = (0, 1) of I is not compact. The open cover

$$\mathcal{U} = \{ (\frac{1}{n}, 1 - \frac{1}{n}) : n = 1, 2, 3 \dots \}$$

of E does not have a finite subcover.

Thus a subspace of a compact space need not be compact.

4) Every indiscrete space is compact. A discrete space X is compact iff X is a finite set.

7.3 Definition A family \mathbf{E} of subsets of X has the <u>finite intersection property</u> if the intersection of any finite numbers of members of \mathbf{E} is nonempty.

7.4 Example

- (1) The family $\{(\mathbf{r}, \infty): \mathbf{r} \in \mathbf{R}\}$ has the finite intersection property.
- (2) The family { A: A is a subset of N and N-A is finite} has the finite intersection property.
- (3) The family { (r, s): r< s and r and s are rational numbers } does not have the finite intersection property.</p>

Recall that a **net** $S = \{x_{\sigma} : \sigma \in \Sigma\}$ in a topological space X is a function from a directed set Σ into X. A point x is called a cluster point of a net $S = \{x_{\sigma} : \sigma \in \Sigma\}$, if for each neighbourhood U of x and each $\sigma_0 \in \Sigma$, there exists $\sigma \ge \sigma_0$, such that $x_{\sigma 0} \in U$.

7.5 Theorem For a topological space X, the following statements are equivalent.

- (1) X is compact.
- (2) Every family E of closed subsets of X with the finite intersection property has a nonempty intersection.
- (3) Every net in X has a cluster point.

A subset A of a topological space is called a <u>compact subset</u> of X if the subspace A is compact. A subset A of X is compact iff any open cover of A has a finite subcover.

7.6 Theorem

- (1) Every closed subset of a compact space is compact.
- (2) A compact subset of a Hausdorff space is a closed set.

Proof:

- 7.7 Corollary A subset B of the real line R is compact iff B is a bounded (i.e.
 - $B\,\subseteq\,[\text{-n},\,n]$ for some positive number n) closed subset.

Recall that if there is an onto continuous function f: $X \rightarrow Y$, then Y is called a continuous image of X.

7.8 Theorem The continuous image of a compact space is compact.

Proof:

7.9 Theorem (Tychonoff) The product of topological spaces is compact

iff each factor space is compact.

Let X be a Hausdorff space and A, B be closed subsets of X. Then both A and B are compact subsets of X by Theorem 6.6.

By Exercise 8.2, there are disjoint open sets containing A and B respectively. So we have

7.10 Theorem Every compact Hausdorff space is normal.

Recall that in calculus we learned that every continuous function f: $[0, 1] \rightarrow R$ is bounded and f achieves its maximal and minimal values at some points. The following is a more general result.

7.11 Theorem Every continuous real function defined on a compact space is bounded.

Summary

- A topological space X is compact if every open cover of X has a ______
- X is compact iff every net in X has a _____
- X is compact iff every family of closed with the _____ property has

_____ intersection

- Closed subsets of compact space are ______
- Ever compact subset of a Hausdorff space is _____

- The product of spaces is compact iff each _____
- Every Hausdorff compact space is _____
- Every continuous real function on a compact space is _____

Exercise 8

1. Let X be a Hausdorff space. Prove that for any compact subset A of X and a point x not in A, there are disjoint open sets U and V such that U contains x and V contains A.

2. Let A and B be two disjoint compact subsets of a Hausdorff space X. Show that there are disjoint open sets U and V containing A and B respectively.

3. Let $A \times B$ be a compact subset of $X \times Y$ contained in an open set W of $X \times Y$. Show that there are open sets U of X and open sets V of Y such that $A \times B \subseteq U \times V \subseteq W$.

4. Show that a subset of R^2 is compact iff it is closed bounded.

5. Prove Theorem 6.11.

[Hint: Let f: X \rightarrow R. Consider the open cover { f⁻¹(-n, n): n \in N }]

6. Let A and B be two compact subsets of a Hausdorff space X.

- (a) Show that $A \bigcup B$ is compact.
- (b) Show that $A \cap B$ is compact.

Chapter 8: Connectedness of topological spaces

Outline

- Definition, examples and basic properties
- More properties
- Some applications

8.1 Connected spaces

Consider the subspaces of real line R: X=[0, 1], $Y=[0, 1/2) \cup (1/2, 1]$ Are the subspaces X and Y of R homeomorphism ?

That is, is there a bijection $f: X \to Y$ such that both f and $f: Y \to X$ are continuous?

The space Y can be expressed the union of two **disjoint**, **non-empty open subsets** (closed sets).

But X cannot be expressed as the union of two disjoint, non-empty open subsets.

8.1.1 Definition

A topological space X is called connected if there are no closed subsets F and E such that

(i) $X=F \cup E$;

(ii) $F \cap E = \emptyset$;

(iii) F and E are non-empty.

8.1.2 Example

- (1) The real line \mathbf{R} is connected. (See Appendix 1 for the proof.)
- (2) The subspace I=[0, 1] of **R** is connected.
- (3) Every indiscrete space is connected, as it has only one non-empty closed set.

8.1.3 Example

(1) The subspace $Y=[0, 1] \cup [3, 4]$ of **R** is not connected. This is because $F=[0, 1] = Y \cap [-1, 2]$ and $E=[3, 4] = Y \cap [2, 5]$ are non-empty, disjoint closed sets of Y and $Y = F \cup E$.

(2) The subspace Q of R consisting of all rational numbers is not connected.

Exercise:

Express Q as the union of two disjoint, non-empty closed sets.

8.1.4 Remark

A subspace X of the real line \mathbf{R} is connected if and only if it is an interval (finite or infinite)

8.1.5 Lemma Let X be a topological space. Then the following statements are equivalent:

- 1) X is not connected.
- 2) X is the union of two disjoint, non-empty open sets.
- 3) There is a non-empty, proper subset that is both closed and open.

8.1.6 Definition

A subset A of a topological space X is called a connected subset of X, if A is connected with respect to the subspace topology.

8.1.7 Example

- (a) Q is not a connected subset of R.
- (b) Every closed interval [a, b] is a connected subset of R.
- (c) The square $[0, 1] \times [0, 1] = \{ (x, y): 0 \le x, y \le 1 \}$ is a connected subset of \mathbb{R}^2

8.2 More properties

8.2.1 Proposition

If $f: X \rightarrow Y$ is a continuous function and X is connected, then f(X) is a connected subset of Y.

Proof We prove by contradiction.

Assume that f(X) is not connected. There are open sets U, V of Y such that $f(X)=(U\cap f(X)) \cup (V\cap f(X),$ $U'= \cup \cap f(X)$ and $V'= V\cap f(X)$ are non-empty and disjoint.

Now $X=f^{1}(U'UV')$ $=f^{1}(U')Uf^{1}(V')$ $=f^{1}(U\cap f(X))Uf^{1}(V\cap f(X))$ $=[f^{1}(U)\cap f^{1}(f(X))]U[f^{1}(V)\cap f^{1}(f(X))]$ $=f^{1}U)\cap XUf^{1}(V)\cap X$ $=f^{1}(U)Uf^{1}(V).$

Note that f⁻¹ (f(X))=X

 $f^{1}(U)$ and $f^{1}(V)$ are open sets as f is continuous, they are non-empty and disjoint.

This contradicts the assumption that X is connected. Hence f(X) must be connected.

8.2.2 Corollary

Let X and Y be connected spaces. For any a in X, $\{a\} \times Y$ is a connected subset of $X \times Y$.

Similarly, $X \times \{b\}$ is connected for any b in Y.

8.2.3 Theorem If X and Y are connected, then the product space $X \times Y$ is connected.

Sketch of the proof:

(i) For any points A=(x, y), B=(x', y'), if they have a common component, then there is a connected subset

C(A, B) of the product space containing them

(ii) Fixed a point A = (a, b). For any B = (z, w), let D = (b, z). Then C(A, D) and C(D, B) are disjoint connected sets. Then $C(A, D) \cup C(D, B)$ (denote it by F(A, B)) is a connected set containing A and B. (iii) Now $X \times Y = \bigcup \{ F(A, B) : B \text{ is an arbitrary point in } X \times Y \}$, is connected by Lemma 2.1

By Induction, we can show the product of any finite number of connected spaces is connected.

8.2.4 Corollary

(1) \mathbb{R}^2 and any \mathbb{R}^n are connected spaces. (2) The square $[0, 1] \times [0, 1] = \{ (x, y): 0 \le x, y \le 1 \}$ is connected.

(2) The square $[0, 1] \land [0, 1] = \{(x, y), 0 \le x, y \le 1\}$ is contained.

(3) The cub $[0, 1]^3$ is connected.

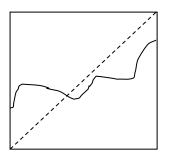
8.3 Some applications

8.3.1 Theorem (Intermediate Value Theorem)

If $f: [0, 1] \to \mathbf{R}$ is a continuous function, and *m* is a number between f(0) and f(1), then there is a $c \in [0, 1]$ such that f(c) = m.

8.3.2 Theorem (Fixed point Theorem)

If f: $[0, 1] \rightarrow [0, 1]$ is a continuous function, then f has a fixed point, that is there is x_0 in [0, 1] such that $f(x_0) = x_0$.



There are hundreds different fixed points theorems. The one we proved just now for [0, 1] is called the Brouwer fixed point theorem, named after Luitzen Brouwer. There are many other proofs for this theorem.

The fixed point theorem also true for any closed convex set of R^{n}

See http://en.wikipedia.org/wiki/Brouwer fixed point theorem for more about this.

Appendix:

The real line \mathbf{R} is connected.

Proof:

Assume that **R** is not connected. Then $\mathbf{R}=A \cup B$ where A and B are non-empty and disjoint closed sets of **R**. Choose *a* in A and b in B. Then *a* and *b* are different points, assume that a < b. Let $A' = A \cap [a, b]$, $B' = B \cap [a, b]$. Then A' has an upper bound (e.g. B), so A' has a supremum, say b'. It can be shown that b' is in the closure of A', so b' must be in A' (as A' is closed). Then b' < b (otherwise b=b' is in both A and B). Also (b', b] must be contained in B (otherwise there is a d in (b', b] which is in A', contradicting the assumption of b'). But then cl((b', b])=[b', b] is contained in B', implying b' is in B'. Then $A \cap B$ is non-empty, a contradiction.

Here we use the property of real numbers: Every upper (lower) bounded subset has a supremum (infimum).

Summary

A topological space X is connected if _______

• If f: $X \rightarrow Y$ is a continuous mapping and X is connected then _____

The product of ______ spaces is ______

• A subset A of the real line R is connected if and only if _____

Exercise 9

- Let X be a discrete space. Show that X is connected iff X contains just one element.
 [Hint: If X has more than one point, then X= {a} ∪ (X- {a}).]
- 2. Show that if A and B are connected subsets of a topological space X such that $A \cap B \neq \infty$ then AUB is connected.
- 3. (The Intermediate Value Theorem for connected spaces) Let X be connected and f: X → R be a continuous real valued function. Assume that a, b are points in X such that f(a) < m < f(b). Show that there is a point c in X such that f(c) = m. [Hint: Every connected subset of R is an interval.]
- 4. Prove that a subspace X of the real line \mathbf{R} is connected if and only if it is an interval (finite or infinite).
- 5. Show that if A is a connected subset of X, then cl(A) is also connected. If cl(A) is connected, can we deduce that A must be connected?