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ABSTRACT 

 

The purpose of this research study is to examine the nature and development of 

cognitive and metacognitive processes that students use when attempting open 

investigative tasks. Mathematical investigation is important in many school curricula 

because many educators think that school students should do some real mathematics, 

the mathematics which academic mathematicians do in their daily and working lives, 

investigating and solving problems to discover new mathematics. They believe in the 

benefits of the processes that these mathematicians engage in, e.g. problem posing, 

specialising, conjecturing, justifying and generalising. Thus it is vital to understand 

the nature of these processes (i.e. the types of investigation processes and how they 

interact with one another), and how they can be developed, so that the teachers are 

better informed to cultivate these processes in their students. Currently, there is a 

research gap in this field, as there are few empirical studies on processes in 

mathematical investigation. Therefore, this research study could add value to the 

advancement of mathematics education in this area. 

 

The sample for the main study consisted of 10 Secondary Two (equivalent to Grade 8) 

students from a high- performing Singapore school. They went through a teaching 

experiment consisting of a familiarisation lesson and five developing lessons. The 

duration of each lesson was two hours. They sat for a pretest at the end of the 

familiarisation lesson, and a posttest at the end of the last developing lesson. Each 

student was separately videotaped thinking aloud while working on two open 

investigative tasks (one from Type A and the other one from Type B) in each test. The 

verbal protocols were transcribed and coded using a coding scheme, which had passed 
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an inter-coder reliability test. The coded transcripts were then analysed qualitatively 

to validate and refine the two theoretical investigation models for cognitive and 

metacognitive processes formulated for this research, to study the effect of these 

processes on the investigation outcomes, and to examine the development of these 

processes. A scoring rubric was also devised to score the pretest and the posttest in 

order to study the effect of the teaching experiment on the development of the 

investigation processes quantitatively using descriptive statistics. 

 

The findings indicated that the two types of investigative tasks tend to elicit different 

types of investigation processes and investigation pathways: for Type A, students set 

out to search for any pattern by specialising, conjecturing, justifying and generalising; 

for Type B, students posed specific problems to solve by using other heuristics, such 

as reasoning, and then they extended the task by changing the given in order to 

generalise. Some new cognitive and metacognitive processes and outcomes were also 

found, which resulted in the refinement of the two theoretical investigation models. 

Data analysis showed that there was no direct relationship between the completion of 

an investigation pathway and the types of investigation outcomes produced. The study 

also identified the processes that had helped the students to produce significant or 

non-trivial outcomes in their investigation, the processes that were developed more 

fully in the students during the teaching experiment, and the processes that were still 

lacking in the students. The implication was that it is possible to develop investigation 

processes by teaching the students these processes and providing them the opportunity 

to develop these processes when they attempt suitable investigative tasks. The 

research also revealed which processes took a longer time to develop, so more 

attention should be paid to cultivate these processes during teaching. 
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PART ONE: CURRENT STATE OF RESEARCH ON 
 MATHEMATICAL INVESTIGATION  

 

 

This thesis is divided into three parts. Part One will survey the current state of 

research on mathematical investigation to provide a direction of research for the 

present study. It will consist of two chapters. Chapter 1 will explain the background, 

purpose and significance of the current study. Chapter 2 will review relevant existing 

literature on mathematical investigation, thinking processes and research designs. 

 

Part Two of the thesis will describe the research methodology and the development of 

instruments for data analysis. It will contain three chapters. Chapter 3 will describe 

the research methodology. Chapter 4 will explain the development of a coding 

scheme for coding students’ verbal protocols during their thinking aloud in the pretest 

and the posttest. Chapter 5 will elaborate on the development of some tools to analyse 

the data. 

 

Part Three of the thesis will provide the details of the data analysis and the 

implications of the findings. It will consist of four chapters. Chapters 6-8 will answer 

the three research questions. Chapter 9 will conclude the present study by providing 

some implications of key findings for teaching and directions for further research. 
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 CHAPTER 1: INTRODUCTION TO THE PRESENT RESEARCH 

STUDY 

 

This research study investigates the nature and development of cognitive and 

metacognitive processes that Secondary 2 (equivalent to Grade 8) students engage in 

when they attempt investigative tasks. The nature of the processes refers to the types 

of investigation processes and how they interact with one another. The rationale for 

this study stems from the need to address mathematical investigation more holistically 

in the light of the Singapore mathematics curriculum and the little that is known about 

students’ thinking processes during mathematical investigation. Although some 

research studies show that their subjects have benefited from doing mathematical 

investigation, there are very few studies that actually examine how students think 

when they attempt these tasks. More research is needed to understand the nature and 

development of students’ thinking processes during mathematical investigation so as 

to inform teachers on how they can develop such processes in their students. This 

chapter will introduce the present study by providing the background of the research, 

the rationale for carrying out the present study, a statement of the research problem, 

and the research questions. It will then discuss the significance of the current study. 

 

1.1 BACKGROUND OF THE RESEARCH 

 

(a) Mathematical Investigation in the Local Scene 

 

In 1997, the Ministry of Education (MOE) in Singapore formulated a vision, Thinking 

Schools, Learning Nations (TSLN), which described a nation of thinking citizens 

capable of meeting the challenges of the future (Ministry of Education of Singapore, 
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1997). Since 2003, MOE has focused on an aspect of TSLN: nurturing a spirit of 

Innovation and Enterprise (I&E) which will help to build up a core set of life skills 

and attitudes that the ministry wants in their students (Ministry of Education of 

Singapore, 2003). In 2004, Prime Minister Lee Hsien Loong called on the teachers to 

“teach less to our students so that they will learn more” (Singapore Government, 

2004). Teach Less, Learn More (TLLM) “builds on the groundwork laid in place by 

the systemic and structural improvements under TSLN, and the mindset changes 

encouraged in our schools under I&E” (ibid.). In fact, as far back as 1988, in a paper 

Agenda for Action: Goals and Challenges presented to the Parliament by the then 

First Deputy Prime Minister Goh Chok Tong, he described that the role of education 

was “to nurture inquiring minds and to create a lively intellectual environment which 

will ultimately spread throughout Singapore society” (Yip & Sim, 1990, p. 3). These 

initiatives serve to emphasise the intention of the Singapore government and its 

Ministry of Education to nurture thinking and innovation in their students. 

 

In line with these initiatives, the Pentagon Model was adopted as the framework for 

the Singapore mathematics curriculum in 1990 (Ministry of Education of Singapore, 

1990; Wong, 1991). The primary goal of the model is mathematical problem solving 

and there are five components that help students to attain the goal: skills, concepts, 

attitudes, metacognition and processes (SCAMP). The latest Pentagon Model, with 

some minor refinements since its introduction in 1990, is illustrated in Figure 1 below 

(Ministry of Education of Singapore, 2012). 
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Figure 1.  The Pentagon Model 

 

The emphasis on mathematical problem solving signals the intention of Singapore 

mathematics educators to stimulate their students to think mathematically (Ministry of 

Education of Singapore, 1990). A list of heuristics and thinking skills is provided in 

both the primary and secondary syllabi, but the use of these heuristics and thinking 

skills is not fully reflected in most local textbooks (Fan & Zhu, 2000) and many 

teachers are not sure how to incorporate them into their teaching (Lee & Fan, 2004). 

Most teachers also interpret school mathematical problems as consisting only of word 

problems because such word problems have been predominant in the textbooks (Fan 

& Zhu, 2000). However, with the introduction of the TSLN vision in 1997 by the 

Ministry of Education, greater emphasis has been placed on developing thinking 

students, which translates to the use of more authentic problems in mathematics. 

 

There was very little research on mathematical problem solving in Singapore before 

the 1990s (Chong, Khoo, Foong, Kaur & Lim-Teo, 1991). But in the 1990s, there was 
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an increasing interest in studies on problem solving, partly because the National 

Institute of Education (NIE) had begun its Master and PhD programmes in 

mathematics education, and partly because the Pentagon Model, with its central goal 

of mathematical problem solving, was implemented in schools in 1990. In the initial 

stage, many of these research studies were on solving word problems, but with the 

introduction of the TSLN vision in 1997 and its emphasis on thinking skills, attention 

was then turned towards non-routine problem solving. From then onwards, there have 

been many more research studies on this kind of problem solving involving more 

authentic mathematical problems (Foong, 2009). 

 

Although the Singapore secondary school mathematics curriculum has also specified 

the use of “open-ended investigations” (Ministry of Education of Singapore, 2000), 

many secondary school teachers are not familiar with it. Whenever I spoke to these 

teachers (both beginning and experienced teachers) about mathematical investigation, 

their most common reply was, “What is that?” The teachers know what problem 

solving is, because it is the central goal of the Singapore mathematics curriculum 

framework, but most of them have no idea what an investigation is. Some believe that 

investigation is just like problem solving, while others think that investigation is 

similar to guided discovery learning where students are guided to investigate and 

discover certain mathematical concepts that the teacher has in mind. 

 

If teachers are confused about what constitutes a mathematical investigation, then 

they may not be able to teach their students effectively (Frobisher, 1994). Doyle 

(1983) argued that different tasks require different strategies to solve them, and what 

students learn depends, to a large extent, on the tasks that are given to them. Thus it is 

important for teachers to understand the types of tasks and their features so that the 
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teachers can choose suitable tasks to elicit the appropriate student learning (Hiebert & 

Wearne, 1993) because “the nature of tasks can potentially influence and structure the 

way students think” (Henningsen & Stein, 1997, p. 525). Therefore, there is a need to 

clarify the construct of mathematical investigation and characterise the thinking 

processes that students engage in when they attempt investigative tasks. 

 

As a result of the unfamiliarity with mathematical investigation among Singapore 

teachers, it is not surprising that there are very few studies on investigation. For local 

Master and PhD dissertations, there are at least 100 empirical studies on mathematical 

problem solving in the last two decades, but there is only one empirical study on 

mathematical investigation (Foong, 2007). Moreover, the only Master thesis on 

mathematical investigation (Ng, 2003) dealt with the general benefits of investigation, 

without studying the actual thinking processes that students engaged in when they did 

investigation in detail. Other than the single Master thesis, there is only a theoretical 

journal paper by Teong (2002) and a conference presentation of an empirical study by 

Ng, Teo and Leow (2005) on mathematical investigation. 

 

(b) Mathematical Investigation in Other Countries 

 

In other countries, the shift towards mathematical problem solving began much earlier 

than in Singapore. In the United Kingdom (UK), the Cockcroft Report (Cockcroft, 

1982) stated that “the ability to solve problems is at the heart of mathematics” (p. 73). 

However, the report also mentioned that “mathematics teaching at all levels should 

include opportunities for … investigational work” (p. 71) and “the idea of 

investigation is fundamental both to the study of mathematics itself and also to an 

understanding of the ways in which mathematics can be used to extend knowledge 
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and to solve problems in many fields” (p. 73). In fact, mathematical investigation had 

already been introduced in the UK during the 1960s by the Association of Teachers of 

Mathematics (ATM) through workshops and publications, but it was given further 

emphasis by the Cockcroft Report (Jaworski, 1994). Therefore, problem solving and 

mathematical investigation are an integral part of many school curricula in the UK. 

 

The Australian national curriculum also stipulates that “mathematical investigations 

can help students to develop mathematical concepts and can also provide them with 

experience of some of the processes through which mathematical ideas are generated 

and tested” (Australian Education Council, 1991, p. 14). The introduction of the 

Mathematics in the New Zealand Curriculum (MINZC) in 1992 also places a greater 

emphasis on problem solving and investigation (Hawera, 2006). 

 

In the United States of America (USA), there was a radical swing from the ‘back to 

basics’ movement to ‘problem solving’ in the late 1970s (Askey, 1999; Goldin, 2002; 

Howson, 1983; Howson, Keitel & Kilpatrick, 1981), culminating in the publication of 

An Agenda for Action by the National Council of Teachers of Mathematics (NCTM) 

which recommended that “problem solving be the focus of school mathematics in the 

1980s” (NCTM, 1980, p. 1). This was supported by the 1980 NCTM Yearbook 

Problem Solving in School Mathematics (Krulik, 1980). Although the Americans do 

not use the term ‘investigation’ (Evans, 1987) but they refer to investigative tasks as 

‘open problems’ (Orton & Frobisher, 1996), they do use the term ‘to investigate’: 

“Our ideas about problem situations and learning are reflected in the verbs we use to 

describe student actions (e.g. to investigate, to formulate, to find, to verify) 

throughout the Standards” (NCTM, 1989, p. 10). Therefore, the Standards do 

recognise investigation as an integral part of problem solving in the school curricula. 
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Another goal of the Standards of the National Council of Teachers in Mathematics 

(NCTM, 1989, 1991, 2000) is to make mathematics classrooms reflect the practices of 

mathematicians (Brenner & Moschkovich, 2002; Lampert, 1990; Schoenfeld, 1992). 

This model views students as academic mathematicians and it suggests that students 

should focus on a variety of rich mathematical activities that parallel what 

mathematicians do, e.g. posing problems to solve, formulating and testing 

conjectures, constructing arguments and generalising (Moschkovich, 2002a), which 

are similar to the processes in problem solving and investigation (Civil, 2002). 

Therefore, the use of mathematical problems and investigative tasks that stimulate 

thinking has the potential to create a “microcosm of mathematical culture” 

(Schoenfeld, 1987, p. 213) in the classroom where students engage in activities that 

are central to academic mathematicians’ practices. 

 

Hence, whether school mathematics curricula are viewed from the perspective of 

problem solving or from the perspective of academic practice, mathematical 

investigation plays a very important role in mathematics education. However, just like 

in Singapore, there is plenty of research on problem solving in other countries like the 

UK and the USA (Cai, Mamona-Downs & Weber, 2005) but little research on 

mathematical investigation (see Section 2.1.5 for justification of such a claim). 

Moreover, the relatively few empirical studies on mathematical investigation (e.g. 

Bailey, 2007; Tanner, 1989) usually examined the general benefits that their subjects 

have experienced while doing investigation, without looking into the actual processes 

that the students engage in and how these processes could be developed. “Research 

into the effectiveness of process-based teaching … is, however, limited, partly 

because process-based mathematical learning environments are extremely rare in 
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schools.” (Boaler, 1998, p. 42) Therefore, there are gaps in the research on 

mathematical investigation, especially on the nature and development of processes 

that students engage in when they attempt investigative tasks. 

 

1.2 RATIONALE FOR CARRYING OUT THE PRESENT RESEARCH 

 

As explained in the previous section, mathematical investigation is very important in 

many school curricula, including the Singapore curriculum, because many educators 

believe that investigation can help students develop mathematical concepts and solve 

problems in many fields. “Investigation [is] just a vehicle for other learning … This 

other learning might be seen as learning to be mathematical.” (Jaworski, 1994, p. 4) 

However, very little is known about the nature and development of the cognitive and 

metacognitive processes in investigation, and how mathematical investigation actually 

helps students to think more mathematically and to apply mathematics in unfamiliar 

situations, since there are few empirical studies in this area. Therefore, I have decided 

to undertake the present study in order to contribute to the research on investigation 

processes, so as to inform educators on how they could incorporate mathematical 

investigation into the classroom more effectively. 

 

1.3 STATEMENT OF THE RESEARCH PROBLEM 

 

The purpose of the present study is to address some of the research gaps on the nature 

and development of investigation processes as outlined in the previous sections. The 

study seeks to understand the nature of the processes in mathematical investigation: 

how students think when they do mathematical investigation, e.g. how they attempt to 

understand the task, the types and qualities of the problems that they pose, how they 
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go about solving the problems posed, how they formulate conjectures, whether they 

try to justify their conjectures or accept these conjectures as true without any 

reasonable basis, whether they attempt to generalise whenever possible, how they 

extend the task, what they do when they are stuck, and whether they monitor their 

own progress. In other words, this study seeks to understand how these investigation 

processes interact with one another and with the outcomes of the investigation, i.e. the 

relationship or the effect of the processes on the outcomes, and vice versa. 

 

The sample consisted of 10 Secondary 2 students from one of the high-performing 

schools in Singapore. The students underwent a teaching experiment to develop their 

cognitive and metacognitive processes when they attempted two types of open 

investigative tasks. In addition, the processes were captured by videotape when the 

students thought aloud during a pretest and a posttest. The interactions of these 

processes and the outcomes of the investigation can be depicted in a model as 

investigation pathways. The comparison between the pretest and the posttest will also 

shed some light on the effectiveness of the teaching experiment on the development 

of the investigation processes. 

 

1.4 RESEARCH QUESTIONS 

 

The research questions (RQ) for the present study are presented below and reproduced 

in Chapter 3 as well. The RQ would become clearer after the review of literature in 

Chapter 2 and the definitions of terms in Chapter 3. RQ1 will examine the types and 

interaction of the investigation processes from a macroscopic angle by looking at the 

investigation pathways and their relationship with the outcomes. RQ2 will explore the 

nature of the processes from a microscopic viewpoint by analysing the interactions 
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between these processes and the outcomes in detail. RQ3 will analyse the 

development of these processes during the teaching experiment. 

 

RQ1: What is the relationship between the investigation pathways of Secondary 2 

students and their outcomes across the two types of investigative tasks? 

 

RQ2: What is the effect of the cognitive and metacognitive processes of Secondary 2 

students on the outcomes of their investigation? 

 

RQ3: What is the effect of the teaching experiment on the development of 

Secondary 2 students’ mathematical investigation processes? 

 

1.5 SIGNIFICANCE OF THE RESEARCH STUDY 

 

The present study would contribute to current research in the following areas. 

 

 This study would serve to enhance our understanding of the nature of the 

cognitive and metacognitive processes engaged by Secondary 2 students when 

they do investigative tasks, and the effect of these processes on producing 

significant outcomes. The mathematical investigation models, designed for 

this study based on theoretical underpinnings and refined by empirical data, 

would also help to characterise the types and interactions of the processes in 

mathematical investigation. 

 

 This study would seek to inform teachers on how to develop the thinking 

processes of their students when they attempt mathematical investigation. 
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 This study would lend its weight to a growing pool of research studies which 

suggest that doing investigation helps students to think mathematically and to 

apply mathematics in unfamiliar situations. The characterisation of the nature 

and development of the mathematical investigation processes may also help 

future researchers to study these processes in greater detail and depth. 

 

1.6 CONCLUDING REMARKS FOR THIS CHAPTER 

 

Chapter 1 has set the background, motivation and purpose in carrying out the present 

research study. Chapter 2 will then review relevant current literature on mathematical 

investigation, cognitive processes, metacognitive processes and research designs, to 

set the direction of research and the research methodology for the present study. 
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 CHAPTER 2: REVIEW OF RELEVANT LITERATURE 

 

As this study looks into the nature and development of secondary school students’ 

mathematical investigation processes, there is a need to review relevant research 

literature on mathematical investigation, cognitive and metacognitive processes, and 

research methodologies on data collection, analysis and development of processes. 

 

This chapter will begin with a literature review of mathematical investigation and 

problem solving (Section 2.1). As “there is little doubt that a great deal of overlap 

exists between problems and investigations” (Frobisher, 1994, p. 152), there is a need 

to understand what constitutes an investigative task so as to draw a clear boundary on 

the area of research in this study, especially when there are other types of tasks that 

seem to contain some elements of investigation, e.g. guided discovery and open 

problems. Empirical studies on mathematical investigation will also be reviewed to 

guide and inform the present research. As there is an overlap between investigation 

and problem solving processes, the literature review of cognitive processes (Section 

2.2) and metacognitive processes (Section 2.3) will include those done on both 

investigation and problem solving, since there is a lack of research studies on the 

processes of mathematical investigation. The review will include theoretical models 

of investigation and problem solving processes that could be modified and used as a 

theoretical model for the current study. Lastly, selected literature on methods of data 

collection, analysis and development of processes will be examined to inform the 

research methodology for the present study (Section 2.4). 
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2.1 LITERATURE REVIEW ON MATHEMATICAL INVESTIGATION 

 

Before any research on mathematical investigation can be carried out, it is essential to 

understand the similarities and differences between an investigative task and a 

mathematical problem as described in current literature so that the construct of 

investigation can be clearly defined for the present study (Section 2.1.1). This is 

especially important because there is no clear and consistent definition of the 

construct of investigation in existing literature as there are conflicting views about 

what constitutes an investigation. Moreover, the overlap between mathematical 

investigation and problem solving is also not clearly explicated in current literature. 

 

It was found necessary during an extensive review of literature to separate an 

investigative task from investigation as a process (Section 2.1.2), and from 

investigation as an activity involving an open investigative task (Section 2.1.3), in 

order to resolve the conflicting views. There is also a need to consider two types of 

investigative tasks for the current research because of the two types of problem-

posing processes (Section 2.1.4). Finally, empirical studies on mathematical 

investigation will be examined to set the direction of research for the present study 

(Section 2.1.5). 

 

2.1.1 Mathematical Problems and Investigative Tasks 

 

Many teachers often use the word ‘problems’ to describe the typical exercises in 

mathematics textbooks (Fan & Zhu, 2000), but are these exercises really problems? 

And what is the difference between a mathematical problem and an investigation? In 

this section, what constitutes a mathematical problem and an investigative task will be 
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clarified. An extensive review of relevant literature has brought forth two different 

viewpoints about the characteristics of a mathematical problem. 

 

(a) First Viewpoint of Mathematical Problem 

 

The first viewpoint is that whether a situation is a problem depends on the individual. 

One of the earliest references to this view was from Henderson and Pingry (1953). 

They believed that a situation is a problem to a person if he desires to obtain a goal 

but is unable to obtain it straight away. Similarly, Reys, Lindquist, Lambdin, Smith 

and Suydam (2012) defined a problem as “a situation in which a person wants 

something and does not know immediately what to do to get it” (p. 115) and that this 

difficulty requires “some creative effort and higher-level thinking” (ibid.) to resolve. 

Schoenfeld (1985) also emphasised that the “difficulty should be an intellectual 

impasse rather than a computational one” (p. 74). He gave the example that inverting 

a 27  27 matrix would be a tedious task for him but inverting a matrix was not a 

problem to him. Thus tediousness in applying a computational procedure is not a 

factor in determining whether a situation is a problem. However, what happens if the 

students do not know how to invert a 27  27 matrix? They may have learnt how to 

invert a 2  2 matrix but not many of them are aware of the procedure to invert a 

square matrix of a higher order. Therefore, inverting a 27  27 matrix can still be a 

problem to these students. Hence, it appears that it is possible for a problem to be a 

procedural one. Let us examine this idea in greater detail by considering a typical 

textbook exercise question: 

 

Task 1: Quadratic Equation 

Solve the quadratic equation x2 + 2x  3 = 0. 
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This task may just be a routine practice of procedural skills that students have learnt 

earlier in the class (Moschkovich, 2002a) and so they may know immediately what to 

do to solve it. However, this can be a problem to students who have not been taught 

the procedure, or a problem to low-achieving students who have just learnt the 

procedure but do not know how to apply it properly. Nevertheless, with enough 

practice, this task can become a routine exercise to the students. Some educators call 

this type of tasks “routine problems” (Orton & Frobisher, 1996, p. 27), but these tasks 

may not be problems to some students. Moreover, for students who do not practise 

these ‘routine’ tasks found in the textbook, then these tasks are not even ‘routine’ to 

them. Cockcroft (1982) used the term ‘familiar or unfamiliar tasks’ to indicate 

whether the tasks are familiar or unfamiliar to a student. Let us contrast Task 1 with 

another example: 

 

Task 2: Last Digit 

Find the last digit of 32012. 

 

The main purpose of this task is for students to make use of some problem-solving 

strategies, such as looking for patterns, to solve it. But for students who have been 

exposed to such tasks before, this task may no longer be a problem. Moreover, this 

task may not pose a problem to high-ability students who have not encountered such 

problems before but are able to solve it without much difficulty. Hence, from the first 

viewpoint, both Tasks 1 and 2 can be problems to students who are “unable to 

proceed directly to a solution” (Lester, 1980, p. 30). Schoenfeld (1985) believed that 

“being a ‘problem’ is not a property inherent in a mathematical task” (p. 74). 

Therefore, whether a mathematical task is a problem depends on the individual. 
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(b) Second Viewpoint of Mathematical Problem 

 

The second viewpoint of what constitutes a mathematical problem involves the nature 

and purpose of the task. Task 1 (Quadratic Equation) is not a mathematical problem 

because it requires only a procedure to solve it and the purpose of such a task is to 

“provide students with practice in using standard mathematical procedures, for 

example, computational algorithms, algebraic manipulations, and use of formulas” 

(Lester, 1980, p. 31). Task 2 (Last Digit) is different from Task 1 because Task 2 

requires “some creative effort and higher-level thinking” (Reys et al., 2012, p. 115) to 

solve, not just a direct application of a procedure. Therefore, Task 2 is a mathematical 

problem even though it may not pose a problem to some high-ability students. In this 

respect, the second viewpoint is different from the first one. 

 

Since Tasks 1 and 2 are inherently different and they may or may not be a problem to 

an individual, some educators (e.g. NCTM, 1991, p. 25; Schoenfeld, 1985, p. 74) have 

used the phrase ‘mathematical tasks’ instead of ‘mathematical problems’. Therefore, 

Task 1 will be called a ‘procedural task’ since it involves the practice of procedures, 

while Task 2 can be called a ‘problem-solving task’ since it requires the use of some 

problem-solving strategies. The phrase ‘problem-solving task’ can be misleading 

because the term ‘problem-solving’ suggests that the task may pose a problem to the 

person when it may not be so. Nevertheless, the phrase ‘problem-solving task’ will 

still be used to emphasise the problem-solving strategies involved in this type of tasks, 

even if the task may not pose a problem to some students. 
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(c) Differences between Investigative Task and Mathematical Problem 

 

However, there is another important criterion in the second viewpoint to decide 

whether a mathematical task is a problem: the existence of “a clearly defined goal” 

(Henderson & Pingry, 1953, p. 230). For example, Task 2 has a clearly defined goal 

in its task statement: find the last digit. Contrast this with the next example:  

 

Task 3: Powers of 3 

Powers of 3 are 31, 32, 33, 34, … Investigate. 

 

Orton and Frobisher (1996) believed that mathematical tasks, such as Task 3, do not 

specify a goal in their task statements. However, from another perspective, the word 

‘investigate’ in the task statement is still a goal, albeit an ill-defined “general goal” 

(ibid., p. 26), and students can choose any specific goal to investigate (Cai & Cifarelli, 

2005), e.g. is there a pattern in the last digit of consecutive powers of 3? Nevertheless, 

Task 3 does not have a clearly defined goal since it does not tell the students what to 

investigate. Thus “very few mathematics educators would classify explorations of this 

kind as problems” (Orton & Frobisher, 1996, p. 27). On the other hand, mathematics 

educators in some countries (e.g. the USA) would call Task 3 an ‘open problem’ 

(Evans, 1987) which is defined to be a problem “when no goal is specified” (Orton & 

Frobisher, 1996, p. 32). But if the rather strict definition that a mathematical problem 

must have a clearly-defined goal is used, the term ‘open problem’ is an oxymoron. 

 

In this thesis, Task 3 (Powers of 3) will be called an investigative task, as its purpose 

is to investigate any pattern: this kind of tasks must be open in the sense that the task 

statement does not contain any clearly defined goal; while Task 2 (Last Digit) will be 
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called a problem-solving task or a mathematical problem, as it has a clearly defined 

goal and it involves the use of some problem-solving strategies. Although Task 1 

(Quadratic Equation) also has a clearly defined goal, it is called a procedural task, as 

explained earlier. On the other hand, all the three types of tasks can pose a problem to 

any individual who does not know how to solve them. For example, if a student does 

not know what to investigate for the investigative Task 3, then the task is still a 

problem to that student. 

 

Other than the difference in the goal of the task as explained above, another difference 

between an investigative task and a mathematical problem is that the former have 

multiple correct answers while the latter has only one correct answer. For example, 

Task 2 has only one correct answer (the last digit of 32012 is 1) while Task 3 has 

multiple correct answers, such as: 

 

 the last digit of powers of 3 has a repeating pattern of period 4: 3, 9, 7, 1; 

 the last two digits of powers of 3 has a repeating pattern of period 20: 

03, 09, 27, 81, 43, 29, 87, 61, 83, 49, 47, 41, 23, 69, 07, 21, 63, 89, 67, 01; 

 the sum of all the digits of powers of 3 is divisible by 3. 

 

Becker and Shimada (1997) and Chow (2004) called mathematical tasks with multiple 

correct answers, such as Task 3, ‘open-ended’ because the answer, which is at the 

‘end’ of solving the task, is open. Bailey (2007) defined investigation as “an open-

ended problem or statement that lends itself to the possibility of multiple 

mathematical pathways being explored, leading to a variety of mathematical ideas and 

/ or solutions” (p. 103). Therefore, investigative tasks are open in the sense that 
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students can set different goals to pursue and as a result, there are multiple correct 

answers; while mathematical problems are closed in the sense that there is a clearly 

defined goal which will lead to only one correct answer (Evans, 1987). 

 

On the other hand, it is also possible to extend a closed mathematical problem. For 

example, in Task 2, after finding the last digit of 32012, a student may extend the 

problem to find the last two digits of 32012. Thus some educators (e.g. Maher, 2005; 

Orton & Frobisher, 1996) would also like to consider mathematical problems to be 

open in the sense that they could be extended. The idea of extension in solving a 

mathematical problem is the changing of the given in the original task statement 

(Brown & Walter, 2005). In Task 2, the given is ‘find the last digit’ and an extension 

is to change the given to ‘find the last two digits’. However, for Task 3, which is an 

investigative task, students can find all the patterns for powers of 3 under the umbrella 

of the original task without having to change the given, i.e. without extending the 

investigative task. 

 

(d) Summary of Literature on Investigative Tasks and Mathematical Problems 

 

To summarise, this thesis uses the term ‘mathematical tasks’ to refer to all types of 

tasks involving mathematics. Examples of such tasks discussed so far are ‘procedural 

tasks’, ‘problem-solving tasks’ (which is synonymous with ‘mathematical problems’) 

and ‘investigative tasks’. From another perspective, all of these tasks can be problems 

to students who do not know how to do or solve them. From the above review of 

current literature, there are at least two main differences between an investigative task 

and a mathematical problem: 
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(i) An investigative task is open in the sense that it does not have a clearly 

defined goal in its task statement and students are expected to set their own 

goals to investigate so as to discover any underlying pattern or mathematical 

structure; while a mathematical problem is closed in the sense that it has a 

clearly defined goal in terms of a problem for students to solve, although the 

students can extend the problem by changing the given goal. 

 

(ii) An investigative task is open in the sense that it has multiple correct answers; 

while a mathematical problem is closed in the sense that it has only one 

correct answer, although students can extend the problem which can then lead 

to multiple correct answers in its various extensions. 

 

2.1.2 Problem Solving and Mathematical Investigation as Processes 

 

In this section, the similarities and differences between problem solving and 

mathematical investigation as processes will be examined. 

 

(a) Conflicting Views about Mathematical Investigation 

 

Although many mathematics educators (e.g. Orton & Frobisher, 1996; Pirie, 1987) 

agree that there is a great deal of overlap between problem solving and investigation, 

these same educators still end up separating them into two distinct processes: 

investigation must involve (open) investigative tasks while problem solving must 

involve (closed) mathematical problems. Other educators also stress the openness of 

investigation. For example, Bastow, Hughes, Kissane and Mortlock (1991) defined 

mathematical investigation as the “systematic exploration of open situations that have 
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mathematical features” (p. 1), and Lee and Miller (1997) believed that “investigations, 

by their very nature, demand an open-minded, multifaceted approach” (p. 6). Delaney 

(1996) believed in the more open spirit of the process-dominated investigation while 

Ernest (1991) described investigation as the exploration of an unknown land without 

any fixed destination and thus open. Evans (1987) observed that an investigative task 

leads to a divergent activity since students can set different goals to pursue, but a 

mathematical problem leads to “problem solving [which] is a convergent activity” (p. 

27) since there is only one goal to achieve. 

 

Therefore, the questions that need to be addressed are, “If most literature separate 

investigation and problem solving so distinctly, then why do the same writers also 

claim that these two processes overlap? In what ways do they overlap and in what 

ways are they different? Must mathematical investigation be open?” 

 

(b) Separating Investigative Tasks from the Process of Investigation 

 

After further research, it was discovered that the problem lies in the usage of the term 

‘investigation’, which is used by different educators to mean different constructs. For 

example, Orton and Frobisher (1996) used the term ‘investigation’ to refer to the task 

when they compared investigations with problems, while Evans (1987) used the term 

‘investigation’ to mean the process when he contrasted investigation with problem 

solving. Ernest (1991) has observed that there has been a fairly widespread adoption 

of the term ‘investigation’ as the task itself when investigation is actually a process. 

This is what Jakobsen (1956, as cited in Ernest, 1991) called a metonymic shift in 

meaning, which replaces the whole activity with one of its components. Thus most 
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educators do not seem to distinguish between the investigation process and the 

investigative task. 

 

However, there is a need to differentiate between these two constructs because it will 

resolve the apparent conflict that most literature separate investigation and problem 

solving so distinctly and yet the same writers also claim that these two processes 

overlap. This distinction is not merely academic as it will also shed light on the 

processes involved in mathematical investigation and problem solving, which will 

become clearer at the end of this section. 

 

(c) Characterising the Process of Investigation 

 

First, mathematical investigation as a process will be characterised from various 

sources. The Cambridge Dictionaries Online (Cambridge University Press, 2012) 

defined the word ‘investigate’ as to ‘examine a crime, problem, statement, etc. 

carefully, especially to discover the truth’. Height (1989) explained that “the essence 

of mathematical investigation is to inquire into situations which are of a mathematical 

nature” (p. 1). Thus mathematical investigation, as a process, is a careful examination 

of a mathematical task in order to discover some underlying mathematical facts or 

structures. There are two different perspectives on the ‘process’ in a mathematical 

investigation: from one angle, an investigation is one whole process (Frobisher, 

1994), just like problem solving is one whole process (Shufelt, 1983); from another 

angle, there are many processes involved in an investigation (Frobisher, 1994). So 

what types of processes does the process of mathematical investigation involve? 
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Jaworski (1994) described the teaching of three teachers as “investigative in spirit, 

embodying questioning and inquiry” (p. 96). Her conceptualisation of an investigative 

approach to mathematics teaching is one that involves specialising, conjecturing, 

justifying and generalising. Speaking of the same three teachers, Jaworski clarified, 

“Making and justifying conjectures was common to all three classrooms, as was 

seeking generality through exploration of special cases” (p. 171). Exploration of 

special cases or specific examples is called ‘specialising’ by Mason, Burton and 

Stacey (1985). In fact, the main processes in most models of mathematical 

investigation (e.g. Frobisher, 1994; Height, 1989) are specialising, conjecturing, 

justifying and generalising (see Section 2.2.2 for the models). These are the four main 

mathematical thinking processes advocated by Mason et al. (1985) which they have 

applied to solving mathematical problems rather than investigative tasks. 

 

Pólya (1957) also advocated something similar to mathematical investigation in his 

approach to mathematics teaching. He called his approach ‘heuristic reasoning’, as 

opposed to rigorous proof. “Heuristic reasoning is often based on induction or on 

analogy” (p. 113), and both induction and analogy involve examining specific 

examples, which is also called ‘specialising’ by Mason et al. (1985). Therefore, 

Pólya’s (1957) idea of heuristic reasoning involves specialising with the intention to 

generalise from specific examples, or to use analogy to discover some mathematical 

facts. Along the way, the person will formulate and justify some conjectures. But 

these processes are similar to those for mathematical investigation discussed in the 

previous paragraph. Pólya wrote that “we need heuristic reasoning when we construct 

a strict proof as we need scaffolding when we erect a building” (p. 113) and he 

believed that it is bad to confuse heuristic reasoning with rigorous proof. 
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Lakatos (1976) called his approach to mathematics teaching a ‘heuristic approach’ to 

proofs and refutations, as opposed to a deductivist approach of using formal proofs. In 

the heuristic approach, students explore the problem by examining specific examples 

in order to come up with some conjectures which will then be proven or refuted. 

Again, these processes are similar to those for mathematical investigation. Lakatos 

was against the deductivist approach of using formal proofs that come out of nowhere 

because “it seems impossible that anyone should ever have guessed them” (p. 142). 

He observed that the “deductivist style hides the struggle, hides the adventure” (ibid.) 

of discovering a solution to a problem or a proof for a theorem, and “the zig-zag of 

discovery cannot be discerned in the end-product” (p. 42) of the deductivist approach. 

Although both the heuristic approach and the deductivist approach use the process of 

reasoning, the kinds of reasoning are different for each approach. 

 

Therefore, both Pólya’s (1957) heuristic reasoning and Lakatos’ (1976) heuristic 

approach involve processes similar to those of mathematical investigation, as opposed 

to rigorous or formal proofs. However, both Pólya (1957) and Lakatos (1976) used 

mathematical problems and not investigative tasks in their writings. Hence, 

mathematical investigation, as a process, does not depend on the open nature of 

investigative tasks. Even when faced with a mathematical problem which has a 

clearly defined goal, students can still engage in mathematical investigation if they try 

to specialise with the intention to formulate and test conjectures so as to generalise. 

Hence, by looking at literature from various sources, the whole idea of a mathematical 

investigation is a process involving the four main thinking processes of specialising, 

conjecturing, justifying and generalising. These processes will be examined in more 

detail in Section 2.2.3 later. 
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(d) Relationship between Investigation and Problem Solving 

 

However, these four main thinking processes in investigation are very similar to the 

processes in problem solving. In fact, Mason et al. (1985) have applied these four 

processes to problem solving rather than mathematical investigation. So, what is the 

difference between investigation and problem solving? The difference will become 

clearer from the discussion of the following mathematical problem. 

 

Task 4: Handshake Problem 

At a workshop, each of the 20 participants shakes hands once with 

each of the other participants. Find the total number of handshakes. 

 

There are several methods available to solve this problem. Some higher-ability 

students are able to reason as follows: since every different pair of participants will 

give rise to one distinct handshake, the total number of handshakes is the same as the 

total number of different pairs of participants, i.e. 20C2. This first method involves a 

‘deductive approach’ using some logical arguments and there is no sense that the 

students are investigating since they do not specialise, formulate or test conjecture, or 

generalise. On the other hand, some students will not be able to reason like this 

directly. They may try to solve the problem by starting with smaller numbers of 

participants (specialising) in order to find a pattern for the total number of handshakes 

(generalising). Along the way, they may formulate and test their conjectures. Thus 

this second method involves an ‘inductive approach’ where there is the sense that the 

students are doing some investigation to solve the problem. In fact, some teachers do 

tell their students to ‘investigate’ when they do not know how to solve such 

mathematical problems immediately (personal communication). 
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Hence, there are generally two approaches to problem solving: the inductive approach 

which involves specialising, conjecturing, justifying and generalising (which is the 

investigation process), and the deductive approach which uses other heuristics such as 

logical arguments. These are the same two approaches discussed by Pólya (1957) and 

Lakatos (1976) as explained earlier in this section. In other words, problem solving 

involves investigation as a process. Figure 2.1 illustrates this relationship between 

mathematical investigation and problem solving. 

 

 

 

 

 

 

Figure 2.1  Relationship between Investigation and Problem Solving 

 

A caveat is necessary here. By separating the inductive approach (or the investigation 

process) from the deductive approach to problem solving so neatly in this thesis, it 

does not mean that there is no deductive reasoning in mathematical investigation. In 

fact, some form of reasoning is required throughout the entire investigation process: 

 

 specialising may require some form of reasoning to guide the choice of 

examples to examine; 

 justifying conjectures make use of some form of reasoning or deductive proof. 

 

However, the main characteristic of the investigation process is that it starts with 

specialising, while the deductive approach uses reasoning without specialising. If a 
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problem can be solved using other heuristics, such as reasoning, without formulating 

any conjecture, then the deductive approach is quite distinct from the inductive 

approach. But the deductive approach may sometimes end up needing a conjecture to 

be proven. This is where problem solving overlaps investigation, since both of them 

now involve the main processes of conjecturing and justifying. A further argument to 

prove there are similarities between the investigation process and problem solving is 

to consider the following investigative task which is obtained by rephrasing Task 4 

(Handshake Problem). The opening up of mathematical problems to become 

investigative tasks will be discussed in more detail in Section 2.1.4 later. 

 

Task 5: Investigate Handshakes 

At a workshop, each of the 20 participants shakes hands once with 

each of the other participants. Investigate. 

 

Tasks 4 and 5 look similar except for the last part of the task statement. As explained 

earlier in this section, Task 4 is a mathematical problem because the goal is clearly 

defined: find the total number of handshakes. So when students try to solve Task 4, 

they are engaging in problem solving. However, Task 5 is an investigative task 

without a clearly defined goal: investigate, but investigate what? So when students 

attempt Task 5, they are engaging in mathematical investigation. 

 

Suppose the first problem that the students pose for Task 5 is to find the total number 

of handshakes. If the students use the same method to find the total number of 

handshakes for both the problem-solving Task 4 and the investigative Task 5, then 

why is it that the same process is called problem solving for the former task but 

investigation for the latter task? If a student specialises in order to solve the problem-
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solving Task 4, then the student is actually solving a mathematical problem by 

investigation. On the other hand, if a student uses other heuristics such as deductive 

reasoning to solve a problem in the investigative Task 5, then the student is not 

investigating in that sense. Therefore, this further substantiates that problem solving 

and investigation are closely related, and that investigation does not depend on 

whether the task is a mathematical problem or an investigative task. 

 

After separating the investigation process from the investigative task, and 

characterising the investigation process as consisting of specialising, conjecturing, 

justifying and generalising, we are now in a better position to understand the apparent 

contradiction in current literature on mathematical investigation as described earlier in 

part (a) of this section: investigative tasks must be open while mathematical problems 

must be closed, and yet there are overlaps between investigation and problem solving. 

 

(e) Resolving Conflicting Views about Mathematical Investigation 

 

We will begin by looking at the following task: 

 

Task 6: Number Trick 

Jill has a trick she does with numbers. Here it is. How do you think it 

works? 

   854 

 458 

   396 

    + 693 

     1089 

 
Jill says that every time she does her trick, the answer is always 1089. 

Investigate Jill’s trick. (Orton & Frobisher, 1996, p. 39) 
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Although the final sentence in the task statement tells the students to investigate Jill’s 

trick, the task statement also states the goal clearly in the third sentence: “How do you 

think it works?” Thus Task 6 is a mathematical problem according to what has been 

discussed in literature in Section 2.1.1 since an investigation must not contain any 

clearly defined goal (Orton & Frobisher, 1996). But these same writers gave this task 

as an example of an investigation. This contradiction could easily be resolved if the 

investigation process was separated from the investigative task. Although Task 6 is 

not an investigative task, it usually involves the investigation process because most 

students would start with some specific examples (specialising) before they try to 

generalise. They might formulate some conjectures, e.g. Jill’s trick only works for 

certain numbers, and they would have to test these conjectures by finding counter 

examples or by using some reasoning or deductive proofs. Therefore, most students 

will do some investigation to try to solve this problem. 

 

Another example of an apparent contradiction in literature is how Maher (2005) used 

the term “structuring their investigations” (p. 1) when she described how her students 

approached what she called “open-ended and well-defined tasks” (p. 2). An example 

of such a task is to find the number of 5-cube-tall towers that can be built if the cubes 

have two colours. From the literature review in Section 2.1.1, this task has a well-

defined goal and so it is a mathematical problem. But what makes it open-ended is 

that the students could pose other problems, e.g. a student called Ankur extended the 

task by asking, “Find as many towers as possible that are 4-cube tall if you can select 

from three colors and there must be at least one of each color in each tower” (ibid., p. 

6). However, the extension of a mathematical problem is different from an 

investigative task. But if the investigation process is separated from the investigative 
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task, then Maher’s idea of an investigation is the same as the investigation process 

which she has applied to mathematical problems instead of investigative tasks. 

 

(f) Summary of Literature Review on Investigation as a Process 

 

To summarise, there is a difference between an investigative task and the process of 

investigation. In this thesis, an investigative task will always be open in the sense that 

it will not have a clearly defined goal, while the investigation process will be 

characterised by the four main mathematical thinking processes of specialising, 

conjecturing, justifying and generalising. There are generally two approaches to 

problem solving: the inductive approach involving specialising (which is similar to 

the investigation process); and the deductive approach involving heuristics other than 

specialising (which will be called ‘other heuristics’ in this thesis), such as the use of 

reasoning. Thus problem solving involves the process of investigation. On one hand, 

it is possible for students to engage in the investigation process during the solving of a 

mathematical problem. On the other hand, it is possible for students not to be involved 

in the investigation process during the solving of specific problems when attempting 

an investigative task if they have solved the problems using other heuristics. 

However, the students will still be engaged in investigation as an activity when they 

attempt the investigative task, which will be explained in the next section. 

 

2.1.3 Problem Solving and Mathematical Investigation as Activities 

 

In this section, the similarities and differences between problem solving and 

mathematical investigation as activities will be examined. 
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(a) Another Conflicting View about Investigation and Problem Solving 

 

Many educators (e.g. Cai & Cifarelli, 2005; Height, 1989) believe that mathematical 

investigation involves both problem posing and problem solving because students 

need to pose their own problems to solve when given an investigative task. But this 

contradicts the notion that problem solving involves the process of investigation, as 

explained earlier in Section 2.1.2. Thus there is a need to resolve this issue by 

separating investigation as a process from investigation as an activity. 

 

(b) Difference between Investigative Task and Investigation as an Activity 

 

The usage of the term ‘activity’ in mathematics education research literature is not 

new. Christiansen and Walther (1986) distinguished a task from an activity even 

though these two terms are often treated as synonyms (Mason & Johnston-Wilder, 

2006). A task refers to what the teacher sets while the activity refers to what the 

student does in response to the task (Christiansen & Walther, 1986). “The purpose of 

a task is to initiate mathematically fruitful activity [by] learners” (Mason & Johnston-

Wilder, 2006, p. 25). The distinction between a task and an activity is important 

because the original purpose of a task may be lost during its implementation (Stein, 

Grover & Henningsen, 1996). Some educators (e.g. Jaworski, 1994; Mason, 1978) are 

worried that teachers may teach mathematical investigation in an algorithmic manner 

by stereotyping certain mathematical processes as a set of procedures to be learnt by 

students. For example, Lerman (1989) observed a lesson by an experienced teacher 

who taught mathematical investigation by telling his students what to do to arrive at 

an answer when they were stuck, instead of asking guiding questions to stimulate 
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thinking and further investigation. Thus a task that is intended to be open can be 

closed by the teacher in its implementation. 

 

Therefore, there is a need to separate the activity from the task. The term 

‘investigation as an activity’ will be used to refer to the mathematical activity 

performed by the students when they attempt an investigative task, while students 

solving mathematical problems will be engaged in ‘problem solving as an activity’.  

 

(c) Difference between Investigation as a Process and Investigation as an Activity 

 

However, the above only explains the difference between an investigative task and 

investigation as an activity. What about the difference between investigation as a 

process and investigation as an activity, and the difference between problem solving 

as a process and problem solving as an activity? 

 

An analogy would be helpful. The four phases of Pólya’s (1957) mathematical 

problem-solving model are (i) understanding the problem, (ii) devising a plan, (iii) 

carrying out the plan, and (iv) looking back. From another perspective, the first phase 

of understanding the problem is what a student should do before solving the problem 

and the fourth phase of looking back is what the student should do after solving the 

problem. The actual process of solving the problem begins in the second phase of 

devising a plan and continues into the third phase of carrying out the plan. This could 

be made clearer if the entire mathematical activity of problem solving is distinguished 

from the actual process of solving the problem. Another real life analogy would be 

cooking. Before a person can cook, he or she has to prepare the ingredients. After the 

person has cooked, he or she has to scoop up the food from the pan or pot into a dish. 
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However, the whole activity of cooking involves not only the actual process of 

cooking, but what the person needs to do before and after the cooking. 

 

Similarly, when students attempt an investigative task, they are engaged in 

investigation as an activity. This activity includes processes such as understanding the 

task and posing a problem to solve before the process of problem solving. As 

explained in Section 2.1.2, the students can then solve the problem by using 

specialising (inductive approach or the process of investigation) or by using other 

heuristics (deductive approach). After problem solving, the students can engage in the 

process of checking the solution, or the process of posing more problems to solve 

without changing the given in the original task, or the process of extending the task by 

changing the given. The relationships among investigation as an activity involving an 

investigative task, problem solving as a process, and investigation as a process, are 

explicated in the model in Figure 2.2. 

 

 

 

 

 

 

 

 

Figure 2.2  Mathematical Investigation as an Activity 

 

From the model in Figure 2.2, it is observed that investigation (as an activity) involves 
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investigation (as a process). Therefore, the conflicting views about the relationships 

between investigation and problem solving could be resolved if the three constructs 

(namely, task, process and activity) are separated. 

 

To complete the discussion, Figure 2.3 shows the relationship between problem 

solving as an activity involving a mathematical problem, and investigation as a 

process. A main difference between problem solving as an activity in Figure 2.3 and 

investigation as an activity in Figure 2.2 is the additional process of problem posing in 

investigation. The purpose of this kind of problem posing is to generate problems to 

solve, which is different from posing a simpler or related problem as a problem-

solving heuristic. The differences among the various types of problem posing will be 

discussed in more detail in Section 2.1.4 and Section 2.2.3(b). 

 

 

 

 

 

 

 

 

Figure 2.3  Problem Solving as an Activity 

 

(d) Summary of Literature Review on Investigation as an Activity 

 

To summarise the literature review so far, the differences between investigative tasks 
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investigation and problem solving as both processes and activities have been clarified. 

This will help to define the terms used in the thesis (see Section 3.5 later). In addition, 

from this point onwards, the term ‘investigation’ will always be used to refer to an 

investigation activity involving an (open) investigative task; but when there is a need 

to refer to investigation as a process, i.e. the inductive approach to problem solving, 

then either the term ‘investigation process’ or ‘process of investigation’ will be used. 

 

2.1.4 Two Types of Investigative Tasks: Type A and Type B 

 

As investigation consists of problem posing and problem solving, there is a need to 

review literature on problem posing. This will be done under the literature review of 

cognitive processes later in Section 2.2.3(b). In this section, there is a need to address 

another issue regarding problem posing involving investigative tasks such as Task 3 

which is reproduced below: 

 

Task 3: Powers of 3 

Powers of 3 are 31, 32, 33, 34, … Investigate. 

 

(a) Conflicting View about Investigation and Problem Posing 

 

As explained in Section 2.1.1, Task 3 does not contain a clearly-defined goal but a 

“general goal” (Orton & Frobisher, 1996, p. 26) as suggested by the word 

‘investigate’. The general goal of such investigative tasks is to find the underlying 

patterns or mathematical structures. To tie in with the literature on problem posing 

(e.g. Brown & Walter, 2005), the students can pose the general problem, “Is there any 

pattern? If yes, what is the pattern?” To attain the general goal, students are supposed 
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to set more specific goals to investigate (Cai & Cifarelli, 2005) or pose more specific 

problems to solve (Frobisher, 1994; Krutetskii, 1976). To use Task 3 as an 

illustration, students could pose specific problems like these: 

 

 Is there a pattern in the last digit of consecutive powers of 3? 

 Is there a pattern in the last two digits of consecutive powers of 3? 

 

However, anecdotal evidence suggests that most students do not even know what 

kinds of specific problems to pose, so they will just search for any pattern. This was 

supported by findings from an initial exploratory study conducted by me (see Section 

3.3), where quite a number of students searched for any pattern without posing any 

specific problem. In fact, many of these students did not even find a pattern in the last 

digit or the last two digits of consecutive powers of 3, but they found patterns in the 

following: 

 

 the first digit of consecutive powers of 3; 

 the total number of digits of consecutive powers of 3; 

 the sum of digits of consecutive powers of 3. 

 

The students in the initial exploratory study generated some powers of 3 and then 

tried to find any pattern anywhere. For example, they looked at the first digits in their 

examples, could not observe any pattern, then moved on to the second digits and so 

forth. When that failed, some of them even tried to count the total number of digits to 

see if there was any pattern. In other words, the students did not set out to find a 

specific pattern, but they tried to find any pattern anywhere. This approach is different 

from posing a specific problem right at the beginning to, say, search for a pattern in 
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the first digit of powers of 3 and then generating examples for the sole purpose of 

examining the first digit of powers of 3. 

 

Therefore, for investigative tasks such as Task 3 (Powers of 3), there is actually no 

need to pose any specific problem because the students can just search for any pattern, 

which is the general goal or general problem of such investigative tasks. This appears 

to contradict some literature (e.g. Cai & Cifarelli, 2005; Krutetskii, 1976) which 

suggest that students should set more specific goals or pose more specific problems to 

investigate. 

 

(b) Converting Mathematical Problems into Investigative Tasks 

 

To resolve the issue that students should pose specific problems in investigative tasks, 

there is a need to consider a second type of investigative tasks that are obtained by 

opening up mathematical problems. Frobisher (1994) suggested that it is “nearly 

always possible to restate [a problem] in order to make it into an investigation” (p. 

158). Task 4, which was first stated in Section 2.1.2 and reproduced here, will be used 

as an example: 

 

Task 4: Handshake Problem 

At a workshop, each of the 20 participants shakes hands once with 

each of the other participants. Find the total number of handshakes. 

 

To illustrate Frobisher’s (1994) idea using Task 4, the task could be opened up by 

removing the intended problem from the task statement and replacing it with the word 

‘Investigate’ (see Task 5). 
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Task 5: Investigate Handshakes 

At a workshop, each of the 20 participants shakes hands once with 

each of the other participants. Investigate. 

 

The purpose of opening up a mathematical problem, such as Task 4, to become an 

open investigative task, such as Task 5, is to allow students to pose their own 

problems to solve from the beginning. Frobisher (1994) believed that students need to 

pose more specific problems, such as the original intended problem of finding the 

total number of handshakes, because it is not easy for students to just search for any 

pattern for this kind of tasks without having a specific problem in mind. Another 

specific problem that students can pose at a later stage is to find a general formula for 

the total number of handshakes for n participants. 

 

(c) Type A and Type B Investigative Tasks 

 

However, Task 5 is different from the usual investigative tasks found in most 

literature, such as Task 3 (Powers of 3), in two ways: 

 

 Task 5 requires students to first pose a specific problem to solve because they 

probably could not search for any pattern without having any specific problem 

to solve; while Task 3 allows students to pose the general problem of 

searching for any pattern without the need to pose any specific problem. 

 

 Task 3 requires students to investigate by specialising; while Task 5 allows the 

use of other heuristics, such as reasoning, to solve the specific problem posed, 

although it is sometimes possible to use specialising to solve. 
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Therefore, there seem to be two different types of investigative tasks that will elicit 

somewhat different kinds of processes. The usual investigative tasks found in most 

literature, such as Task 3 (Powers of 3), will be called Type A investigative tasks; 

while investigative tasks converted from mathematical problems, such as Task 5 

(Investigate Handshakes), will be called Type B investigative tasks. This thesis will 

examine the processes that students engage in when attempting both of these types of 

tasks. An interesting issue for the present study is to examine whether the students are 

able to pose the original intended problem for Type B tasks, which will be addressed 

in the data analysis in Section 7.3.2(a). 

 

(d) Other Types of Tasks, Activities and Pedagogies Related to Investigation 

 

There are other types of tasks, activities and pedagogies similar to mathematical 

investigation. For example, some researchers (e.g. Cifarelli & Cai, 2004) use the term 

‘exploration’ to refer to investigation involving open investigative tasks, while others 

(e.g. Brown, 1996) use the same term to refer to the process of investigation for 

mathematical problems. Similarly, some educators (e.g. Becker & Shimada, 1997; 

Orton & Frobisher, 1996) use the terms ‘open problems’ and ‘open-ended problems’ 

to refer to investigative tasks, but others (e.g. Maher, 2005) use the same terms to 

refer to mathematical problems that can be extended. On the other hand, one would 

expect an investigative approach to the teaching of mathematics to include 

investigative tasks, but some researchers (e.g. Orton & Frobisher, 1996) believe that 

an ad hoc use of investigative tasks in the classroom is not an investigative approach. 

Rather, an investigative approach involves a drastic change of the traditional method 

of teaching where the teacher will no longer teach the content. Instead, the teacher 



 
 

41

will act as a facilitator while the students attempt shorter investigative tasks in the 

classroom and longer project work outside curriculum time. 

 

There are other types of tasks, activities and pedagogies that seem to include some 

elements of investigation, e.g. project work (Cockcroft, 1982; Nielsen, Patronis & 

Skovsmose, 1999; Wolf, 1990), guided discovery (Bruner, 1961; Collins, 1988; Yeo, 

Hon & Cheng, 2006), playing mathematically-rich games (Ainley, 1988, 1990; van 

Oers, 1996; Yeo, 2007), real-life and workplace problems (Carraher & Schliemann, 

2002; Moschkovich, 2002b; Skovsmose, 2002), and mathematical modelling 

(English, 2007; Kaiser & Sriraman, 2006; Lingefjärd & Meier, 2010). However, these 

are not relevant to the current research because the tasks used in the present study are 

the two types of open investigative tasks described earlier. Therefore, the review of 

literature on all these other types of tasks, activities and pedagogies will not be 

included in this thesis. 

 

2.1.5 Empirical Studies on Mathematical Investigation 

 

As educators use different terms to mean mathematical investigation, e.g. exploration 

(Cifarelli & Cai, 2004) and open problems (Orton & Frobisher, 1996), I have searched 

and reviewed many academic books, edited books, journals and conference 

proceedings that contain all these terminologies. From the references cited in these 

sources, I have searched and reviewed relevant references that contain any 

terminology related to problem solving and investigation, which in turn give rise to 

more references to search for. However, most empirical research in current literature 

turns out to be on mathematical problems and not investigation. On the other hand, 

most literature that contains the word ‘investigation’ turns out to be studies where the 
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researchers (e.g. Kaur, 1995; Lampert & Ball, 1998) have referred to their own 

investigation of other mathematics education issues, or studies where the researchers 

(e.g. Maher, 2005) have applied the investigation process to mathematical problems, 

as discussed earlier in Section 2.1.2. In the end, it turns out that there are far fewer 

empirical studies on investigation, although there is quite a fair bit of theoretical 

research on investigation, such as those theoretical articles or books cited earlier in 

Sections 2.1.1 to 2.1.4. Empirical studies on investigation processes are rare. 

 

This section will review different kinds of empirical studies on mathematical 

investigation from different countries: informal research, typical action research, 

ethnographic studies and teaching experiments. However, empirical studies that track 

the actual cognitive processes of students during investigation will be dealt with later 

in Section 2.2.4. 

 

(a)  Typical Informal Research Studies on Mathematical Investigation 

 

Since mathematical investigation was introduced in the UK in the 1960s by the 

Association of Teachers of Mathematics (ATM) and officially affirmed with the 

publication of the Cockcroft Report in 1982 (Jaworski, 1994), one might expect that a 

good source of research in mathematical investigation would be their mathematics 

education journals. However, both journals, Mathematics Teaching and Mathematics 

in School, published by ATM and the Mathematics Association (MA) respectively, 

are essentially non-research journals. There are a lot of teaching ideas on investigation 

in these journals, but the claim that doing mathematical investigation benefits students 

is usually based on some anecdotal evidence (Lesh, Lovitts & Kelly, 2000). 
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A typical report (e.g. Bird, 1980) gave the background of the investigation, followed 

by a detailed account of the students’ investigation and sometimes samples of their 

work. The focus was on the content of the investigation that the students managed or 

did not manage to discover. Some reports ended just like this but others (e.g. Davies, 

1980) included a short reflection on the benefits of the investigation. Bishop (1982) 

claimed that at least half a dozen articles in the current issue in front of him 

(Mathematics Teaching, No. 98, March 1982) had “a clear research slant” (p. 65) and 

he was glad that the column headed Research in previous issues of the journal had 

stopped because the problem with labelling one article ‘Research’ implied that the 

other articles in the journal were not research studies. But the journal adopted the 

column headed Research again from No. 174, March 2001, onwards, suggesting that 

subsequent editors of the journal might not view the other articles in the journal as 

formal research. Nevertheless, the journal did have some more formal research studies 

which will be described next. 

 

(b)  Typical Action Research Studies on Mathematical Investigation 

 

A study in the UK by Tanner (1989) was published in Mathematics Teaching. It 

described how he had conducted a research on the implementation of mathematical 

investigation in his school because of the arrival of the GCSE with its coursework 

component on investigation. They sought the help of ATM, which provided advice, 

moral support and financial assistance to Tanner and his staff to start an action 

research group with the aim of improving teacher performance in the implementation 

of problem solving and investigation. During the research, Tanner found that it was 

necessary to provide guidance to most students during investigation, but “the most 

effective interventions question students rather than dictate to them” (p. 22). He 
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observed that group work and discussion helped the students to generate and test 

ideas, and to practise the communication of ideas which would force them to clarify 

and redefine their ideas if necessary. The outcome was that the teachers were more 

willing to accept and discuss unorthodox methods with their students and “the 

students no longer demand: What page? when the teacher enters the room as often as 

they used to” (ibid.). However, Tanner recognised that these findings were not based 

on systematic observations and testing, though he believed that they were nevertheless 

true for their classes because they were based on many hours of observations. 

 

(c)  Ethnographic Research Study on Open-Ended Approach by Boaler (1998) 

 

Boaler (1998) conducted a three-year ethnographic research in the UK where one 

school used the traditional textbook approach, while the other school used open-ended 

activities at all times because it was involved in a small-scale pilot of a new GCSE 

examination that assessed process as well as content. Although Boaler did not use the 

term ‘investigation’, she referred to the project-based approach as process-based 

teaching with its emphasis on processes similar to those for investigation described in 

Section 2.1.2. Each project for the students in the experimental school lasted for two 

to three weeks. Examples of a starting point for projects were, “The volume of a 

shape is 216. What can it be?” or “What is the maximum sized fence that can be built 

out of 36 gates?” “The students were then encouraged to develop their own ideas, 

formulate and extend problems, and use their mathematics.” (p. 49) If the students 

needed to use certain mathematics content or procedural skills that they did not know 

of, the teacher would simply teach it to them. Boaler found that the students had 

greater success in the new form of GCSE examination that rewarded problem solving 

as well as procedural knowledge (this exam was discontinued in 1994). This 
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suggested that it was possible to teach students how to solve real-life and unfamiliar 

problems by adopting an entirely new open-ended project-based pedagogy in the 

classroom. 

 

(d)  Teaching Experiment by Lampert (1990) 

 

In the USA, Lampert (1990) conducted a teaching experiment for fifth grade students 

in a public school for three years. A typical teaching unit consisted of several lessons 

for exploration of open tasks and mathematical discourse. For example, Lampert 

began by asking her class to prepare their own tables of squares from 12 to 1002 using 

calculators and challenging them to find patterns in the tables. The students’ most 

sophisticated conjecture, asserted towards the end of the lesson, was about the pattern 

of the last digit of the squares. They even proved that the pattern would go on forever 

using the underlying mathematical structure. Lampert then made use of the students’ 

discovery of the pattern in the last digit of squares to extend the problem to “What is 

the last digit in 54? 64? 74?” and later to “What is the last digit of 75?” Throughout the 

whole activity, Lampert acted only as a facilitator to follow and engage in 

mathematical arguments of the students during the classroom discourse and she never 

told the students whether their answers were right or wrong. Instead, the students 

were expected to come to their own conclusions, based not on what the teacher, a 

better student or the textbook said, but based on mustering enough evidence to prove 

or disprove a conjecture. Lampert recognised that learning is “both the activity of 

acquiring knowledge and the knowledge that is acquired” (p. 59). What she described 

in her research was the activity of learning, but she admitted that it remained to be 

seen what knowledge her students had acquired and whether it was transferable to 

situations in the real world. 
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(e)  Narrative Inquiry on Pre-service Teachers by Bailey (2007) 

 

In New Zealand, Bailey (2007) used a research methodology called narrative inquiry 

to investigate her professional practice as a teacher educator using mathematical 

investigation to develop a cohort of about 200 pre-service primary teachers’ 

understanding of what it means to teach and learn mathematics. She cited literature to 

support her claim that narrative inquiry, which is a form of storytelling with constant 

reflection, has become a valued form of research in recent years. Bailey admitted that 

the investigative approach was new to her, but as she taught the pre-service teachers 

using this approach, she herself also became a learner in mathematical investigation. 

Thus she was able to identify with her students the initial feelings of discomfort with 

an unfamiliar approach and being stuck in the process of investigation. In the end, she 

found that all four pre-service teachers, whom she interviewed, had experienced a 

deeper level of learning using the investigative approach. 

 

(f)  Research Study on Magic Squares by Ng (2003) 

 

In Singapore, there were only two research studies on mathematical investigation. The 

first study was a Master’s thesis by Ng (2003). He conducted a series of lessons on 

the investigation of magic squares over a period of six months for a Primary 6 Gifted 

Education Programme (GEP) class of 23 boys and six girls. The duration of the 

investigation varied from 15 minutes in normal classroom teaching to three hours in 

the computer laboratory, where his students used EXCEL to help sum up each row, 

column and diagonal of the magic squares. A total of 23 hours 10 minutes were spent 

on the investigation. Ng’s role was to guide the students in the investigation and class 

discussions. The investigation started with constructing a 33 magic square and then 
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extended to the construction of higher-order magic squares. Eight of the 16 sessions 

were video-taped and transcribed for analysis. Ng found that the investigation 

promoted flexibility and inventiveness in problem solving, provided opportunities for 

rich mathematical communication that helped students construct mathematical 

knowledge, created opportunities for students to persevere in problem solving, and 

triggered students to make their own mathematical conjectures. 

 

(g)   Research Study on Investigation and Mini Project Work by Ng, Teo and 

Leow (2005) 

 

The second study on mathematical investigation in Singapore was conducted by 

another researcher and two teachers on investigation and mini project work (Ng, Teo 

& Leow, 2005). Two classes of Secondary 2 (equivalent to Grade 8) students were 

exposed to some investigative tasks during lessons, and they were also divided into 

groups to do a mini project. The students’ class work and projects were assessed using 

a scoring rubric. The researcher (i.e. Ng) believed that investigative tasks should be 

used to practise and consolidate a skill or concept, and to follow up or extend a topic, 

and that project work should be used to provide connections between the different 

units in a topic through a concept map. She also viewed investigative tasks and mini 

project work as ‘alternative assessment’ to assess other aspects of students’ learning, 

rather than to learn through mathematical investigation and project work. 

 

(h) Summary of Literature Review on Empirical Studies 

 

The literature review of empirical studies on mathematical investigation has revealed 

that there are very few such studies, and that most of these studies have focused on 
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the general benefits of investigation, rather than the nature and development of 

processes in mathematical investigation. 

 

2.1.6 Summary of Literature Review on Mathematical Investigation 

 

The review of relevant literature on mathematical investigation in Section 2.1 has 

helped to reconcile conflicting views in existing literature between problem solving 

and investigation, and to clarify various constructs such as (i) the differences among 

investigation as a task, a process, and an activity, and (ii) the relationships between 

problem solving and mathematical investigation. This will help to define clearly the 

terms used in the present study. The literature review has also revealed a lack of 

empirical studies on the processes of investigation. Thus the present research will try 

to address this gap in current research by studying the nature and development of 

thinking processes in mathematical investigation. 

 

2.2 LITERATURE REVIEW ON COGNITIVE PROCESSES 

 

Since there is not much research on the processes of mathematical investigation as 

explained earlier in Section 2.1, the review of literature in this section will have to 

draw mostly from research studies on the processes in problem solving. This is 

justifiable because there is a great deal of overlap between the processes in problem 

solving and in mathematical investigation as explained in Sections 2.1.2 and 2.1.3. 

This section will begin by clarifying the construct of thinking processes used in 

research literature. It will then review models of cognitive processes in mathematical 

investigation and problem solving in order to understand the types and interactions of 

these processes, followed by the study of each of the eight main investigation 
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processes in detail. Empirical studies of cognitive processes in both problem solving 

and mathematical investigation literature will be reviewed to set the direction of the 

present research study. Lastly, this section will end with a summary of the main 

findings on the nature and development of cognitive processes in current literature. 

 

2.2.1 Thinking Processes 

 

(a) Thinking 

 

There are many types of thinking, e.g. analytical thinking, logical thinking, critical 

thinking, creative thinking, reasoning, higher order thinking, lower order thinking, 

lateral thinking, inductive thinking, deductive thinking and mathematical thinking. 

Krulik and Rudnick (1993) believed that there are different levels of thinking in some 

kind of hierarchical order (see Fig. 2.4). They acknowledged that the levels are not 

distinct but there are some overlaps. Nevertheless, each level makes use of the types 

of thinking contained in the levels that lie below it. At the lowest level, recall thinking 

means the automatic recall of knowledge and facts. The next level of thinking, basic 

thinking, includes the understanding and application of mathematical concepts. These 

two levels of thinking are considered lower order thinking, while the next two levels, 

critical and creative thinking, are higher order thinking. Critical thinking involves the 

skills to analyse and evaluate, while creative thinking is the ability to synthesise and 

generate new ideas. Krulik and Rudnick believed that reasoning entails the three 

highest levels of thinking: basic, critical and creative thinking. 
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Figure 2.4  Model of Hierarchy of Thinking 

 

Mathematical problem solving and investigation require not only basic and critical 

thinking, but also creative thinking because the “ability to integrate results of an 

investigation into an effective plan or solution to solve a problem” (Bloom, Engelhart, 

Furst, Hill & Krathwohl, 1956, p. 170) involves the idea of synthesising and 

generating new ideas. In fact, problem solving and investigation also require the 

lowest level of recall thinking as students need knowledge and facts to think. 

Schoenfeld (1985) called these ‘resources’ that are essential for problem solving. 

 

(b) Processes 

 

Backhouse, Haggarty, Pirie and Stratton (1992) defined a process as “a way of doing 

something, or a mode of action” (p. 90) and Shufelt (1983) viewed problem solving as 

a process where one does something to solve a problem. But a thinking process may 

not result in a physical action, e.g. a person may just reason something in his or her 

mind. Therefore, a thinking process is a mental process that one does in his or her 

mind which may not result in a physical action. However, there are two different 

perspectives of ‘process’ in investigation: from one angle, an investigation is one 

Recall 

Creative 

Critical 

Basic 

Higher Order 
Reasoning 



 
 

51

whole process (Frobisher, 1994), just like problem solving is one whole process 

(Shufelt, 1983); from another angle, there are many processes involved in an 

investigation (Frobisher, 1994). Frobisher classified these investigation processes into 

five categories: 

 

(1) Communication Processes (e.g. explaining, talking, agreeing, questioning) 

(2) Reasoning Processes (e.g. collecting, clarifying, analysing, understanding) 

(3) Recording Processes (e.g. drawing, writing, listing, graphing) 

(4) Operational Processes (e.g. collecting, sorting, ordering, changing) 

(5) Mathematical Processes (e.g. pattern searching, conjecturing, proving, 

generalising). 

 

The first four types of processes are general processes that are useful in mathematical 

investigation while the last type is what he called “mathematics-specific processes” 

(p. 161) or “processes ‘unique’ to mathematics” (p. 163). The problem with this 

definition of mathematical processes is that some of these processes are not unique to 

mathematics only, e.g. scientists also formulate and test conjectures in scientific 

experiments so as to generalise into scientific laws. On the other hand, some of the 

general processes also pertain to mathematics, e.g. analysing in reasoning processes is 

often associated with mathematical problem solving and investigation; and processes 

such as mathematical communication (Pimm, 1987) and mathematical writing 

(Morgan, 1998) are very much mathematical in nature. Therefore, there are grey areas 

in Frobisher’s (1994) classification, but it may not be necessary to draw such a clear 

boundary between general processes and mathematical processes. Nevertheless, some 

of the processes are thinking processes (e.g. reasoning and mathematical processes) 

while others do not involve much thinking (e.g. recording processes). Other 
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researchers, such as Mason et al. (1985), have also identified four main mathematical 

thinking processes (namely, specialising, conjecturing, justifying and generalising), 

which are similar to Frobisher’s (1994) mathematical processes. These mathematical 

thinking processes will be discussed in greater detail later in Section 2.2.3. 

 

There is another type of process that involves more than just thinking. It is “thinking 

about your own thinking” (Schoenfeld, 1987, p. 189) or metacognition. Although the 

Singapore school mathematics curriculum distinguishes between processes and 

metacognition in its Pentagon Model (see Section 1.1), the term ‘processes’ will be 

used in the present research study to include both cognitive and metacognitive 

processes. Sometimes, there is a need to use the phrase ‘thinking processes’ to 

emphasise the thinking behind these processes. When this term is used, it also refers 

to both cognitive and metacognitive processes although, strictly speaking, 

metacognition is a meta-thinking process and not a thinking process. The literature 

review on metacognition will be dealt with later in Section 2.3. 

 

To summarise, processes can be thinking or non-thinking, and thinking processes can 

be cognitive or metacognitive. On the other hand, processes can also be mathematical 

or non-mathematical. Sometimes, it is not easy to classify a process neatly into a 

category because there are grey areas between the various categories of processes. 

The next section will focus on cognitive processes that are useful in investigation. 

 

2.2.2 Models of Cognitive Processes in Mathematical Investigation 

 

Clement (2000) believed that one of the most important current needs in basic 

research on thinking processes is the need for an insightful explanatory model of 
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students’ thinking processes. This type of explanatory models is often iconic in nature 

and the purpose of the model is to give satisfying explanations for patterns in 

observations (Lesh et al., 2000). As there are few such models on investigation in the 

current literature, existing models of cognitive processes in problem solving will also 

be examined, since most of these processes are similar for investigation and problem 

solving (see Section 2.1.2). The models in this section were chosen because (i) they 

have been formulated by renowned researchers (e.g. Pólya, 1957; Schoenfeld, 1985), 

(ii) they have been used frequently by other researchers (e.g. Pólya’s model and 

Schoenfeld’s model), or (iii) they have important elements different from the other 

models (e.g. Wallas’ creativity model and Height’s investigation model). 

 

(a)  Problem-Solving Model by Pólya (1957) 

 

George Pólya began a revolution in problem solving with the publication of his book 

How to Solve It in 1945 and a revised edition in 1957. There are four phases in his 

problem-solving model (Pólya, 1957): 

 

(1)  Understanding the problem 

(2)  Devising a plan 

(3)  Carrying out the plan 

(4)  Looking back. 

 

When students first encounter a problem, they should make sense of the problem by 

looking for the given information, visualising the information and organising it. They 

should then devise a plan to solve the problem by using various heuristics, such as 

drawing a diagram, making a systematic list and looking for patterns. They should 
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then implement the heuristic chosen to solve the problem. If they still fail to solve it, 

they will have to go back to either the first phase to see if they have left out any given 

information, or to the second phase to think of another plan. This suggests that 

problem solving is not a linear process. If the students manage to solve the problem, 

they should check the solution, and try to improve on the method used. They should 

also reflect on whether the result or the method can be applied to other problems. 

 

(b)  Problem-Solving Model by Mason, Burton and Stacey (1985) 

 

Mason, Burton and Stacey (1985) formulated a problem-solving model (which will be 

called Mason’s model) with three phases that include the four main mathematical 

thinking processes: 

 

(1)  Entry  

(2)  Attack (including specialising, conjecturing, justifying and generalising) 

(3)  Review. 

 

During the Entry Phase, the students should try to understand the problem, which is 

similar to the first phase of Pólya’s model. The major activity in Mason’s model is the 

Attack Phase, which is similar to a combination of the second and third phases of 

Pólya’s model, except that Mason et al. included the four main mathematical thinking 

processes: specialising, conjecturing, justifying and generalising. They believed that 

specialising and generalising are two sides of the same coin: the purpose of trying 

examples (specialising) is to generalise. However, a general result thus obtained 

might not be true: it is only a conjecture to be proven or justified. The four main 

mathematical thinking processes will be described in more detail in Section 2.2.3. The 

last phase of Mason’s model, the Review Phase, is similar to Pólya’s fourth phase. 
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(c)  Mathematical Discovery Model by Lakatos (1976) 

 

Lakatos (1976) discussed the development of mathematical knowledge through 

discovery, which results in proving or disproving conjectures, but he did not present a 

schematic representation of the discovery process. Davis and Hersh (1981) decided to 

simplify Lakatos’ mathematical discovery in the form of a model (see Fig. 2.5). After 

making a conjecture, there are two possibilities: (i) students can do some naïve testing 

using empirical data to see if they can refute the conjecture; if the conjecture is not 

refuted, the students can proceed to prove the conjecture; (ii) students can go straight 

into proving the conjecture without doing naïve testing; during the proving, refutation 

may also occur. If refutation happens, the conjecture needs to be reformulated. Again, 

there are two possibilities: (i) if the refutation is the result of a local counter example, 

then the conjecture needs to be modified or revised; (ii) if the refutation is the result of 

a global counter example, then the conjecture is false and a new conjecture will have 

to be formulated. The model shows that mathematical discovery is not linear. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.5  Simplified Lakatos’ Mathematical Discovery Model 
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(d)  Problem-Solving Model by Schoenfeld (1985) 

 

Another type of problem-solving models, which is not about the problem-solving 

process but the components essential to solve problems successfully, will be 

examined. Schoenfeld (1985) realised that having a wide repertoire of heuristics, as 

described in Pólya’s model, is not enough to make one student a better problem solver 

than another. So he identified four categories necessary for effective problem solving: 

 

(1)  Resources 

(2)  Heuristics 

(3)  Control 

(4)  Belief Systems. 

 

To solve a problem, students need to use basic mathematical knowledge, which 

Schoenfeld called ‘resources’, because thinking does not exist in a vacuum. Students 

also need to be familiar with a broad range of heuristics. However, some students are 

more apt to select and deploy the resources and heuristics at their disposal than others. 

This is the issue of control or metacognition, which will be discussed in detail in 

Section 2.3. Whether students will persevere to solve the problem depends very much 

on their belief systems. If the students think that a mathematical problem is something 

that can be solved within 10 minutes, then they might give up if they cannot solve the 

problem within that time frame. But what happens if the students still fail to devise a 

suitable plan to solve a problem? This question will be answered by looking at the 

next model. 
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(e)  Creativity Model by Wallas (1926) 

 

The ‘synthesis’ category in the Bloom Taxonomy (Bloom et al., 1956) includes the 

“ability to integrate results of an investigation into an effective plan or solution to 

solve a problem” (p. 170). Since this ability to synthesise a plan to solve a problem is 

not purely an analytical skill but a synthetic or creative one as well (Lenchner, 1983), 

some literature on creativity will be reviewed to see what can be learnt from it. Wallas 

(1926, as cited in Pope, 2005) proposed that there are four stages of creativity: 

 

(1) Preparation 

(2) Incubation 

(3) Illumination 

(4) Verification. 

 

To be creative, students need to prepare by arming themselves with knowledge, and in 

the case of problem solving, heuristics as well. Then students need time to think. This 

is called the incubation period where the students take a break and relax their minds: 

think about the problem in a more relaxed state and environment and let the images 

from the subconscious surface. This is a useful strategy when students fail to devise a 

suitable plan to solve a problem or are stuck. For example, Einstein said that he got 

some of his best ideas while shaving (Fabian, 1990), and Archimedes discovered a 

way to find the volume of an irregular object, such as the King’s crown, while taking 

a bath (The MacTutor History of Mathematics Archive, 1999). The incubation stage is 

crucial for illumination. The problem with modern society is that there are so many 

things to do that students have very little time to incubate. The only stage in creativity 

that the students have no control over is illumination: whether an idea comes to them 

does not depend on the students themselves. They may have prepared themselves well 
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with resources and heuristics, and have plenty of time to incubate, but they still may 

not reach the illumination stage. If they do, the last stage is to fill in the details and 

test out the idea to make sure that it really works. This is rather similar to Pólya’s 

third and fourth phases of carrying out the plan and looking back. The above review 

suggests that students should undergo the creative incubation process if they are stuck 

during problem solving. 

 

(f)  Multi-Cyclic Mathematical Investigation Model by Height (1989) 

 

Since investigation, like problem solving, is not a linear process (Burton, 1984), 

Height (1989) proposed a multi-cyclic strategy for investigation consisting of eight 

stages (see Fig. 2.6). In the first stage, students need to understand the investigative 

task and set up a situation to investigate by defining an initial model of the problem. 

The second stage involves collecting information about the problem, e.g. trying out 

specific examples, which is similar to the process of specialising in Mason’s model. 

The information is then organised so that the students can search for patterns (third 

stage) which may lead to the formulation of a hypothesis (fourth stage). In the fifth 

stage, the testing of a hypothesis is based on empirical data, which is similar to the 

naïve testing of a conjecture in Lakatos’ model. In the sixth stage, the initial model of 

the problem is refined or extended to increase its boundary, which might lead to more 

pattern searching and so the cycle continues. In the seventh stage, the students will try 

to justify the hypothesis formed using a more rigorous proof, and in the last stage, the 

presentation of a written report. Height (1989) described his model as multi-cyclic, 

meaning that students might go through the cycle many times. His model is one of the 

few models that has a cycle and an end. Most models are either cyclic without an end 

(e.g. Lakatos’ model), or linear with an end (e.g. Frobisher’s model in next part). 
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Figure 2.6  Height’s Multi-Cyclic Mathematical Investigation Model 

 

(g)  Mathematical Investigation Model by Frobisher (1994) 

 

Frobisher (1994) believed that mathematical processes interact with one another when 

students engage in investigation and he suggested a model for their interactions (see 

Fig. 2.7). Some of these processes, such as pattern searching, conjecturing and 

proving, are similar to those advocated in other models described earlier. However, 

Frobisher distinguished between conjecturing and hypothesising, but he did not 

explain the difference. Cambridge Dictionaries Online (Cambridge University Press, 

2012) defined a conjecture to be ‘a guess about something based on what it seems 

[emphasis mine]’ but a hypothesis is ‘an idea or explanation for something that is 

based on known facts [emphasis mine] but has not yet been proven’. So conjecturing 

comes first, and then after testing a conjecture based on empirical data (which is 

similar to naïve testing of a conjecture in Lakatos’ model), the conjecture will become 
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a hypothesis based on more reliable facts. According to Frobisher’s model, the 

hypothesis is then subject to further testing. However, most models do not include so 

many rounds of testing, and they either used the term ‘conjecture’ (e.g. Lakatos’ 

model) or ‘hypothesis’ (e.g. Height’s model). Since most researchers (e.g. Lampert, 

1990; Mason et al., 1985) do not distinguish between a conjecture and a hypothesis, 

this thesis will use only one term: conjecture. 
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Figure 2.7  Frobisher’s Mathematical Investigation Model 

 

(h) Summary of Literature Review on Models of Cognitive Processes 

 

To summarise, there are generally three phases in a model of cognitive processes in 

mathematical investigation: Entry, Attack and Review. The stages in the Entry Phase 

include the main processes of understanding the task and problem posing, while the 

stages in the Attack Phase consist of the four main mathematical thinking processes: 
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specialising, conjecturing, justifying and generalising. The issue of how problem-

solving heuristics fit into the Attack Phase will be discussed later in part (c). The 

Review Phase consists of the main processes of checking and extension. Then the 

cycle repeats. Although each stage of the investigation model is linked to a main 

cognitive process, there are various sub-processes within each stage or main process. 

Thus there is a need to examine these sub-processes in the next section. 

 

2.2.3 Processes and Outcomes in Mathematical Investigation 

 

Table 2.1 shows the three phases and eight stages of mathematical investigation as 

explained in the previous paragraph. Each stage is named after the main process(es) 

that it contains. In general, each stage contains one main process, except for the stage 

of Specialising and Using Other Heuristics (S/H) which contains two main processes. 

Since a main process may contain some smaller processes, these smaller processes 

will be called sub-processes in this thesis. In other words, a process can be a main 

process or a sub-process. Moreover, it is found necessary to include outcomes when 

studying processes in mathematical investigation because the outcomes might affect 

how the processes interact with one another and vice versa. Examples of outcomes 

are: discovered a pattern and formulated a conjecture. 

 

Table 2.1  Stages of Mathematical Investigation 
 

Phases Stages / Main Processes 

Entry Stage 1: Understanding the Task (U) 
Stage 2: Problem Posing (P) 

Attack Stage 3: Specialising and Using Other Heuristics (S/H) 
Stage 4: Conjecturing (C) 
Stage 5: Justifying (J) 
Stage 6: Generalising (G) 

Review Stage 7: Checking (R) 
Stage 8: Extension (E) 
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This section will review literature on the processes and outcomes in the eight stages 

and apply them to the two types of investigative tasks (Type A and Type B) discussed 

earlier in Section 2.1.4. An example of each type of investigative tasks is given below. 

These are the same tasks used in the posttest for the present study. 

 

Task 7 (Type A): Add Sum of Digits to Number (or Kaprekar Sequences1) 

Choose any number. Add the sum of its digits to the number itself to obtain a 

new number. Repeat this process for the new number and so forth. Investigate. 

 

Task 8 (Type B): Sausages 

I need to cut 12 identical sausages so that I can share them equally among 18 

people. Investigate. 

 

(a) Stage 1: Understanding the Task 

 

The first stage in mathematical investigation is the main process of Understanding the 

Task (U) in the Entry Phase. Pólya (1957) advocated asking questions such as, “What 

is the unknown? What are the data? What is the condition?” (p. xvi) To do these, the 

students might have to re-read the task a few times, paraphrase the task statement, or 

highlight key information. Pólya also encouraged visualising the given information by 

drawing a diagram. On the other hand, Mason et al. (1985) suggested the use of a few 

random examples to make sense of the task. Although Mason et al. labelled this sub-

process of trying examples to understand the task as the first type of specialising, this 

thesis will not classify this sub-process under specialising because there is a need to 

distinguish between trying examples in the first stage of Understanding the Task, and 

                                                 
1  The students are not expected to know that the sequences generated are called ‘Kaprekar Sequences’, 

but this term will be used in this thesis for ease of discussion. 
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trying examples to search for patterns in the third stage of Specialising, which will be 

discussed later in part (e). For Type A tasks such as Task 7 (Kaprekar), students are 

more likely to try some examples to understand the task than for Type B tasks such as 

Task 8 (Sausage). For the latter, students may engage in the sub-process of drawing a 

diagram to visualise the information. The outcomes in this stage are (i) understood the 

task correctly, (ii) misinterpreted the task and did not recover, and (iii) misinterpreted 

the task but recovered from the misinterpretation. 

 

(b) Stage 2: Problem Posing 

 

The second stage in mathematical investigation is the main process of Problem Posing 

(P) or Goal Setting in the Entry Phase. As explained earlier in Section 2.1.4, students 

can just search for any pattern in Type A tasks without posing any specific problem to 

solve, and this is called the posing of the general problem, “Is there any pattern? If 

yes, what is the pattern?” From the perspective of goal setting, this is called setting 

the general goal to search for any pattern. For Task B tasks, there is a need to set a 

specific goal by posing a specific problem to solve. To use Task 8 (Sausage) as an 

illustration, students usually cannot just search for any pattern but they need to pose 

specific problems such as: 

 

 How do I cut 12 identical sausages so that I can share them equally among 18 

people? 

 How many cuts will there be? 

 Is there a least number of cuts? If yes, what is it? And how do I cut the 

sausages so that I can get the least number of cuts? 
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In other words, there are two possible outcomes in problem posing: pose the general 

problem of searching for any pattern, or pose a specific problem. The main issues to 

address next are to identify the different types of sub-processes in problem posing and 

to discuss the quality of problems posed by examining existing literature. 

 

Types of Sub-Processes in Problem Posing 

 

Silver (1994) observed that “[problem] posing can occur before, during, or after the 

solution of a problem” (p. 19). For investigative tasks, problem posing occurs even 

before the students start to think of a solution because they need to pose their own 

problems to solve (Cai & Cifarelli, 2005). This is the first type of problem posing. 

The second type occurs as a problem-solving heuristic when a difficult problem is 

reformulated as a related problem which can be solved more easily, or as a smaller 

related problem to solve, before attempting to solve the original difficult problem 

(Pólya, 1957). This can happen before or during the solution of the original difficult 

problem. The third type of problem posing is similar to the first type except that it 

occurs at the end of the solution of a problem when the students pose more problems 

to solve or extend the original task by changing the given (Orton & Frobisher, 1996). 

Brown and Walter (2005) discussed two categories of problem posing. The first 

category is to accept the given in the task statement while the second category is to 

change the given in the task statement. The latter will be dealt with in Section 2.2.3(h) 

under extension. In this section, only the first category will be discussed. Brown and 

Walter have collected a long list of problems generated in one of their classes, some 

of which are given below: 

 

 



 
 

65

 Is there a pattern? If yes, what is the pattern? 

 What does it remind you of? 

 Is there a formula? If yes, what is the formula? (pp. 30-31) 

 

The next problem is to classify these questions into different types of problem-posing 

sub-processes. The first type is suggested by the following question from the list 

above, “Is there a pattern? If yes, what is the pattern?” This will be called the sub-

process of searching for any pattern in this thesis. The second type of problem-posing 

sub-processes is suggested by the following question from the list above, “What does 

it remind you of?” Kilpatrick (1987) used the term ‘association’ to describe this type 

of problem posing. He cited cognitive scientists (e.g. Calfee, 1981) who proposed a 

variety of models of human knowledge which tend to portray knowledge as a 

hierarchical network of associated ideas, and in particular, Novak and Gowin (1984) 

who have used concept maps to represent the organisation of concepts. Thus students 

might associate some key elements in the task statement to other concepts in their 

minds in order to pose a problem to solve, or they may use a discovered result as a 

springboard for more problems to pose. The third type of problem-posing sub-

processes is suggested by the following question from the list above, “Is there a 

formula? If yes, what is the formula?” Kilpatrick (1987) described this type of 

problem posing as ‘generalisation’. Mason et al. (1985) also discussed posing 

problems to generalise by examining specific examples (specialising). 

 

There is a fourth type of problem-posing sub-processes. Krutetskii (1976) argued that 

there is a problem that ‘naturally follows’ from the given task. The most common 

problem that ‘naturally follows’ from Type A tasks is the general problem of 
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searching for any pattern. What is of interest are the types of specific problems that 

‘naturally follow’ from Type B tasks. The following shows some examples of specific 

problems for Task 8 (Sausage): 

 

 How do I cut the 12 identical sausages so that I can share them equally among 

the 18 people? 

 How many cuts will there be? 

 Is there a least number of cuts? If yes, what is it? And how do I cut the 

sausages so that I can get the least number of cuts? 

 Can I extend all the above problems to generalise for n identical sausages and 

m people? 

 

Although the above problems are in some kind of logical order, it does not mean that 

the students must pose these problems in this order. For example, a student might 

pose the third problem of finding the least number of cuts without posing the first two 

problems; and if most students do that, then the third problem will become the ‘most 

natural problem’ among the first three problems for students to pose. Krutetskii 

(1976) found that high-achieving students were able to pose this kind of problems that 

‘naturally follow’ from the given task, but low-achieving students were not able to do 

so unless they were given hints. We have discussed in Section 2.1.4 how to obtain 

Type B tasks by removing the original intended problem from mathematical problems 

(Frobisher, 1994). In fact, Task 8 was obtained from a mathematical problem from 

Mason et al. (1985), and the original intended problem, “Find the least number of 

cuts”, is the third problem listed above. In other words, the original intended problem 

is supposed to be a problem that should ‘naturally follow’ from the task. 
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Quality of Problems Posed 

 

The next issue to discuss is the quality of the problems posed. Although there are no 

right or wrong problems posed, Brown and Walter (2005) discovered that those “who 

have not studied the subject, or perhaps consider themselves ‘weak’ in mathematics, 

tend to come up with more robust questions” (p. 22) than those who have most 

recently been exposed to the subject, and they suggested more research on “the nature 

of the mathematical mind of … a good problem poser” (p. 170). They cautioned 

against applying some questions in certain circumstances because they may not be 

appropriate, but on the other hand, “a nonsensical-sounding question might apply if 

we were willing to modify what might be our own rigid mindset” (p. 32). Mason et al. 

(1985) observed that “questions that I know I can answer are generally less interesting 

than questions I am unsure about” (p. 143), thus differentiating problems that are 

more interesting from those that are less interesting. On either end, it may be easy to 

agree that some problems posed are more interesting or of a higher quality, while 

others are less interesting or of a lesser quality. But in the middle, there will always be 

grey areas. The important issue is to look at inter-coder reliability when deciding on 

the quality of a problem posed (see Section 5.4). 

 

Mason et al. (1985) also discussed the problem of students posing only questions that 

they can answer easily. In traditional classrooms that look down upon getting stuck on 

a problem and demand the correct answer, many students may think that it is better to 

pose an easier problem that they can solve than to pose a difficult problem that they 

cannot solve. That is why Mason et al. kept emphasising that “being stuck is 

honourable” (p. 144) and that “it cannot be avoided, and it should not be hidden” (p. 

49). During the developing lessons in the present research study, great care will be 
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taken to convince students that it is alright to pose problems that they cannot solve, 

and that they should refrain from posing only the easier problems that they can solve 

although they can still pose such problems (see Section 3.6.3b). But it does not mean 

that they should pursue the difficult problems that they have posed because the 

solutions might be beyond their abilities. This issue will be addressed in Section 3.2.2 

under a metacognitive process called analysing the feasibility of the goal or problem. 

 

(c) Stage 3: Specialising and Using Other Heuristics 

 

The third stage in mathematical investigation is Specialising and Using Other 

Heuristics (S/H), which occurs at the start of the Attack Phase or problem solving 

process. As explained in Section 2.1.2(d), there are generally two approaches to 

solving a problem: (i) the inductive approach which involves specialising (which is 

the same as the investigation process), and (ii) the deductive approach which uses 

other heuristics such as reasoning. This is the only stage with two main processes: S 

and H. 

 

Type A tasks, such as Task 7 (Kaprekar), generally require students to start attacking 

the problem by trying examples to search for any pattern, which is the inductive 

approach. The trying of specific examples or special cases is called specialising, 

which is one of the four main mathematical thinking processes (Mason et al., 1985). 

However, specialising is also a problem-solving heuristic (Pólya, 1957; Schoenfeld, 

1985). Type B tasks, such as Task 8 (Sausage), usually require students to solve by 

using other heuristics such as reasoning, which is the deductive approach. For 

example, in Task 8, students can find a method to share the sausages by using some 

simple reasoning: 
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“To share 12 sausages equally among 18 people, each person will receive 12/18 

= 2/3 of a sausage. This means that if I cut each sausage into 3 parts, then it is 

possible for each person to receive 2 parts of a sausage. Thus I am able to share 

the 12 sausages equally among 18 people by cutting each sausage into 3 parts.” 

 

This kind of reasoning does not involve trying examples (specialising) to look for 

patterns. Thus the term ‘other heuristics’ will be used in this thesis to refer to 

heuristics that do not involve specialising. However, it is possible to solve a specific 

problem posed for a Type B task by specialising. For example, for Task 5 (Investigate 

Handshakes) discussed earlier in Sections 2.1.2(d) and 2.1.4(b), students can pose the 

specific problem of finding the total number of handshakes, and then solve it by 

examining the number of handshakes for smaller numbers of participants in order to 

find a pattern to generalise. Sometimes, students may use both specialising and other 

heuristics. For example, if they use other heuristics such as ‘establishing subgoals’ or 

‘reformulating the original problem posed as a simpler problem’, then it still depends 

on what the students do with the subgoal or the simpler problem. If the students 

examine specific examples for the subgoal or the simpler problem, then the 

investigation pathway will be from the main process of other heuristics to the main 

process of specialising. However, if the students use reasoning to solve the subgoal or 

the simpler problem, then it will still be using other heuristics without specialising. 

 

Role of Problem-Solving Heuristics in Mathematical Investigation 

 

The main issue to address next is the role of problem-solving heuristics in 

investigation. Heuristics are often associated with methods to solve problems rather 

than methods to discover patterns or mathematical structures in investigation. Pólya 

(1957) explained that ‘heuristic’ is the name of a certain branch of study on “the 
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methods and rules of discovery and invention” (p. 112), and the word “heuristic, as an 

adjective, means ‘serving to discover’” (p. 113). In fact, Cambridge Dictionaries 

Online (Cambridge University Press, 2012) defined the word ‘heuristic’ as ‘a method 

of teaching allowing students to learn by discovering things themselves and learning 

from their own experiences rather than by telling them things’. Pólya (1957) then 

described what he called ‘modern heuristic’ which seeks to understand the mental 

operations typically useful in the process of solving problems. But how is this modern 

heuristic, which is about processes involved in problem solving, related to the old 

meaning of heuristic, which is about discovery? 

 

Davis and Hersh (1981) discussed Pólya’s (1957) heuristics in problem solving 

together with Pólya’s (1962; new edition in 1981) mathematical discovery without 

differentiating between them. Lakatos (1976) discussed proofs and refutations in 

problem solving and yet he said that this is the logic of mathematical discovery. One 

viewpoint of problem solving is just to solve problems, but Pólya (1957) and Lakatos 

(1976) looked at it from the viewpoint of discovering. Pólya (1957) phrased this very 

clearly when he described what he called ‘heuristic reasoning’ as “reasoning not 

regarded as final and strict but as provisional and plausible only, whose purpose is to 

discover [emphasis mine] the solution of the present problem” (p. 113). 

 

If problem solving is viewed as just solving problems, then the thinking processes are 

analytical. But if problem solving is viewed as discovery, then it will involve creative 

thinking processes, such as illumination and insight (Lakatos, 1976). In fact, creativity 

in problem solving has already been discussed in Section 2.2.2(e), where the “ability 

to integrate results of an investigation into an effective plan or solution to solve a 

problem” (Bloom et al., 1956, p. 170) is classified under the ‘synthesis’ category in 



 
 

71

the Bloom Taxonomy. Synthesis means to put together or create. Since problem-

solving heuristics can be viewed from the perspective of mathematical discovery, then 

heuristics do play a big role in investigation, which is about discovering underlying 

patterns or mathematical structures. 

 

(d) Stage 4: Conjecturing 

 

The fourth stage in mathematical investigation is Conjecturing (C), which is also one 

of the four main mathematical thinking processes (Mason et al., 1985). Conjecturing 

is to make a statement, called a conjecture, which appears reasonable but whose truth 

has not been established. To use Task 7 (Kaprekar) as an example, students may 

search for patterns and observe that ‘all the sequences are increasing’. This observed 

pattern is only a conjecture to be proven or refuted. This thesis distinguishes between 

the term ‘observed pattern’ which is a pattern that has been observed but may not be 

true, and the term ‘underlying pattern’ which is the actual pattern. Therefore, the 

conjecturing stage contains the sub-process ‘searching for patterns’ and the outcome 

‘formulated conjecture’. On the other hand, conjectures can also be formulated from 

using other heuristics such as reasoning. Using Task 8 (Sausage) as an illustration, 

students can reason as follows: 

 

“To share 12 sausages equally among 18 people, each person will receive 12/18 

= 2/3 of a sausage. If I cut each sausage into 18 parts, then I will need to make 

12  17 = 204 cuts. But if I cut each sausage into 3 parts so that each person will 

receive 2 parts, then I will only need to make 12  2 = 24 cuts. Therefore, the 

least number of cuts is 24.” 

 

This is only a conjecture since the students have not proven it. In fact, this conjecture 

is false. On the other hand, it is possible to solve a problem posed during investigation 
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by using other heuristics without formulating any conjecture. For example, for Task 8, 

a student may pose the problem, “How do I cut the 12 identical sausages so that I can 

share them equally among the 18 people?” and then solve it by using reasoning (see 

solution in part (d) earlier), which is rigorous enough. Thus it is possible to bypass the 

conjecturing stage in investigation, depending on the nature of the problems posed. 

 

(e) Stage 5: Justifying 

 

The fifth stage in mathematical investigation is Justifying (J), which refers to 

convincing yourself and others that your conjecture is true (Mason et al., 1985). But 

you will not know beforehand whether a conjecture is true or false. That is why other 

educators (e.g. Bastow et al., 1991; Frobisher, 1994) prefer to use the term ‘testing of 

conjecture’ instead of ‘justifying of conjecture’. However, “justification … is at the 

heart of a true mathematical ethos” (Hatch, 2002, p. 138) and Mason et al. (1985) 

even put it as one of the four main mathematical thinking processes. Thus this thesis 

will use the term ‘justifying’ to refer to the process of testing conjectures. If a 

conjecture turns out to be false, then it is refuted; if it turns out to be true, then it is 

proven or justified. The word ‘justified’ refers to the outcome of a conjecture being 

proven correct, while the term ‘justifying’ refers to the process of testing a conjecture 

which might not lead to justification in the end if the conjecture turns out to be false. 

 

According to Lakatos’ (1976) mathematical discovery model described in Section 

2.2.2(c), one way to test a conjecture is called naïve testing: examining empirical data 

to see if the conjecture can be refuted first. If the conjecture can withstand the test of 

empirical data, it does not mean that it is proven or justified: there is still a need to 

prove the conjecture. There are generally two methods of proving. The first method is 
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to use a non-proof argument (Mason et al., 1985; Stylianides, 2008) while the second 

method is to use a formal proof, e.g. one that involves algebra (DeMarois, McGowen 

& Whitkanack, 1996). To illustrate the difference between the two methods of proofs, 

let us consider Task 7 (Kaprekar). The students might observe that the sequences 

generated are all increasing. This is only a conjecture based on the observed pattern 

because the observed pattern might not continue. The following shows two methods 

to prove this conjecture: 

 

Non-Proof Argument: Assume that the first term of a Kaprekar sequence is 

positive2. Since the digits of the first term in a Kaprekar sequence are always 

non-negative and at least one of the digits is always positive (namely, the first 

digit), then the sum of the digits of a term will always be positive. Thus the next 

term, which is the preceding term plus the sum of its digits, will always be 

greater than the preceding term, so every Kaprekar sequence is increasing. 

 

Formal Proof: Assume that the first term of a Kaprekar sequence is positive. 

Let the first term in a Kaprekar sequence be x and its digits be a1, a2, a3,… an, 

where ai is the i-th digit of the term. Then a1 > 0 and ai ≥ 0 for all i ≥ 2. Thus the 

next term x + a1 + a2 + a3 + … + an is always greater than x since a1 > 0 and ai ≥ 

0 for all i ≥ 2. Therefore, the next term will always be greater than the preceding 

term, so every Kaprekar sequence is increasing. 

 

Tension between Formal Proof and Non-proof Argument 

 

Some researchers (e.g. Mason et al., 1985; Stylianides, 2008) believe that it is good 

enough to justify a conjecture using a non-proof argument, while others (e.g. Holding, 

1991; Tall, 1991) insist on a formal proof. There are two approaches to a formal 

proof. The first approach is what Lakatos (1976) called the deductivist approach 

                                                 
2  This is the usual definition of a Kaprekar sequence: the first term is positive. If the first term is 0, 

every term in the sequence will just be equal to 0. If the first term is negative, there is a slight 
complication, which could be investigated at a later stage. 
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where formal proofs are presented out of the blue. Pólya (1957) and Lakatos (1976) 

were against such proofs that come out of nowhere because it seems impossible that 

anyone should ever have guessed them. They advocated another approach to formal 

proofs. Pólya (1957) called this “heuristic reasoning [which] is often based on 

induction, or on analogy” (p. 113). He argued that “we need heuristic reasoning when 

we construct a strict proof as we need scaffolding when we erect a building” (ibid.). 

He strongly believed that it is bad to confuse heuristic reasoning with rigorous proof, 

but it is even “worse to sell heuristic reasoning for rigorous proof” (ibid.). As 

explained in Section 2.1.2(c), their idea of a heuristic approach to formal proofs is 

similar to an inductive approach using investigation processes, such as specialising, 

conjecturing, justifying and generalising. Nevertheless, some educators (e.g. Tall, 

1991) would still prefer the rigour found in a formal proof, though such a proof 

involving algebra 3  might be beyond the level of most lower secondary school 

students. To summarise, the justifying stage contains a few sub-processes: 

 

 Naïve Testing: examine empirical data to refute (not prove) a conjecture by 

counter examples 

 Justify by Non-proof Argument 

 Justify by Formal Proof: use algebra to justify a conjecture. 

 

On the other hand, as explained earlier in part (d) of this section, it is possible to solve 

a problem posed during investigation by using other heuristics, such as reasoning, 

without formulating any conjecture to justify. Since reasoning appears in various 

stages or sub-processes in mathematical investigation, it is important to distinguish 

between them by using different terminologies: 

                                                 
3 Axiomatic proofs are definitely beyond the level of secondary school students. 
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 Deductive reasoning refers to the use of reasoning (other heuristics) to solve a 

problem, with or without formulating any conjecture; 

 Justify by non-proof argument refers to the use of reasoning in a non-proof 

argument to justify a conjecture; 

 Justify by formal proof refers to the use of a more formal kind of reasoning, 

such as algebra, to justify a conjecture. 

 

Another important issue to clarify is the sub-process of trying examples because it 

could occur in three different investigation stages: 

 

 Understanding Stage: try examples randomly to make sense of the task; 

 Specialising Stage:  try examples systematically to search for patterns; 

 Justifying Stage:  try examples to refute a conjecture (naïve testing). 

 

Some interesting issues for the present study to examine are: (i) Do students justify 

their conjectures, or do they wrongly accept their observed patterns as true without 

testing or based on naïve testing? (ii) Do students justify their conjectures by using a 

non-proof argument or a formal proof? These issues will be addressed in the data 

analysis in Sections 7.2.5, 7.3.5 and 7.3.9. 

 

(f) Stage 6: Generalising 

 

The sixth stage in mathematical investigation is Generalising (G), which is also one of 

the four main mathematical thinking processes advocated by Mason et al. (1985). 

They explained that generalising means “detecting a pattern leading to WHAT seems 

likely to be true (a conjecture); WHY it is likely to be true (a justification); WHERE it 
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is likely to be true, that is, a more general setting of the question (another question!)” 

(p. 24). Thus there are three distinct features of generalising. The first one occurs 

when a pattern is detected leading to a conjecture, which is actually the process of 

conjecturing. The problem with this kind of ‘general pattern’ is that it may be false. 

This then leads to the second feature: the process of justifying the ‘general pattern’. If 

justification is successful, then the ‘general pattern’ is the actual pattern. In other 

words, ‘generalisation’ only occurs when the ‘general pattern’ has been justified. 

There are also different levels of generalising because a ‘general pattern’ may just be 

a special case in a more general setting, and so a ‘general pattern’ can act as a 

springboard for further generalising, which is the third feature. However, this 

definition of generalising overlaps with conjecturing and justifying. 

 

Wheeler (1983) described generalisation as ‘mathematisation’ which is “the process 

by which mathematics is brought into being” (p. 290), or ‘structuration’ which is “the 

act of putting a structure onto a structure” (Wheeler, 1982, p. 47) because the whole 

idea of generalisation is to find the underlying mathematical structure or pattern. 

Jaworski (1994) believed that “investigation [is] just a vehicle for other learning … 

this other learning might be seen as learning to be mathematical” (p. 4) and she 

explained that the idea of ‘learning to be mathematical’ is the same as what Wheeler 

(1983) has called ‘mathematisation’. Many educators believe that generalisation or 

structuration is very important in mathematics. For example, Mason et al. (1985) 

claimed that “generalisations are the life-blood of mathematics” (p. 8). 

 

An interesting question is whether it is possible to generalise without specialising. For 

example, Krutetskii (1976) wrote about a gifted 11-year-old who could generalise 

from one instance in mathematics. When asked to represent the general form of 
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numbers that leave a remainder of 5 when divided by 7, the child argued from the 

even more general case of numbers that leave a remainder of z when divided by y. 

The child was able to see that the numbers must be of the form xy + z, and so for the 

given case, the answer is 7x + 5. Thus it is possible for some gifted children to 

generalise without specialising. In this case, the child solved the problem using other 

heuristics, such as reasoning, without formulating and justifying any conjecture, and 

yet produced a generalised result at the end. 

 

To summarise, since the process of generalising overlaps with the conjecturing and 

justifying processes, in order not to confuse the three processes, the thesis will use the 

term ‘generalisation’ to describe the outcome when a conjecture has been justified and 

led to a general result. Sometimes, the justification of a conjecture may not lead to a 

generalisation. For example, in Task 8 (Sausage), the proving of the conjecture that 

‘the least number of cuts for sharing 12 sausages among 18 people is 12’ will not lead 

to a generalisation. On the other hand, it is possible to solve a problem using other 

heuristics, such as reasoning, which leads to a generalisation without going through 

specialising, conjecturing and justifying, as the gifted child described in the preceding 

paragraph has demonstrated. Therefore, in the generalising stage, which is the last 

stage in the Attack Phase, the issue is whether the final outcome is a generalisation. 

 

(g) Stage 7: Checking 

 

The seventh stage in mathematical investigation is Checking, which happens at the 

start of the Review Phase. Checking is denoted by R (R for review), and not C since C 

has been used for the Conjecturing stage. Many educators (e.g. Pólya, 1957; Mason et 

al., 1985) believe in the importance of checking the solution. Students can check all 
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the working step by step, or they can just check the essential steps. Very often, 

students might just glance through the solution without really checking it thoroughly. 

A caveat is necessary here. Students can check their working (or, in fact, should check 

their working occasionally) in the previous stages even before finishing solving a 

problem. But the Checking stage in the Review Phase is for after the students have 

finished solving a problem. T higher level of reviewing the solution to see if the goal 

of the task is met is dealt with under metacognition in Section 2.3.2. 

 

(h) Stage 8: Extension 

 

The eighth and last stage in mathematical investigation is Extension (E). The idea of 

extension is to change the given in order to pose more problems to solve (Orton & 

Frobisher, 1996). This stage is similar to the second stage of problem posing, except 

that the second stage does not involve changing the given while the last stage of 

extension requires the changing of the given. The first category of problem posing 

proposed by Brown and Walter (2005), which is to accept the given, has been 

examined in Section 2.2.3(b) on the second stage. This section will discuss the second 

category of problem posing which is to challenge or change the given using the 

‘What-If-Not’ strategy. Brown and Walter explained the rationale for using the strong 

word ‘challenge’ instead of just ‘change’ because the given is sometimes accepted as 

the truth when in fact it is not. For example, for about two thousand years, Euclid’s 

(1956) fifth postulate, formulated in about 300 BC, that ‘there is exactly one line 

passing through a given point and parallel to a given line’ was accepted as a 

mathematical fact until it was challenged. The alternatives to this postulate give rise to 

non-Euclidean geometries, such as geometry on a curved surface and hyperbolic 

geometry (Cederberg, 2001). 
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The idea of challenging or changing the given is to take something that is a constant 

and let it vary (Kilpatrick, 1987). For example, some of the attributes of Pythagoras’ 

theorem are: (i) the theorem deals with a right-angled triangle, (ii) the theorem deals 

with areas, and (iii) the variables in the theorem are related by an equal sign. Using 

the ‘What-If-Not’ strategy, students may pose these questions: “What if the triangle is 

not right-angled?”, “What if it is not area but volume?” and “What if it is not an equal 

sign but an inequality?” Kilpatrick also cited Jim Kaput who communicated to him 

personally about the what-if-more approach, e.g. what if the indices in the algebraic 

formulation of Pythagoras’ theorem are not 2 but more than 2, which will give rise to 

Fermat’s Last Theorem under certain conditions. Orton and Frobisher (1996) used the 

‘What if’ question to extend a problem by changing the given, which is exactly the 

same method as the ‘What-If-Not’ strategy. 

 

Another way to extend an investigative task is to use ‘association’ (Kilpatrick, 1987), 

which has been described earlier in Section 2.2.3(b) as a problem-posing sub-process. 

Students might associate some key elements in the task statement or a discovered 

result with other concepts in their minds to pose further problems to investigate. If the 

further problems posed involve changing the given, this will come under the stage of 

extension. Kilpatrick also discussed the use of ‘analogy’ to extend the result of an 

investigation. He cited Pólya (1954, 1981) who showed that analogies could be a 

fertile source of new problems, e.g. after establishing Pythagoras’ theorem, students 

could ask what the analogous proposition might be in solid geometry. However, there 

seems to be an overlap between association and analogy: an association might not be 

an analogy, but an analogy is an association. 

 



 
 

80

The main purpose for changing the given in Type B tasks is to generalise. For 

example, students are expected to extend Task 8 (Sausage) in order to generalise: 

“How do I share n identical sausages equally among m people?” This means that 

during the extension, the students would have to try other examples (specialising) to 

search for patterns so as to formulate a conjecture in order to generalise, which is 

unlike the process of using other heuristics, such as reasoning, used to solve the 

original task. However, students would have to solve each example they generate 

using other heuristics. In other words, specialising and using other heuristics overlap 

during the extension of Task B tasks, and the processes for Type B tasks during 

extension (specialising, conjecturing, justifying and generalising) are similar to the 

usual processes for Type A tasks. 

 

On the other hand, there is usually no need to extend Type A tasks because it is 

possible to pose more problems to solve without changing the given: after discovering 

a pattern and proving that the observed pattern is the underlying pattern, the students 

should search for more patterns for the original task. In fact, changing the given in a 

Type A task will usually result in changing the entire structure, which means that the 

underlying patterns will be very different from those of the original task. For example, 

if the word ‘sum’ in Task 7 (Kaprekar) is changed to ‘product’ as in Task 9 below, 

then this is a completely different task because the underlying patterns are totally 

different. 

 

Task 9: Add Difference of Digits to Number 

Choose any number. Add the product of its digits to the number itself 

to obtain a new number. Repeat this process for the new number and 

so forth. Investigate. 
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To summarise, the criterion to decide whether a problem posed for an investigative 

task is an extension, is to look at whether the given in the original task has been 

changed. Hence, there are three possibilities after solving a problem and checking the 

solution in mathematical investigation: 

 

 pose more problems to solve without changing the given 

 pose more problems to solve by changing the given (the last stage of extension) 

 end the investigation. 

 

Some interesting issues for the present study to examine are: (i) Do students know 

how to extend Type B tasks in order to generalise? (ii) What other kinds of problems 

do students pose to extend Type B tasks? These issues will be addressed in the data 

analysis in Section 7.3.6(a). 

 

2.2.4 Empirical Studies on Cognitive Processes 

 

“Research into the effectiveness of process-based teaching … is, however, limited, 

partly because process-based mathematical learning environments are extremely rare 

in schools.” (Boaler, 1998, p. 42) As explained earlier in Section 2.1.5, empirical 

studies on mathematical investigation are even fewer than those on mathematical 

problem solving. Since there is an overlap of processes in problem solving and 

investigation (see Section 2.1.2), this section will also include the review of empirical 

studies on the nature and development of cognitive processes in problem solving as 

well as in mathematical investigation. 
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(a)  Case Study of Mathematical Exploration by Cifarelli and Cai (2004) 

 

Cifarelli and Cai (2004) examined two students engaging in mathematical exploration 

using a computer microworld called SNOOK, which simulates the path of a cue ball 

on a billiard table. They described the first student’s activity as hypothesis-driven 

exploration (he made hypotheses and then proceeded to test them) and the second 

student’s activity as data-driven exploration (he examined empirical data to search for 

patterns). They presented a model to describe the general structure of mathematical 

exploration: sense-making, formulation of goals (problem posing) and achievement of 

goals (problem solving). But they understood that the processes involved in the actual 

exploration were much more complicated (see Fig. 2.8 which shows the complex 

pathways of the second student’s actual processes). 

 

 

Generated 
8  12 to verify 

the explored math #7 

What if we change 8 into
an odd number?

Investigated 
the pattern for number 

of hits in odd  12 tables

What if the height
is not an odd number?

Investigated 
the pattern for number 

of hits in even  12 tables

What if the
width is not an
even number?

Investigated 
the pattern for number 

of hits in odd  13 tables

Investigated 
the pattern for number 
of hits in 1  n tables

What if the height 
is fixed, such as 1?

Investigated 
the pattern for number 
of hits in 3  n tables

What if the height
is fixed as 3?

Investigated 
the pattern for number
of hits in 12  n tables 

What if 
the height is 
fixed as 12?

Investigated 
the pattern for number 
of hits in 6  n tables

What if the height
is fixed as 6?

Investigated 
the pattern for number 

of hits in n  (n+1) tables

What if the height and 
width are not fixed?

Went back to
 examine 6  n tables

Went back to
 examine 12  n tables

 
 

Figure 2.8  Model of Student’s Mathematical Exploration by Cifarelli and Cai 
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(b)  Teaching Experiment on Heuristics by Schoenfeld (1985) 

 

Schoenfeld (1985) cited some empirical studies (e.g. Smith, 1973; Wilson, 1967) to 

suggest that the teaching of general heuristics did not transfer well to new situations 

because “problem-solving strategies are both problem- and student-specific” (Begle, 

1979, p. 145). Schoenfeld (1985) argued that heuristics were too general to help 

students solve problems because each general heuristic was actually the label given to 

a collection of many related sub-strategies, and different problems require different 

sub-strategies to solve. Therefore, Schoenfeld conducted a study where four upper-

division science and mathematics majors from advanced undergraduate courses in 

mathematics in a university in the USA were given training in the use of five specific 

heuristics rather than the general heuristics. The control group consisted of three 

undergraduates with comparable mathematical backgrounds from the same courses. 

All the students were trained to talk aloud as they solved some mathematical tasks and 

then they each took a pretest consisting of five tasks using the thinking-aloud method. 

After that, each student went for five training sessions over a period of two weeks. 

During each session, the student worked on each of the four practice tasks for up to 15 

minutes or until it was solved, whichever was earlier. Then the student looked at a 

hard copy of the solution and listened to a recorded explanation of the solution. 

 

The first difference between the two groups was that the students in the experimental 

group were given a list of five specific strategies that was placed in front of them 

during all the practice sessions and the posttest. The second difference was that the 

solution in the hard copy for the experimental group contained an additional column 

showing some questions that the student should ask himself or herself and what 

heuristic to use. The third difference was that the taped explanation of the solution for 
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the experimental group contained some additional explicit heuristic instructions. 

Results from the posttest showed that all four students in the experimental group had 

improved in terms of solving the problems completely or almost completely, but only 

one student in the control group had improved, though not as much as those in the 

experimental group. Schoenfeld concluded that it was not just a matter of practising 

problem solving but that explicit instruction in specific heuristics did make a 

difference. 

 

(c) Exploratory Study of Heuristics in Geometrical Problem Solving by Liu 

(1982) 

 

Liu (1982) investigated the heuristics used by a group of 40 male students chosen 

randomly from three Form Five (i.e. Grade 11) classes in a Hong Kong school when 

they solved some geometry problems. The students used the thinking-aloud method to 

verbalise their thought processes during the problem solving and their protocols were 

recorded on audio tapes and coded. Of the 22 heuristics that she had identified 

beforehand, only 16 could be reliably coded. Examples of the 16 heuristics included 

quoting theorems, using algebraic processes, working forwards, working backwards, 

reading the question, devising a plan, and understanding the hint implied, although it 

was observed that there were overlaps of some of these heuristics in her classification. 

Liu then identified four factors: logical ability, use of strategy, use of goal-oriented 

syntheses and mathematical attainment. Her factor analysis showed that the dominant 

factor underlying geometrical problem-solving performance was logical ability which 

accounted for 40% of the variance. She concluded that logical ability was the basic 

ability involved, that mathematics attainment only played a minor role, and that 

mastery of heuristics is essential to success, in geometrical problem-solving. 
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(d) Research Study of Problem-Solving Processes by Stein and Burchartz (2006) 

 

Stein and Burchartz (2006) investigated students’ problem-solving processes when 

they attempted to solve puzzles that were not solvable. This was part of the Invisible 

Wall project that had been running in Germany since 1992. In this study, 41 pairs of 

students from Grades 3 and 4 in 17 state primary schools, and 45 pairs of students 

from Grades 7 and 8 in 12 lower secondary state schools, were randomly given one 

big and one small unsolvable puzzle. An example of an unsolvable puzzle is to try to 

fit seven given tiles into the big puzzle as shown in the diagram below. A small 

puzzle is just smaller in size with a different set of tiles. The students were informed 

that some of the puzzles could not be solved. Each pair was videotaped as they 

worked on the puzzles. 

 

Tiles for Big Puzzle   Big Puzzle (“giraffe”) 
 
 
 
 
 
 
 
 
 
 

It was found that some students engaged in monster-barring, a phrase that the 

researchers adopted from Lakatos (1976). These students observed that if they fitted 

the 5-unit tile into the shaded4 squares in the above big puzzle, then they would not 

have enough 3-unit right-angled tiles to fit the “legs of the giraffe”. So they happily 

removed the 5-unit tile and then proceeded with trying to fill the puzzle with the other 

tiles, without realising that the shaded squares were the only squares in the puzzle that 

                                                 
4  All the squares were not shaded in the puzzle; the five squares were only shaded for ease of reference. 
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could fit the 5-unit tile. The students’ answers were classified into three categories: 

complete proof (e.g. “the 5-unit tile and the 4-unit tile have these unique positions, 

and then we have no space for the 3-unit tile”), demonstration of the way the problem 

was solved (e.g. “if you cover it this way, you cannot place the 5-unit tile”), and 

naming isolated facts (e.g. “this can’t be done since the parts are too long”). The 

results show that there were a large number of students in the last category, especially 

those in primary schools. Although some of these students did understand the logical 

structure, they were unwilling to give a full explanation or did not see the point in 

doing so. The researchers realised that “in many cases students say less than they 

know, and in many other cases valuable insights got lost during the problem-solving 

process” (p. 81) because many younger students tended to use actions as part of their 

reasoning. Thus they concluded that they needed to look at the actions accompanying 

the younger students’ spoken words so as not to underestimate their reasoning ability. 

 

(e) Research Study of Knowledge and Strategies in Problem Solving by Kaur 

(1995) 

 

Kaur (1995) investigated 626 students from one primary and two secondary schools in 

Singapore using two paper-and-pencil test instruments: a ‘Problems Test’ and a 

‘Computations Test’. These students had not been exposed to any explicit 

mathematical problem-solving instructional programme in school and so they were 

called novice problem solvers. The results of the tests suggested that there appeared to 

be a ‘gap’ between a student’s ability to carry out particular mathematical calculations 

and operations, and the ability to solve non-routine problems employing the same 

mathematical computations. 139 students, who obtained correct ‘Computations items’ 

corresponding to incorrect ‘Problems items’ employing the same type of computation, 
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were interviewed to identify their difficulties. It was found that the common 

difficulties were the lack of comprehension of the problem, the lack of strategy 

knowledge, and the inability to translate the problem into a mathematical form. 

 

Additional data were collected using another paper-and-pencil test instrument for 63 

students who did well in the ‘Problems Test’ in order to identify the common 

strategies they used to solve these problems. They were also asked to respond to the 

statement, “When my teacher gives me a mathematics problem to solve, this is what I 

do…” at the end of the test. The data were then coded using a taxonomy of problem-

solving behaviours based on the four categories of Pólya’s (1957) model. It was found 

that the range of problem-solving strategies used by novice problem solvers expanded 

with increasing age and mathematical maturity, for example, the majority of good 

novice problem-solvers in Primary 6, Secondary 1 and 2 (i.e. Grades 6 to 8), were 

able to use strategies such as draw a diagram/picture, work backwards, make a list and 

make a table, while those in Primary 5 were only able to use the first three strategies. 

The findings also suggested that good novice problem solvers differed from poor 

novice problem solvers in their selection and use of strategies during problem solving. 

 

(f) Mathematical Problem Solving for Everyone (M-ProSE) Project by Dindyal, 

Tay, Toh, Leong and Quek (2012) 

 

Dindyal, Tay, Toh, Leong and Quek (2012) described a mathematics problem solving 

package, comprising what they called ‘mathematics practical lessons’, which was 

trialled in a Singapore school for 159 Grade 8 students in 2009. The school is a 

special school catering to high-performing students in mathematics and science, and it 

has a flexible curriculum that can accommodate a new module. The teaching package 
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consisted of 10 lessons, each lasting 55 minutes. The students were taught Pólya’s 

(1957) problem-solving model with an additional emphasis on the control strategy in 

Schoenfeld’s (1985) model (both models had been described in Section 2.2.2). A 

‘practical worksheet’ was designed to guide the students to use Pólya’s four stages 

and problem-solving heuristics to solve mathematical problems. An example of an 

instruction in the worksheet is: “Write down in the Control column the key points 

where you make a decision or observation, e.g. go back to check, try something else, 

look for resources, or totally abandon the plan.” An assessment rubric was developed 

based on the application of Pólya’s four stages and the heuristics in the worksheet. 

 

The end-of-module assessment consisted of one mathematical problem that all the 

students attempted in 55 minutes with the use of the practical worksheet. It was found 

that 69.8% of the students attained the maximum score of 10 for applying the first 

three of Pólya’s stages, but only 7.5% scored the maximum of 6 for the last stage of 

checking and extending the problem. 74.8% of the students also scored the maximum 

of 4 for using problem-solving heuristics. After the trial period, the school adopted the 

module as a compulsory course for all their Grade 8 students. 

 

2.2.5 Summary of Literature Review on Cognitive Processes 

 

The review of relevant literature on cognitive processes in Section 2.2 has helped to 

clarify the types of processes in mathematical investigation and how they are similar 

or different from those in problem solving. The four main mathematical thinking 

processes (i.e. specialising, conjecturing, justifying and generalising) are common to 

both investigation and problem solving. Other common main cognitive processes 

include understanding the task, using other heuristics, checking and extension. What 
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is different between investigation and problem solving is that the former includes the 

main process of problem posing (or goal setting) after understanding the task. The two 

types of investigative tasks (Types A and B) also seem to elicit somewhat different 

processes. For Type A tasks, students usually pose the general problem of searching 

for any pattern, resulting in specialising and conjecturing, and there is usually no need 

to extend the task because students can discover many patterns in the original task; 

while for Type B tasks, students usually need to pose more specific problems which 

can be solved by using other heuristics such as reasoning, with or without formulating 

any conjecture, but there was usually a need to extend the task in order to generalise. 

 

Models are found to be useful to display the interactions of these processes with one 

another. But most of these processes and their interactions with one another are based 

on theory. There is also a lack of empirical research into the actual processes that 

students use when they attempt investigative tasks, and how these processes can be 

developed. Therefore, the present research study will try to address this gap in current 

research by documenting the actual processes engaged by Secondary 2 students and 

developing these processes in the students if possible. Since these processes include 

not only the cognitive processes but also the metacognitive ones, there is a need to 

review relevant literature on metacognition so as to inform the present study. 

 

2.3 LITERATURE REVIEW ON METACOGNITIVE PROCESSES 

 

If research on cognitive processes in mathematical investigation is rare, then research 

on metacognition in investigation is almost non-existent, despite an extensive search 

of existing literature. Therefore, the review of literature in this section will have to 

draw mostly from research studies on metacognition in problem solving. This section 
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will begin by looking at the nature of metacognition, followed by a discussion of the 

differences between metacognitive and cognitive processes. It will then review three 

frameworks of cognitive-metacognitive processes, and empirical studies on the nature 

and development of metacognition. Lastly, this section will end with a summary of 

the main findings on metacognitive processes in current literature. 

 

2.3.1 Nature of Metacognition 

 

The term ‘metacognition’ was coined by Flavell (1976) to refer to “one’s knowledge 

concerning one’s own cognitive processes and products or anything related to them, 

e.g., the learning-relevant properties of information or data” (p. 232). To bring the 

meaning of metacognition down to the level of teachers who were confused about this 

term during a conference, Schoenfeld (1987) translated metacognition as “reflections 

on cognition or thinking about your own thinking” (p. 189) in everyday language. 

Keiichi (2000) considered metacognition from the viewpoint of education and 

regarded metacognition as “the knowledge and skills which make the objective 

knowledge active in one’s thinking activities” (p. 65). According to Brown, 

Bransford, Ferrara and Campione (1983) and Schraw (2001), most researchers made a 

distinction between knowledge of cognition and regulation of cognition when they 

talked about metacognition. 

 

The first category, knowledge of cognition or metacognitive awareness, refers to what 

a person knows about his or her own cognition abilities. Schraw (2001) described at 

least three kinds of metacognitive awareness: declarative, procedural and conditional 

knowledge (Brown, 1987; Jacobs & Paris, 1987; Schraw & Moshman, 1995). 

Declarative knowledge refers to knowing about things, which includes knowledge 
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about oneself and about what influences one’s performance. Procedural knowledge 

refers to knowing how to do things, which includes heuristics and strategies. 

Conditional knowledge refers to knowing when to use what types of declarative and 

procedural knowledge and why. Schoenfeld (1987) observed that children are not 

very good at describing their own knowledge of cognition, but as they get older, they 

get better, although it is far from perfect. Schoenfeld emphasised that this is important 

because “good problem solving calls for using efficiently what you know; if you don’t 

have a good sense of what you know, you may find it difficult to be an efficient 

problem solver” (p. 190). 

 

The second category, regulation of cognition, refers to how well a person controls his 

or her own learning behaviour (Schraw, 2001). There is a whole list of regulatory 

skills described in literature (Schraw & Dennison, 1994), but three essential skills are 

mentioned in all accounts: planning, monitoring and evaluating (Jacobs & Paris, 

1987). Planning involves selecting appropriate strategies and allocating resources that 

affect performance, e.g. strategy sequencing and allocating time and attention 

selectively before beginning a task. Monitoring involves taking stock of one’s 

performance, e.g. pausing periodically during problem solving or mathematical 

investigation to check one’s own progress and direction. Evaluating involves 

assessing the products and effectiveness of one’s learning, e.g. reflecting at the end of 

problem solving or mathematical investigation. Another way to look at regulation in 

metacognition is a management issue: how well a person manages his or her time and 

effort as he or she is working on complex tasks (Schoenfeld, 1987). This includes (a) 

making sure that you understand what the problem requires before hastily attempting 

a ‘solution’ which might not even solve the problem, (b) planning, (c) monitoring or 
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keeping track of how well you are progressing during problem solving, and (d) 

allocating resources, or deciding what to do and for how long, before you decide 

whether it is worth pursuing further or not. 

 

However, some researchers have categorised metacognition differently. For example, 

Schoenfeld (1987) included a third category called beliefs and intuitions, although this 

was not classified under metacognition in his earlier work (Schoenfeld, 1985). He has 

conducted some research studies to suggest that beliefs and intuitions can influence a 

student’s problem-solving behaviour. “Many students come to believe that school 

mathematics consists of mastering formal procedures that are completely divorced 

from real life, from discovery, and from problem solving” (Schoenfeld, 1987, p. 197) 

so that they fail to use the mathematics that they have learnt to solve genuine 

mathematical problems. But some researchers (e.g. Brown et al., 1983; Schraw, 2001) 

have classified Schoenfeld’s (1987) third category of metacognition under the first 

category of metacognitive awareness described earlier in this section. 

 

Others classified metacognition differently into two other categories: metacognitive 

knowledge and metacognitive experiences. “Metacognitive knowledge refers to the 

part of one’s acquired world knowledge that has to do with cognitive (or perhaps 

better, psychological) matters” (Flavell, 1987, p. 21) or “declarative, memory-

retrieved knowledge regarding goals people pursue in cognitive endeavors, persons, 

tasks and strategies” (Desoete & Veenman, 2006, p. 3). “Metacognitive experiences 

are conscious experiences that are cognitive and affective. What makes them 

metacognitive experiences rather than experiences of another kind is that they have to 

do with some cognitive endeavor or enterprise, most frequently a current, ongoing 
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one.” (Flavell, 1987, p. 24) Desoete and Veenman (2006) defined metacognitive 

experiences as “the feelings and judgments or estimates regarding cognitive 

processing [and] in this way, metacognitive experiences serve the monitoring and 

control of the learning process, and at the same time provide an intrinsic context and 

future motivation towards learning” (p. 3). Desoete and Veenman also added a third 

category: metacognitive skills, which are “defined as procedures or strategies that 

persons actually apply to monitor and control cognition, rather than what the person 

knows about strategies and the conditions of their applicability” (ibid., p. 3). 

 

There are also other perspectives on metacognition. For example, Keiichi (2000) 

viewed metacognition as ‘the inner teacher’ from which a student learns. Mason et al. 

(1985) also talked about metacognition as “your own internal tutor” (p. 115). They 

advocated developing an internal monitor to regulate problem solving, such as 

keeping an eye on the execution of a plan to make sure that it does not drift too far off 

course, evaluating ideas as they come along to see if they are worth pursuing, insight, 

mulling when you are stuck, changing strategy when it appears to lead to nowhere and 

prompting you to review your solution before finishing the work. Insights, like 

intuitions, are “not something you can intentionally bring about [but] you can prepare 

for it by … doing the spadework of specialising and generalising” (p. 127). Mason et 

al. suggested that students should conscientiously monitor their thinking until “you 

become aware in the moment of your thinking processes” (p. 118). 

 

It is beyond the scope of this thesis to study how metacognitive knowledge and beliefs 

affect investigation. The present research will only focus on metacognitive regulation, 

which consists of the main metacognitive processes of planning, monitoring and 

evaluating, during mathematical investigation. 
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2.3.2 Differences between Metacognitive and Cognitive Processes 

 

Other than the different views about what metacognition consists of, another main 

problem lies in distinguishing what is metacognitive from what is cognitive (Garofalo 

& Lester, 1985). The first viewpoint is that “cognition is involved in doing, whereas 

metacognition is involved in choosing and planning what to do and monitoring what 

is being done” (ibid., p. 164). The second viewpoint is that cognition is thinking while 

metacognition is “thinking about your own thinking” (Schoenfeld, 1987, p. 189). For 

example, from the first viewpoint, understanding a task before attempting to solve it is 

metacognitive because the process involves planning rather than doing (Artzt & 

Armour-Thomas, 1992). But understanding involves thinking, and according to the 

second viewpoint, thinking is cognitive and not metacognitive, so understanding a 

task should be cognitive. What is metacognitive is when a person monitors his or her 

own understanding. Moreover, renowned educators, like Pólya (1957), Mason et al. 

(1985) and Schoenfeld (1985), have always considered understanding the problem or 

the task as a cognitive process, stage or episode. 

 

In problem solving or investigation, when students spend time trying to understand a 

task instead of jumping straight in to solve the problem, they are aware that they need 

to understand the task properly first and so they are regulating their understanding 

(Schoenfeld, 1985, 1987). But if they set off immediately on a wild goose chase after 

a casual reading of the task, it means that they do not monitor their problem-solving 

behaviour. Thus even if understanding the task is viewed as cognitive, students are 

engaged in metacognition if they see the need to regulate their understanding. 

Similarly, when students check their solution, this is considered a cognitive process. 

What is metacognitive is when students review their solution to see if it has solved the 
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problem or met the goal of the investigative task. Therefore, this thesis will consider 

the main processes for mathematical investigation described earlier in Section 2.2.3 as 

cognitive processes or stages. Within these stages, there are various cognitive and 

metacognitive sub-processes. For example, in the understanding stage, re-reading the 

task and highlighting key information are cognitive sub-processes, while monitoring 

understanding is a metacognitive sub-process; and in the checking stage, checking 

working is a cognitive sub-process, while reviewing the solution to see if it had met 

the goal of the task is a metacognitive sub-process. 

 

2.3.3 Models of Metacognitive Processes 

 

Metacognitive processes do not act alone: they usually interact with cognitive 

processes (Garofalo & Lester, 1985). In this section, three frameworks of cognitive-

metacognitive processes from the literature will be reviewed. 

 

(a) Cognitive-Metacognitive Framework by Schoenfeld (1985) 

 

Schoenfeld (1985) identified six types of cognitive stages or episodes during problem 

solving: read, analyse, explore, plan, implement and verify. He then used a timeline to 

represent these episodes, with overt signs of metacognitive behaviour indicated by 

inverted triangles  as shown in Figure 2.9. Schoenfeld focused on decision-making 

behaviour at what he called the executive level. Examples of such metacognitive 

processes include management of resource allocation, deciding whether a plan is 

worth pursuing, and reflecting at various points of implementation of the plan whether 

you are on the right track. However, it was not possible to reflect all these specific 

metacognitive processes in the timeline. Schoenfeld also discussed about the 
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transition between two episodes when the pair of students engaged in a discussion. 

Sometimes, the discussion during this transition period had led to some productive 

breakthrough, but very often, the discussion was unproductive in his study. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.9  Timeline Representation of Metacognition by Schoenfeld 

 

(b) Cognitive-Metacognitive Framework by Garofalo and Lester (1985) 

 

One of the earliest and frequently cited cognitive-metacognitive frameworks in 

mathematics educational research is from Garofalo and Lester (1985). This taxonomy 

is based on a combination of the work of Pólya (1957), Schoenfeld (1983, 1984) and 

Sternberg (1982). It comprises of four cognitive categories: orientation, organisation, 

execution and verification. Figure 2.10 below shows the distinctive metacognitive 

processes within each category. 

 

Episode 
 
 

Read 
 
Analyse 
 
Explore 
 
Plan 
 
Implement 
 
Verify 
 
 
 

                         Elapsed Time (min) 

10 20 

transition 

0 
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Figure 2.10  Cognitive-Metacognitive Taxonomy by Garofalo and Lester 

 

(c) Cognitive-Metacognitive Framework by Artzt and Armour-Thomas (1992) 

 

Artzt and Armour-Thomas (1992) built upon the work of Garofalo and Lester (1985) 

and Schoenfeld (1985). Their main criticism of the cognitive-metacognitive taxonomy 

of Garofalo and Lester, and Schoenfeld’s timeline representation, was that these 

frameworks did not include specific cognitive processes. Although Schoenfeld (1985) 

viewed the six episodes of reading, analysing, exploring, planning, implementing and 

verifying as cognitive, Artzt and Armour-Thomas (1992) believed that some of these 

episodes are predominantly metacognitive. Therefore, they developed a taxonomy for 

problem solving in small groups that classifies these episodes as predominantly 

ORIENTATION: Strategic behaviour to assess and understand a problem 
A. Comprehension strategies 
B. Analysis of information and conditions 
C. Assessment of familiarity with task 
D. Initial and subsequent representation 
E. Assessment of level of difficulty and chances of success 
 
ORGANISATION: Planning of behaviour and choice of actions 
A. Identification of goals and subgoals 
B. Global planning 
C. Local planning (to implement global plans) 
 
EXECUTION: Regulation of behaviour to conform to plans 
A. Performance of local actions 
B. Monitoring of progress of local and global plans 
C. Trade-off decisions (e.g. speed vs. accuracy, degree of elegance) 
 
VERIFICATION: Evaluation of decisions made and of outcomes of executed plans 
A. Evaluation of orientation and organisation 
     1. Adequacy of representation 
     2. Adequacy of organisational decisions 
     3. Consistency of local plans with global plans 
     4. Consistency of global plans with local plans 
B. Evaluation of execution 
     1. Adequacy of performance of actions 
     2. Consistency of actions with plans 
     3. Consistency of local results with plans and problem conditions 
     4. Consistency of final results with problem conditions 
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cognitive or metacognitive. They identified eight types of episodes: read, understand, 

analyse, explore, plan, implement, verify, and watch and listen. Then they assigned to 

each episode a predominant cognitive level as shown in Table 2.2. 

 

Table 2.2  Framework Episode Classified by Predominant Cognitive Level 
 

Episode Predominant Cognitive Level5 

Read 

Understand 

Analyse 

Explore 

Plan 

Implement 

Verify 

Watch and Listen 

Cognitive 

Metacognitive 

Metacognitive 

Cognitive and Metacognitive 

Metacognitive 

Cognitive and Metacognitive 

Cognitive and Metacognitive 

(level not assigned) 

 
 

Artzt and Armour-Thomas (1992) explained that episodes of watching and listening 

during problem solving in small groups were not assigned any predominant cognitive 

level because the lack of verbalisation from the students during these episodes makes 

it impossible to infer a level of cognition. They also clarified that some episodes, such 

as understanding, involve both cognitive and metacognitive processes, but it is 

impossible to distinguish between them just by observing the verbal comments of 

students. However, they still classified understanding as predominantly metacognitive 

because they subscribed to the view of Garofalo and Lester (1985) described earlier in 

Section 2.3.1 that cognition is about doing and metacognition is about planning and 

monitoring. Artzt and Armour-Thomas (1992) even developed a model to show the 

interactions of the various episodes (see Fig. 2.11). 

 

                                                 
5  The authors did not call it ‘Predominant Cognitive or Metacognitive Level’ although the level could 

also be metacognitive. 
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Figure 2.11  Artzt’s and Armour-Thomas’ Cognitive-Metacognitive Model 
 
 

What is missing from all the three frameworks described above is the problem-posing 

stage of investigation because these frameworks were designed primarily for problem 

solving and not for investigation. Therefore, there is a need to fill in the gap in 

existing literature when developing a framework for the interactions between 

cognitive and metacognitive processes in mathematical investigation for the present 

study by including the metacognitive processes during the problem-posing stage. 

 

2.3.4 Empirical Studies on Metacognitive Processes 

 

As explained at the start of Section 2.3, research on metacognition in investigation is 

almost non-existent, so the review of empirical studies on metacognitive processes in 

this section will draw entirely from literature on metacognition in problem solving. 
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(a) Research Study on Metacognition by Schoenfeld (1985) 

 

Schoenfeld (1985) studied some college freshmen attempting to solve an unfamiliar 

problem in pairs. Each pair was given 20 minutes and their discussion was recorded 

on audio tape. One such mathematical problem is to show that it is always possible to 

construct, with straightedge and compasses, a straight line parallel to the base of a 

given triangle such that the triangle is divided into two equal parts. The first pair of 

undergraduates immediately assumed that the required line must be the line joining 

the midpoints of the other two sides (which is wrong), and they spent considerable 

amount of time doing the actual construction, instead of giving more thought to 

whether that was really the required line. Schoenfeld called this an example of bad 

control that contributed to failure. ‘Control’ is also called ‘regulation of cognition’ in 

other literature on metacognition described earlier in Section 2.3.1. The second pair 

managed to curtail wild goose chases before they caused disaster, but the executive 

behaviour (another name for control) did not really help them to solve the problem. 

 

Schoenfeld also gave the problem to a mathematician who had not done plane 

geometry for many years, but the mathematician managed to solve it by choosing his 

resources carefully, and exploiting or abandoning the resources appropriately as a 

result of careful monitoring. His control decisions exerted a positive influence on his 

problem solving. These findings suggested that control is crucial in determining the 

success of problem solving. Even though the first two pairs had studied plane 

geometry in recent years and had the content knowledge to solve the problem, 

compared with the third subject who had not done plane geometry for many years, the 

former were unable to solve the problem due to lack of control decisions while the 

latter was successful. 
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(b) Research Study on Metacognition by Focant, Grégoire and Desoete (2006) 

 

Focant, Grégoire and Desoete (2006) investigated 42 fifth-grade students randomly 

selected from six schools in the French-speaking part of Belgium in 2002. The test 

instruments were goal setting and planning tasks, a standardized mathematical test on 

arithmetical problem solving, and a control task. In the goal setting and planning 

tasks, the students had to solve several problems individually and they had to answer 

these two questions: “What is this problem asking for?” (goal setting) and “You have 

not solved the problem effectively. But if you should solve it, how would you do 

this?” (planning). The results showed that almost all the students had mastered goal 

setting, and the average student was able to plan a two-step arithmetic problem but 

not a three-step arithmetic problem. The mathematical test was used to measure 

problem-solving performance, and students who failed in two of the three items were 

discarded from the study because the mastery of computational ability was necessary 

for the control task. In the control task, the students had to detect errors in eight 

arithmetic tasks, out of which four of them had computational errors and the other 

four used the wrong arithmetic operation (plus, minus, times and divide). The results 

suggested that most of the students were successful in the control strategy. 

 

(c) Teaching Experiment on Metacognition by Mevarech and Fridkin (2006) 

 

Mevarech and Fridkin (2006) investigated 81 pre-college students in Israel who 

obtained a low score on the Israeli matriculation exam in mathematics. They were 

randomly assigned into two groups. One group was exposed to the IMPROVE 

programme (experimental group) and the other to traditional learning instruction 

(control group) for 12 hours a week for one month. The IMPROVE method was the 
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acronym of all the teaching steps: Introducing new concepts, Metacognitive 

questioning, Practising, Reviewing, Obtaining mastery, Verification, and Enrichment 

and remedial. The test instruments, consisting of mathematical examinations and two 

questionnaires (general and domain specific metacognitive questionnaires), were 

administered before and after the intervention. The general metacognitive 

questionnaire had 52 items to assess the students’ knowledge and regulation of 

cognition. The domain specific metacognitive questionnaire consisted of 24 items that 

assessed the students’ metacognitive knowledge in the area of solving maximum and 

minimum problems. It was found that, for both questionnaires, the two groups did not 

differ significantly during the pretest but the difference between the two groups 

increased significantly during the posttest. The findings of the study showed that 

students in the experimental group had developed a higher level of metacognition. 

 

(d) Research Study on Metacognition (Keiichi, 2000) 

 

Keiichi (2000) videotaped a lesson in a school in Japan where the students in middle 

grades were given a word problem to solve. The students worked on it individually 

before discussing with their classmates. After the lesson, the students were shown the 

videotape for about two to three minutes at four specific points to stimulate recall: 

when they were given the task, when they began working on it individually, when 

they began working on it with their classmates and after they finished working on it. 

A questionnaire was administered to the students concerning what they had watched 

on the videotape. Some of the questions were designed to investigate the students’ 

metacognition, e.g. “What kind of ideas occurred to you while you were watching the 

videotape? Did you remember what your teacher said while you were watching the 

videotape? Did you have a will to remember the teacher’s advice?” The researcher 
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also analysed the students’ answer scripts which contained two sides: the left side was 

for the students to work on the mathematical task, and the right side was for the 

students to record their thinking processes. It was found that metacognition played a 

vital role in solving word problems and that the teacher’s utterances which impressed 

most students were those on mathematical reasoning and problem-solving strategies. 

The videotape also revealed that the teacher often emphasised problem-solving 

strategies to the exclusion of other aspects of problem solving such as metacognition. 

 

(e) Survey Study on Metacognition in Problem Solving by Wong (1989) 

 

Wong (1989) described a research study on metacognitive strategies in mathematical 

problem solving for 670 students from nine secondary schools and four junior 

colleges in Singapore. The students were from different streams (special, express and 

normal academic), levels (Secondary 2, Secondary 4 and JC 1) and academic tracks 

(arts, science and general). Students had to fill up a questionnaire based on a 5-point 

Likert scale asking them about their metacognitive strategies according to the four 

components in the cognitive-metacognitive framework of Garofalo and Lester (1985): 

orientation, organisation, execution and verification (see Fig. 2.10 in Section 2.3.3). It 

was found that there was no significant difference in the mean score for each 

component between special and express streams, but that the normal stream scored 

significantly lower than both special and express streams. However, there was no 

significant difference in the mean score for each component among the three levels 

and among the three academic tracks. One trend that surfaced among all the different 

streams, levels and academic settings was that the mean for the verification 

component was a lot higher than the mean of each of the other three components. 
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(f) Metacognitive-Heuristic Approach to Problem Solving by Foong (1990) 

 

Unlike the paper-and-pencil survey study in Wong (1989), Foong (1990) used the 

thinking-aloud methodology and protocol analysis as 57 trainee teachers in Singapore 

attempted mathematical problem solving individually. The main purpose was to 

investigate successful and non-successful problem-solving processes. It was found 

that there were eight behavioural factors that influence the trainees’ success or failure 

in problem solving: solution-oriented metacognitive heuristics, analysis with diagram, 

domain-specific knowledge, planning, deductive approach, maladaptive emotional, 

misinterpretation of the problem, and tendency to compute numbers. The first five are 

positive factors while the last three are negative traits. The second part of Foong’s 

study was to investigate the effectiveness of a small scale teaching experiment for 

improving problem-solving performance among eight trainee teachers using a 

metacognitive-heuristic approach. There were six lessons lasting one-and-a-half hours 

each. The findings suggest that it is possible to teach heuristics and metacognition 

explicitly to trainees, and that the trainees can learn how to use these effectively in 

problem solving. 

 

2.3.5 Summary of Literature Review on Metacognition 

 

The review of relevant literature on metacognitive processes in Section 2.3 has helped 

to clarify the construct of metacognition. It is beyond the scope of the present study to 

investigate the effect of metacognitive knowledge and beliefs on the proficiency of 

the students’ mathematical investigation, so the study will focus on the main 

metacognitive processes that regulate cognition: planning, monitoring and evaluating. 

The boundary between metacognitive and cognitive processes is not distinct, so there 
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may be some difficulty in classifying a sub-process as metacognitive or cognitive. In 

general, sub-processes associated with ‘doing’ and ‘thinking’ are considered 

cognitive, while sub-processes that involve ‘thinking about thinking’ or ‘monitoring’ 

are categorised as metacognitive. Empirical studies on metacognition in investigation 

are almost non-existent, but empirical studies on metacognition in problem solving 

have suggested that metacognition could be developed. Moreover, the review of 

empirical studies on both cognitive and metacognitive processes has uncovered 

various research methodologies that may help to capture students’ thinking processes 

more effectively for the present research study on investigation. 

 

2.4 LITERATURE REVIEW ON RESEARCH METHODOLOGIES 

 

It is important to be clear about the types of data to be collected for the present 

research before deciding on the methodology because the methodology chosen should 

be suitable to capture the necessary information for the research, rather than selecting 

a methodology first and then deciding what types of data can be collected using the 

research design (Kelly & Lesh, 2000a). As the present study researches the nature and 

development of processes in mathematical investigation, there is a need to review 

literature on how to collect data on students’ thought processes, including the 

thinking-aloud method, and on how to analyse such data. Then the research designs 

for developing students’ processes in investigation will be reviewed, followed by a 

summary of the relevant literature review on research methodologies. 
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2.4.1 Methods of Data Collection for Processes 

 

There are various methods of data collection for thought processes. In this section, 

eight of these methods will be examined, especially from empirical studies that used 

these methods. The pros and cons of these methods will also be analysed critically 

with support from current research literature. This is to inform the research 

methodology needed to study the nature of cognitive and metacognitive processes in 

the present study. 

 

The first method of data collection is to use a questionnaire to find out whether 

students engage in certain processes, e.g. the empirical study conducted by Mevarech 

and Fridkin (2006) described earlier in Section 2.3.4(c). The advantage of this method 

is that the questionnaire can be used for a large sample. The disadvantages are: (i) the 

students may not understand some of the terminologies used in the questionnaire since 

it may be beyond them to comprehend the meanings of such terms just by listening 

without experiencing them personally (Wong, 1989), and it may not be easy for the 

person who conducts the survey to explain the terminologies clearly to every student, 

(ii) it is easier for the students not to be truthful in their answers, e.g. they may claim 

that they usually verify their answers but they may not do so in reality, and (iii) the 

questionnaire does not capture the actual thought processes of the students. 

 

The second method is to examine the students’ answer scripts on investigation or 

problem solving, e.g. the empirical study conducted by Keiichi (2000) described 

earlier in Section 2.3.4(d). Some problem-solving heuristics, such as systematic listing 

and drawing a figure, can be gathered from the answer scripts, but other heuristics 

may not be so evident in the final answer because the student may have used these 
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heuristics during the investigation but not in the final presentation of the solution 

(Jaworski, 1994; Lakatos, 1976). Therefore, the final solution will not reveal many of 

the thought processes that may have occurred during the investigation. 

 

The third method is to look at the students’ rough working. Although rough working 

may be better than the final solution to reveal the students’ thought processes, it is 

also not good enough because some students may think and plan without writing 

anything down and so these thought processes will also not be captured. 

 

The fourth method is to use structured task-based interviews (Goldin, 2000). The 

students will be observed individually as they solve a problem, but hints or heuristic 

suggestions will be provided to the students if “the child’s free problem solving came 

to such a firm halt or impasse that further progress seemed unlikely” (ibid., p. 522). 

The interviewer or clinician will have to be specially trained with interview scripts 

that describe branching sequences of possible questions and interventions so that 

appropriate assistance can be rendered to the students when they are stuck. This is 

unlike an unstructured interview where no substantial assistance will be provided to 

the students. The purpose of such intervention is to bridge the gaps in the students’ 

partially developed heuristic planning competencies, so that the interviewer will be 

able to observe the students’ problem-solving path towards a solution which may not 

be possible otherwise. However, this method is not suitable for the present study 

because the purpose of the data collection for this study is to describe and assess 

students’ behaviours during mathematical investigation, not to intervene. 
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The fifth method is to interview the students individually after they have finished the 

test. This is called retrospective interview. During the interview, the students will be 

asked to recall their thought processes during certain episodes of the investigation. In 

this way, the researcher can find out more about what the students were thinking 

when they were investigating during the test. However, the main problems are (i) the 

students may not remember all their thought processes (Liu, 1982), (ii) the students 

may rearrange their thought processes into a more coherent and logical order, and so 

the actual sequence of thinking is not observed (Kilpatrick, 1968), and (iii) the 

students may confuse their current knowledge during the interview with their past 

knowledge during the test, and thus present to the interviewer what the students think 

should be the ‘correct’ thought processes based on current knowledge and not what 

actually occurred during the test (Newell & Simon, 1972). Nevertheless, retrospective 

interviews are useful for gathering some types of information, such as error analysis 

in Newman’s (1983) clinical interviews, but they are not as appropriate to document 

the students’ step-by-step thought processes in the current study. 

 

The sixth method is to ask students to write down after the test what they have done 

when solving a problem or doing an investigation, e.g. the empirical study by Kaur 

(1995) described earlier in Section 2.2.3(e), and the research work of Focant et al. 

(2006) in Section 2.3.4(b). The disadvantage compared with the fifth method is that 

there is no chance to clarify what the students have written if it is not clear. But if the 

sample size is small, it is possible to combine the fifth and sixth methods where some 

or all the students will be selected for retrospective interviews to clarify what they 

have written. However, the method is still not suitable for the present study because it 

cannot capture the students’ step-by-step thought processes during investigation. 
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The seventh method is to ask the students to write down what they are thinking when 

they are investigating, e.g. the empirical study by Keiichi (2000) described earlier in 

Section 2.3.4(d). This method may solve the problem of the students confusing their 

current knowledge during a retrospective interview with their past knowledge during 

the test. But the main problem is that thinking may be so rapid that it may be 

impossible to write it down exactly as it occurs and so there is still a possibility of 

editing or summarising one’s own thought processes (Lui, 1982). The students may 

also think and write some rough working at the same time, and since it is hard to 

juggle between writing the rough working and the thought processes simultaneously, 

the students may end up summarising their thought processes. Moreover, spending 

time to write down what they are thinking may interrupt the students’ train of thought 

as they investigate. In fact, this was the method used in the initial exploratory study 

described later in Section 3.3, and it was found that these students either wrote very 

little or did not write anything at all. 

 

2.4.2 Thinking-Aloud Method 

 

The eighth method for collecting data for processes is to ask the students to say aloud 

what they are thinking during the investigation, e.g. the empirical study by Schoenfeld 

(1985) described earlier in Section 2.2.3b, and the empirical study by Foong (1990) 

discussed earlier in Section 2.3.4(f). This is called thinking aloud and was developed 

by Duncker (1926, as cited in Foong, 1990). Although thinking may be so rapid that it 

may be impossible to say it aloud as it occurs (Lui, 1982), it is still a lot easier to say 

it aloud than to write it down as in the seventh method. Moreover, if the students say 

aloud what they are thinking instead of writing it down, then they can still concentrate 

on the investigation by doing some rough working at the same time. 
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However, verbalising their thoughts may also interfere with their train of thought as 

they attempt to investigate, especially when they will be videotaped. Schoenfeld 

(2002) gave the example of how some college students, when videotaped alone to 

solve the problem of estimating the number of cells in an average-sized human adult 

body, were under tremendous pressure because they knew that he would be looking 

over their work, and as a result, they felt they needed to do something mathematical 

and ended up doing something which he described as ‘ridiculously odd’. But when 

another sample of students was videotaped working in pairs on the same problem, 

they seemed to manage to dissipate some of the pressure by communicating with each 

other at the start by saying something like, “This sure is a weird problem.” As a result, 

none of them ended up approaching the problem from the ‘ridiculously odd’ angle 

like the former sample of students. This suggests that thinking aloud, especially when 

videotaped, may add undue pressure on the students, and as a result, affects their way 

of thinking and their performance. But there is a difference between articulating one’s 

own thought and talking to a team mate because the latter will usually involve 

reorganising one’s own thought before speaking them out. Thus pair work will not be 

suitable since the focus of the present study is on the students’ own thought processes. 

Moreover, the pressure of being videotaped might be alleviated to some extent if the 

students become familiar with the thinking-aloud method through practice. 

 

One problem with all the last four methods is the inability of the students to describe 

or say what they are thinking. For example, Lampert (1990) reported that her students 

responded to “questions about how they figured something out with phrases such as ‘I 

just know’, ‘I just thought it’, or ‘I don’t know how I figured it out’” (p. 56); and 

Stein and Burchartz (2006), whose study was discussed earlier in Section 2.2.4(d), 
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found that “in many cases students say less than they know” (p. 81). But it is still 

easier for students to just report what they are thinking as it occurs by writing it down 

or saying it aloud than to try to recall and describe these thought processes during 

retrospective interviews, as they just may not have the words to describe their thought 

processes. Moreover, it may be easier to train students to write down or think aloud 

their thought processes by letting them go through the experience during investigation 

than to train them to describe their own thought processes. 

 

From the above review, it was found that thinking aloud is the most useful tool to 

describe a student’s step-by-step thought processes and it comes closest to reflecting 

the cognitive and metacognitive processes than retrospective interviews or writing 

down the thought processes (Ericsson & Simon, 1980; 1993). Clement (2000) 

believed that research on students’ thinking processes is most fruitfully undertaken 

using the thinking-aloud method. To address some of the shortfalls of thinking aloud 

that were described earlier, the students should be given some form of training before 

data collection. Foong (1990) concluded from her review of literature that thinking 

aloud was relatively easy to learn, as long as the students were motivated to 

cooperate. Some important points to emphasise to students during a thinking-aloud 

training session include: 

 

 the students are to say aloud whatever that comes into their minds, rather than 

reflect on these thoughts and then rephrase or describe them (Clement, 2000) 

because introspection or reflection on such thoughts could interfere with the 

students’ train of thoughts as they attempt to investigate or solve a problem 

(Nisbett & Wilson, 1977); 
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 the students are to make an effort to translate thinking that uses nonverbal 

representations, such as imagery, into language because it is important to gain 

insight into this aspect of the students’ thinking as it might influence their 

problem-solving or investigation behaviour (Ericsson & Simon, 1993). 

 

However, the thinking-aloud method is only suitable if the sample size is small since 

it is not feasible to videotape each student thinking aloud separately if the sample size 

is large. But if there is a need to go for breadth in a research to study how different 

types of students investigate, depth may have to be sacrificed by asking the students 

to write down their thought processes or to answer a questionnaire. This may be 

complemented by selective retrospective interviews where only some students are 

selected to be interviewed based on what they have written since interviews are also 

time consuming. However, such methodology is still unable to capture the step-by-

step thought processes accurately. But for research study where the sample size is 

small, the thinking-aloud method is still the most suitable method to track the 

students’ actual thinking processes, despite the shortfalls. 

 

2.4.3 Methods of Data Analysis for Processes 

 

The method used to analyse thinking aloud of cognitive processes is called protocol 

analysis and was pioneered by Newell and Simon (1972). It refers to analysing a 

person’s step-by-step behaviour which is recorded or videotaped while he or she 

engages in some cognitive tasks. Protocols are usually verbal and are obtained by 

asking the person to think aloud during problem solving or investigation. The 

recorded or videotaped data are then transcribed and coded using a coding scheme, 

which is usually developed and refined by a pilot study. Van Someren, Barnard and 
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Sandberg (1994) suggested some guidelines on how to construct a valid and reliable 

coding scheme for verbal protocols. They emphasised the need to map the 

psychological model (e.g. the various models described earlier in Section 2.2.2) to the 

thinking processes that would appear in the protocols. The psychological model 

would usually describe which thinking processes would occur and also the order of 

occurrence. The construction of a coding scheme would be based on identifying 

observable behaviours that correspond to the processes from the model. 

 

According to Meijer, Veenman and van Hout-Wolters (2006), the coding scheme 

should not have too many categories to capture finer behavioural details because the 

coding process might end up focusing on unimportant minute details rather than 

trying to make sense of what is meaningful. Moreover, the coding scheme might 

become unreliable since different coders might be confused by the subtle differences 

among similar codes to distinguish finer behavioural details, and thus end up 

assigning the same protocol to different categories. Thus exemplars of actual verbal 

protocols should be included to help the coders identify the behaviours correctly. As 

an illustration, specialising is a process in the investigation model. But how does one 

know when a student specialises? This happens when one observes a student trying 

some examples. So ‘trying example’ is a student’s behaviour which can be observed 

to infer the process of specialising. In other words, a process may or may not be an 

observable behaviour during thinking aloud. Therefore, there was a need to code only 

observable behaviours, which in this case is just ‘trying example’.  

 

Examples of the development of coding schemes could be found in the empirical 

study of Foong (1990) described earlier in Section 2.3.4(f), and the research work of 

Meijer et al. (2006). What is common in the construction of these coding schemes is a 
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combination of a top-down (theoretical driven) and a bottom-up (empirical driven) 

strategy. Foong (1990) first identified five problem-solving categories (problem-

orientation heuristics, problem-solution heuristics, domain-specific knowledge, 

metacognition, and affective behaviours) with a list of 40 possible behaviours from 

existing literature. Then the coding scheme was refined based on students’ verbal 

protocols, and the final coding scheme consisted of 28 prominent behaviours in the 

five problem-solving categories. Similarly, Meijer et al. (2006) constructed a 

taxonomy of metacognitive processes with six categories: orientation, planning, 

execution, monitoring, evaluation and reflection. They identified metacognitive 

behaviours for each category from thinking-aloud protocols in current literature and 

then revise these behaviours based on empirical data collected before arriving at a 

final coding scheme. 

 

2.4.4 Method for Development of Processes: Teaching Experiment 

 

To study the development of processes in mathematical investigation, there is a need 

to review literature on methods used to develop these processes. Clement (2000) 

believed that research on students’ thinking processes is most fruitfully undertaken 

using the thinking-aloud method and teaching experiments. 

 

(a) Teaching Experiment vs. Classical Experimental Design 

 

A teaching experiment is different from the classical experimental design in various 

ways. Although both research methods involve teaching, the latter relies strongly on a 

psychometric pretest and posttest to measure the effect of an intervention programme. 

“Psychometrics was founded upon the idea that a student’s actual score on an item is 



 
 

115

composed of a ‘true’ score and some amount due to error.” (Steffe & Thompson, 

2000, p. 272). Usually, a quasi-experimental design will have an experimental group 

and a control group (Burns, 2000). The experimental group will be subjected to some 

new teaching method while the control group will be taught in the traditional way. 

Both groups sit for a pretest and a posttest with parallel test items. The pretest was to 

ensure that the performances of both groups in the content tested in the pretest are 

similar at the start of the experiment. The posttest will measure whether there is any 

significant difference in the test score for the experimental group compared with the 

control group after the intervention programme. In other words, a quasi-experiment 

design is essentially a quantitative research methodology, although in recent research, 

the pretest and the posttest can contain items that require a qualitative analysis. 

 

However, a teaching experiment is primarily a qualitative research design that does 

not depend on a psychometric pretest and posttest. A teaching experiment consists of 

a sequence of teaching episodes (Steffe, 1983). “A teaching episode includes a 

teaching agent, one or more students, a witness of the teaching episodes, and a 

method of recording what transpires during the episode.” (Steffe & Thompson, 2000, 

p. 274) The records can be used to prepare subsequent episodes and to conduct a 

retrospective conceptual analysis of the teaching experiment. English, Jones, Lesh, 

Tirosh and Bussi (2002) believed that the focus of teaching experiments should be on 

development in mathematically-enriched environments such as those involving 

problem solving and mathematical investigation, and not just in traditional classroom 

teaching environment. Civil (2002) described the distinguishing characteristics of 

such a classroom environment in which students solve problems and investigate 

mathematics like mathematicians: (a) collaboration in small groups on challenging 
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mathematical tasks, (b) the students are encouraged to develop and share their 

strategies, and to be persistent in the mathematical tasks, (c) mathematical discussions 

and communication among the students and with the teacher, and (d) the students are 

responsible for decisions concerning validity and justification. 

 

Sometimes there is a need to observe and record the processes exhibited by students 

during problem solving or investigation, especially when the purpose of the teaching 

experiment is to develop such processes (Lesh et al., 2000). A method to track a 

student’s thinking processes is to get the student to think aloud as described earlier in 

Section 2.4.2. Since it is practically impossible to videotape all the students’ thinking 

processes during a teaching episode as the classroom will be too noisy if every student 

thinks aloud, it might be necessary to record the thinking processes of each student 

separately when they think aloud during problem solving or investigation in a pretest 

and a posttest. However, a teaching experiment, coupled with a pretest and a posttest, 

appears to be similar to a quasi-experimental design. An important difference is that 

the pretest and the posttest for the teaching experiment are not psychometric tests to 

measure the students’ scores (Steffe & Thompson, 2000), but a means for studying 

the students’ processes before and after the teaching experiment qualitatively, 

although it is still possible to use a scoring rubric to assess the processes and analyse 

the scores quantitatively. Other differences include using records of what transpires in 

a teaching episode to inform subsequent episodes in a teaching experiment, and the 

focus of a teaching experiment to develop processes in a mathematically-rich 

environment, which were described earlier. 
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(b) Development of Processes 

 

Researchers are divided on whether processes associated with problem solving and 

investigation can be taught or whether they are only developed through meaningful 

experiences (Frobisher, 1994), and whether or not processes can be transferred to 

other situations (Lampert, 1990). Orton and Frobisher (1996) believed that 

communication processes, such as explaining, can only be developed through 

repeated usage over a long period of time, and they suggested that students should be 

introduced to working with different processes a few at a time. But they also believed 

that other processes, such as recording processes, need to be taught. In the same way, 

Lampert (1990) also recognised that conventional mathematical tools, including 

language and symbols, need to be taught because they are useful for communicating 

mathematics and for reasoning, but she did not ‘force’ them down on her students. 

Instead, she negotiated their meaning with her students, according to the true spirit of 

discourse in a mathematical community. 

 

Lampert’s (1990) teaching experiment has already been discussed in Section 2.1.5(d). 

It has shed light on what a teacher should do in a classroom environment that 

develops mathematical processes in problem solving and investigation. The teacher is 

to facilitate and guide the students in their investigation and discussion. If the students 

are stuck, the teacher will not tell them the answer but prompt them with appropriate 

questions when necessary. During the class discourse, the teacher’s duty is to 

encourage the students to participate by telling the class what they have found, even if 

they are not entirely sure that it is correct. “Until the group arrived at a mutually 

agreed-upon proof that one or more of the answers must be correct, all answers were 

considered to be hypotheses” (ibid., p. 40). The teacher will ask the students to give 
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reasons why they think a particular hypothesis is correct or wrong. If the hypothesis is 

found to be false, the student who gives the answer is free to respond with a revision. 

The teacher will emphasise that it is alright to make mistakes because no one is 

perfect. The teacher will tell the students that if they change their minds about their 

conjecture, they can revise it by saying, “I want to revise my thinking” (p. 52), a 

phrase that Lampert taught and encouraged her students to use. 

 

Many educators (e.g. Cobb, 1991) believe that the teacher may still have to provide 

some guidance when necessary because not all students can discover mathematics on 

their own. The difference is what kind of guidance. As explained in the preceding 

paragraph, Lampert (1990) guided her students by asking some appropriate questions 

without telling. Similarly, Tanner (1989), whose study was described in detail in 

Section 2.1.5(b), found that “the most effective interventions question students rather 

than dictate to them” (p. 22). On the other hand, some educators (e.g. Noddings, 

1990) believe that there may also be a need to tell and explain to the students, but 

“how much to tell and explain really depends on the teachers’ sensitivity to the needs 

of their students” (Teong, 2002, p. 42). Therefore, it is a fine balance between 

stimulating mathematical thinking by asking suitable questions when students are 

stuck, and explaining to the students when really necessary. 

 

2.4.5 Summary of Literature Review on Research Methodologies 

 

The review of relevant literature on research designs in Section 2.4 has suggested that 

the thinking-aloud method is useful to capture a small sample of students’ cognitive 

and metacognitive processes during mathematical investigation, despite some of its 

disadvantages which might be alleviated to a certain extent by letting the students 
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practise thinking aloud. The literature review has also informed the present study on 

the construction of a coding scheme and the use of protocol analysis to study the types 

and interactions of thinking processes. The review has brought out the importance of 

an inter-coder reliability test to strengthen the validity and reliability of the coding 

scheme. A teaching experiment was found to be suitable to develop students’ 

processes in mathematical investigation, and empirical studies that used teaching 

experiments have offered insights into how to conduct teaching episodes where the 

teacher acts as a facilitator to guide students in their investigation. 

 

2.5 CONCLUDING REMARKS FOR THIS CHAPTER 

 

Chapter 2 has reviewed the current state of mathematical investigation in research 

literature. It has examined some key issues and clarified conflicting views between 

investigation and problem solving, which will help to define the terminologies used in 

the present study clearly. The review of literature on cognitive and metacognitive 

processes has aided in identifying the types and interactions of these processes, which 

will inform the development of two theoretical models to study the nature of thinking 

processes in mathematical investigation. An extensive search of existing literature has 

revealed a gap in empirical studies on the processes in investigation, which has served 

to set the direction of research for the present study in order to address this gap. The 

review of relevant research methodologies has paved the way for developing a 

suitable research design to answer the research questions. Chapter 3 will then describe 

the research methodology for the present study. 
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PART TWO: RESEARCH METHODOLOGY AND 
DEVELOPMENT OF DATA ANALYSIS 
TOOLS 

 

 

Part Two of this thesis describes the research methodology and the development of 

data analysis tools for the present study. It consists of three chapters. Chapter 3 

explains the research methodology, Chapter 4 outlines the construction of the coding 

scheme for coding the students’ thinking-aloud protocols during investigation, and 

Chapter 5 describes the design of some data analysis instruments. 
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 CHAPTER 3: RESEARCH METHODOLOGY 

 

The review of relevant literature in Chapter 2 provided the theoretical basis for the 

conceptualisation of the present research on the nature and development of processes 

in mathematical investigation for Secondary 2 students. This chapter will explain the 

research methodology used to carry out the current study. It will describe the 

theoretical background, two theoretical investigation models, an initial exploratory 

study that informed the direction of the present research, the research questions and 

definitions of terms, the research design, the pilot study, the main study and the 

quality of the present research. 

 

3.1 THEORETICAL BACKGROUND 

 

The review of relevant literature in the previous chapter has provided the theoretical 

background for the present research on the nature and development of cognitive and 

metacognitive processes in mathematical investigation. The theoretical basis for 

including mathematical investigation in school mathematics education is the belief of 

the importance of mathematical problem solving and academic mathematics. “The 

idea of investigation is fundamental both to the study of mathematics itself and also to 

an understanding of the ways in which mathematics can be used to extend knowledge 

and to solve problems in many fields” (Cockcroft, 1982, p. 73), which is why many 

school curricula in countries all over the world (e.g. Singapore, USA, UK, Australia 

and New Zealand) include not only mathematical problem solving but mathematical 

investigation. Other educators (e.g. Brenner & Moschkovich, 2002; Lampert, 1990) 

also believe in bringing the practices of academic mathematicians, who investigate 

and solve genuine problems, into the mathematics classroom (see Section 1.1). 
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The study of cognitive processes in mathematical investigation is based primarily on 

the art of problem posing by researchers such as Brown and Walter (2005), Kilpatrick 

(1987), Krutetskii (1976) and Frobisher (1994); and the four main mathematical 

thinking processes by Mason et al. (1985), namely, specialising, conjecturing, 

justifying and generalising (see Sections 2.1.2 and 2.2.3). The theoretical basis for the 

study of metacognitive processes is based upon the works of Flavell (1976), Schraw 

(2001) and Schoenfeld (1985, 1987); and the focus for the present study is on the 

regulation of mathematical investigation behaviours (see Section 2.3). The collection 

of data on the nature of thinking processes is based on the thinking-aloud method 

developed by Duncker (1926, as cited in Foong, 1990), which is also used extensively 

by other researchers (see Section 2.4.2). The analysis of verbal protocols for thinking 

aloud is based on the works of Newell and Simon (1972), which is used extensively 

by other researchers as well (see Section 2.4.3). The methodology for developing 

processes in mathematical investigation is a teaching experiment (see Section 2.4.4). 

Clement (2000) believed that one of the most important needs in basic research on 

students’ thinking processes is the need for insightful explanatory models of these 

processes, and that such basic research is most fruitfully undertaken using the 

thinking-aloud method and teaching experiments. 

 

These theoretical perspectives form the basis underpinning the present study in 

researching on the constructs of cognitive and metacognitive processes in 

mathematical investigation, and for developing the research methodologies of the 

teaching experiment and thinking aloud. 
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3.2 THEORETICAL MATHEMATICAL INVESTIGATION MODELS 

 

Based on the literature review in Chapter 2, two theoretical investigation models were 

developed to describe the interactions among the processes. The first model displayed 

the interactions among the cognitive processes while the second model displayed the 

interactions among the metacognitive and the cognitive processes. 

 

3.2.1 Theoretical Investigation Model for Cognitive Processes 

 

The purpose of the first investigation model was to provide a theoretical framework to 

study the interactions of the various cognitive processes. The findings of the current 

study will then be used to refine the model if necessary. The need for such an 

insightful explanatory model of students’ thinking processes is one of the most 

important current needs in research on these processes (Clement, 2000). This type of 

explanatory models is often iconic in nature and the purpose of these models is to give 

satisfying explanations for patterns in observations (Lesh et al., 2000). 

 

The literature review in Section 2.2 has suggested that there are three phases and eight 

stages in mathematical investigation as shown in Table 2.1 on page 61. Each stage is 

named after the main process(es) that it contains. A main process may contain smaller 

processes called sub-processes. As explained earlier in Section 2.2.3, there is a need 

to include in the investigation models certain important outcomes that may affect how 

the processes interact with one another. The two types of investigative tasks (Type A 

and Type B) were discussed in Section 2.1.4. 
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(a) Description and Explanation of Theoretical Model for Cognitive Processes 

 

Based on the analysis of various problem-solving and investigation models in existing 

literature in Section 2.2.2, and the review of literature on the processes and outcomes 

of investigation in Section 2.2.3, a theoretical mathematical investigation model for 

cognitive processes was developed for the present research (see Fig. 3.1). However, 

there was a need to modify existing investigation models as they were unable to 

describe all the processes studied in the current research. For example, most models 

suggest that the only approach in mathematical investigation is to search for any 

pattern by going through the inductive pathway of specialising, conjecturing, 

justifying and generalising. But the prescriptive model for the present study had taken 

into account that students can bypass the inductive pathway by posing specific 

problems for Type B tasks, and then go through the deductive pathway of using other 

heuristics to solve these problems without formulating any conjecture and without 

generalising (see Section 2.1.4). The model for the current study also included the 

extension stage which was missing in most investigation models. Another example is 

that most models either show a linear route with an end point or a cyclic path that 

goes on forever. But the model for the current study is multi-cyclic in the sense that it 

has more than one cycle. In fact, problem solving and investigation are not just a 

cyclic process because it is not just one simple cycle (Love, 1988). 
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Legend: Process is indicated by an unshaded box  

Outcome is indicated by a shaded box or circle 
 
 

Figure 3.1  Theoretical Investigation Model for Cognitive Processes 
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In the first phase, the Entry Phase, there are two stages. In Stage 1 (Understanding the 

Task), students should try to understand the task by reading the task statement 

carefully, highlighting key information and visualising the given information by 

drawing a diagram when appropriate (Pólya, 1957). In particular, for Type A tasks, as 

discussed in Section 2.2.3(b), it is often useful to try a few random examples to make 

sense of the task (Mason et al., 1985). 

 

In Stage 2 (Problem Posing), students should pose problems to solve. Thinking of 

what problems to pose is a process. At the end of the process are two possible 

outcomes: posed the general problem of searching for any pattern, or posed a specific 

problem to solve. Based on the literature review in Section 2.2.3(b), students just need 

to search for any pattern for Type A tasks although they can also pose more specific 

problems to solve; but for Type B tasks, there is a need to pose a specific problem to 

solve. This will in turn affect, to a certain extent, what students will do in the next 

stage: specialise or using other heuristics. 

 

In the second phase, the Attack Phase, there are four stages. In Stage 3 (Specialising 

and Using Other Heuristics), students generally need to specialise for Type A tasks, 

i.e. try examples, systematically to search for patterns (Mason et al., 1985). However, 

as explained in Section 2.2.3(c), students can solve the specific problem posed for 

Type B tasks by specialising or by using other heuristics; or they can alternate 

between specialising and using other heuristics, as shown by the corresponding 

pathways in the theoretical model in Figure 3.1. 

 

Stage 4 (Conjecturing) consists of the sub-process ‘searching for patterns’ and the 

outcome ‘formulated conjecture’. As explained in Section 2.2.3(c), when students 
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observe a pattern, the outcome ‘observed pattern’ is only a conjecture. But students 

can also formulate a conjecture by using other heuristics, such as reasoning, without 

searching for any pattern. Therefore, the model will use the term ‘formulated 

conjecture’ as an outcome to describe both scenarios, rather than the term ‘observed 

pattern’ which only applies to the first case of observing a pattern from specialising. 

 

Stage 5 (Justifying) contains three sub-processes: (i) naïve testing, (ii) justifying a 

conjecture using a non-proof argument, and (iii) justifying a conjecture using a formal 

proof. As explained in Section 2.2.3(e), naïve testing was advocated by Lakatos 

(1976) for refuting a conjecture by counter examples. However, students can bypass 

naïve testing and go straight to justifying a conjecture using a non-proof argument or 

a formal proof. If a conjecture is refuted, the pathways in Figure 3.1 show that the 

students will either have to go back to specialise some more, search for new patterns, 

or reformulate the conjecture. 

 

Stage 6 (Generalising) consists of only two outcomes. As explained in Section 

2.2.3(f), generalising overlaps with conjecturing and justifying, so to avoid confusion, 

this stage is concerned with whether generalisation has occurred. If a conjecture is 

formulated from specialising and proven correctly, then generalisation has occurred. 

But if a conjecture is formulated from using other heuristics (see pathway in Fig. 3.1 

from ‘Using Other Heuristics’ to ‘Formulated Conjecture’), this will lead to ‘Solved 

Problem Without Generalising’ when the conjecture is proven. However, students 

may also use other heuristics to solve a problem without formulating any conjecture. 

The pathway will then proceed directly from ‘Using Other Heuristics’ to the 

generalising stage. 
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In the third phase, the Review Phase, there are two stages. In Stage 7 (Checking), the 

students should check their working after solving a problem. As explained in Section 

2.2.3(g), the students should occasionally check their working even before they finish 

solving a problem. This means that the sub-process ‘Checking Working’ could occur 

in other stages, but the checking stage in the Review Phase is for after the students 

have finished solving a problem. 

 

As explained in Section 2.2.3(h), there are three possibilities after Stage 7: (i) pose 

more problems to solve without changing the given, (ii) extend the task by changing 

the given, which is Stage 8 (Extension), or (iii) end the investigation. For Type A 

tasks, extending the task would usually result in an entirely new task with different 

patterns. For Type B tasks, students are expected to extend the task by trying 

examples (specialising) to search for patterns (conjecturing), and to justify the 

observed patterns so as to generalise. This means that the processes for Type B tasks 

during extension (specialising, conjecturing, justifying, generalising) are similar to the 

usual processes for Type A tasks. But for each example that the students generated 

during the extension of Type B tasks, they would need to solve it using other 

heuristics, such as reasoning, just like what they would have done for the original 

task. In other words, specialising and using other heuristics overlap during the 

extension of Task B tasks. 

 

(b) Caveats: What the Theoretical Model is Not Trying to Illustrate 

 

It is necessary to highlight a few caveats. First, the inductive and deductive pathways 

of the theoretical model are not mutually exclusive. Students can move from one 

pathway to the other pathway as shown by the arrows in the model in Figure 3.1, e.g. 
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a student may use other heuristics and go down the deductive pathway, but later 

formulate a conjecture and switch to the inductive pathway. Moreover, as explained in 

Section 2.2.3(e), the inductive pathway also includes reasoning during the justifying 

stage when students try to prove their conjecture using a non-proof argument or a 

formal proof. 

 

Secondly, the theoretical model does not show all the sub-processes within each stage. 

For example, it does not show all the sub-processes in the understanding stage, e.g. 

highlighting key information, visualising information and trying examples. Instead, all 

these sub-processes will be identified in the coding scheme (see Chapter 4 later). 

 

Thirdly, the theoretical model illustrates the logical sequences of processes that 

students may go through in an investigation. For example, students are supposed to 

check their solution, but they may choose not to do so. Moreover, students can change 

their minds anytime. For example, the students may be trying examples to search for 

patterns when they suddenly have an insight and decide to change direction by posing 

another specific problem. All these other possible types of pathways will not be 

shown in the theoretical model since students can go from any process to almost any 

other process in the model. However, the actual pathway that a student takes during 

an investigation will be traced using the Investigation Pathway Diagram (see Section 

5.2 later). 

 

Nevertheless, it is still possible that some of the logical pathways may still be missing 

from the theoretical model despite careful considerations, and there may be other 

important sub-processes that have not been identified. Therefore, one of the purposes 
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of the present study is to identify the actual interactions among these processes when 

students engage in mathematical investigation so that the theoretical model can be 

validated and refined, if necessary, to reflect the actual interactions more accurately. 

 

3.2.2 Theoretical Investigation Model for Metacognitive Processes 

 

The second investigation model describes the interactions between the metacognitive 

and the cognitive processes. For simplicity, it will just be called the theoretical 

investigation model for metacognitive processes, to distinguish it from the first model 

which is the theoretical investigation model for cognitive processes. Based on the 

review of literature on metacognitive processes in Section 2.3, it was found that 

metacognition consists of knowledge of cognition and regulation of cognition (Brown 

et al., 1983; Schraw, 2001). As it is beyond the scope of this thesis to study how 

metacognitive knowledge affects investigation, the present research will only focus on 

metacognitive regulation, which consists of planning, monitoring and evaluating. 

Since there was a lack of both theoretical and empirical research on metacognitive 

behaviours during investigation, I had to hypothesise the types of metacognitive 

processes that could occur during investigation, and their interactions with the main 

cognitive processes. Only five metacognitive processes were identified: 

 

 Analysing feasibility of goal (planning) 

 Analysing feasibility of plan (planning) 

 Monitoring understanding (monitoring) 

 Monitoring progress (monitoring) 

 Reviewing solution (evaluating) 
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Analysing the feasibility of the goal or problem is an important metacognitive process 

for mathematical investigation because students need to set their own goals by posing 

problems to solve, and so they should analyse whether their goals or problems are 

worth pursuing, or too trivial or too difficult to pursue. Similarly, they should think of 

a plan to solve a problem that they have posed and to analyse the feasibility of their 

plan. Monitoring progress is a common metacognitive process described in the 

literature review in Section 2.3.1, while monitoring understanding and reviewing the 

solution to see if it has met the goal of the task have been discussed in Section 2.3.2. 

 

Table 3.1 shows the main cognitive processes and metacognitive processes that could 

occur in the various investigation stages. As explained in Section 3.2.1(a), the issue 

during the generalising stage is whether the result obtained after justification is a 

general one, so there is no process in this stage. Thus there is a need to combine the 

stages of justifying and generalising in the following table. 

 

Table 3.1  Cognitive and Metacognitive Processes in Mathematical Investigation 
 

Phases Stages Cognitive Processes Metacognitive Processes 
 

Entry 
 

Understanding 
the Task 
 

 

Understanding the 
Task 

 

 Monitoring Understanding 

 

Problem Posing 
 

 

Problem Posing 
 

 Analysing Feasibility of Goal 
 

Attack 
 

Specialising and 
Using Other 
Heuristics 

 

Specialising 
 

 Analysing Feasibility of Plan 
 Monitoring Progress 

 

Using Other Heuristics 
 

 Analysing Feasibility of Plan 
 Monitoring Progress 

 
 

Conjecturing 
 

Conjecturing 
 

 Analysing Feasibility of Plan 
 Monitoring Progress 

 
 

Justifying / 
Generalising 

 

Justifying / 
Generalising 

 

 Analysing Feasibility of Plan 
 Monitoring Progress 

 
 

Review 
 

Checking 
 

 

Checking 
 

 

 Reviewing Solution 
 

Extension 
 

 

Extension 
 

 

 Analysing Feasibility of Goal 
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Figure 3.2 shows the theoretical investigation model of metacognitive processes. The 

model displays how the metacognitive processes interact with the main cognitive 

processes in investigation. It was discovered that the first metacognitive process in 

chronological order is not a planning process but a monitoring one: ‘Monitoring 

Understanding’. It is followed by a planning process, ‘Analysing Feasibility of Goal’, 

which acts on the cognitive process of problem posing, and also on the cognitive 

process of extension at a later stage. Both ‘Analysing Feasibility of Plan’ and 

‘Monitoring Progress’ act on the main mathematical thinking processes of 

specialising, conjecturing, justifying and generalising. The last metacognitive process, 

‘Reviewing Solution’, acts on the checking process. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.2  Theoretical Investigation Model for Metacognitive Processes 
 

Understanding the Task 

Problem Posing 

Specialising 

Using Other Heuristics 

Conjecturing 

Justifying / Generalising 

Checking 

Extension 

Analysing Feasibility of Goal 

Analysing Feasibility of Plan 

Monitoring Understanding 

Monitoring Progress 

Reviewing Solution 

Cognitive Process Metacognitive Process 

Planning 

Monitoring 

Evaluating 



 
 

133

3.3 INITIAL EXPLORATORY STUDY TO SET DIRECTION OF 

RESEARCH FOR PRESENT STUDY 

 

This section outlines an initial exploratory study (not the pilot study) conducted to set 

the direction of research for the present study. The exploratory study was necessary 

for the following reasons. The initial plan of the current research was to cover both 

the breadth and the depth. To cover the breadth, the first part of the plan was to study 

the thinking processes of a large group of secondary school students with different 

gender, grade levels and academic abilities using a paper-and-pencil test instrument 

containing a few investigative tasks, so as to identify the nature of these processes and 

compare them among the different types of students. To cover the depth, the second 

part of the plan was to study the development of processes for one class of students 

using a teaching experiment, a pretest and posttest. 

 

However, there was doubt about the feasibility of the first part of the plan since 

anecdotal evidence suggests that students do not know what to do when given 

investigative tasks containing only the word ‘investigate’, and so they would not 

exhibit enough processes to shed light on their nature. Due to the lack of empirical 

research on investigation, there was no concrete evidence to support or disprove the 

above anecdotes. Thus there was a need to conduct an exploratory study to find out 

the state of investigation proficiency among the students in Singapore because this 

will impact on the direction of research for the present study. Jaworski (1994) 

believed that it is very important to document clearly the reasons for any decision 

made in a research study. 
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To plan for the paper-and-pencil test instrument for the first part of the initial plan, 

another small study was conducted with a convenience sample of 21 pre-service (or 

trainee) secondary mathematics teachers to find out if they understood what it meant 

to investigate when given an investigative task without any teaching or instruction, 

and if not, how to modify the test instrument for a large sample. The test instrument 

consisted of two parts (see Appendix A). The first part was open, and after the pre-

service teachers had tried for 15 minutes, it was discovered that most of them did not 

know what to investigate. So the second part of the test instrument was given to them: 

it was the same task but with the question “Which numbers are polite?” This time, the 

pre-service teachers knew what to investigate but their answer scripts suggested that 

most of them did not know how to investigate to find out which numbers are polite. 

 

The implication of this small study was that secondary school students may not know 

what or how to investigate when given an investigative task, so the test instrument for 

the exploratory study (see Appendix B) was modified to include scaffolding questions 

for the first task (e.g. find as many patterns as you can about the powers of 9), and 

subsequently, the other two tasks (one Type A task and one Type B task) were made 

more open by asking students to pose their own problems to investigate. 

 

The sample for the exploratory study was 29 Secondary 1 (equivalent to Grade 7) 

students from an intact class from one of the high-performing local secondary 

schools. In Singapore, all secondary schools are ranked according to the mean subject 

grades of the General Certificate of Education Ordinary Level (GCE O-Level) 

examination results every year. The high-performing secondary schools usually attract 

the higher-achieving primary school students, which are selected for entry to the 
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secondary schools based on their Primary School Leaving Examination (PSLE) 

results. PSLE is a national exam that all primary school students take at the end of 

their primary school education, and the subjects tested include mathematics. Thus the 

sample of Secondary 1 students from one of the high-performing secondary schools 

could be considered as high-achieving students. The students were not streamed 

further into different classes according to their PSLE results in Secondary 1 and the 

intact class was chosen randomly from the whole Sec 1 cohort in that school. If the 

students could do the investigation, the test instrument would be given to a class of 

average students from another school, and to a class of low-achieving students from a 

third school, to see if students with different academic abilities could cope with such 

investigation. 

 

However, findings from the class of 29 high-achieving students show that they were 

unable to cope with investigation, even with scaffolding built into the first question. 

Within five minutes from the start of the test, five students raised their hand and asked 

me, who was also the invigilator, what they were supposed to do for the first task. 

Other students did not ask me but some of them (all names are pseudonyms) wrote in 

the written survey after the test: 

 

Albert: I am thinking of asking the teacher what ‘investigate’ means. 

Ben: I find it a bit difficult as I do not understand the meaning of investigate. 

 

Analyses of the students’ answer scripts for the first task show that 35% of the 

students did not know how to investigate by specialising, and so they did almost 

nothing or nothing at all. Although 17% of the students did try something, they were 

unable to discover a single pattern, not even the simplest patterns, such as, all the 
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powers of 9 are odd, or the last digit alternates between 1 and 9. This suggests that at 

least half of the students (52%) did not know how to investigate. Although the other 

48% did find some patterns, many of the discoveries were very trivial, such as, 

powers of 9 are divisible by 9, and when a power of 9 is divided by 9, the result is the 

preceding power of 9. It seems that telling the students to find any pattern about 

powers of 9 when there was no specific problem to solve had confused them. The 

other two tasks were also badly done. Providing a specific problem in Task 3 (how 

many matches will there be if there are 20 teams in the tournament?) did not help the 

students to pose other problems to investigate in the subsequent part. What were more 

worrying were the very negative comments from most of the students: 

 

Chris: I feel it is pretty useless and a waste of my time. 

Dan: I think I am going to fail. I think that I am going to be scolded as I don’t know 

how to do the questions as it is so #!!@ing hard. I think that [the test] was good 

as it help [sic] me to find out that I’m dumb 

 

The exploratory study provided some credence to the anecdotal evidence that the 

students in Singapore do not know what and how to investigate when given an 

investigative task, and providing suitable scaffolding in the task statement of the first 

task did not help them to understand the task requirement of subsequent open 

investigative tasks. To carry out the large-scale study of the initial plan will also do 

more harm than good because it will make more students dislike investigation, 

judging by the negative comments from the students described in the preceding 

paragraph. Thus it was decided not to carry on with the exploratory study for a second 

class of average students and a third class of low-achieving students. Hence, the 

present study will focus only on a small group of students to study the nature and 
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development of their processes in depth. Moreover, the exploratory study had also 

helped support the decision that the students for the present study must be given a 

familiarisation lesson before doing the pretest to teach them what to investigate, or 

else there will definitely be an improvement from the pretest to the posttest for the 

simple reason that the students did not understand the word ‘investigate’ during the 

pretest and thus could not proceed at all. 

 

3.4 RESEARCH QUESTIONS 

 

Based on the literature review in Chapter 2 and the direction of research provided by 

the exploratory study in Section 3.3, three research questions were formulated for the 

present research study: 

 

RQ1: What is the relationship between the investigation pathways of Secondary 2 

students and their outcomes across the two types of investigative tasks? 

 

RQ2: What is the effect of the cognitive and metacognitive processes of Secondary 2 

students on the outcomes of their investigation? 

 

RQ3: What is the effect of the teaching experiment on the development of 

Secondary 2 students’ mathematical investigation processes? 

 

RQ1 will examine the nature of the processes from a macroscopic angle by looking at 

the investigation pathways, which depict the interactions of these processes, and their 

relationship with the outcomes. RQ2 will explore the nature of the processes from a 

microscopic viewpoint by observing the interactions between these processes and the 

outcomes. RQ3 will analyse the development of these processes. 
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3.5 DEFINITIONS OF TERMS 

 

As the same term can be subject to various interpretations, and different terms can be 

used to mean the same construct in literature, it is important to define clearly how 

certain key terms are used in the present study. Thus this section will provide 

operational definitions for some important terminologies used in the current study 

based on the review of relevant literature in Chapter 2. 

 

(a) Investigative Task 

 

An ‘investigative task’ is a mathematical task that does not contain any problem in its 

task statement and ends with the word ‘Investigate’. Thus it is open in the sense that 

students can pose any problem to solve. The present research will study the processes 

for two types of investigative tasks: Type A and Type B. The differences between the 

two types of tasks and the rationales for including both types in the present study have 

been dealt with in Section 2.1.4. Examples of the two types of tasks are: 

 

Posttest Task 1 (Type A): Add Sum of Digits to Number 

Choose any number. Add the sum of its digits to the number itself to 

obtain a new number. Repeat this process for the new number and so 

forth. Investigate. 

 

Posttest Task 2 (Type B): Sausages 

I need to cut 12 identical sausages so that I can share them equally 

among 18 people. Investigate. 
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(b) Mathematical Investigation 

 

A ‘mathematical investigation’ is an activity undertaken by students when they 

attempt an investigative task (see Section 2.1.3). It includes processes such as 

understanding the task, problem posing, problem solving and extension. There are 

generally two approaches to the problem-solving process: the inductive approach 

using specialising (which is similar to the investigation process); and the deductive 

approach using other heuristics such as reasoning. Investigation, as a process, 

involves the four main mathematical thinking processes of specialising, conjecturing, 

justifying and generalising (Mason et al., 1985). Thus the present study distinguishes 

between investigation as an activity and investigation as a process. In general, when 

the term ‘investigation’ is used in the thesis, it will always refer to the activity, as 

contrast to the ‘investigation process’. 

 

(c) Processes, Outcomes and Pathways 

 

The ‘nature of processes’ refers to the types of processes and the interactions among 

these processes. There are eight main cognitive processes identified for investigation: 

Understanding the Task, Problem Posing, Specialising, Using Other Heuristics, 

Conjecturing, Justifying, Generalising, Checking and Extension. Metacognition refers 

to the knowledge and regulation of one’s own thinking or cognitive processes. As it is 

beyond the scope of the present research to study the effect of metacognitive 

knowledge on investigation, the current study will focus on the main metacognitive 

processes that regulate cognition. The interactions of these processes are displayed 

using the two investigation models developed for the present study (see Section 3.2). 

The outcomes of an investigation refer to the results obtained, including intermediate 
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results such as problems posed, patterns observed, and conjectures justified. The 

investigation pathways refer to the interactions of the processes and outcomes as 

indicated by the paths in the investigation model for cognitive processes that go from 

one process or outcome to another. 

 

(d) Teaching Experiment 

 

In this thesis, a teaching experiment refers to a qualitative research design consisting 

of a sequence of teaching episodes, where the teacher acts as a facilitator to help the 

students develop their thinking processes in mathematical investigation. It is different 

from a quasi-experimental methodology as explained in Section 2.4.4. 

 

3.6 RESEARCH DESIGN 

 

This section will provide an overview of the research design for the present study in 

the form of a research framework, followed by a discussion of how the sample was 

selected. It will present the outlines of the familiarisation lesson and developing 

lessons, and the instructional strategies for the lessons. The rationales of the selection 

of the investigative tasks for the lessons, the pretest and the posttest will then be 

examined. Lastly, it will explain the methods of data collection and analysis. 

 

3.6.1 Research Framework 

 

Since the present research was a study on the nature and development of processes in 

mathematical investigation, a qualitative approach would be more appropriate than a 

quantitative one. The review of relevant literature on the various methods of data 

collection for processes and for development of processes was described in Section 
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2.4. Current research trends are moving towards detailed qualitative studies of 

individual students in order to gain insight into how the individual thinks or learns, 

and so the emphasis was not so much on generalising in quantitative studies because 

no two individuals are the same (Kelly & Lesh, 2000b). Clement (2000) observed that 

one of the most important needs in basic research on students’ thinking processes is 

the need for insightful explanatory models of these processes, and that such basic 

research is most fruitfully undertaken using the thinking-aloud method and teaching 

experiments. In particular, the focus of teaching experiments should be on 

development in mathematically-enriched environments such as those involving 

problem solving and mathematical investigation (English et al., 2002). 

 

Therefore, the research methodology of the present study was a teaching experiment 

(Steffe & Thompson, 2000) to develop the students’ cognitive and metacognitive 

processes in mathematical investigation, and a pretest and a posttest using the 

thinking-aloud method (Clement, 2000) to study the nature of the students’ thinking 

processes so as to inform the two theoretical investigation models developed for the 

current research. The proficiency of the students’ performance in mathematical 

investigation during the pretest and the posttest was also measured using a scoring 

rubric that assessed both the processes and the outcomes. 

 

Figure 3.3 shows the research framework for the present study. The students’ initial 

investigation proficiency was modelled by the two theoretical investigation models 

for cognitive and metacognitive processes described in Section 3.2, and was measured 

quantitatively using a scoring rubric designed to evaluate the processes captured using 

the thinking-aloud method and the outcomes of a written pretest. Then the students 

underwent a teaching experiment to develop their investigation proficiency. The 
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students’ final investigation proficiency was again measured using the same scoring 

rubric for a parallel posttest. The two tests were also used to inform the theoretical 

investigation models qualitatively in order to obtain the refined investigation models. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.3  Research Framework for Present Study 
 
 

3.6.2 Sample for Main Study 

 

Since the present research was meant to be an in-depth study of the nature and 

development of processes, the sample in the main study was a small one consisting of 

10 Secondary 2 (equivalent to Grade 8) students from another high-performing local 

school (different from the school where the initial exploratory study described in 

Section 3.3 was conducted). As the school could only provide me lower secondary 

students to choose from, and the main study was conducted in the first term of the 

year, Secondary 1 (equivalent to Grade 7) students were not selected since they would 

not have learnt number patterns and enough algebra, which would help them to search 
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for patterns and justify conjectures using formal proofs involving algebra. Thus 

Secondary 2 students were chosen because they had learnt these topics by the end of 

Secondary 1. As explained in Section 3.3, students from a high-performing secondary 

school could be considered as high-achieving students. The reason for choosing high 

achievers was that they were more likely to exhibit a fuller and richer range of 

processes in investigation than average or low achievers (Tanner, 1989). In fact, the 

Final Coding Scheme had to be based on the empirical data obtained from the posttest 

of the main study because the processes exhibited in the pilot test and the pretest did 

not cover the whole range (see Section 4.6 later). These data were necessary to inform 

the theoretical investigation models, which could then be used to study the processes 

in average and low-achieving students in future research. 

 

The sample for the main study was a purposeful sample. The first criterion for 

choosing the students from a few Secondary 2 classes was that they should not have 

any experience in mathematical investigation. The students were given a sample 

investigative task, which was Investigative Task 1 in Appendix D, and asked to record 

whether they knew how and what to investigate for this task (they were to answer 

‘Yes’ or ‘No’), and whether they had any experience with this type of investigation 

(they were to answer ‘Yes’, ‘No’, ‘A little bit’ or ‘Some’). All students who answered 

‘No’ for both questions were then identified. There were 23 of them. The second 

criterion was to choose among the 23 students a wide variety of achievement in 

mathematics based on their academic results. Although all these students scored A* 

(highest grade) for their Primary School Leaving Examination (PSLE) mathematics, 

the range of marks for an A* grade was still very wide (their exact PSLE mathematics 

scores were never made known). The big differences in mathematics achievement 

within this broad band of high-achieving students were suggested by their Secondary 
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One Final Examination mathematics scores shown in Table 3.2, which ranged from 

47 to 89 marks out of 100 marks. 

 

Table 3.2  Mathematics Examination Scores of Students with No Experience in 
Mathematical Investigation 

 
 41-50 51-60 61-70 71-80 81-90 Total 

Boys 1 1 4 2 4 12 
Girls 0 2 0 4 4 11 
Total 1 3 4 6 8 23 

 

Table 3.3  Mathematics Examination Scores of Students in Sample 
 

 41-50 51-60 61-70 71-80 81-90 Total 
Boys 1 0 1 1 2 5 
Girls 0 2 0 1 2 5 
Total 1 2 1 2 4 10 

 
 

As the scores for the 23 students were already skewed to the left and some students 

did not wish to participate in the research, it was not possible to choose the sample for 

the present study to contain the same number of students in each mark range. So the 

next best choice was to choose 10 students such that there was at least a student in 

each mark range for the sample (see Table 3.3). The purpose of this second criterion 

was to increase the possibility of observing a wider range of investigation behaviours 

among the students with different levels of achievement in mathematics. The third 

criterion was gender: half of them were chosen to be boys and the other half girls. 

Again it was not possible to get an equal number of boys and girls in each mark range. 

The purpose of this third criterion was to get a representative sample in terms of 

gender because there was not much research to suggest how gender would affect the 

processes in investigation, and so a balanced sample would increase the possibility of 

observing a wider range of investigation behaviours. However, it is beyond the scope 

of the present research to study the effect of gender on investigation. 
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3.6.3 Teaching Experiment 

 

There were two parts to the teaching experiment for the present study. The first part 

consisted of a two-hour familiarisation lesson conducted by me to expose the students 

in the sample to mathematical investigation in order to teach them what and how to 

investigate when given an investigative task before the pretest was conducted. The 

rationale for this decision was described in detail in Section 3.3 where most students 

in the initial exploratory study did not understand the task requirement and so they 

were unable to even start attempting. Therefore, if the students in the present study 

were given the pretest before any lesson on investigation, there would definitely be an 

improvement from the pretest to the posttest for the simple reason that the students 

would not have understood the word ‘investigate’ during the pretest and thus could 

not proceed at all. 

 

The second part of the teaching experiment consisted of five two-hour developing 

lessons after the pretest was conducted. The main purpose of these lessons was to 

develop the students’ processes during investigation. As explained in Section 2.4.4(b), 

many educators are divided whether these processes could be taught or developed. 

Since “there is much uncertainty whether processes can be taught, or whether they are 

only assimilated into a pupil’s repertoire through usage over a long period of time” 

(Frobisher, 1994, p. 161), there was no guarantee that the developing lessons in the 

current study would develop the students’ processes enough to show an increase in 

the posttest score. Thus, if the findings show an improvement in the score, it could 

then be attributed to the success of the developing lessons. This kind of research 

design, in which a familiarisation lesson was conducted before the pretest, will 

enhance the validity and reliability of the present study. All lessons were videotaped. 
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(a) Outlines of Familiarisation Lesson and Developing Lessons 

 

The outlines of the familiarisation lesson (Lesson 1) and five developing lessons 

(numbered from Lessons 2 to 6 for continuity) are given in Appendix C, and the 

investigative tasks are given in Appendix D. The purpose of the familiarisation lesson 

was to teach the students in the sample what to do when given an investigative task: 

what they were supposed to investigate and how to investigate. But great care was 

taken not to intervene too much as this was only a familiarisation lesson, e.g. for the 

Investigative Task 2 (Handshakes) in Appendix D, the students were guided to realise 

that they could generalise for n workshop participants after finding the total number 

of handshakes for 20 participants; but it was not emphasised that they should 

generalise whenever possible since the purpose of the familiarisation lesson was not 

to develop in students the habit to generalise but to expose them to the possibility of 

generalisation. Therefore, the main purposes of the familiarisation lesson were: 

 

 to familiarise the students with what to investigate: search for any pattern for 

Type A tasks, and pose specific problems to solve for Type B tasks; 

 to teach the students that they should not accept an observed pattern as true: 

they must prove that it is the actual underlying pattern or refute it by counter 

examples; 

 to teach the students that they can extend the task by changing the given; 

 to teach the students that they can change the given in Type B tasks to 

generalise; 

 to provide the students the opportunity to practise thinking aloud as this was 

required during the pretest. 
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Although the students should have had more practice in thinking aloud so that they 

would be better in articulating their thoughts during the data collection, they did not 

practise thinking aloud during the first hour of the lesson. This was because this was 

the first time the students were exposed to such investigation, so thinking aloud from 

the beginning might have distracted them from focusing on their investigation. The 

pilot study, which will be described in Section 3.7 later, suggests that practising 

thinking aloud during the second half of the familiarisation lesson was sufficient to 

get most students to think aloud during the pretest. 

 

For the developing lessons after the pretest, the focus was in developing in students 

the various cognitive and metacognitive processes required in investigation. Orton 

and Frobisher (1996) suggested that students should be introduced to working with 

different processes a few at a time. Therefore, the students were taught only one or 

two main processes during each of the developing lessons. The main purposes of the 

developing lessons were as follow (see Appendix C for the outlines of the lessons): 

 

 to guide the students to investigate the pretest tasks further, focusing on what 

they could have investigated, e.g. what were some patterns for Pretest Task 1 

and how to generalise for Pretest Task 2 (Lesson 2); 

 to develop the students’ understanding process by reminding them of various 

strategies that they had learnt during their normal school lessons to understand 

textbook questions, e.g. read the task carefully, re-read or rephrase the task 

statement, highlight key information, and visualise given information by 

drawing a diagram; and to teach them a new understanding process: try 

examples randomly to make sense of Type A tasks (Lesson 2); 
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 to develop the students’ problem-posing process, especially for Type B tasks 

since students were expected to just search for any pattern for Type A tasks; 

and to convince them that it was alright to pose a difficult problem that they 

could not solve (Lesson 3); 

 to teach the students to analyse the feasibility of their goal or problem to see if 

it was worth pursuing, or too trivial or too difficult to pursue (Lesson 3); 

 to develop the students’ problem-solving heuristics, especially specialising 

systematically to search for patterns (conjecturing) and using reasoning to 

solve problems which may result in the formulation of conjectures (Lesson 4); 

 to teach the students how to regulate their investigation using metacognitive 

strategies such as analysing the feasibility of their plan during specialising, 

using other heuristics, and conjecturing, to see if the plan was worth pursuing, 

and to monitor their own progress every 5 minutes or so (Lesson 4); 

 to teach the students that certain results were actually conjectures to be proven 

or refuted, and to develop the students’ justifying process, such as refuting 

conjectures by counter examples (naïve testing), and justifying conjectures 

using a non-proof argument or a formal proof (Lesson 5); 

 to teach the students to analyse the feasibility of their plan during justifying, 

and to develop in the students the habit of monitoring their own progress 

(Lesson 5); 

 to teach the students to extend Type B tasks to generalise, and to develop in 

the students the habit to extend and generalise whenever possible (Lesson 6); 

 to develop the students’ checking process, such as checking their working step 

by step occasionally, or by working backwards, or by examining whether the 

answer was reasonable or logical (Lesson 6); 
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 to teach the students to always review their solution after solving a problem to 

see if it had met the goal of the task, to evaluate the efficacy of their method of 

solution, and to look for alternative methods (Lesson 6); 

 to teach the students to analyse their plan of attack when they were stuck, and 

in particular, the need to incubate (Lesson 6); 

 to provide the students more opportunity to practise thinking aloud so that they 

could articulate their thoughts better in the posttest (Lessons 5 and 6). 

 

(b) Instructional Strategies for Lessons 

 

I was the teacher for all the lessons. The witness of the teaching experiment (Steffe & 

Thompson, 2000) was the school teacher who settled all the administrative work and 

logistics for the research, and who videotaped all the lessons using a videocam. The 

general instructional strategies for both familiarisation and developing lessons were 

about the same. The students were given an investigative task to investigate 

individually for 10 minutes and they were to record their rough working and 

observations in the answer script provided. If they had any query during this period, 

they could ask the teacher, but the teacher would not tell them the answers; instead, 

the teacher would ask appropriate questions to guide the students to think for 

themselves. After the individual work, the students would discuss with a partner 

seated beside them for another 10 minutes before the teacher facilitated the class 

discourse for 10 minutes. The students would then continue their investigation, either 

individually or with the same partner, for another 10 minutes, before another round of 

class discourse for 10 minutes. Finally, for the remaining 10 minutes of the hour, the 

students would summarise their findings on the answer script provided. This whole 

procedure was repeated for the second hour of the lesson with another task. 
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The teacher’s duty was to facilitate and to guide the students in their investigation and 

discussion. The teacher followed what Lampert (1990) did for her classroom 

discourse, which has been discussed in detail earlier in Section 2.1.5(d) and 2.4.4(b). 

During the class discourse, the students were encouraged to participate by telling the 

class what they had observed or found, even if they were not entirely sure whether it 

was correct or not. The students were then asked to give reasons why they thought a 

particular conjecture was correct or incorrect. If the conjecture was found to be false, 

the student who gave the answer was free to respond with a revision. It was 

emphasised that it was alright to make mistakes because even great mathematicians 

make mistakes or travel down false trails before they make important discoveries. The 

students were taught that if they changed their minds about their conjecture, they 

could revise it by saying, “I want to revise my thinking” (Lampert, p. 52), a phrase 

that Lampert taught and encouraged her students to use. 

 

3.6.4 Selection of Investigative Tasks for Lessons, Pretest and Posttest 

 

In this section, the rationale for choosing the investigative tasks for the six lessons and 

the tests will be explained. Since the purpose of the present study was to examine the 

actual processes engaged by students during investigation, tasks that required students 

to investigate and do research outside curriculum time, e.g. project work and real-life 

mathematical modelling tasks discussed in Section 2.1.4(d), would not be suitable as 

it was not possible to capture and track such processes. Therefore, only the two types 

of pure-mathematics investigative tasks defined earlier in Section 3.5 will be selected 

for the present research. The tasks used in the present study were modified from 

investigative tasks found in academic books and resource books such as Bastow et al. 
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(1991), Biddle, Savage, Smith and Vowles (1988), Height (1989), Ho and Soon 

(1998), Holding (1991), Mason (1999), Mason et al. (1985) and Mottershead (1985). 

 

(a) Selection of Investigative Tasks for Lessons 

 

As explained earlier in Section 2.1.4, it was necessary to examine two types of 

investigative tasks (Type A and Type B) in the current study because the two types of 

tasks tend to elicit different kinds of processes. In general, Type A tasks involve 

posing the general problem to search for any pattern, specialise to investigate, and 

there is no need to extend the task partly because there are many patterns to find in the 

original task and partly because extension would usually result in a new task with 

completely different patterns. On the other hand, Type B tasks usually involve posing 

specific problems, use other heuristics such as deductive reasoning to solve, and there 

is a need to extend the task to generalise. Thus the lessons should contain a mixture of 

Type A and Type B tasks. Since there was only enough time in each lesson to attempt 

two tasks, then one task would be of each type. Appendix D shows the list of all the 

investigative tasks used in the six lessons. 

 

(b) Selection of Investigative Tasks for Pretest and Posttest 

 

Based on the above explanation, the pretest and the posttest should also contain a 

mixture of Type A and Type B tasks so as to elicit a full range of processes. As 

investigation was time consuming, a student would need at least 30 minutes to attempt 

each task in order to discover something significant. Since the duration of the test 

should not be too long, the pretest contained two tasks (one Type A and one Type B) 

and its duration was one hour. Similarly, the posttest contained two parallel items 
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(one Type A and one Type B) with the same duration. Table 3.4 provides a summary 

of the types of investigative tasks for the pretest and the posttest. Since the students in 

the present study will not understand the terms ‘Happy Numbers’ in Pretest Task 1 

and ‘Kaprekar Sequences’ in Posttest Task 1, the tests will use a different heading for 

the two tasks, namely, ‘Square Each Digit and Add’ for Pretest Task 1, and ‘Add Sum 

of Digits to Number’ for Posttest Task 1 (see Appendix D which shows the task 

statements). But for the discussion in this thesis, these headings are too long and they 

do not convey immediately what the two tasks are about, so the terms ‘Happy 

Numbers’ and ‘Kaprekar Sequences’ will be retained in the thesis. 

 

Table 3.4  Types of Investigative Tasks for Pretest and Posttest 
 

Task Name of Task used in this Thesis Type of Task 
Pretest Task 1 Happy Numbers (or Happy) Type A 
Pretest Task 2 Toast Type B 
Posttest Task 1 Kaprekar Sequences (or Kaprekar) Type A 
Posttest Task 2 Sausage Type B 

 
 

The posttest must contain parallel items. Unlike procedural tasks where parallel items 

just mean changing some numbers while retaining the same method of solution, 

parallel items for investigative tasks could not be designed just by changing the 

numbers, or else the tasks in the posttest would just be an exercise for the students 

with nothing new to discover. Moreover, the students were expected to change the 

given numbers in Type B tasks in order to generalise. Therefore, there was a need to 

find tasks with some similarities in their structures to make them parallel to each other 

for the pretest and the posttest. Appendix E shows the detailed task analyses of the 

four tasks for the two tests, while Table 3.5 summarises the similarities between the 

two Type A tasks and the two Type B tasks for the pretest and the posttest. 
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Table 3.5  Similarities Between the Pretest and Posttest Tasks 
 

Aspects Pretest Task 1 and Posttest Task 1 Pretest Task 2 and Posttest Task 2 

Topic Both tasks involve Arithmetic: 
Numbers and Sequences 

Both tasks involves Arithmetic: 
Numbers involving a context 

Type of Task Both tasks are Type A: Pose general 
problem (search for any pattern), 
specialise, no need to extend 

Both tasks are Type B: Pose specific 
problems, use other heuristics, need 
to extend in order to generalise 

Task Statement Both tasks involve digits, addition 
and repetition of process to obtain 
new number 

Both tasks involve a context about 
food and two variables: toast 3 slices 
of bread in a grill that can hold 
exactly 2 slices for Pretest Task 2; 
and share 12 sausages equally among 
18 people for Posttest Task 2 

Structure of 
Solutions 

Both tasks involve two types of 
sequences each, with no known 
formula for the general term 

Both tasks involve three methods of 
toasting the 3 slices of bread or 
cutting the 12 sausages: Method A 
(Usual Method), Method B (Shortest 
Method), Method C (Long Method) 

Understanding 
the Task 

Both tasks involve the need to 
understand the meaning of ‘new 
number’ and ‘repeat this process’ in 
the task statement (common 
misconceptions), and the trying of 
examples to understand the task 

Both tasks involve the need to make 
sense of the context to understand the 
task, and there is no need to try 
examples to understand the task 

Problem Posing Both tasks involve posing the general 
problem to search for any pattern 

Both tasks involve the need to pose 
specific problems to solve, but one 
key question central to both tasks is 
to minimise: the time for Pretest Task 
2 and the number of cuts for Posttest 
Task 2 

Specialising or 
Using Other 
Heuristics 

Both tasks involve specialising to 
look for patterns, rather than using 
other heuristics 

Both tasks involve using other 
heuristics such as reasoning, rather 
than specialising to look for patterns 

Conjecturing Both tasks involve conjecturing 
based on observing patterns from 
specialising 

Both tasks involve conjecturing 
based on using other heuristics, such 
as reasoning, for the original task; but 
specialising to formulate conjectures 
when generalising for the extension 

Justifying and 
Generalising 

Both tasks involve justifying 
conjectures using non-proof 
arguments or formal proofs involving 
algebra, which will lead to 
generalisation 

Both tasks involve justifying 
conjectures using non-proof 
arguments or formal proofs involving 
algebra, which will not lead to 
generalisation for the original task, 
but generalisation for the extension 

Extension Not expected to extend both tasks 
within the duration of the test as there 
are many patterns to find in the 
original task, and extension would 
usually result in a new task with 
completely different patterns 

Expected to extend both tasks to find 
a general formula involving the two 
variables (toast m slices of bread in a 
grill that can hold exactly n slices for 
Pretest Task 2; and share m sausages 
equally among n people for Posttest 
Task 2) 
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3.6.5 Data Collection 

 

Kelly and Lesh (2000a) emphasised the importance of deciding on the types of data to 

be collected for a research before deciding on the methodology since the methodology 

chosen should be suitable to capture all the necessary information for the research. 

Based on the research questions formulated for the study, the types of data to be 

collected for the present study are the cognitive and metacognitive processes of 

students while they were doing mathematical investigation, and the proficiency of 

their performance in the investigation. The latter could easily be gathered by giving 

the students a test and then looking at the solutions in their answer scripts if the 

performance depends only on the outcomes. But since the performance includes both 

outcomes and processes, the main problem would be how to capture the students’ 

processes and to evaluate their processes. From the discussion on the eight methods to 

collect data on thinking processes in Sections 2.4.1 and 2.4.2, it was found that the 

thinking-aloud method comes closest to a reflection of the actual thinking processes 

engaged by students in a mathematical activity (Ericsson & Simon, 1980; 1993; Lesh 

et al., 2000), and thus is the most suitable method to capture the students’ actual 

thought processes during investigation, despite certain shortfalls. Therefore, the main 

instruments for collecting the data for the present study were the pretest and the 

posttest, and the method was thinking aloud. 

 

To alleviate some of the shortfalls of thinking aloud, there was a need to provide the 

students the opportunity to practise thinking aloud so that they could articulate their 

thoughts more accurately while at the same time minimising the interference of 

thinking aloud with their train of thought to attempt the task at hand. Thus the 

students practised thinking aloud during the first lesson in the present study before the 
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pretest and during the last two lessons before the posttest. The instructions (see 

Appendix F), which were read to the students before they started practising thinking 

aloud during the lessons, were adapted from Foong (1990) with some modifications. 

Some important points to emphasise to the students in the instructions had been 

discussed in detail in Section 2.4.2. 

 

The 10 students were separately videotaped thinking aloud using a videocam for the 

60-minute pretest during the week after their familiarisation lesson, and for the 60-

minute posttest during the week after the last developing lesson. Since the students 

had lessons in the morning until early afternoon, and they were not free for most 

afternoons because of other school activities, there was a need to videotape a few 

students at a time on two separate afternoons. Each student was allocated a classroom 

and there was a need for an invigilator for each student. Thus I engaged the help of 

other people to invigilate the students during the test. The invigilators were briefed 

beforehand by me using the instruction sheet for invigilators (see Appendix G). For 

example, the invigilators were told what to do if the students stopped thinking aloud. 

The instruction sheet also contained exact instructions to be read to the students 

before the test, including administrative instructions for the test and instructions for 

thinking aloud. However, I would set up and start the video recorder for each student. 

This means that I had to go around to each classroom to do so. 

 

In addition, the students were told beforehand during the lessons, and also just before 

the test, to show all their working on their answer scripts, including any false trail, 

instead of just presenting the final solutions. The video recorder captured each 

student’s answer script as he or she was writing and thinking aloud during the test. 
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For the posttest, the students could also refer to a checklist which contained a 

summary of the investigation processes that they had learnt during the teaching 

experiment (see Appendix H). This checklist was not given to the students during the 

pretest because they might be confused by certain processes which had not been 

taught during the familiarisation lesson. 

 

3.7 PILOT STUDY 

 

The pilot study was different from the initial exploratory study described in Section 

3.3. Since the exploratory study used a different test instrument for a different purpose 

as the present study, there was a need to pilot the new test instrument and materials 

for the main study. The purposes of the pilot study were to: 

 

 trial the materials for the familiarisation lesson and its implementation; 

 trial the test items for the pretest; 

 trial the students’ thinking aloud during the pretest and the equipment for 

videotaping the students; 

 collect the students’ actual thinking-aloud protocols for the pretest in order to 

refine the initial coding scheme constructed for coding such protocols. 

 

The sample for the pilot study was a convenience sample of 10 Secondary 1 students 

from the same school as the main study because the school was not able to provide 

Secondary 2 students for me to choose from. Since the pilot study was conducted 

during the last term of the year, the Secondary 1 students had already learnt number 

pattern and enough algebra by that time. Moreover, the purpose of the pilot study was 

not to study the nature of their investigation processes but to trial the test instruments 
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for the main study. Thus a convenience sample of Secondary 1 students was deemed 

to be adequate for the pilot study. 

 

The 10 students in the sample went through the two-hour familiarisation lesson and 

sat for the pretest. The school was unable to give me more time to test the materials 

for the developing lessons and the posttest. Only five of the 10 students were 

videotaped thinking aloud for the pretest due to the time constraint. The materials for 

the familiarisation lesson and the pretest were found to be satisfactory, and so there 

was no need to make any change. The practice of thinking aloud during the second 

half of the familiarisation lesson was also found to be just enough for most students to 

think aloud during the pretest, so there was no need to increase the practice time in the 

main study. The verbal protocols collected were then transcribed and coded to refine 

the coding scheme, which will be discussed later in Chapter 4. 

 

3.8 MAIN STUDY 

 

The main study was conducted for the 10 Secondary Two students whose profiles 

were described in Section 3.6.2(a). I taught the two-hour familiarisation and the five 

two-hour developing lessons according to the outlines and instructional strategies 

highlighted in Section 3.6.3. The tasks used in the lessons and for the pretest and the 

posttest were as described in Section 3.6.4, and each student was videotaped writing 

in their answer scripts as they thought aloud during the tests as described in Section 

3.6.5. 
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3.9 QUALITY OF PRESENT STUDY 

 

Unlike traditional quantitative research in education which emphasises reproducibility 

and accuracy, in a qualitative study where the goal is to produce a description of a 

complex system, such as a model of the students’ processes in investigation, “truth 

and falsity may not be at issue as much as fidelity, internal consistency, and other 

characteristics that are similar to those that apply to quality assessments for 

photographs, portraits or verbal descriptions” (Lesh et al., 2000, p. 20). Thus the issue 

of the reliability of the coding scheme will have to be addressed by an inter-coder 

reliability test where a few experienced mathematics educators will code some 

samples of videotaped transcripts based on the coding scheme. If the reliability is low, 

the coding scheme will have to be refined and subjected to another round of reliability 

testing. If the reliability is high, it will suggest that the coding scheme is reliable. The 

next chapter will show that the coding scheme designed for the present study has 

passed the inter-coder reliability test (see Section 4.7). 

 

Silverman (2005) also proposed some other criteria for evaluating the quality of a 

qualitative study. One of the criteria is whether the study is able to build useful 

theories or models. Schoenfeld (2002) also discussed the “descriptive power … of 

theories or models to capture ‘what counts’ in ways that seem faithful to the 

phenomena being described” (p. 456). He explained that this means if another expert, 

who is familiar with the coding scheme and the model, views a coded transcript of a 

videotaped session of a student’s behaviour, then the expert will not be surprised by 

any unexpected behaviour of the student when the expert views the actual videotape. 

Since the coding scheme has passed inter-coder reliability test, and the coding of the 

students’ thinking-aloud protocols is used to validate and refine the investigation 
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models developed for the present study, then the models will be reliable, and the 

descriptive power of both the coding scheme and the models will also be high. 

 

Another criterion to evaluate the quality of a qualitative study, as proposed by 

Silverman (2005), is “to what extent do our preferred research methods reflect careful 

weighing of the alternatives, or simple responses to time and resource constraints or 

even an unthinking adoption of the current fashions?” (p. 229) He cited the example 

of many researchers on health sciences blindly following the trend of using interviews 

in their studies, but he believed that interviews alone were not sufficient because 

interviewees might not tell the true stories. For my type of research study, the three 

common research methodologies are: 

 

(i)  conduct a paper-and-pencil study for a big sample to cover the breadth, and an 

in-depth interview for a small sample; 

(ii) conduct a test using the thinking-aloud method for a small sample; 

(iii) conduct a teaching experiment for a small sample, with general descriptions of 

how investigation benefits the students. 

 

I did not just adopt the current fashions without giving careful thoughts to 

alternatives. Instead, I conducted an initial exploratory study to find out whether a 

paper-and-pencil study was feasible for this kind of open investigative tasks (see 

Section 3.3). The findings of this exploratory study indicated that most high-achieving 

students did not know what to investigate when given this type of investigative tasks. 

In other words, there was a need for some teaching to be done first. This means that 

the first two options above were not feasible. The last option was also not appropriate 
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because the research methodology would not be able to capture the students’ actual 

thinking processes. In the end, I had to combine the last two options: a teaching 

experiment for a small sample to develop the processes, coupled with a pretest and a 

posttest using the thinking-aloud method to capture the actual thinking processes (see 

Section 3.6). These were some measures taken to ensure the quality of the present 

study. 

 

3.10 CONCLUDING REMARKS FOR THIS CHAPTER 

 

Chapter 3 has provided an outline of the research methodology for the present study. 

A group of 10 Secondary 2 students from a high-performing school had undergone a 

teaching experiment to develop their cognitive and metacognitive processes in 

mathematical investigation. In addition, the students were videotaped thinking aloud 

during the pretest and the posttest in order to capture their thinking processes so as to 

inform the two theoretical investigation models that describe the interactions of these 

processes. Chapter 4 will then describe the construction of a coding scheme for 

coding the thinking-aloud protocols of the students during the pretest and posttest. 
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 CHAPTER 4: DEVELOPMENT OF CODING SCHEME 

 

This chapter will describe the development of a coding scheme for coding students’ 

cognitive and metacognitive thinking-aloud behaviours during the pretest and posttest 

of the present study. It will begin with preparing the data obtained from the study by 

transcribing the students’ thinking-aloud protocols and other actions captured by the 

video recorder during the tests. Then the chapter will explain the purpose of the 

coding scheme, followed by a description of the five phases in the construction of the 

coding scheme, including an inter-coder reliability test for the Final Coding Scheme. 

The parsing of protocols into stages and episodes will also be discussed. 

 

4.1 TRANSCRIBING OF THINKING-ALOUD PROTOCOLS 

 

This section will describe the preparation of thinking-aloud data before coding could 

take place. The two main sources of data collected for the present study were: 

 

 the students’ pretest and posttest answer scripts; 

 the students’ thinking-aloud or verbal protocols, and other non-verbal actions, 

recorded on videotape during the pretest and posttest. 

 

To analyse the data, the thinking-aloud protocols needed to be transcribed. But the 

non-verbal actions performed by the students could also be important to fill in the 

gaps not captured by their verbal protocols or their test answer scripts. For example, a 

student just said the following: 

 

“How to use this and get that?” [S1; Pretest 1] 
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This verbal protocol was meaningless unless it was known what the student meant by 

‘this’ and ‘that’. From the videotape, the student was seen pointing at the number 30 

and then the number 500 in his answer script. Thus the verbal protocol was 

transcribed as follows, with non-verbal actions recorded in square brackets: 

 

“How to use this [point to the number 30] and get that [point to the number 

500]?” [S1; Pretest 1] 

 

Sometimes, the students were silent for a few seconds but they pointed their pen at 

different parts of their answer script as they were thinking. Then they observed a 

pattern. If the students’ actions were not recorded in the transcript, anyone reading the 

transcript might think that the students discovered something while thinking silently, 

when in fact they were actually looking at certain parts of their working for a pattern. 

Thus it was necessary to record in the transcript all the students’ actions in order to 

capture their processes fully. Some students were also able to multi-task: they wrote 

one thing but thought aloud a different thing. For example, the following student 

wrote down the numbers 21 to 30, and while he was writing down the sum of the 

digits for all the numbers 21 to 30, e.g. he wrote + 2 + 1 for the number 21, he was 

able to multi-task and think of something else: 

 

“Ok … let us try now starting from [start writing: 21, 22, 23 until 30] 21, 21, 

25, 26, 27 [stop writing]. Well, while writing, I am thinking [start writing: + 2 

+ 1 for the number 21; and similarly for the other numbers until 30] whether I 

am going to the right place … because it seems that, hmm, this thing is pretty 

hard to prove and … actually, in fact, I don’t really know what am I doing 

[stop writing].” [S9; Posttest 1] 
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If only his verbal protocols were transcribed, it would not be evident that he was 

actually adding to each number the sum of its digits. As a result, it was necessary to 

view the videotape to see what the students were doing and then describe their actions 

in writing in addition to transcribing their thinking-aloud protocols. 

 

Since most students did not say aloud what they were writing all the time, it was also 

necessary to record what they were writing in the transcript, or else anyone reading 

the transcript might not understand what the students were doing because of the gaps 

in their thinking-aloud protocols which did not include what they were writing. Even 

if a person reads the transcript with the corresponding answer script, it is still very 

tedious to fill in the gaps in the verbal protocols because it is not easy to match a 

certain part of the answer script to the corresponding part of the protocols. Therefore, 

it was necessary to include in the transcript what the students wrote but did not say 

aloud. However, the students’ handwriting was occasionally too small to be read on 

the videotape, or sometimes the students had unintentionally blocked their answer 

scripts from being captured fully by the video recorder. Thus the actual answer script 

had to be used during transcribing: from the position of what the student was writing 

in the videotape and sometimes also from their verbal thinking-aloud protocols, it was 

possible to identify from the actual answer script what the student was writing. This 

was then recorded in the transcript to ensure that everything was captured properly. 

 

Furthermore, for ease of reference when describing in the transcripts what the 

students were doing during the tests, there was a need to label each page, specific 

problem posed, example tried, pattern observed, and conjecture formulated, with a 

number, in order to keep track of the students’ working since most students did not 

label them. For example, when a student turned to a previous page or pointed at a 
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previous example as seen in the videotape, there was a need to record which page and 

which example the student was pointing at respectively, and if all the pages and 

examples were labelled with a number, it would be easier to refer to. 

 

Hence, the transcripts contained not only the students’ verbal protocols but 

descriptions of their actions as well, including what they had written in their answer 

scripts without saying them aloud. In this way, the two main sources of data 

complemented one another to ensure that all the essential data or processes were 

captured and recorded in the transcripts. In other words, anyone reading the 

transcripts should not be surprised by any unexpected behaviour of the student when 

he or she views the actual videotape (Schoenfeld, 2002). Therefore, the transcripts 

had replaced the videotapes, and the latter were no longer necessary for data analysis. 

But the students’ answer scripts were still helpful because they showed the students’ 

working and solutions in their entirety, unlike the transcripts. Although the transcripts 

included what the students wrote in their answer scripts, the transcripts contained the 

students’ thinking-aloud protocols interspersed with parts of their working here and 

there, so the details of the students’ working could be ‘lost’ among the myriad of their 

protocols (e.g. see Line 20 in the sample transcript in Appendix I). Thus the actual 

answer scripts were still helpful in giving an overall picture of their solutions (see the 

corresponding working in the first column in the answer script in Appendix J). Hence, 

the end products at this stage were the answer scripts and the transcripts. 

 

In general, the transcripts were used to inform the nature of the processes engaged in 

by the students during mathematical investigation, and the answer scripts to inform 

the outcomes of the investigation, e.g. the student had discovered a pattern. But even 

though the students had been told to show all their working, sometimes they would 
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just say that they had discovered a particular pattern, and then they thought about it, 

decided that it was incorrect and so did not write it down. Therefore, the outcomes of 

an investigation were gathered from multiple sources as well: their answer scripts and 

their verbal protocols if necessary. After the preparation of the data, the next step was 

to code the protocols in the transcripts before the data could be analysed to inform the 

investigation models developed for the current study. 

 

4.2 PURPOSE OF CODING SCHEME 

 

The theoretical basis for protocol analysis used to analyse the cognitive and 

metacognitive processes in the present study has been discussed in detail during the 

literature review in Section 2.4.3. To analyse the students’ thinking-aloud protocols 

during mathematical investigation, there was a need to develop a valid and reliable 

coding scheme to code the transcripts of their protocols. The theoretical investigation 

models described in Section 3.2 had posited that students would go through a logical 

sequence of cognitive processes in eight stages, and their metacognitive processes 

would interact with their cognitive processes in complicated manners. As such, a 

coding scheme would provide a means to identify these processes. The coded data 

would then aid in the interpretation of how these processes interact with one another 

so as to inform the theoretical investigation models. 

 

The development of the coding scheme comprised five phases, which follow a 

combination of a top-down (theoretical driven) and a bottom-up (empirical driven) 

strategy described in the literature review in Section 2.4.3. The first phase was the 

construction of the Initial Coding Scheme based on current literature. The second 

phase was the application of the Initial Coding Scheme to four transcripts of thinking-
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aloud protocols from the pretest of the pilot study to obtain a Revised Coding 

Scheme. The third phase was the application of the Revised Coding Scheme to 

another four transcripts of protocols from the pretest of the pilot study to fine-tune the 

coding scheme. Since it was found that there was no further change to the coding 

scheme, the product at the end of the third phase was still called the Revised Coding 

Scheme so as not to use too many names. As investigation was not easy for students 

who had no prior experience, it was unlikely that they would exhibit the full range of 

processes during the pretest of the pilot study. Therefore, the fourth phase was the use 

of four transcripts of posttest protocols from the main study to further refine the 

coding scheme. The last phase was the inter-coder reliability test, and the product at 

the end of the last phase was the Final Coding Scheme. 

 

4.3 PHASE 1: DEVELOPMENT OF INITIAL CODING SCHEME BASED 

ON THEORY 

 

The review of relevant literature in Chapter 2 had revealed that there was practically 

no empirical research in mathematical investigation where students used the thinking-

aloud method. However, there were quite a number of empirical studies on problem 

solving using thinking aloud, such as those cited in Sections 2.2.4 and 2.3.4. Since 

many processes in problem solving were similar to those in investigation, I started 

with the coding schemes described in some of these empirical studies and then 

modified them for investigation based on the theoretical research on the processes of 

investigation described in Section 2.2.3. Thus the Initial Coding Scheme was 

formulated based on two sources of current literature: 

 

 the coding schemes designed in empirical studies on problem solving, 
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 the processes identified during theoretical research on investigation. 

 

Using the guidelines created by van Someren et al. (1994) and Meijer et al. (2006) 

described in Section 2.4.3, possible students’ behaviours that could be observed 

during thinking aloud were identified and matched to the processes and outcomes 

described in the two investigation models formulated for the present study in Section 

3.2. The classification of whether a process was cognitive or metacognitive followed 

from the literature review on metacognitive and cognitive processes in Section 2.3.2. 

 

Table 4.1 shows the Initial Coding Scheme. It was divided into two categories. The 

first category, Category C, shows the codes for cognitive behaviours used to inform 

the investigation model for cognitive processes. A student’s thinking-aloud behaviour 

could be a process or an outcome. Non-italic codes indicated processes while codes in 

italics indicated outcomes. Since the model divided the processes and outcomes into 

eight stages, the codes for the cognitive behaviours were also divided into the eight 

stages. But there were four behaviours that could occur in any stage, so they were 

classified under ‘Others’ in Category C. The second category, Category M, shows the 

codes for metacognitive behaviours used to inform the investigation model for 

metacognitive processes. Since most of these processes could occur in more than one 

stage, they were not divided into the stages. There were a total of 36 behaviour codes: 

31 cognitive codes and 5 metacognitive codes. Most codes were self-explanatory; if 

otherwise, short explanations for the codes were given in the coding scheme. More 

detailed descriptions of the behaviours represented by these codes could be found in 

the literature review of the processes and outcomes of investigation described in 

Section 2.2.3. All Category M codes began with the letter M for metacognitive 

behaviours. The first letter of a Category C code was the abbreviation for the 
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investigation stage, e.g. U1 to U6 were cognitive behaviours for the stage of 

Understanding the Task. 

 

Table 4.1  Initial Coding Scheme 
 

Legend: Non-italic codes represent processes; codes in italics represent outcomes. 
 

Category C: Cognitive Behaviours 

Stage 1: Understanding the Task (U) 

First Reading of Task (U1) 

Re-reading Task (U2) 

Rephrasing Task (U3) 

Highlighting Key Information (U4) 

Visualising Information (U5) 

Understanding Task by Trying Examples (U6) 
 
Stage 2: Problem Posing (P) 

Thinking of Problem to Pose (P1) 

Posed Problem (P2): Posed problem without 
changing the given in the original task 

 
Stage 3: Specialising and Using Other 
Heuristics (S/H) 

Specialising (S1): Trying examples to look for 
pattern 

Thinking of Plan to Solve Problem (H1) 

Decided on Plan (H2) 

Using Reasoning (H3) 

Using Algebra (H4) 
 
Stage 4: Conjecturing (C) 

Searching for Pattern (C1) 

Formulated Conjecture (C2) 

 

Stage 5: Justifying (J) 

Thinking of Plan to Justify (J1) 

Naïve Testing (J2): Trying examples to refute 
conjecture if possible 

Justifying Conjecture using Non-proof 
Argument (J3) 

Justifying Conjecture using Formal Proof (J4) 

Verified Conjecture Correct (J5) 

Justified or Proven Conjecture (J6) 

Refuted Conjecture (J7) 
 

Stage 6: Generalising (G) 

Solved Problem that led to Generalisation (G1) 

Solved Problem without Generalising (G2) 
 

Stage 7: Checking (R) 

Checking Correctness of Working (R1) 
 

Stage 8: Extension (E) 

Thinking of How to Extend (E1) 

Posed Problem to Extend (E2): Posed problem 
by changing the given in the original task 
 

Others 

Performing Calculation (X1) 

Referring to Given Checklist (X2) 

Made Mistake (X3) 

Discovered Mistake (X4) 

Category M: Metacognitive Behaviours  

Monitoring Understanding (M1): By clarifying task requirements, given conditions or meaning of 
some parts of task 

Analysing Feasibility of Goal (M2): Analysing whether a goal or a problem (including extension) 
was feasible or worth pursuing 

Analysing Feasibility of Plan (M3): Analysing whether a plan to solve a problem or to justify a 
conjecture was feasible or worth pursuing 

Monitoring Progress (M4) 

Reviewing Solution (M5): Reviewing solution to see if it had achieved the goal or solved the 
problem, including evaluating the efficacy of a method of solution 
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4.4 PHASE 2: DEVELOPMENT OF REVISED CODING SCHEME BASED 

ON EMPIRICAL DATA 

 

In Phase 2, the Initial Coding Scheme developed theoretically in Phase 1 was applied 

to four transcripts of actual thinking-aloud protocols from the pretest of the pilot study 

to obtain a Revised Coding Scheme. Two transcripts were for Pretest Task 1 (Type A 

task) while the other two transcripts were for Pretest Task 2 (Type B task). 

 
 
4.4.1 Coding of Transcripts of Thinking-Aloud Protocols 

 

There was a need to divide the protocols in the transcripts into lines so that each line 

could be coded. If the protocols were derived from students’ discussions as they 

worked in groups, it would be very natural to divide the protocols into lines according 

to different students’ protocols and then code each line, although it could still be a 

problem if one student talked continuously for some time, which might result in a few 

codes for his or her portion of protocols. However, the latter was a major problem for 

students thinking aloud individually in the present study because there was only one 

student talking continuously throughout the duration. Therefore, there was a need to 

find another way to divide the protocols into lines. 

 

Table 4.2 shows a sample transcript with a column for the behaviour code (or ‘Bhvr 

Code’ in short). The remarks column was for recording additional points such as the 

number for specific problem posed (see Line 06) and mistake made (see Line 07) for 

easy reference as explained earlier in Section 4.1. According to Ericsson and Simon 

(1993), one way to separate the protocols into lines was to try to assign the codes to 

the protocols and dividing the protocols into lines at the same time. As I read the 
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protocols, I assigned a code to the protocols until I came to a point where there was a 

need for a different code. This was then the point to separate the previous protocol 

from the rest of the protocols. The previous protocol would then be considered a 

protocol line and it was coded accordingly. The process was then repeated until the 

end of the transcript. 

 

Table 4.2  Sample Transcript Coded using Initial Coding Scheme 
 
Note: The time for this Pretest Task 2 started at 33:06 because it was continuous videotaping after 

Pretest Task 1. 
 

Line Time Protocols 
Bhvr 
Code 

Remarks 

01 33:06 Three slices of bread are to be toasted under a grill. The 
grill can hold exactly two slices. Only one side of each 
slice is toasted at a time. It takes 30 seconds to toast one 
side of a slice of bread.  

U1  

02 33:30 It takes 30 seconds to toast one side of a slice of bread.  U2  
03 33:36 5 seconds to put a slice in or to take a slice out, and 3 

seconds to turn a slice over. Investigate. Okay. 
U1 Continue 

first reading 
04 33:50 [Starts drawing bread shape] First bread, first bread. Bread, 

draw the bread out. [Stop drawing]. [Write in bread 
drawing: ] First bread. Go into the grill [draw an arrow 
from the bread and write after the arrow: grill]. Take 3 
seconds [write beside arrow: take 3 seconds]

U5  

05 34:12 First, what must I investigate about? P1  
06 34:14 [Write: 1st] I think I’ll find [start writing] the total time 

taken, the total time taken to [stop writing]. To investigate 
[cancel: 1st] [write: to investigate]. [Continue writing] the 
total time taken to, to toast the three slices of bread, slices 
of bread [stop writing]. Finish. 

P2 Posed 
Specific 
Problem 1 

07 34:59 So first bread go into the grill [point pencil at bread  and 
then at the word ‘grill’] take 3 seconds … 

X3 Mistake 1: 
Should be 5 
seconds 

08 35:06 Then at the same time [draw second bread] at the same 
time [write in bread drawing: ] second bread also go into 
the grill [draw an arrow from the bread and write after the 
arrow: grill] same time [draw curly bracket for both slices 
and write: same time]. Take another 3 seconds [write 
beside arrow: take 3 seconds]. 

U5  

09 35:29 So 6 seconds already, to put 2 slices of bread [point to 
bread , then bread ] under a grill [point to the words 
‘same time’]. 

H3  

10 35:33 [Pause for 4 seconds] ? No suitable 
code 

11 35:37 Then the grill [point to task statement] it takes 30 seconds 
to toast one side of a slice of bread … 

U2  

12 35:47 Okay, so 30 seconds taken to toast [write: 30 seconds to 
toast] these two sides: this side [shade bread ] and this 
side [shade bread ]. 30 seconds [box up ‘30 seconds’] to 
take, to toast these two sides.  

H3  
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In general, each protocol line should be assigned only one code. Sometimes, it was 

possible to observe two behaviours in a protocol line. For example, in Line 08 in 

Table 4.2, the student was visualising the information (U5) and using reasoning (H3) 

at the same time, so it was not possible to split this protocol line further. However, 

frequently assigning more than one code to a protocol line would make the transcript 

look cluttered. Therefore, for simplicity, only the dominant behaviour in a protocol 

line would be coded. In Line 08, the dominant behaviour was visualising the 

information, compared with Line 09 when the student was just using reasoning (H3) 

without visualising the information. Thus Line 08 was coded as U5 only. Sometimes, 

it was also found that there were no suitable codes in the coding scheme to code some 

behaviours, such as pausing for 4 seconds in Line 10. 

 

Occasionally, as I read further, I would discover that one of the previous protocols 

was coded wrongly because I had misinterpreted what the student was doing until I 

read the subsequent protocols. Therefore, there was a need to read a bigger chunk of 

the protocols in order to get a sense of what the student was trying to do, before going 

back to code the previous protocols and divide them into lines at the same time 

(Silverman, 2005). After coding the entire transcript, I had a better overall picture of 

what the student was doing, and I would then check through the entire transcript from 

the beginning to the end to ensure that each protocol line was coded correctly. If it 

was found during the checking that two consecutive protocol lines ended up with the 

same code after an amendment, then the two lines were combined to become one line. 
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4.4.2 Some Issues with Initial Coding Scheme 

 

The coding process was not easy. Quite often, it was difficult to decide which code to 

assign to a protocol line because either (i) there was more than one code that appeared 

to fit the behaviour, or (ii) none of the codes in the coding scheme were suitable 

enough to describe the behaviour in the protocol line. Thus there was a need to define 

some of the codes more precisely so that they were more clearly observable, and to 

include enough representative sample protocols for these codes to identify the 

behaviours easily. All the problems discovered so far with the Initial Coding Scheme 

in Phase 2 concerned the codes in Category C for cognitive behaviours. There was no 

problem with the metacognitive codes in Category M, probably because the four 

transcripts did not contain enough metacognitive behaviours as all the protocols for 

the students in the pilot test were for the pretest only. Thus issues with metacognitive 

behaviours will be discussed later on in Phase 4. This section will focus on the 

problems with the codes in Category C for the Initial Coding Scheme. 

 

(a) Problematic Codes 

 

From the four transcripts, it was found that there were some behaviours which could 

happen in more than one investigation stage, or could not be coded reliably. 

 

Re-reading Task (U2) and Rephrasing Task (U3) 

 

In the Initial Coding Scheme, based on the theory derived from the literature review 

in Chapter 2, students were supposed to re-read or rephrase (or paraphrase) the task or 

parts of the task to understand the task during the first stage of investigation. But it 

was found from the students’ protocols that students re-read or rephrase the task very 
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often in subsequent stages when they were stuck, and they did it for other reasons, 

such as to find a problem to solve or extend, to think of a plan to solve a problem, or 

to monitor progress. For example, in the sample transcript discussed earlier in Section 

4.4.1, the student re-read the task (U2) in Line 02 to understand the task, but she did it 

again in Line 11 in the third stage of using other heuristics to help her think of how to 

solve the problem posed in Line 06. Thus these two behaviours of re-reading the task 

and rephrasing the task could occur in more than one stage, and so they should not be 

classified under the first stage of investigation only. 

 

Visualising Information (U5) 

 

Similarly, it was found from the students’ protocols and answer scripts that they 

visualised the given information by drawing a diagram, not only in the first stage of 

understanding the task but also in subsequent stages. For example, in the same sample 

transcript discussed earlier in Section 4.4.1, the student visualised the information 

(U5) by drawing the slices of bread in Line 04 to understand the task, but she did it 

again in Line 08 in the third stage of using other heuristics to help her think of how to 

solve the problem posed in Line 06. It was also possible for other students to visualise 

the given information to help them justify a conjecture in the fifth stage of justifying. 

Therefore, visualising information was another behaviour that could appear in more 

than one stage, so it should not be classified under the first stage only. 

 

Thinking of Problem to Pose (P1) and Thinking of How to Extend (E1) 

 

It was found from the students’ protocols that it was not easy to distinguish between 

posing problems without changing the given (P1) and posing problems to extend by 
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changing the given (E1). After the students had solved a problem and checked the 

solution, they could choose to pose another problem to solve under the umbrella of 

the original task without changing the given, or pose another problem to extend by 

changing the given. Very often, the students did not know what to pose, so there was 

a period when they were just thinking of what problem to pose. In the end, they could 

end up posing a problem with or without changing the given. Sometimes, they did not 

even pose any problem after thinking of what problem to pose, so it was not possible 

to decide whether to code this period of thinking P1 or E1. Therefore, these two 

behaviours were combined to ‘Thinking of Problem to Pose or Extend’, and it could 

happen in the second stage of problem posing or the last stage of extension. 

 

Trying Example to Understand Task (U6), Specialise (S1) or for Naïve Testing (J2) 

 

When students were trying an example, it was not easy to decide from their verbal 

protocols whether they were trying an example to understand the task (U6), trying an 

example to specialise (S1), or trying an example to see if a conjecture could be refuted 

by a counter example (J2), because they usually did not verbalise their intention. Thus 

it was decided to code the behaviour simply as ‘Trying Example’. In other words, the 

codes U6, S1 and J2 would have to be removed from the Initial Coding Scheme. It 

would be left to the parsing of protocols into the various stages of investigation to 

interpret what the students were trying the example for (see Section 4.4.4 later). 

 

(b) New Codes 

 

From the four transcripts, it was found that some behaviours could not be coded using 

the Initial Coding Scheme, so there was a need to create a few new codes. 
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Observed Pattern and Rejected Observed Pattern 

 

As posited by the investigation model for cognitive processes developed for the 

present study, when students observed a pattern, the pattern was only a conjecture to 

be proven or refuted. However, it was found from the transcripts that there was 

usually a time gap between observing a pattern and considering the pattern as a 

conjecture. This was because when the students first spotted a pattern, they were 

usually unsure that this was the pattern. So the students were observed trying more 

examples to be more certain of the pattern first, before they accepted it as a conjecture 

and then tried to prove it. Sometimes, they found counter examples to reject the 

observed pattern even before formulating it as a conjecture. Thus there was a need to 

distinguish between observing a pattern and formulating a conjecture, and so two new 

codes ‘Observed Pattern’ and ‘Rejected Observed Pattern’ were created. As this was a 

new significant finding for the present study, it will be examined in more detail using 

actual protocols during the data analysis in Section 7.2.4. 

 

Pausing and Hesitating 

 

Another problem was that the students kept silent during the pretest very often despite 

being told to think aloud. This was to be expected since all of us needed time to think 

of something. If the students paused for 3 seconds or less, the pause would be 

represented by three dots ‘...’ in the transcripts since it was unlikely that the students 

would think of something significant during such a short pause. But if the students 

paused for more than 3 seconds, they had been reminded by the invigilator to think 

aloud (see Instructions for Invigilator in Appendix G). However, despite the reminder, 

some students continued to pause for more than 3 seconds occasionally. If such 
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pauses were ignored and the student ended up thinking of something, it would appear 

that the student thought of the something immediately when in fact he or she took a 

long pause to think about it. Thus pauses longer than three seconds would be recorded 

in the transcripts with the duration separately, e.g. [Pause 5 seconds], and a new code 

was needed to code this. The students also hesitated a lot during the pretest. This was 

different from behaviours such as ‘Thinking of Problem to Pose’ (P1) or ‘Thinking of 

Plan to Solve Problem’ (H1). For example, consider the following two protocols: 

 

“So how should I solve the problem? I think I will try a new example.” 

“What should I do is ... what I should do is ... um ... I don’t know what to do.” 

 

For the first protocol, the student was trying to think of a plan to solve the problem 

and his plan was to try a new example. For the second protocol, the student was stuck 

and did nothing constructive to solve the problem. Thus there was a need to code this 

frequent behaviour of the students hesitating because they were stuck. 

 

Other Miscellaneous Behaviours 

 

It was found from the protocols that the students engaged in other miscellaneous 

behaviours very often, e.g. they re-read what they had written, such as their working 

or problem posed, quite frequently. This was coded as ‘Re-reading What was Written’ 

since it was not possible to read what was in their minds. Some of the students also 

rewrote part of the solution from the previous page onto a new page for ease of 

reference, while others took a long time to rewrite the full solution properly. At other 

times, some students went back to organise their examples by labelling them or 

boxing them up separately. Thus there was a need to code such recording and 
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organising processes that were not part of the thinking processes (Frobisher, 1994). 

There were also other off-task behaviours, such as when the invigilator told the 

students to speak louder or to continue to think aloud when they were silent for more 

than 3 seconds. Although it was beyond the scope of the present study to investigate 

the effect of affective variables on mathematical investigation, there was still a need 

to code such behaviours when they occurred during the tests, e.g. some students 

sighed or said things such as “Why is this problem so difficult?” or “I give up!” 

 

Unable to Code 

 

Despite the addition of new codes to the Initial Coding Scheme, there were still 

thinking-aloud protocols which were not possible to code because it was unclear what 

the students were thinking about. For example, consider the following excerpt: 

 

“And then … um, let’s see [flip to p. 2] … um … 37, 21.” [S10, Pretest 1] 

 

It was not clear whether the student was ‘hesitating’ or ‘searching for patterns’, even 

by examining the surrounding protocols. Thus this kind of protocols was classified as 

‘Unable to Code’. Other instances include students mumbling, which was transcribed 

as [unintelligible words] and classified as ‘Unable to Code’. 

 

(c) Labelling of Codes 

 

The use of numbers, e.g. C1-C2, to label codes in the Initial Coding Scheme had 

caused quite a number of problems. First, whenever a new code was invented, the 

numbering for existing codes might have to be changed. This was because it was 
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sometimes more appropriate to insert the new code between two existing codes than 

to put the new code at the end of the existing codes as there was some kind of order 

among the codes. For example, the new code ‘Observed Pattern’, which was 

described earlier in this section, should come between Searching for Pattern (C1) and 

Formulated Conjecture (C2), so this would affect the numbers of subsequent codes. 

Similarly, removing a code could also change the numbers of the codes that follow. 

Secondly, it was difficult for anyone, even for someone familiar with the codes such 

as me, to associate a number with a particular code in order to remember what the 

code represented. Therefore, there was a need for a better system. 

 

4.4.3 Revised Coding Scheme 

 

Some Important Decisions Made 

 

Based on the issues discussed in the previous section, some important decisions were 

made when modifying the Initial Coding Scheme to obtain the Revised Coding 

Scheme. First, a new system of labelling the codes was introduced: the use of parts of 

the acronyms of behaviours as labels for the codes. For example, ‘Re-read Task’ was 

denoted by RR and ‘Trying Example’ by TE. But all five metacognitive codes would 

still begin with the letter M so that it would be easier to associate these codes with 

metacognitive behaviours, e.g. MR stood for the metacognitive behaviour of 

Reviewing Solution. Of course, it would still be difficult for anyone not familiar with 

the codes to remember what the codes stood for, but after working with the codes for 

some time, anyone would remember what the codes represented more easily than if 

the codes were labelled using numbers without meaning. 
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This new system of labelling the codes was not without problem. Sometimes, two 

behaviours might end up with the same code. For example, both ‘Thinking of 

Problem to Pose or Extend’ and ‘Thinking of Plan’ initially had the same code TP, so 

one of them had to be changed. Since the letter P was used as the abbreviation for the 

Problem Posing stage, it was decided that the code for ‘Thinking of Problem to Pose 

or Extend’ would be changed to PT, where the first letter also signified problem 

posing. Another example would be ‘Made Mistake’, which logically should be coded 

as MM. But it would be confused with a metacognitive code which always began with 

the letter M as explained in the preceding paragraph. Since ‘Made Mistake’ was not a 

metacognitive behaviour, it was changed to ‘Made Error or Mistake’ so that it could 

be assigned the code EM, and not ME which could still be confused with a 

metacognitive code. To be consistent, the behaviour ‘Discovered Mistake’ was also 

changed to ‘Discovered Error or Mistake’ so that it could be assigned the code ED. 

 

Secondly, the codes in Category C would not be grouped according to the stages 

since, as explained in Section 4.4.2(a) earlier, quite a number of cognitive behaviours 

could occur in more than one stage. But the codes were still listed in some kind of 

order. For example, behaviours for the first stage of understanding the task should 

come before behaviours for the next stage of problem posing. On the other hand, it 

was sometimes necessary to group similar codes together for easy reference. For 

example, Thinking of Problem to Pose or Extend (PT), Posed Problem (PP) without 

changing the given, and Posed Problem to Extend (EP), were grouped together 

because they were closely related although they occurred in the different stages of 

Problem Posing (P) and Extension (E). 
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Thirdly, if it was possible to assign every behaviour to a unique investigation stage, 

then the parsing of protocols into the various stages of investigation could easily be 

done just by looking at the behaviour codes. However, it was not possible to do so 

since quite a number of cognitive behaviours could appear in more than one stage. 

Thus there was a need for a system to parse the protocols into the various stages more 

reliably. The fourth important decision of including a stage code in addition to a 

behaviour code for each protocol line will be discussed in detail in the next section. 

 

Fourthly, there was a need to create a third category, i.e. Category X for Other Codes, 

to include behaviours that could not be classified in the other two categories, such as 

Pausing (XP), Hesitating (XH), Re-reading What was Written (XR), Re-writing or 

Recording Processes (XW), Off-Task Behaviours (XO), Affective Behaviours (XA) 

and Unable to Code (XU) described in Section 4.4.2(b) earlier. 

 

Fifthly, there was a need to define some of the codes more precisely so that they could 

be more easily identified. Thus each code was given a detailed description, and if it 

appeared similarly to another code, a clarification of the difference was also 

highlighted in the Revised Coding Scheme. Representative samples of protocols were 

chosen from the four transcripts and included in the Revised Coding Scheme to 

identify the behaviours more easily. But some behaviours were not observed from the 

four transcripts and so there were some codes in the Revised Coding Scheme without 

any exemplar of protocols. The codes in the Revised Coding Scheme were also not 

complete. Therefore, due to space constraint in this thesis, the Revised Coding 

Scheme shown in Table 4.3 did not include the detailed explanations and exemplar of 

protocols for each code (these would only be shown in the seven-page Final Coding 
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Scheme in Section 4.6 later). There were a total of 39 codes in the Revised Coding 

Scheme: 26 codes for cognitive behaviours, 5 codes for metacognitive behaviours (all 

began with the letter M for metacognitive behaviours), and 8 codes for other 

behaviours (all began with the letter X). 

 

Table 4.3  Revised Coding Scheme 
 

Legend: Non-italic codes represent processes; codes in italics represent outcomes. 
 

Category C: Cognitive Behaviours 

First Reading of Task (FR) 

Re-reading Task (RR) 

Rephrasing Task (RT) 

Highlighting Key Information (HI) 

Visualising Information (VI) 

Thinking of Problem to Pose or Extend (PT) 

Posed Problem (PP): Posed problem without 
changing the given in the original task 

Posed Problem to Extend (EP): Posed problem 
by changing the given in the original task 

Thinking of Plan (TP) 

Decided on Plan (DP) 

Trying Example (TE) 

Performing Calculation (PC) 

Using Reasoning (RE)  
 

Using Algebra (AL) 

Searching for Pattern (SP) 

Observed Pattern (OP) 

Rejected Observed Pattern (RP) 

Formulated Conjecture (FC) 

Verified Pattern or Conjecture Correct (VC) 

Justified or Proven Conjecture (JC) 

Refuted Conjecture (RC) 

Solved Problem that led to Generalisation (SG) 

Solved Problem without Generalising, i.e. No 
Generalisation (NG) 

Checking Correctness of Working (CW) 

Made Error or Mistake (EM) 

Discovered Error or Mistake (ED) 

Category M: Metacognitive Behaviours 

Monitoring Understanding (MU): By clarifying task requirements, given conditions or meaning of 
some parts of task 

Analysing Feasibility of Goal (MG): Analysing whether a goal or a problem (including extension) 
was feasible or worth pursuing 

Analysing Feasibility of Plan (MF): Analysing whether a plan to solve a problem or to justify a 
conjecture was feasible or worth pursuing 

Monitoring Progress (MP) 

Reviewing Solution (MR): Reviewing solution to see if it had achieved the goal or solved the 
problem, including evaluating the efficacy of a method of solution 

Category X: Other Behaviours  

Pausing (XP) 

Hesitating (XH) 

Referring to Given Checklist (XC) 

Re-reading What was Written (XR) 

Re-writing or Recording Processes (XW) 

Off-Task Behaviours (XO) 

Affective Behaviours (XA) 

Unable to code (XU) 
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4.4.4 Parsing of Protocols into Stages and Episodes 

 

As explained in the previous section, if it were possible to assign every cognitive 

behaviour to a unique investigation stage, then the parsing of protocols into the 

various stages of investigation could easily be done just by looking at the behaviour 

codes. But since it was not possible to do so because quite a number of cognitive 

behaviours could appear in more than one stage, there was a need for a system to 

parse the protocols into the various stages more reliably. The purpose of parsing was 

to help in the study of the interactions of the various processes within and across 

different stages so as to inform and refine the investigation models developed for this 

study. This section will discuss how parsing was done while the inter-coder reliability 

test for the parsing will be done later in Section 4.7. 

 

(a) Stage Codes 

 

Table 4.4 shows a sample transcript with a new column for ‘Stage Code’ in addition 

to the column for ‘Behaviour Code’ (or ‘Bhvr Code’ in short). To help to parse the 

protocols into the different investigation stages, a summary of possible behaviour 

codes for each stage was first prepared (again, due to space constraint, only the final 

one would be shown in Table 4.7 later). I would look at the behaviour code for the 

first protocol line and refer to this table of summary in order to narrow down to the 

few stages that the behaviour code could appear in. I would then read the protocol in 

that line to determine whether the behaviour code should occur in which investigation 

stage before assigning the corresponding stage code, e.g. U for Stage 1: 

Understanding the Task, which was the same as the abbreviation for each stage 

described in the investigation models developed for the present study. Since Stage 3 
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(S/H) consisted of two main processes, namely, Specialising (S) and Using Other 

Heuristics (H), it was decided to code each of the processes separately so that it was 

clear from the stage code whether the student was specialising or using other 

heuristics. For example, it was evident from the transcript in Table 4.4 that the student 

was Using Other Heuristics (H) from Line 07 onwards, and not specialising. 

 

However, when the student paused for four seconds (see Line 10), it was not possible 

to read what was inside her mind. Although subsequent protocol lines (Lines 11-12) 

might suggest that she was still in the stage of using other heuristics, it might be 

possible that she was thinking of something else during the pause, such as trying to 

understand the task further or even thinking of another problem to pose. The latter 

actually happened when another student paused for some time during the stage of 

using other heuristics and then posed another problem to solve. Thus it was decided to 

assign a new code X for the stage code if the corresponding behaviour code belonged 

to Category X (Other Behaviours) 

 

In other words, there were 10 possible stage codes to choose from although there were 

only eight stages in the investigation model for cognitive processes, since Stage 3 

(S/H) was split into the stage codes S and H, and there was the new stage code X. 

Metacognitive codes would usually follow the investigation stage that they occurred 

in. But if they happened during the transition between two stages and it was not easy 

to determine which of the two stages that they fell in, then they would be assigned the 

stage code X. Schoenfeld (1985) discussed two types of transitions between stages, 

one which was productive, and the other not productive (see Section 2.3.3a for more 

details). 
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Table 4.4  Sample Transcript showing Parsing of Protocols into Stages using 
Revised Coding Scheme 

 
Note: The time for this Pretest Task 2 started at 33:06 because it was continuous videotaping after 

Pretest Task 1. 
 

Line Time Protocols 
Stage 
Code 

Bhvr 
Code 

Remarks 

01 33:06 Three slices of bread are to be toasted under a 
grill. The grill can hold exactly two slices. Only 
one side of each slice is toasted at a time. It takes 
30 seconds to toast one side of a slice of bread.  

U FR  

02 33:30 It takes 30 seconds to toast one side of a slice of 
bread.  

U RR  

03 33:36 5 seconds to put a slice in or to take a slice out, 
and 3 seconds to turn a slice over. Investigate. 
Okay. 

U FR Continue 
first reading 

04 33:50 [Start drawing bread shape] First bread, first 
bread. Bread, draw the bread out. [Stop drawing]. 
[Write in bread drawing: ] First bread. Go into 
the grill [draw an arrow from the bread and write 
after the arrow: grill]. Take 3 seconds [write 
beside arrow: take 3 seconds]

U VI  

05 34:12 First, what must I investigate about? P PT  
06 34:14 [Write: 1st] I think I’ll find [start writing] the total 

time taken, the total time taken to [stop writing]. 
To investigate [cancel: 1st] [write: to investigate]. 
[Continue writing] the total time taken to, to toast 
the three slices of bread, slices of bread [stop 
writing]. Finish. 

P PP1 Posed 
Specific 
Problem 1 

07 34:59 So first bread go into the grill [point pencil at 
bread  and then at the word ‘grill’] take 3 
seconds … 

H EM1 Error 1: 
Should be 5 
seconds 

08 35:06 Then at the same time [draw second bread] at the 
same time [write in bread drawing: ] second 
bread also go into the grill [draw an arrow from 
the bread and write after the arrow: grill] same 
time [draw curly bracket for both slices and write: 
same time]. Take another 3 seconds [write beside 
arrow: take 3 seconds]. 

H VI  

09 35:29 So 6 seconds already, to put 2 slices of bread 
[point to bread , then bread ] under a grill 
[point to the words ‘same time’]. 

H RE  

10 35:33 [Pause for 4 seconds] X XP  
11 35:37 Then the grill [point to task statement] it takes 30 

seconds to toast one side of a slice of bread … 
H RR  

12 35:47 Okay, so 30 seconds taken to toast [write: 30 
seconds to toast] these two sides: this side [shade 
bread ] and this side [shade bread ]. 30 
seconds [box up ‘30 seconds’] to take, to toast 
these two sides.  

H RE  
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The process of assigning a stage code to each protocol line was not easy because 

some behaviours could appear in more than one stage, e.g. visualising information 

(VI) in Lines 04 and 08. Therefore, there was a need to read the surrounding protocols 

to infer that the student was visualising information to understand the task in Line 04 

because she had not posed any problem to solve yet (the latter happened only in Lines 

05-06). On the other hand, it could be inferred from the surrounding protocols that the 

student was visualising information to solve the problem in Line 08 because she had 

posed the problem earlier in Line 06, started solving in Line 07 and continued to solve 

in Line 09. Sometimes, there were grey areas. Therefore, there was also a need for an 

inter-coder reliability test for stage codes (see Section 4.7 later). 

 

(b) Episodes 

 

After all the stage codes had been assigned to the entire transcript, the protocols 

would be parsed into episodes at what was called an aggregate level by Newell and 

Simon (1992). A natural method to group the protocols would be according to the 

investigation stages. In other words, an episode is a cluster of related behaviours 

which are usually from the same investigation stage, but with certain exceptions 

which will be explained later in this section. For example, the first episode in the 

transcript in Table 4.4 consisted of Lines 01-04 as these lines corresponded to the 

stage of Understanding the Task (U), while the second episode consisted of Lines 05-

06 as these lines corresponded to another stage, namely, Problem Posing (P). The 

third episode consisted of Lines 07-12 as it corresponded to the stage of Using Other 

Heuristics (H). A double line was then used in the transcript to separate the protocols 

into episodes. 
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Although the third episode in the transcript in Table 4.4 contained Line 10, which had 

the stage code X as it could not be determined what the student was thinking when 

she was silent, Lines 07-12 were grouped together as one episode based on the 

dominant behaviour of Using Other Heuristics (H). It would be very messy if such an 

episode was broken down into many smaller episodes if the student paused very often 

in between. Similarly, if there was a metacognitive behaviour (Category M) in 

between a cluster of related behaviours, then the metacognitive behaviour would be 

grouped together with the related behaviours as one episode. But if there was a cluster 

of metacognitive behaviours (Category M) and/or other behaviours (Category X) in 

between two different stages, they would be grouped together as a transition episode 

(labelled as X because all the stage codes were X), just like the transition between 

stages in Schoenfeld’s (1985) Timeline Representation described in Section 2.3.3(a). 

 

Sometimes, it was possible for an episode to contain only one protocol line. For 

example, if a student had posed a specific problem (PP) immediately after the stage of 

Understanding the Task (U), then the episode for Problem Posing (P) would consist of 

only one protocol line. However, it was found that the students went into a cycle of 

specialising and conjecturing very often when they tried examples (specialising) to 

search for patterns (conjecturing). For example, the transcript in Table 4.5 shows an 

episode consisting of the stage of Specialising (S) and the stage of Conjecturing (C) 

interspersed together in such a way that it was difficult to separate these two stages. If 

an episode could only correspond to one stage, then the transcript in Table 4.5 would 

consist of 15 episodes, with most episodes containing only one protocol line each. 

Thus it was more logical to group the stages of Specialising (S) and Conjecturing (C) 

as one single episode containing related behaviours of Specialising and Conjecturing 

(S/C), rather than separating each line into an episode. 
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Table 4.5  Sample Transcript showing Episode of Specialising and Conjecturing 
 

Line Time Protocols 
Stage 
Code 

Bhvr 
Code 

Remarks 

90 12:30 So I try ... um, 3 ... I try [start writing] 36 ... 36 is 
3 + 6 = 9; so 36 + 9 = 45 [stop writing].

S TE3  

91 12:48 45 can be divided by 3.  C OP2 Pattern 2 
92 12:50 So [continue writing] 4 + [stop writing] ... so 4 + 

... um [continue writing] 5 = 9; 45 + 9 = 54 [stop 
writing]. 

S TE3  

93 13:01 These numbers … can be divided by 9. C OP3 Pattern 3 
94 13:06 [Continue writing] 5 + 4 = 9; 54 + 9 = 63; 6 + 3 = 

9 [stop writing] … 
S TE3  

95 13:18 I find that all the … sums of the digits [underline 
all these sums] are 9 ... 

C OP3 Still Pattern 
3 

96 13:25 So [continue writing] 63 + 9 = 72 [stop writing]. S TE3  
97 13:29 72 can be divided by 9  C OP3  
98 13:31  is [continue writing] 7 + 2 = 9; 72 + 9 = 81 

[stop writing and underline the previous 9]. 
S TE3  

99 13:39 These also can be divided by 9 ... It’s 9 itself.  C OP3  
100 13:44 So [continue writing] 81 is, um ... 8 + 1 = 9; 81 + 

9 = ... 81 + 9 = 90 [stop writing]. 
S TE3  

101 13:56 Also can be divided by 9 [draw a line below 
Example 3] ... 

C SP  

102 14:00 So ... now this one can be [start writing below 
Example 3:  divided by 9] divided by ... divided by 
9 [stop writing] ... 

C OP3  

103 14:10 Now I try ... now I should try ... another number ... S DP  
104 14:18 Example is ... 3 ... um ... 4 ... no, is ... X XH  
105 14:26 84 ... 84 is ... [point pen at 12 in following 

statement] 84 is 8 + 4 = 12, so [point pen at 
following numbers] 96, um, 15 ... 111 and 3 and 
114 and 6 and ... 6 and 120 and 3 and 123 [stop 
pointing ] ... 

C SP Refer to 
Example 2 

 

Similarly, for the stages of Justifying (J) and Generalising (G), the latter stage usually 

consisted of only one protocol line to determine whether the justification had led to a 

generalisation (SG) or no generalisation (NG). The working for this protocol line was 

very often an integral part of the previous working in the justifying stage, so all the 

working should be treated as one single episode consisting of related behaviours of 

justifying and generalising. Therefore, it was decided that an episode would usually 

correspond to an investigation stage, but with the following exceptions: Specialising 

(S) and Conjecturing (C) would be grouped as an episode; and similarly for Justifying 

(J) and Generalising (G). 
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4.5 PHASE 3: REFINEMENT OF REVISED CODING SCHEME BASED 

ON MORE EMPIRICAL DATA 

 

The Revised Coding Scheme was put to the test by using another four transcripts of 

thinking-aloud protocols from the pretest in the pilot study. The four transcripts were 

coded for both the behaviour codes and the investigation stage codes, and it was 

found to be satisfactory. Since no new behaviour was found and there was no other 

problem with the Revised Coding Scheme, there was no change to the coding scheme. 

In order not to use too many different names, the coding scheme at the end of Phase 3 

was still called the Revised Coding Scheme. But it was found from all the eight 

transcripts of pretest protocols that some behaviours in the Revised Coding Scheme 

had still not been observed, e.g. using algebra (AL) and analysing feasibility of the 

plan (MF), so it was not possible to include actual protocols of such behaviours as 

exemplars inside the Revised Coding Scheme. I then checked through the remaining 

two pretest transcripts from the pilot study but still could not observe these ‘missing’ 

behaviours, since it was not expected that the students would exhibit a full range of 

processes during the pretest because investigation was not easy for students who had 

no prior experience in it. As the students might display a richer range of behaviours 

during the posttest after the developing lessons, some posttest transcripts from the 

main study would be used to refine the Revised Coding Scheme. 

 

4.6 PHASE 4: DEVELOPMENT OF FINAL CODING SCHEME BASED 

ON NEW DATA FROM POSTTESTS IN MAIN STUDY 

 

The use of the posttest data from the main study to fine-tune the Revised Coding 

Scheme further was for two purposes: (i) to find actual protocols for behaviours in the 
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Revised Coding Scheme that had not been observed from all the pretest transcripts 

from the pilot study, and (ii) to find out if there was any more new behaviour that 

could not be coded using the Revised Coding Scheme. In order to code a wider range 

of behaviours so as to inform the Revised Coding Scheme, I had to look through the 

posttest transcripts of thinking-aloud protocols for all the students in order to sieve out 

four transcripts of ‘richer’ protocols which hopefully contained a fuller range of 

behaviours6. Two transcripts of protocols were for Posttest Task 1 (Type A task) and 

the other two transcripts for Posttest Task 2 (Type B task). 

 

4.6.1 Fine-tuning the Revised Coding Scheme 

 

During the coding process using the four posttest transcripts from the main study, 

behaviours that had previously not been observed in the pretest samples from the pilot 

study, such as using algebra (AL) and analysing feasibility of the plan (MF), had all 

been observed in the posttest samples. This had made it possible to include exemplars 

of protocols for these behaviours in the Final Coding Scheme. 

 

Furthermore, a new metacognitive behaviour was found among the posttest samples 

that was not included in the theoretical investigation model for metacognitive 

processes developed for the present study (see Section 3.2.2) and so it could not be 

coded using the Revised Coding Scheme. Some students were observed to have some 

kind of proactive metacognitive awareness, resulting in constantly being aware or 

conscious of what they were doing, including the ability to sense something amiss 

when it happened, which caused them to pause and check. Sometimes, the student 

                                                 
6  It was not possible to use all the posttest protocols to fine-tune the Revised Coding Scheme because it 

was necessary to do the inter-coder reliability test for the Final Coding Scheme before the latter could 
be applied to code all the transcripts. 
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might discover a mistake, but at other times, the result might turn out to be correct. So 

this kind of metacognitive behaviour was different from the outcome ‘Discovered 

Error or Mistake’ (ED). In literature on metacognition reviewed earlier in Section 

2.3.1, most researchers (e.g. Brown et al., 1983; Schraw, 2001) made a distinction 

between two types of metacognition: ‘knowledge of cognition’ and ‘regulation of 

cognition’. Although the present study focused on the ‘regulation of cognition’ during 

investigation, it was found that some students were able to actively apply their 

‘knowledge of cognition’, which was also called ‘metacognitive awareness’. Thus 

there was a need to code this new behaviour as MA. As this was a new significant 

finding for the present study, it will be examined in more detail using actual protocols 

during the data analysis in Chapter 7 (see, e.g., Section 7.2.3). 

 

4.6.2 Final Coding Scheme 

 

The Final Coding Scheme was obtained from the Revised Coding Scheme by adding 

one new code, and some exemplars of protocols for behaviours not observed earlier 

using the pretest data from the pilot study. Table 4.6 shows the Final Coding Scheme. 

As this was the Final Coding Scheme7, the table includes some explanations and 

exemplars of actual students’ thinking-aloud protocols for each behaviour. There were 

a total of 40 codes: 26 codes for cognitive behaviours, 6 codes for metacognitive 

behaviours, and 8 codes for other behaviours. Since some behaviours could occur in 

more than one stage, a summary of the possible cognitive and metacognitive 

behaviours for each stage is shown in Table 4.7. 

                                                 
7  Actually, the product at the end of this phase (Phase 4) was only the Preliminary Coding Scheme, not 

the Final Coding Scheme. But since there was no change to the Preliminary Coding Scheme in the 
last phase (Phase 5) which will be discussed in the next section, the Preliminary Coding Scheme was 
the final one. In order not to use too many different names, the product at the end of Phase 4 was 
simply called the Final Coding Scheme. 
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Table 4.6  Final Coding Scheme 
 

Legend: There are three categories: Category C, Category M and Category X. 
 Non-italic codes represent processes; codes in italics represent outcomes.  

Exemplars of actual student thinking-aloud protocols are in quotes and italics, 
while my comments are in square brackets. 

‘...’ in thinking-aloud protocols means a short pause lasting three seconds or less. 
 
Category C: Cognitive Behaviours 
 

Code Explanation Exemplars of Protocols 

FR: First 
Reading of Task 

 Occurred only once but different from 
re-reading task 

 

RR: Re-reading 
Task 

 Re-reading task or parts of the task for 
various reasons: to understand the 
task; to find a problem to solve or 
extend; to think of a plan to solve a 
problem or to justify a conjecture; or 
to monitor understanding or progress 

 Include missing out some words while 
re-reading; or preceded by the phrase 
“the question says” 

 “I cut 12 identical sausages … so 
that I share them equally among 
18 people.” [student missed out 
three words while re-reading 
original task statement which is “I 
need to cut 12 identical sausages 
so that I can share them equally 
among 18 people”] 

 “The question says choose any 
number.” [Original task statement 
is: “Choose any number.”] 

RT: Rephrasing 
Task 

 Rephrasing or paraphrasing task or 
parts of the task for various reasons: 
to understand the task; to find a 
problem to solve or extend; to think of 
plan to solve a problem or to justify 
conjecture; or to monitor 
understanding or progress 

 Paraphrase might contain words from 
original task statement, but it must be 
preceded by phrases such as “in other 
words” or “so I must [do this or that]” 

 “I have 12 identical sausages and 
... I must share them among 18 
people so that … each of them has 
an equal amount.” [different from 
original task statement in above 
cell] 

 “So I must add the sum of its digits 
to the number.” [Original task 
statement is: “Add the sum of its 
digits to the number.”] 

HI: Highlighting 
Key Information 

 Highlighting key information in task 
statement by underlining, circling, or 
boxing up some numbers or words 

 “[Underline the phrase: 12 
identical sausages]” 

 “[Circled the number 18]” 

VI: Visualising 
Information 

 Visualising information by drawing a 
diagram for various reasons: to 
understand the task; to think of a way 
to solve a problem or to justify a 
conjecture 

 “Example [start drawing a 
rectangle] this is a sausage.” 

PT: Thinking of 
Problem to Pose 
or Extend 

 Thinking of what problem to pose 
without changing the given, or to 
extend by changing the given 

 Did not distinguish between thinking 
of problem to pose and thinking of 
problem to extend because student can 
be thinking of any problem 

 “Now my ... problem is that …” 

 “So ... investigate ... what?” 

 “Now can I extend this question?” 

 “What is there to extend?” 

PP: Posed 
Problem 

 This outcome described the situation 
where the student had posed either the 
general problem to search for any 

 “My task is to find the pattern for 
these numbers.” [PP0, i.e. posed 
general problem] 
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Code Explanation Exemplars of Protocols 

pattern (labelled as PP0), or a specific 
problem (labelled as PP1, PP2, etc.) 
without changing the given in the 
original task 

 Different from Posed Problem to 
Extend (EP) 

 “I find the sum of digits first.” 

 “So, now I will just investigate 
how long and what is the fastest 
way to get these 3 slices of bread 
to be toasted.” 

EP: Posed 
Problem to 
Extend 

 This outcome described the situation 
where the student had posed a 
problem to extend the task by 
changing the given 

 “Now I should extend this 
problem. My question is that what 
if there are 12 people and 18 
sausages?” [original task was 18 
people and 12 sausages] 

TP: Thinking of 
Plan 

 Thinking of a plan for various 
reasons: to understand the task; to 
solve a problem; to search for 
patterns; or to justify a conjecture, etc. 

 “So how should I solve the 
problem?” 

 “And to split 6 sausages among 10 
people, you can … uh, split it … 
you can … can … ok, I’ll try 
thinking …” 

 “After these 30 seconds … I will 
… what should I do ah? Should I 
take out both? Or just turn one 
and take out another one?” 

 “So how I prove it? So … as you 
can … it’s a little bit hard to prove 
… because from what I see here … 
there is no really, no link, there is 
no real link …” 

DP: Decided on 
Plan 

 Decided on a plan for various reasons: 
to understand the task; to solve a 
problem; to search for patterns; or to 
justify a conjecture, etc. 

 Plan includes understanding the task 
by trying examples; and solving a 
problem by various means such as 
specialising, reasoning, algebra, etc. 

 “I must try some examples to 
understand the task first.” 

 “So … I’ll just choose randomly.” 
[to understand task] 

 “Let me try using algebra to solve 
the problem.” 

 “How to prove is that I can draw a 
diagram.” 

 “I think I shall search for a new 
pattern instead.” 

TE: Trying 
Example 

 Trying an example (labelled as TE1, 
TE2, etc.) for various reasons: to 
understand the task; to search for 
patterns; to find a counter example to 
reject a pattern or a conjecture (naive 
testing) 

 “I try 21 [write: 21  2 + 1 = 3] 
is 3, right? Then [start writing] 21 
+ 3 = 24 [stop writing]; 2 + ... 4 
= 6; then 21 ... 24 + 6 = 30.” 

PC: Performing 
Calculation 

 Performing calculation (except during 
trying examples), e.g. to search for 
patterns during conjecturing 

 If performing calculation during 
trying examples, classify under Trying 
Example (TE) 

 “[Does long division for 55 ÷ 3]” 
[to search for patterns during 
conjecturing, not trying examples] 

RE: Using 
Reasoning 

 Using reasoning for various reasons: 
to solve a problem with or without 
formulating a conjecture; or to justify 
a conjecture 

 “There will be 36 pieces. Yeah, so 
[start writing] 36  18 = 2 [stop 
writing]. So everyone will have … 
2/3, is it?” 
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Code Explanation Exemplars of Protocols 

AL: Using 
Algebra 

 Using algebra for various reasons: to 
solve problem with or without 
formulating a conjecture; or to justify 
conjecture 

 “[Start writing] a + z + y [stop 
writing] … [cancel: a + z + y] … 
uh … [start writing] a + z [stop 
writing]. Eh [cancel: a + z].” 

SP: Searching 
for Pattern 

 Searching for any pattern among the 
examples generated, including not 
finding any pattern 

 

 “What’s the pattern for these 
numbers?” 

 “So you see this one is 28 [point to 
first 28 in Example 2] 28, um 
[point to the following sums of 
digits in Example 2] 5, 10, 11 
[stop pointing]. No pattern what.” 

OP: Observed 
Pattern 

 This outcome described the situation 
where student had observed or 
discovered a pattern (labelled as OP1, 
OP2, etc.), including modifying an 
observed pattern which could be 
considered as observing a new pattern 

 Different from Formulating 
Conjecture (FC) because subsequent 
protocols suggest student was still 
trying examples to be more certain of 
the pattern, and not yet trying to prove 
that the observed pattern is the 
underlying pattern 

 “I think that the sum of digits can 
be divided by 3. But I try another 
number first.” [first sentence was 
coded as OP because second 
sentence, coded as DP (Decided 
on Plan), suggested that student 
was not so sure of the pattern yet, 
so she continued to try another 
example to be more certain of the 
pattern before treating it as a 
conjecture at a later stage] 

RP: Rejected 
Observed 
Pattern 

 This outcome described the situation 
where student had rejected an 
observed pattern based on counter 
example or any other reason (labelled 
as RP1, RP2, etc., where the number 
tallies with the number in OP above, 
not in order of rejection) 

 Different from Refuted Conjecture 
(RC) during justifying 

 “So cannot, 11 cannot be divided 
by 3.” [i.e. student rejected 
observed pattern that number can 
be divided by 3 because of counter 
Example 11] 

FC: Formulated 
Conjecture 

 Formulated conjecture (labelled as 
FC1, FC2, etc., where number follows 
order of formulating, not according to 
OP), including modified a conjecture 
which could be considered as 
formulated a new conjecture 

 Different from Observed Pattern (OP) 
because subsequent protocols 
suggested student went on to prove 
conjecture 

 “Ok, the conjecture [write: 
Conjecture:] for me now is that … 
um [start writing] all 2 digits 
numbers will add up to a new odd 
number [stop writing].” 

 “Now it starts from 16 again ... so 
... so ... it will continue to do that 
until the next 16 ... But ... is it 
always the same?” [student did 
not say this was a conjecture but 
he was more sure of the pattern as 
he obtained 16 again, and 
subsequent protocols showed that 
he went on to try to prove it] 

VC: Verified 
Pattern or 
Conjecture 
Correct 

 This outcome described the situation 
where student had verified that the 
pattern or conjecture was correct after 
naïve testing using more examples 
(this is not a proof) 

 Need to look at surrounding protocols 

 “Eh? So, 85 [write: 85]. So the 
whole thing repeats again. [Draw 
a vertical line from 85 in E.g. 13 
downwards] It’s the same.” 
[verified repeating pattern correct, 
and surrounding protocols suggest 
that she did not accept pattern as 
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Code Explanation Exemplars of Protocols 

that student did not accept the pattern 
as true or the conjecture as proven 

 If student accepted the pattern as true 
or the conjecture as proven based on 
naïve testing using more examples, it 
would be coded as EM (Made Error) 

true because she later formulated it 
as a conjecture to be proven] 

JC: Justified or 
Proven 
Conjecture 

 This outcome described the situation 
where student had justified or proven 
a conjecture (labelled as JC1, JC2, 
etc., where number tallies with the 
number in FC above) 

 Need to look at surrounding protocols: 
JC must happen after student had 
formulated conjecture and then proved 
it correctly via two ways: using 
reasoning (RE) or algebra (AL) 

 “Ok, so it proves that my 
conjecture is correct …” 

RC: Refuted 
Conjecture 

 This outcome described the situation 
where student had refuted a conjecture 

 Need to look at surrounding protocols: 
RC must happen after student had 
formulated conjecture and then proved 
it wrong via three ways: using 
reasoning (RE), algebra (AL), or 
counter example (TE) 

 Different from Rejected Pattern (RP) 
during conjecturing 

 “So this one is not working 
[cancel Conjecture 2]” 

SG: Solved 
Problem that 
led to 
Generalisation 

 This outcome described the situation 
where student had correctly solved a 
problem that led to generalisation 

 Need to look at surrounding protocols: 
SG must happen after student had 
solved a problem via two ways: 
justified conjecture that was a general 
result; or solved problem without 
formulating any conjecture but still 
led to generalisation 

 Different from Justified or Proven 
Conjecture (JC) in two ways: student 
could justify conjecture without 
generalising; or student could justify 
conjecture that led to generalisation 
but still had not solved the problem 
yet 

 “Ok, so it proves that my 
conjecture is correct …” [this 
correct conjecture was a general 
result: coded as both JC (Justified 
Conjecture) and SG] 

 “Same for numbers that can be 
divided by 9. So this is my 
finding.” [this correct solution, 
without formulating any 
conjecture, was a general result: 
coded as SG only, not JC] 

NG: Solved 
Problem without 
Generalising, 
i.e. No 
Generalisation 

 This outcome described the situation 
where student had correctly solved a 
problem without generalising 

 Need to look at surrounding protocols: 
NG must happen after student had 
solved a problem via two ways: 
justified conjecture that was not a 
general result; or solved problem 
without formulating any conjecture 
and without generalising 

 “That means the person must cut 
one sausage into three identical 
pieces so that each person gets 2/3 
of it.” [this correct solution, 
without formulating any 
conjecture, was not a general 
result] 
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Code Explanation Exemplars of Protocols 

CW: Checking 
Correctness of 
Working 

 

 Checking correctness of working step 
by step, just briefly glancing through 
it, or working backwards 

 Could happen in any stage, not just in 
the Checking Stage 

 “I check the numbers can be 
divided by 3 … Yes, these numbers 
can be divided by 3.” [student 
checked previous working to 
confirm this] 

EM: Made 
Error or 
Mistake 

 Made mistake such as calculation 
error, faulty reasoning, solved 
problem wrongly, misinterpreting the 
task, etc. 

 Include treating observed pattern or 
conjecture as true without proving, or 
wrongly accepted conjecture as true 
based on naïve testing or faulty 
reasoning 

 Abbreviation EM stood for Error 
Made (did not use ‘Made Mistake’ as 
it would give rise to the code MM, but 
codes with first letter M were reserved 
for metacognitive behaviours) 

 “[Start writing] 33 + 3 + 3 … = 
36 [stop writing].” [calculation 
mistake: should be 39] 

 “So each person gets 18 parts.” 
[faulty reasoning: should be 12 
parts] 

 “So the new number is 4.” 
[misinterpreted task: this was only 
the sum of digits] 

 “From the examples, we can see 
that my conjecture is correct.” 
[wrongly accepted conjecture as 
true based on naïve testing] 

ED: Discovered 
Error or 
Mistake 

 This outcome described the situation 
where the student had discovered a 
mistake 

 “Oh, this is wrong!” 

 
Category M: Metacognitive Behaviours 
 

Code Explanation Exemplars of Protocols 

MU: Monitoring 
Understanding 

 Monitoring student’s own 
understanding of task by clarifying 
task requirements, given conditions, 
or meaning of some parts of task 

 Should only occur in the first stage of 
Understanding the Task, but students 
could stop anytime in subsequent 
stages to go back to the first stage 

 “Did I interpret the task 
correctly?… Yes, I think so.” 

 “So let me try another one to 
further understand what the task is 
trying to tell me.” 

MG: Analysing 
Feasibility of 
Goal 

 Analysing whether a goal or problem 
(including extension) was feasible or 
worth pursuing, e.g. is the problem 
interesting, too difficult or too trivial? 

 “But this one, how to have 
formula? … Um, this one is find 
the LCM first. Actually no need. 
Yah. Eh? …” [student analysed 
whether feasible to find formula] 

MF: Analysing 
Feasibility of 
Plan 

 Analysing whether a plan was feasible 
or worth pursuing 

 “But I don’t think there is any 
relationship this way … Maybe I 
can use some other ways of finding 
the relationship like, um … maybe 
like adding the digits up.” 
[analysed different plans to find 
relationship] 

 “I already reach 1000, so I don’t 
think I should continue further as I 
am unable to find … that will be 
difficult. Narrow my range down 
to below 1000 …” [analysed 
feasibility of trying beyond 1000] 
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Code Explanation Exemplars of Protocols 

MP: Monitoring 
Progress 

 Monitoring progress by reviewing 
whether the plan was on the right 
track, including deciding to continue 
or to change the plan without 
analysing its feasibility 

 If reviewing progress after solving the 
problem in the Review Phase to see if 
it had achieved the goal, this would be 
coded as Reviewing Solution (MR) 

 If analysing feasibility of current plan 
while monitoring progress, the 
analysis would be coded as Analysing 
Feasibility of Plan (MF) 

 “Am I going on the right track? … 
I don’t think I know … Maybe I’ll 
try for a while more and see how it 
goes …” 

 “I think I’m stuck. I think I’m not 
doing correctly.” 

 “I think I’m going nowhere … 
Should I think of a new approach 
instead?” 

 “Yes, I think I am in the right way 
but now I can’t find the pattern 
yet.” 

MR: Reviewing 
Solution 

 Reviewing solution after solving a 
problem or part of a problem to see if 
it had achieved the goal or solved the 
problem, including examining 
whether the answer was reasonable or 
logical, evaluating the efficacy of a 
method of solution, and looking for 
alternative methods 

 Different from simply Checking 
Correctness of Working (CW) which 
was cognitive 

 Checking whether partial solution 
was in line with the goal comes under 
monitoring progress (MP) 

 If the goal was to find different 
methods, then looking for alternative 
methods is not under MR but under 
problem posing 

 “Ok, actually, I have only 
answered part of the what the 
question wants me to do …” 

 “Ok, I am referring back … That 
seems not the real task is wanting 
me to find. Ok … so I think that my 
second conjecture is a little bit off 
topic.” [student reviewed solution 
after proving second conjecture] 

 “Ok, this [method of dividing the 
sausage or the solution] is fair.” 
[student found solution 
reasonable] 

 “I can use another method.” [after 
solving problem using one 
method] 

MA: 
Metacognitive 
Awareness 

 The ability of the student to apply 
their knowledge of cognition 
proactively in investigation, resulting 
in constantly being aware or 
conscious of what he or she was 
doing, including the ability to sense 
something amiss when it happened, as 
well as new information that evolved 

 Need to look at subsequent protocols: 
MA usually happened when student 
obtained a questionable result or 
outcome, which caused him or her to 
pause and check; or when student was 
aware that he or she had obtained a 
new piece of information 

 Sometimes MA was accompanied by 
Discovered Error (ED), but MA was 
different from ED because the student 
might not discover the error, or it 
might turn out that there was actually 
nothing wrong 

 “Hmm ... this number appears 
again.” [but this number was on 
the previous page and the student 
was aware that it had appeared 
before without even referring to it] 

 “16. Eh ... this number has not 
appeared before?” [student was 
aware that she had obtained a 
number which had not appeared 
before and she turned to the 
previous pages just to confirm] 

 “Now, now, this is strange, 
right?” [after getting a result] 

 “But the problem is …” [student 
sensed something amiss because 
he realised that it was a problem, 
then he discovered the error] 

 “So if he get other 6 pieces ” 
[student sensed something amiss, 
so she paused for four seconds, re-
read the task and discovered the 
error] 
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Category X: Other Behaviours 
 

Code Explanation Exemplars of Protocols 

XP: Pausing  Student was silent for more than 3 
seconds, including any sound like ‘uh’ 
or ‘um’ in between the pause; shorter 
pause lasting 3 seconds or less was 
indicated as ‘...’ in the transcript and 
not coded separately 

 “[Pause 5 s]” 

 “[Pause 8 s, including an ‘uh’ in 
between]” 

XH: Hesitating  Hesitating or doing nothing 
constructive, suggesting student might 
be stuck 

 Protocols might contain sounds like 
‘uh’ or ‘um’, but if the sound was part 
of a pause lasting more than 3 
seconds, it would be coded separately 
as Pausing (XP) 

 Protocols might contain repetitions of 
words which contained nothing new, 
so this was different from Thinking of 
Plan (TP) to solve a problem 

 “So what should I do is to ... what 
I should do is to ... um ... I don’t 
know what to do.” 

 “Because the  ... odd, odd number 
... odd number is ... odd number is 
... um ...” 

 “So ... as for one, one piece of 
sausage, sausage ... then ... 
example is, um, totally is ...” 

XC: Referring 
to Given 
Checklist 

 Referring to given checklist (see 
Appendix H), including reading from 
it when stuck or thinking what to do 
next 

 “[Refer to checklist p. 1 for 9 s]” 

 “[Read from given checklist] 
Understand the task first [stop 
reading].” 

XR: Re-reading 
What was 
Written 

 Re-reading what the student had 
written himself or herself, such as 
their working, solution, problem 
posed, or conjectures formulated 

 “So if the original number can be 
divided by 3 or 9, the new numbers 
obtained also can be divided by 3 
or 9.” [student re-read conjecture 
that she had written] 

XW: Re-writing 
or Recording 
Processes 

 Recording or organising processes 
that were not part of the thinking 
processes, e.g. rewriting part of 
solution from previous page onto new 
page for ease of reference; writing full 
solution properly after solving a 
problem; or organising examples by 
labelling or boxing them up separately 

 “[Student rewrites full solution 
after solving problem.]” 

 “[Student turns to new page and 
rewrites previous working.]” 

 “[Student boxes up different 
examples.]” 

XO: Off-Task 
Behaviours 

 Behaviours that were not task-related, 
e.g. invigilator told student to speak 
louder or to continue to think aloud; 
or student just said some irrelevant 
things 

 “[Invigilator tells student to speak 
louder]” 

 “[Invigilator tells student that she 
has one minute left]” 

XA: Affective 
Behaviours 

 Affective behaviours such as student 
expressing frustration, joy or opinion 
about the test (although beyond scope 
of present research to study, affective 
behaviours still needed to be coded) 

 “[Student sighs]” 

 “Why is this problem so difficult?” 

 “I give up!” 

 “Hmm, that is pretty interesting.” 

XU: Unable to 
Code 

 Protocols where it was not possible to 
infer what the student was doing or 
thinking about, including student 
mumbling and unintelligible words 

 “And then … um, let’s see [flip to 
p. 2] … um … 37, 21.” [Unable to 
decide whether it was XH or SP, 
so coded as XU] 

 “[Unintelligible words]” 
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Table 4.7  Summary of Possible Behaviours in Each Investigation Stage 
 
Legend: Non-italic codes represent processes; codes in italics represent outcomes. 

Other behaviours from Category X, and codes that could occur in any stage (e.g. 
Made Error or Mistake), are not included in this table. 

 

Phase Stage Possible Cognitive Behaviours 
Possible 

Metacognitive 
Behaviours 

Entry Stage 1: 
Understanding 
the Task (U) 

Trying to make 
sense of the task, 
including trying 
examples and 
clarifying task 
requirements 

 FR: First Reading of Task  

 RR: Re-reading Task (to understand the task 
or to monitor understanding) 

 RT: Rephrasing Task (to understand the task 
or to monitor understanding) 

 HI: Highlighting Key Information 

 VI: Visualising Information (to understand 
the task) 

 TE: Trying Example (to understand the task) 

 TP: Thinking of Plan (to understand the task) 

 DP: Decided on Plan (to understand the task) 

 MU: 
Monitoring 
Understanding 

Stage 2: 
Problem Posing 
(P) 

Posed the general 
problem of 
searching for any 
pattern, or trying 
to pose a specific 
problem to solve 

 PT: Thinking of Problem to Pose 

 RR: Re-reading Task (to find a problem to 
pose or to analyse feasibility of pursuing the 
problem or the goal) 

 RT: Rephrasing Task (to find a problem to 
pose or to analyse feasibility of pursuing the 
problem or the goal) 

 PP: Posed Problem 

 MG: Analysing 
Feasibility of 
Goal 

Attack Stage 3: 
Specialising and 
Using Other 
Heuristics (S/H) 

Trying examples 
with the intention 
of searching for 
patterns, or using 
heuristics other 
than specialising 
to solve a 
problem 

 TE: Trying Example (with the intention to 
search for patterns) 

 TP: Thinking of Plan (to solve a problem) 

 DP: Decided on Plan (to solve a problem) 

 RR: Re-reading Task (to think of a way to 
solve a problem or to monitor progress) 

 RT: Rephrasing Task (to think of a way to 
solve a problem or to monitor progress) 

 VI: Visualising Information (to help in 
solving a problem) 

 RE: Using Reasoning 

 AL: Using Algebra 

 MF: Analysing 
Feasibility of 
Plan 

 MP: 
Monitoring 
Progress 

Stage 4: 
Conjecturing 
(C) 

Searching for 
patterns, 
including 
observing or 
rejecting a 
pattern, and 
formulating a 
conjecture 

 SP: Searching for Pattern 

 TP: Thinking of Plan (on how to search for 
pattern) 

 DP: Decided on Plan (on how to search for 
pattern) 

 RR: Re-reading Task (to think of a way to 
find a pattern or to formulate a conjecture, or 
to monitor progress) 

 RT: Rephrasing Task (to think of a way to 
find a pattern or to formulate a conjecture, or 

 MF: Analysing 
Feasibility of 
Plan 

 MP: 
Monitoring 
Progress 
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Phase Stage Possible Cognitive Behaviours 
Possible 

Metacognitive 
Behaviours 

to monitor progress) 

 VI: Visualising Information (to search for 
pattern or to formulate conjecture) 

 OP: Observed Pattern 

 RP: Rejected Observed Pattern 

 FC: Formulated Conjecture 

Stage 5: 
Justifying (J) 

Trying to justify 
a conjecture by a 
non-proof 
argument using 
reasoning or a 
formal proof 
using algebra, 
including 
refuting a 
conjecture or 
naïve testing 

 TP: Thinking of Plan (to justify a conjecture) 

 DP: Decided on Plan (to justify a conjecture) 

 RE: Using Reasoning 

 AL: Using Algebra 

 RR: Re-reading Task (to think of a plan to 
justify a conjecture, or to monitor progress) 

 RT: Rephrasing Task (to think of a plan to 
justify a conjecture, or to monitor progress) 

 VI: Visualising Information (to help in 
justifying a conjecture) 

 TE: Trying Example (to find counter example 
to refute a conjecture in naïve testing) 

 VC: Verified Pattern or Conjecture Correct 

 JC: Justified or Proven Conjecture 

 RC: Refuted Conjecture 

 MF: Analysing 
Feasibility of 
Plan 

 MP: 
Monitoring 
Progress 

Stage 6: 
Generalising (G) 

Solved problem 
which may or 
may not be a 
general result 

 SG: Solved Problem that led to 
Generalisation 

 NG: Solved Problem without Generalising, 
i.e. No Generalisation 

 

Review Stage 7: 
Checking (R) 

Checking 
working and 
reviewing 
solution 

 CW: Checking Correctness of Working 

 RR: Re-reading Task (to review whether 
solution had achieved the goal) 

 RT: Rephrasing Task (to review whether 
solution had achieved the goal) 

 MR: 
Reviewing 
Solution 

Stage 8: 
Extension (E) 

Trying to extend 
the task by 
changing the 
given 

 PT: Thinking of Problem to Extend 

 RR: Re-reading Task (to find a problem to 
extend or to analyse feasibility of pursuing 
the problem or the goal) 

 RT: Rephrasing Task (to find a problem to 
extend or to analyse feasibility of pursuing 
the problem or the goal) 

 EP: Posed Problem to Extend 

 MG: Analysing 
Feasibility of 
Goal 
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4.7 PHASE 5: INTER-CODER RELIABILITY TEST FOR FINAL 

CODING SCHEME 

 

As explained earlier in Section 2.4.3, there was a need to ensure that the coding 

scheme was reliable in a qualitative study like the present research (Lesh et al., 2000). 

One way to do this was to perform an inter-coder reliability test. If the inter-coder 

reliability was high, it would suggest that the coding scheme was reliable. Since the 

coding would be used to inform the investigation models developed for the current 

study, then the models would also be reliable and the descriptive power of the models 

would be high (Schoenfeld, 2002). Four transcripts of thinking-aloud protocols were 

selected for two coders to code. The transcripts were chosen from the posttest tasks in 

the main study because the students exhibited a lot more processes after the teaching 

experiment. In fact, the combination of the four transcripts included 38 of the 40 

behaviour codes and all 10 stage codes. Two of the transcripts were for Posttest Task 

1 (Type A task) and the remaining two for Posttest Task 2 (Type B task), since the 

two types of tasks would tend to elicit different processes. The two coders were 

mathematics educators with some experience in coding. 

 

(a) Preparation of Transcripts and Test Answer Scripts for Coders 

 

Table 4.8 shows part of a sample transcript given to the two coders. It contained two 

empty columns, one for stage code and the other for behaviour code. The Remarks 

column contained only some necessary objective information, such as the page 

number of the students’ answer scripts, and the example number for the examples that 

the students had tried (see Lines 01 and 05). As explained earlier in Section 4.1, it was 

necessary to label the pages of the students’ answer scripts and the examples 
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generated by the students because the students usually did not do so, and sometimes 

there was a need to refer to a particular page or example when transcribing the actions 

of the students. This objective information served to help the coders make sense of 

what the students were doing so that they would be in a better position to assign more 

appropriate codes to the protocols. Unlike the full coded transcript in Appendix I, the 

sample transcripts given to the coders did not contain other subjective information in 

the Remarks column, or double lines to separate the protocols into episodes as 

described in Section 4.4.4(b), so as not to influence their judgment. 

 

Table 4.8  Sample Transcript of Student’s Protocols Given to Two Coders for 
Inter-Coder Reliability Test 

 

Line Time Protocols 
Stage 
Code 

Bhvr. 
Code 

Remarks 

01 
(p.1) 

00:00 Choose any number. Add the sum of its digits to 
the number itself to obtain a new number. Repeat 
this process for the new number and so forth. 
Investigate.  

  Answer 
Script Page 
1 

02 00:11 [Teacher tells her to speak louder]    
03 00:12 Choose any number. Add the sum of its digits to 

the number itself to obtain a new number. Repeat 
this process for the new number and so forth. 
Investigate. 

   

04 00:23 So ... now I must, uh, try some examples first ...     
05 00:28 For example, I choose 12 [write 12].   Example 1: 

p. 1 column 
1 in answer 
script 

 
 

In addition, each coder was given a copy of the following: 

 

 Students’ answer scripts for all the four samples for easy reference of their 

working (the examples in the answer scripts were also separated and labelled 

clearly with a number, as shown in the sample answer script in Appendix J); 

 Final Coding Scheme (see Table 4.6); 

 Summary of Possible Behaviours in Each Investigation Stage (see Table 4.7). 
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(b) Instructions for Coders 

 

The two coders were to assign both the behaviour code and the stage code for each 

protocol line in the four transcripts independently, and they did not meet each other. I 

first briefed the two coders on separate occasions on the different codes in the Final 

Coding Scheme (see Table 4.6), and then explained how to use the Summary of 

Possible Behaviours in Each Investigation Stage (see Table 4.7) and the students’ 

answer scripts to help in coding the transcripts. I then walked through the coding of 

two short excerpts of transcripts (which were different from the four transcripts used 

for the inter-coder reliability test) with the coders to help them understand the coding 

process. During the actual coding by the two coders, they were free to discuss with 

me if they had further doubts about the meanings of the codes in the coding scheme. I 

would only explain the codes, but I would not suggest any code to code any protocol 

line, or say anything that might influence the coding of the two coders. 

 

The inter-coder reliability test did not take into account the numbering for observed 

patterns (OP) or formulated conjecture (FC) because the coders might disagree with 

me that a student had observed a pattern or formulated a conjecture at a particular 

protocol line, and so their subsequent numbering of observed patterns and formulated 

conjectures would definitely be different from my numbering. The issue was not the 

numbering of subsequent observed patterns or formulated conjectures, e.g. whether it 

should be OP2 or OP3, but whether the coders agreed with me that those were 

observed patterns and so should be coded as OP. 
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(c) Results of the Inter-Coder Reliability Test 

 

Table 4.9 shows the number and percentage of codes for Coder 1 and Coder 2 that 

were the same as my codes for the four sample transcripts. 

 

Table 4.9  Inter-Coder Reliability Test for Coding Schemes 
 

Transcript Types of Codes 
Total Number 

of Codes 
Coder 1 Coder 2 

Sample A 
Stage Codes 157 

157

142
 = 90% 

157

146
 = 93% 

Behaviour Codes 157 
157

146
= 93% 

157

143

 
= 91% 

Sample B 
Stage Codes 172 

172

165
 = 96% 

172

164

 
= 95% 

Behaviour Codes 172 
172

164
= 95% 

172

168

 
= 98% 

Sample C 
Stage Codes 174 

174

161
 = 93% 

174

154

 
= 89% 

Behaviour Codes 174 
174

162
= 93% 

174

151

 
= 87% 

Sample D 
 

Stage Codes 120 
120

111
 = 93% 

120

115
 = 96% 

Behaviour Codes 120 
120

110
= 92% 

120

104

 
= 87% 

Sub-Total 
Stage Codes 623 

623

579
 = 93% 

623

579
 = 93% 

Behaviour Codes 623 
623

582
= 93% 

623

566

 
= 91% 

Average 
of the 

Coders 

Stage Codes 623 
623

579
 = 93%

 

Behaviour Codes 623 
623

574
 = 92%

 

Total 1246 
1246

1153
 = 93% 
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The inter-coder agreement of 93% for the Final Coding Scheme for the present study 

was higher than the minimum standard of 80% for inter-coder reliability for media 

messages proposed by Riffe, Lacy and Fico (1998), thus suggesting that the Final 

Coding Scheme was reliable enough and hence there was no need to refine the coding 

scheme any further. 

 

There were two reasons why it was possible to achieve such a high inter-coder 

agreement. The first reason was that there were many rounds of improving the Initial 

and Revised Coding Schemes substantially to strengthen its validity and reliability. 

Ambiguous codes, which were not easily observable or appeared to be similar, were 

either removed or re-defined more precisely so that they were more clearly 

recognisable. Detailed descriptions and representative exemplars of protocols were 

included for each code. Clarification of the differences between similar codes was 

also highlighted in the coding scheme so as to make it easier for any coder to 

distinguish between them. Possible behaviours that could occur in each investigation 

stage were also identified and summarised in a table form (see Table 4.7) in order to 

help any coder to identify the correct stage more easily. This process of meticulously 

refining the codes thoroughly was one of the most difficult and challenging tasks in 

the present research. Such careful deliberation had finally paid off in developing a 

reliable Final Coding Scheme that successfully passed the inter-coder reliability test. 

 

The second reason was the choice of the two coders for the inter-coder reliability test. 

If the coders were not familiar with the coding process or had difficulty understanding 

the codes in the Final Coding Scheme, then it might not even be possible to pass the 

inter-coder reliability test. However, Coder 1 for the inter-coder reliability test for the 
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present study was an experienced coder, while Coder 2, though less experienced, was 

very fast in understanding the codes in the Final Coding Scheme and distinguishing 

between codes that appeared similar just by listening to a short explanation. 

Therefore, the above reasons explained why the inter-coder agreement for the Final 

Coding Scheme was so high. 

 

4.8 CONCLUDING REMARKS FOR THIS CHAPTER 

 

Chapter 4 has explained how the coding scheme for the students’ thinking-aloud 

protocols during investigation was developed from a five-phase combination of top-

down (i.e. theoretically driven) and bottom-up (i.e. empirical driven) strategy. Starting 

with the Initial Coding Scheme constructed theoretically based on current literature, it 

was revised using empirical data from the pilot study and then richer posttest data 

from the main study to obtain the Final Coding Scheme, which had successfully 

passed the inter-coder reliability test for both the behaviour and stage codes. Chapter 

5 will then describe the design of some data analysis instruments. 
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 CHAPTER 5: DEVELOPMENT OF DATA ANALYSIS TOOLS 

 

The two main sources of data for the present study were the students’ answer scripts, 

and the video recordings of the students’ thinking-aloud protocols and other non-

verbal actions, during the pretest and the posttest. The protocols had been transcribed 

and coded using the coding scheme constructed in the previous chapter. According to 

Miles and Huberman (1994), there was a need to simplify the data in the coded 

transcripts to analyse them more effectively. Therefore, this chapter will describe the 

development of some data analysis tools for the present study. 

 

5.1 PROTOCOL ANALYSIS METHOD 

 

The protocol analysis method employed for the present study used the three processes 

in data analysis advocated by Miles and Huberman (1994) as a guide. The three 

processes were (i) data reduction, (ii) data display, and (iii) conclusion drawing and 

verification. The video recordings of the students’ thinking-aloud protocols and other 

non-verbal actions during the pretest and the posttest had been transcribed and coded 

using the coding scheme developed in the previous chapter in order to reduce the 

amount of data to a form suitable for protocol analysis. Then the reduced data for the 

verbal protocols would be displayed in visual forms. Three types of diagrams, or data 

analysis tools, would be developed in the next two sections: 

 

(i) Investigation Pathway Diagrams (IPD), 

(ii) Investigation Timeline Representations (ITR), 

(iii) Summary Tables of Processes and Outcomes (TPO). 
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Although the transcripts also made reference to the students’ working in their answer 

scripts, the working was not easily discernible in the transcripts as the working was 

interspersed with a myriad of the students’ verbal protocols. Therefore, there was still 

a need to refer to the students’ answer scripts when developing the TPO. The three 

data analysis tools will be used to draw conclusions about the nature of cognitive and 

metacognitive processes in mathematical investigation, and to verify the theoretical 

investigation models, so as to answer the research questions for the present study. 

However, there was a need to design a fourth data analysis tool to measure the 

proficiency of the students’ performance in investigation in order to compare the 

development of their processes quantitatively using descriptive statistics: 

 

(iv) Investigation Scoring Rubric (ISR). 

 

This chapter will only describe the development of the first three data analysis tools. 

The last instrument ISR will be described in Chapter 8 during the data analysis of the 

development of investigation processes because there is a need to understand the 

nature of investigation processes using the first three data analysis tools before 

developing the last instrument. 

 

5.2 INVESTIGATION PATHWAY DIAGRAM AND INVESTIGATION 

TIMELINE REPRESENTATION 

 

This section will describe two instruments developed to display the reduced data for 

the thinking-aloud protocols to aid in the data analysis for the present study, according 

to the protocol analysis method proposed by Miles and Huberman (1994) as described 

in the previous section. The two data analysis tools are the Investigation Pathway 

Diagram (IPD) and the Investigation Timeline Representation (ITR).  
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The investigation model for cognitive processes developed for the current research 

(see Section 3.2.1) describes the theoretical interactions or pathways between the 

various processes. So there is a need to examine what the students actually did during 

the present study in order to analyse the interactions of their processes. Thus the first 

data analysis tool, IPD, attempts to trace each student’s actual pathways during an 

investigation. Figure 5.1 shows the IPD for a student’s (S5) investigation of Posttest 

Task 1 (Kaprekar; Type A) and another student’s (S9) investigation of Posttest Task 2 

(Sausage, Type B). The reasons for grouping the Specialising and Conjecturing stages 

as the S/C stage for Type A tasks, and grouping the Justifying and Generalising stages 

as the J/G stage for both types of tasks, have been explained in Section 4.4.4(b). The 

IPD were constructed by extracting the relevant information from the transcripts that 

had been parsed into episodes using the stage codes as described in Section 4.4.4. 

 

Legends:  The no. of arrows in IPD indicates the no. of times the student went through the pathway. 
 If there was more than one pathway from one stage to another in IPD, the black pathway 

occurred first, followed by the blue pathway and then the red pathway. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(a) Posttest Task 1 for S5          (b) Posttest Task 2 for S9 

 
Figure 5.1  Investigation Pathway Diagrams (IPD) 
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209

As can be seen from the IPD in Figure 5.1, the students went through some pathways 

more than once, and so the number of arrows along a pathway will indicate the 

number of times the students went through the same pathway. For S5, it is clear from 

the IPD that the student started from the stage of Understanding the Task (U) and then 

proceeded to the Specialising / Conjecturing (S/C) stage. After that, she went through 

the loop between the S/C stage and the Problem-Posing (P) stage four times, before 

going down to the Justifying / Generalising (J/G) stage and then to the Checking (R) 

stage. It is fairly clear from the IPD that she could not have possibly gone down to the 

J/G stage before finishing the four cycles between the S/C stage and the P stage since 

there is no pathway from the J/G stage back to the S/C stage or the P stage. 

 

However, if the IPD is more complicated like that of S9 in Figure 5.1, then there is a 

problem. He started at the U stage and then proceeded to the P stage, followed by the 

stage of Using Other Heuristics (H). Then it is unclear from his IPD whether he went 

back from the H stage to the P stage, or he went through the following pathway: H  

C  S  H  P. Thus there is a need to use different colours to indicate which 

pathways occur first. As there are so many pathways, it is not possible to use a 

different colour for each pathway. Instead, a different colour is used only when there 

are ambiguities. It was found that three colours were sufficient for the IPD of S9: 

black first, followed by blue, and then red. With this colour scheme, it is evident from 

the black pathways that he finished all the cycles between P and H first: U  P  H 

 P  H  P  H. In fact, after this, he did not go from H  C  S  H as 

described earlier because this is a red pathway. Instead, he went from H  E  R  

S  H as indicated by the blue pathway. It is left to the reader to trace the remaining 

pathways which will end in the J/G stage. 
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The limitation of the IPD is that it is not possible to display how much time the 

students had spent in each stage or episode. Moreover, even with the colour scheme, it 

would still take quite a while to trace the student’s pathways. Therefore, there was a 

need for another data analysis tool to complement the IPD. 

 

The Investigation Timeline Representation (ITR) was modelled after the timeline 

representation developed by Schoenfeld (1985) described earlier in Section 2.3.3(a). 

Figure 5.2 shows the ITR for the investigation of Posttest Task 1 (Kaprekar) by S5, 

and the investigation of Posttest Task 2 (Sausage) by S9. A dotted line was used to 

help the reader see the pathway from one stage to another stage when the two stages 

were further apart. Metacognitive behaviours were indicated by an inverted triangle  

at the junctures where they occurred. The ITR also shows the transitions between two 

stages, which had been explained in Section 4.4.4(b). Where necessary, it would be 

indicated in the ITR when the next cycle began; if nothing was indicated, it means 

that the student only went through one cycle of investigation. The ITR were 

constructed by extracting the relevant information from the transcripts, such as the 

timings for the start and end of each episode. 
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(a) Posttest Task 1 for S5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Posttest Task 2 for S9 
 
 

Figure 5.2  Investigation Timeline Representations (ITR) 
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The purpose of an ITR is to give an overall picture of the time spent in each stage or 

episode relative to other stages or episodes (i.e. not the exact amount of duration), and 

the sequence of the stages or episodes. For S5, it was observed from her ITR that she 

spent about two minutes to understand the task (U) and then proceeded to the 

Specialising / Conjecturing (S/C) stage. There were three instances of metacognitive 

behaviours during this S/C episode. Then there was a short transition between two 

stages that included an instance of metacognitive behaviour, before her first attempt at 

problem posing (P). She then proceeded to S/C before another transition to her second 

attempt at P. It was observed that most of her metacognitive behaviours occurred 

during the first 10 minutes of her investigation. After that, she spent a long time 

(about 10 minutes) in the S/C stage, with two short instances at P. It could be inferred 

from the ITR that she had formulated at least one conjecture because she then spent 

some time (about five minutes) in the Justifying / Generalising (J/G) stage. Finally, 

she spent the last part of her investigation checking her solution (R) with two 

instances of metacognitive behaviours. Since the checking stage only occurred after a 

problem was solved8, this suggests that she had justified at least one conjecture. She 

probably did not have time to extend the task. 

 

For S9, it was observed from his ITR in Figure 5.2 that he spent about one minute to 

understand the task (U) and then proceeded to the P stage, followed by the stage of 

Using Other Heuristics (H). After that, he went back to the P stage. There are three 

possibilities in this second P episode: (i) he started a new cycle by posing the second 

problem (it does not matter whether he had solved the first problem), (ii) he did not 

solve the first problem, probably because he was stuck, so he tried to think of a 

                                                 
8  As explained in Section 2.2.3(g), a student can check the solution in other stages, but the checking 

stage (R) is only for checking and reviewing the solution after a problem is solved. 
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second problem but failed, thus he went back to the H stage to try to solve the first 

problem (i.e. he was still in the first cycle), or (iii) he solved the first problem and he 

tried to think of a second problem but failed. However, the last possibility is not 

possible since he went back to the H stage, but what did he go back for? Nevertheless, 

there is no way to know whether it is possibility (i) or (ii) in the ITR unless it was 

labelled in the ITR that he started the second cycle during the second P episode (see 

Fig. 5.2). Similarly for the second and third cycle. But for the fourth cycle, he started 

to specialise (S) after going through the Extension (E) stage. This means that he had 

posed a problem to extend in order to generalise, as could also be seen later when he 

went into the Conjecturing (C) stage and the Justifying / Generalising (J/G) stage. 

When he entered the S stage the second time, he was trying another example for the 

same extension, so he was still in the fourth cycle. 

 

The first two data analysis tools, the IPD and the ITR, helped to give a global picture 

of the students’ investigation pathways, which were useful to analyse the data to 

answer Research Question 1. But they are unable to display the types of sub-processes 

and outcomes within each stage, e.g. what sub-processes the students had used to 

understand the task correctly, or what kinds of problems the student had posed, which 

were needed to analyse the data to answer Research Question 2. Therefore, there was 

a need for a third data analysis tool. 

 

5.3 SUMMARY TABLES OF PROCESSES AND OUTCOMES 

 

The students’ sub-processes (which will be called processes in short, unless there is 

confusion between the sub-processes and the main investigation processes) were 

gathered from their thinking-aloud protocols in the transcripts, but their investigation 
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outcomes came from two sources: their answer scripts, and also their thinking-aloud 

protocols which they did not write down in their answer scripts, e.g. a student might 

just verbalise that he or she had observed a pattern without writing it down, then 

found a counter example and rejected the pattern verbally. Since mathematical 

investigation is not just about the final outcome or result, but also the processes such 

as going down a false trail and recovering from it (Jaworski, 1994), there is a need to 

record all the intermediate results. Therefore, the two sources complemented each 

other to give a more complete picture of the students’ outcomes. 

 

Unlike the IPD and ITR which describe a particular student’s pathway, the Summary 

Table of Processes and Outcomes (TPO) displays all the students’ processes and 

outcomes for a particular stage. For example, Table 5.1 shows a TPO used to depict 

the understanding processes and outcomes for Posttest Task 1 (Kaprekar). To 

construct the TPO, there was a need to identify the processes and outcomes in the 

understanding stage. In fact, these processes and outcomes had already been identified 

in the literature review in Section 2.2.3(a), and codes had been developed in the 

coding scheme to code these behaviours, e.g. TE represents the process of trying 

examples (the reader should refer to the Final Coding Scheme in Section 4.6.2 in 

order to understand the codes in Table 5.1). If a student misinterpreted the task, it was 

coded as Made Error or Mistake (EM). Since the processes and outcomes are different 

for each investigation stage, the format of the TPO would be different. Sometimes, it 

was also necessary to construct more than one TPO for each stage because there were 

too many processes and outcomes to show in one table (e.g. see the TPO for the 

pretest tasks in Appendix M). 
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Table 5.1  Understanding Processes and Outcomes for Kaprekar Task 
 

 
Processes Outcomes 

TE RR RT HI MU Total** Understood Misinterpreted 

S1 1 3   1 4   

S2 1     0   

S3 1 2+1+2=5*  1 0+1+1=2 8   

S4 1 2 1 3 1 7   

S5 1 8 1 4  13   

S6 2 7 2 3  12  
Recovered after  

2 min 

S7 1 2+0+3=5 4  0+1+1=2 11   

S8 2 3 4   7  
Recovered after  

2 min 

S9 2 9 6 5 2 22  Did not recover 

S10 1 2+3=5   0+1=1 6   

Total 12 47 18 16 9 90 7 
3 misinterpreted; 

2 recovered  
 

* S3 engaged in RR for 2 + 1 + 2 = 5 times means that there were 3 episodes of understanding the task 
and RR happened 2 times in the first episode, 1 time in the second episode, and 2 times in the third 
episode; 3  RR for S1 means that RR happened 3 times in the first episode. 

** The ‘Total’ column shows the total frequency for RR, RT, HI and MU for each student. 
 

 

5.4 INTER-CODER RELIABILITY TESTS FOR QUALITY OF 

PROBLEMS POSED AND CONJECTURES FORMULATED 

 

There was a need to decide on the quality of certain outcomes, e.g. whether a problem 

posed or a conjecture formulated is trivial or non-trivial. The following shows two 

problems for Posttest Task 1 (Kaprekar; Type A) and two problems for Posttest Task 

2 (Sausage, Type B) obtained from their task analysis in Appendix E: 

 

 First Problem for Kaprekar Task: Is there any pattern in consecutive terms of 

the sequence? [Trivial] 

 Second Problem for Kaprekar Task: Are there numbers that will never appear 

as the second or subsequent terms of any Kaprekar sequence? [Non-trivial] 
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 First Problem for Sausage Task: Find how to cut the 12 identical sausages to 

share them equally among the 18 people. [Trivial] 

 Second Problem for Sausage Task: Find the least number of cuts needed to 

share the 12 identical sausages equally among the 18 people. [Non-trivial] 

 

The first problem for the Kaprekar Task is considered trivial since this is a common 

problem for any task that involves sequences, and the pattern to be observed can just 

be any pattern. The second problem for the Kaprekar Task is considered non-trivial 

since this problem is more specific, and can only be posed after a student has studied 

the sequences and tried to observe a relationship among the terms across the 

sequences. In fact, these terms or numbers are called ‘self numbers’ in literature (see 

task analysis in Appendix E p. 498). The first problem for the Sausage Task is 

considered as trivial since this is a common problem that most people would naturally 

pose because of how the task is phrased: “I need to cut 12 identical sausages so that I 

can share them equally among 18 people. Investigate.” Moreover, the answer to this 

problem can just be any cutting method. The second problem for the Sausage Task is 

considered as non-trivial since this problem requires the students to find a specific 

cutting method and to justify that the method will give the least number of cuts. In 

fact, there is even a general formula for the least number of cuts to share n identical 

sausages equally among m people. However, the reader may disagree with me on the 

above classification of problems as trivial or non-trivial. Thus there was a need for an 

inter-coder reliability test for the classification. 

 

Table K1 in Appendix K shows a sample list of problems given to two coders to 

classify whether each problem is trivial or non-trivial by ticking the appropriate 

column. The problems were obtained from the task analysis in Appendix E. The two 
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coders for this inter-coder reliability test are the same as those for the inter-coder 

reliability test for the coding scheme described in Chapter 4. Tables K2 to K5 in 

Appendix K shows the detailed results of the inter-coder reliability test for the four 

tasks while Table 5.2 below shows a summary of the number of problems for Coder 1 

and Coder 2 that were classified in the same category (either trivial or non-trivial) as 

my classification. Since the inter-coder agreement of 87% is higher than the minimum 

standard of 80% for inter-coder reliability for media messages proposed by Riffe et al. 

(1998), it suggests that the classification of the quality of problems for the four tasks 

is reliable. 

 

Table 5.2  Inter-Coder Reliability Test for Quality of Problems Posed 
 

Task Number of Problems Coder 1 Coder 2 Average 

Pretest Task 1 10 8 9 85% 

Pretest Task 2 8 6 8 87.5% 

Posttest Task 1 10 9 9 90% 

Posttest Task 2 7 7 5 85.7% 

Total 35 30 31 87% 

 
 

Similarly, there was a need for an inter-coder reliability test for the classification of 

the quality of conjectures for the four tasks. Table L1 in Appendix L shows a sample 

list of conjectures given to the same two coders to classify whether each conjecture is 

trivial or non-trivial. The conjectures were obtained from the task analysis in 

Appendix E. Tables L2 to L5 in Appendix L shows the detailed results of the inter-

coder reliability test for the four tasks while Table 5.3 below shows a summary of the 

number of conjectures for Coder 1 and Coder 2 that were classified in the same 

category (either trivial or non-trivial) as my classification. Since the inter-coder 

agreement of 86% is higher than the minimum standard of 80% for inter-coder 
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reliability for media messages proposed by Riffe et al. (1998), it suggests that the 

classification of the quality of conjectures for the four tasks is reliable. 

 

Table 5.3  Inter-Coder Reliability Test for Quality of Conjectures Formulated 
 

Task Number of Conjectures Coder 1 Coder 2 Average 

Pretest Task 1 9 7 8 83.3% 

Pretest Task 2 3 2 3 83.3% 

Posttest Task 1 9 7 9 88.9% 

Posttest Task 2 8 7 7 87.5% 

Total 29 23 27 86% 

 
 

5.5 CONCLUDING REMARKS FOR THIS CHAPTER 

 

Chapter 5 has explained the design of three data analysis tools: the Investigation 

Pathway Diagram (IPD), the Investigation Timeline Representation (ITR) and the 

Summary Table of Processes and Outcomes (TPO). The construction of the IPD and 

ITR was done using the students’ transcripts which had been parsed into episodes 

using the stage codes, and the stage codes had passed the inter-coder reliability test 

for the coding scheme described in the previous chapter. This suggests that the IPD 

and ITR are reliable instruments used to display the students’ actual sequences of 

investigation episodes so that their pathways could be analysed in order to answer 

Research Question 1. Since the quality of the problems and conjectures displayed in 

the TPO had also passed another inter-coder reliability test, it suggests that the TPO is 

also a reliable instrument which could be used to answer Research Question 2, and 

Research Question 3 qualitatively. The development of the fourth data analysis tool, 

the Investigation Scoring Rubric (ISR), to answer Research Question 3 quantitatively, 

will be discussed in Chapter 8. The next part of the thesis, Part Three, will analyse the 

data collected in order to answer the three research questions for the present study. 
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PART THREE:   DATA ANALYSIS AND FINDINGS 
 

 

Part Three of this thesis describes the analysis of data collected to answer the three 

research questions for the present study. It consists of four chapters. Chapters 6-8 will 

answer the three research questions while Chapter 9 will provide some implications of 

key findings for teaching and research. 
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 CHAPTER 6: DATA ANALYSIS OF MATHEMATICAL 

INVESTIGATION PATHWAYS 

 

In this chapter, the 20 sets of students’ thinking-aloud protocols and answer scripts 

obtained from the posttest in the present study will be analysed to describe the actual 

mathematical investigation pathways of the 10 Secondary 2 students across the two 

types of investigative tasks in order to answer Research Question 1. The posttest tasks 

were chosen as they provided a wider range of processes than the pretest tasks to 

examine. This had already been discussed in Section 4.6 when the posttest protocols 

were needed to refine the coding scheme because some behaviours were not found 

among the pretest protocols. 

 

6.1 THE FIRST RESEARCH QUESTION 

 

Research Question 1 is reproduced below: 

 

RQ1: What is the relationship between the investigation pathways of Secondary 2 

students and their outcomes across the two types of investigative tasks? 

 

Scope of Data Analysis 

 

The actual pathways of the students present a macroscopic view of the interactions 

among the main processes across the two types of tasks. But the pathways only show 

how the students progressed from one stage to another, not what the students 

investigated. In mathematical problem solving, if the students cannot find a solution, 

they will not be able to complete the pathway. But is this true for investigation? In 
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other words, if students are unable to find any pattern for an investigative task, is it 

possible for them to complete the pathway? A more general question is whether 

similar investigation pathways imply similar outcomes. Thus there was a need to 

study what the students investigated for similar pathways in order to find out whether 

there is any relationship between the pathways and the outcomes. This will help us to 

understand more fully what a complete or an incomplete pathway indicates. 

 

The chapter will begin by choosing four students to analyse their pathways for 

Posttest Task 1 (Kaprekar, Type A) using their Investigation Pathway Diagrams (IPD) 

and Investigation Timeline Representations (ITR) developed in the previous chapter, 

followed by the use of their thinking-aloud protocols and answer scripts to study what 

they had investigated in order to compare their outcomes with their pathways. This 

way of analysing the data will be repeated for Posttest Task 2 (Sausage, Type B). The 

similarities and differences between the pathways for the two types of tasks will then 

be summarised. 

 

6.2 INVESTIGATION PATHWAYS FOR TYPE A TASKS 

 

In this section, the actual investigation pathways for the 10 students when they 

attempted Posttest Task 1 (Kaprekar, Type A) will be examined. The task is 

reproduced below: 

 

Posttest Investigative Task 1: Add Sum of Digits to Number 

Choose any number. Add the sum of its digits to the number itself to obtain a new 

number. Repeat this process for the new number and so forth. Investigate. 
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A complete investigation pathway for a Type A task is a pathway that reaches at least 

the Justifying / Generalising (J/G) stage. From the students’ thinking-aloud protocols 

for the Kaprekar Task, it was found that 8 of them stopped at the Specialising / 

Conjecturing (S/C) stage, while 2 students (S5,S9) progressed to the J/G stage and the 

Checking (R) stage. None of them went into the Extension (E) stage since extension 

was not expected for a 30-minute investigation of a Type A task. Figure 6.1 shows the 

IPD and ITR for four of the 10 students. The IPD and ITR of the first two students 

(S5,S9) display a complete pathway while those of the other two students (S1,S10) 

show an incomplete pathway. The four students were chosen because their 

investigation outcomes were completely different, which will become clearer at the 

end of the data analysis in this section. Although the first two students (S5,S9) went 

through the complete pathway, their IPD and ITR in Figure 6.1 looked different 

because the first student (S5) went through only one cycle while the second student 

(S9) went through three complete cycles. For the other two students (S1,S10), their 

incomplete pathways looked quite similar except for small variations, which should 

be expected since no two students’ investigations were exactly the same. 

 

As explained in Section 6.1, there is a need to examine what the four students 

investigated in order to find out whether there is any relationship between the 

pathways and the outcomes, so that we can understand more fully what a complete or 

an incomplete investigation pathway indicates. 
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Legends:  The no. of arrows in IPD indicates the no. of times the student went through the pathway. 
 If there was more than one pathway from one stage to another in IPD, the black pathway 

occurred first, followed by the blue pathway and then the red pathway. 
 The icon      in ITR indicates metacognitive behaviour. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) Complete Pathway (S5) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Complete Pathway (S9) 
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(c) Incomplete Pathway (S10) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(d) Incomplete Pathway (S1) 
 
 

Figure 6.1  Mathematical Investigation Pathways for Type A Task 
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(a) Complete Pathway for Student S5 

 

The investigation pathway in Figure 6.1(a) shows that the student (S5) started with the 

Understanding (U) stage and then proceeded to the Specialising / Conjecturing (S/C) 

stage without going through the Problem-Posing (P) stage. From her protocols and 

answer script, it was observed that she tried to understand the task by trying Example 

1 with starting number 12 (see her answer script in Appendix J). Since 12 is divisible 

by 3 but not by 9, then Example 1 is a Type 1a sequence where all the terms and 

differences between consecutive terms are divisible by 3 but not by 9 (the reader 

should refer to the task analysis in Appendix E on page 499 to be familiar with the 

different types of sequences and patterns). She then used the same example to search 

for patterns without posing the general problem. Unfortunately, she made a 

calculation mistake that changed the Type 1a sequence into a Type 2 sequence: she 

wrote 51 + 6 = 56 (not divisible by 3 or 9) when it should be 57 (divisible by 3). So 

she concluded, “I never find the pattern yet.” She proceeded to try Example 2 with 

starting number 23 (see Appendix J), which is a Type 2 sequence. Unfortunately, she 

made another mistake that changed this sequence into a Type 1a sequence: she wrote 

77 + 7 = 84 (divisible by 3) when it should be 70 + 7 = 77 (not divisible by 3 or 9). 

Since she did not find any pattern, she read the given checklist of investigation 

processes (see Appendix H) and monitored her progress. This is the first transition 

between the S/C stage and P stage as shown in the ITR in Figure 6.1(a). 

 

The student then wrote down the general problem: “Find patterns for these numbers.” 

(see Appendix J) Next, she referred to the checklist again and posed Specific Problem 

1 verbally: look for patterns in the sums of the digits of the terms. She went back into 

the S/C stage to search for patterns in Example 2 but failed. She then searched for 
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patterns in Example 1 and observed that the sums of digits are divisible by 3 (this will 

be called her Pattern 1), but she rejected it as the sum of the digits of 56 (her 

calculation mistake described earlier) is not divisible by 3. She went into the second 

transition where she referred to the checklist and analysed the feasibility of some 

approaches in the checklist, but she concluded that she could not ‘draw a diagram’ or 

use ‘guess and check’. She went back into the P stage to pose Specific Problem 2: 

look for patterns in the differences between consecutive sums of digits. She proceeded 

to the S/C stage for the third time: she drew an arc between every two consecutive 

sums of digits in Example 1 and wrote the difference, which was either 3 or 6 (see 

Appendix J). When she came to the last pair and wrote the difference 5, she sensed 

something amiss and said, “Eh, this is …” Then she discovered her first calculation 

mistake. This was a key moment that enabled her to proceed with a long period of S/C 

(see Fig. 6.1a) where she was able to observe various patterns as follows. 

 

First, the student realised that her Pattern 1 (sums of digits divisible by 3) worked for 

Example 1 (Type 1a) but not for Example 2 (Type 2). The different types of examples 

and patterns were discussed in Appendix E on page 499. She then tried Example 3 

(Type 1b) where the starting number 36 is divisible by 9, and observed that each term 

is divisible by 3 (this will be called her Pattern 2a). This pattern is different from 

Pattern 1 because Pattern 1 is a pattern about the sums of digits, but Pattern 2a is a 

pattern about the terms of the sequence. She then realised that each term in Example 3 

is also divisible by 9 (this will be called her Pattern 3). She went back to Example 2, 

but because of another calculation mistake (described earlier) that changed Example 2 

from Type 2 to Type 1a, she modified her Pattern 2a: the terms eventually become 

divisible by 3 (this will be called her Pattern 2b since the structure of this pattern is 

similar to the structure of Pattern 2a). She then tried Example 4 with starting number 
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47. Unfortunately, she made another calculation mistake that changed Example 4 

from Type 2 to Type 1a. But in the next step, she made yet another mistake that 

changed Example 4 back to Type 2 again. So she rejected her Pattern 2b. Then she 

went on to say that all the terms in the sequence are divisible by 3 if the starting 

number is divisible by 3 (this will be called her Pattern 2c). As she was not sure of 

Pattern 2c, she continued to find more terms for Example 3. She observed that all the 

terms are divisible by 9 and then formulated a non-trivial conjecture (this will be 

called her Conjecture 1) as shown in Figure 6.2. The new numbers in Conjecture 1 

refer to the terms in the sequence. In fact, Conjecture 1 was a combination of the Type 

1a and Type 1b ‘multiples’ patterns. 

 

 
 
 
 
 
 

Figure 6.2  Conjecture 1 Formulated by S5 for Kaprekar Task 
 
 

Next, she went into the P stage for the third time (see Fig. 6.1a) and posed Specific 

Problem 3: “But what if … it’s … 6?” The student was able to use her Conjecture 1 as 

a springboard to pose a problem with an analogous result: “If the starting number is 

divisible by 6, does that mean all the terms in the sequence will be divisible by 6?” 

This is called problem posing by analogy, which was advocated by Kilpatrick (1987) 

and discussed in detail during the literature review in Section 2.2.3(h). The student 

proceeded to the S/C stage to try an example and found that the analogous result was 

false. She went back into the P stage for the last time and posed Specific Problem 4: 

“Then what if the sum of digits is 2?” It is puzzling how the sum of digits came into 

the picture. Perhaps because a number is divisible by 3 or 9 if and only if the sum of 
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its digits is divisible by 3 or 9 respectively (divisibility tests for 3 and 9), she might 

think that this might apply to a number divisible by 2. She proceeded to the S/C stage 

for the last time by trying an example with starting number 11 whose sum of digits is 

2 but it is not divisible by 2. She only found the next two terms in the sequence and 

then observed that all these number are odd. So she tried another example with 

starting number 20 whose sum of digits is still 2, but it is divisible by 2 and so is even. 

After finding the next term, she formulated Conjecture 2: “If the starting number is 

odd or even, then the new numbers will be odd or even respectively.” This is clearly 

false if she was to continue her two examples, or she could have also referred to her 

Examples 1 and 2 for counter examples. Instead, she tried to use algebra to prove 

Conjecture 2. This is the first time she went into the Justifying / Generalising (J/G) 

stage (see Fig. 6.1a). She wrote ab  + a + b = 11a + 2b, but was unable to continue, so 

she cancelled her working. 

 

The student tried another example with starting number 21, which is odd, and refuted 

Conjecture 2 when she obtained an even term 30. This is what Lakatos (1976) called 

‘naïve testing’ and is posited in the Justifying (J) stage in the theoretical investigation 

model for cognitive processes described in Section 3.2.1. The student then went back 

to justify Conjecture 1. She re-read the conjecture and immediately provided the proof 

as shown in Figure 6.3. This suggests that she might have prior knowledge of the 

divisibility tests for 3 and 9. She then referred to the checklist which told her to check 

her solution. So she entered into the checking (R) stage (see Fig. 6.1a) by briefly 

glancing through her examples and checking that the relevant numbers were divisible 

by 3 or 9. She also reviewed her solution by saying that she had found the pattern for 

some numbers but she could not find the pattern for the rest. Then the test ended. 
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Figure 6.3  Proof of Conjecture 1 by S5 for Kaprekar Task 
 
 

To summarise, S5 was able to observe the Type 1 ‘multiples’ patterns for the 

Kaprekar Task and to prove that these observed patterns were the actual underlying 

patterns. She was also able to use her Conjecture 1 as a springboard to pose two 

specific problems with an analogous result. The main problem with her investigation 

was the wastage of precious time as a result of her various calculation mistakes that 

changed the patterns in her examples and confused her. Her digression to her 

Conjecture 2, which she rejected later, was also a distraction. 

 

(b) Complete Pathway for Student S9 

 

Let us analyse the investigation pathway of another student (S9) who went through 

three complete cycles. Does that mean he was able to find more underlying patterns 

for the Kaprekar Task than the previous student (S5) who only went through one 

complete cycle? The pathway in Figure 6.1(b) shows that the student (S9) went 

through the first complete cycle starting from the Understanding (U) stage to the 

Checking (R) stage. From his protocols and answer script, it was observed that the 

student tried to understand the task by trying Example 1 with starting number 123. 
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But he made a mistake when he treated the sum of the digits of 123, which is 6, as the 

new number, so he did not know what to add. He decided to monitor his own 

understanding by trying another example “to further understand what the task is trying 

to tell me” (in his own words). Thus he tried Example 2 with starting number 234 and 

faced the same problem when he ended up with 9 whose sum of digits is still 9. He re-

read the task and highlighted the words “its digits to the number itself” in the task 

statement. Then he discovered his mistake that he must add the sum of the digits of 

the number to itself to obtain a new number. Finally, he said, “Ok, now I understand 

the task.” However, he still misinterpreted the task as he did not repeat the process for 

the new number but he chose random starting numbers to repeat the process. 

 

If we just look at the U stage of S9 in his pathway in Figure 6.1(b) and compare with 

that of the previous student (S5) in Figure 6.1(a), we will not be able to see how S9 

struggled to understand the task and how he still misinterpreted the task at the end, 

despite monitoring his own understanding, which was a metacognitive behaviour. 

Moreover, S9 progressed to the Problem-Posing (P) stage by posing the general 

problem of searching for any pattern, which was prescribed as the next logical step in 

the theoretical investigation model for cognitive processes described in Section 3.2.1, 

unlike S5 who skipped the P stage. Yet it was S9 who misinterpreted the task and 

went off in a different direction that his investigation pathway was unable to show. 

 

The student (S9) then went into the Specialising / Conjecturing (S/C) stage by trying 

Example 3, which consisted of different starting 2-digit numbers without repeating the 

process for the new number, and formulating his Conjecture 1 as shown in Figure 6.4. 

After that, he proceeded to the Justifying / Generalising (J/G) stage when he asked, 
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“So now, how do you prove this?” But he tried to test Conjecture 1 using naïve testing 

first. His Example 4 with starting number 22 was a counter example, so he rejected 

Conjecture 1 as shown in the same figure. 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.4  Examples and Conjecture 1 by S9 for Kaprekar Task 
 
 

The student then went back into the S/C stage to modify Conjecture 1 by recognising 

that his conjecture only applied under some special circumstances. The following 

shows his protocols: 

 

“So since my conjecture of all [box up the word ‘all’ in Conjecture 1 and put a 

cross beside it] is wrong, so let us see when does this apply to? … Ok, conjecture, 

I think so it applies to … any two-digit numbers that have its tens, that have its 

tens place an odd one ... Yah, I think so …” [S9; Kaprekar Task] 

 

The protocols show that the student did not just refute a conjecture when he found a 

counter example, but he was able to discern the conditions for which the conjecture 

was false and so he modified the conjecture instead. This is called the reformulation 

of a conjecture as a result of a local counter example by modifying the conjecture, in 

accordance to Lakatos’ mathematical discovery model described in Section 2.2.2(c), 

which is different from the reformulation of a conjecture as a result of a global 

counter example where the conjecture has to be refuted and a new conjecture has to 

Example 4 

Example 3 
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be formulated. The end result was Conjecture 2 as shown in Figure 6.5: “All 2-digit 

numbers, which [sic] tens place is odd, will have a new number that is odd.” He then 

proceeded to the J/G stage to prove this conjecture by reasoning about the sum of odd 

and even numbers as shown in the same figure. This is called justifying by using a 

non-proof argument involving the underlying structure (Mason et al., 1985). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.5  Conjecture 2 and Proof by S9 for Kaprekar Task 
 
 

Next, the student went into the R stage by reviewing his solution and then concluded: 

 

“Ok, that seems not the … real task is wanting me to find. [Turn back to p. 1] So 

… the task is wanting me to find … the pattern. Ok … so I think that my second 

conjecture is a little bit off topic.” [S9; Kaprekar Task] 

 

This was the end of the first cycle for this student (S9) who proved a conjecture about 

a trivial pattern that was not even relevant to the original task because he had 

misinterpreted the task by not repeating the process for the new number. It was unlike 

the complete cycle of the previous student (S5) who proved a conjecture about a non-

trivial pattern relevant to the original task. Thus it is possible for a student to go 
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through a complete pathway for investigation by formulating and justifying a trivial 

conjecture. In other words, a complete investigation pathway for a Type A task does 

not indicate that the student has discovered a non-trivial pattern for the original task. 

 

The student (S9) began the second cycle by going back to the P stage (see Fig. 6.1b) 

to pose Specific Problem 1: find a pattern for two-digit numbers. This time, he 

specialised by making a systematic list of consecutive two-digit starting numbers 

from 11 to 15 as shown in Figure 6.6, and he observed that the difference between 

consecutive new numbers is +2. He skipped the starting numbers 16 to 20, and 

continued from 21 to 22. But he sensed something amiss when he noticed that there 

was only a small increase from the new number 21 to the new number 24 (coded as 

metacognitive awareness as described in Section 4.6.1). So he filled in the gap by 

starting from 20 backwards to 16. Then he observed a big difference of 7 from the 

new number 29 to the new number 22. This became his Conjecture 3 which he had 

difficulty phrasing in words (see Fig. 6.6). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.6  Example 5 and Conjecture 3 by S9 for Kaprekar Task 
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The student continued the same example from the starting number 23 to the starting 

number 30, and observed the same jump of 7 from the new number 40 to the new 

number 33 (see Fig. 6.7 which shows only the last part of his working). He proceeded 

to prove Conjecture 3 by using the underlying structure to explain why there is an 

increase of 2 for the new number when the starting number goes from 11 to 19 (see 

Fig. 6.6): there is an increase of 1 in the starting number, and an increase of 1 in the 

ones digit in the sum of its digits, thus resulting in a total increase of 2 for the new 

number. Similarly, he used the underlying structure to explain why there is a decrease 

of 7 for the new number when the starting number goes from 29 to 30 (see Fig. 6.7): 

there is an increase of 1 in the starting number, and an increase of 1 in the tens digit, 

but a decrease of 9 in the ones digit in the sum of its digits, thus resulting in a total 

decrease of 7 for the new number. As the reader should have realised by now, the 

explanation in words is really too long compared with the visual explanation using 

arrows in Figures 6.6 and 6.7, so the student had difficulty phrasing his proof in words 

as shown at the bottom of Figure 6.7. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.7  Proof of Conjecture 3 by S9 for Kaprekar Task 
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The student reviewed his solution and realised that he had performed the process only 

once for a starting number. Then he went into the third cycle (see Fig. 6.1b) by posing 

Specific Problem 2, “So what about 2 times for 2-digit numbers?” What he meant was 

that he wanted to perform the process twice for two-digit starting numbers in order to 

find some patterns. He then specialised by making a systematic list as shown in 

Figure 6.8. He observed that there is an increase of 4 in consecutive new numbers, 

except when the starting number goes from 19 to 20, where there is a decrease of 14 

from the new number 40 to the new number 26. But he did not notice a serious 

mistake: when the starting number goes from 14 to 15, which he did not try, there is 

already a decrease of 5 from the new number 29 to the new number 24. Nevertheless, 

he formulated Conjecture 4, which was at a higher level of generalisation, because he 

tried to apply the pattern to the 2-digit numbers where the process was performed n 

times. As usual, he had difficulty phrasing his conjecture as shown at the bottom of 

the same figure. He then tried to test his conjecture using naïve testing by performing 

the process for 3 times when the test ended. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.8  Example 6 and Conjecture 4 by S9 for Kaprekar Task 
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To summarise, S9 was able to observe the underlying patterns and explain why the 

patterns work. But he misinterpreted the task by not repeating the process for the new 

number, so the patterns that he had observed were not the patterns for the original 

task. Ernest (1991) described investigation as the exploration of an unknown land 

without any fixed destination. This means that the students could investigate anything 

on the unknown land. But what happens if the students misinterpreted the task? Using 

Ernest’s metaphor, this would mean that the students were lost and somehow got off 

the unknown land. Now, what happens if the students then went across the sea and 

discovered a beautiful island? Are we going to say that their discovery is invalid? 

From another perspective, going off the unknown land means extending the task by 

changing the given, which will usually create a new task with different patterns for 

Type A tasks, as explained in Section 2.2.3(h). But the issue was that S9 did not 

extend the task: he misinterpreted it. I understand that different people might have 

different opinions about whether his discovery should be considered valid or invalid. 

But what was evident was that he had demonstrated the ability to find and explain the 

underlying patterns of the misinterpreted task, even to the extent of formulating a 

conjecture at a higher level of generalisation. 

 

Although the two students (S5,S9) went through the complete investigation pathway, 

their investigation outcomes were totally different. In other words, a complete 

investigation pathway does not indicate that the student has found the underlying 

patterns of the original investigative task. 
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(c) Incomplete Pathway for Student S10 

 

We will now analyse an incomplete investigation pathway of a student (S10). The 

pathway in Figure 6.1(c) shows that the student started with the Understanding (U) 

stage and then proceeded to the Specialising / Conjecturing (S/C) stage without going 

through the Problem-Posing (P) stage. From her protocols and answer script, it was 

observed that the student tried only one example with starting number 23 (Type 2 

sequence) to understand the task. Figure 6.9 shows the first part of her working. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.9  First Part of Only Example of S10 for Kaprekar Task 
 
 

The student then proceeded to the S/C stage by using the same example to search for 

patterns. When she could not find any pattern after four minutes into the investigation, 

she went back to the U stage (see Fig. 6.1c) by re-reading the task and checking that 



 
 

238

she had performed the operations as stated in the task statement correctly. This is the 

metacognitive process of monitoring her own understanding. The student realised the 

importance of this process right at the start of the investigation to ensure that she did 

not go down a false trail due to any misinterpretation or incorrect carrying out of the 

operations. She then spent the remaining 25 minutes of her investigation in the S/C 

stage. When she was searching for patterns, she missed out the difference 5 between 

the starting number 23 and the second term 28. Instead, she started with the difference 

10 between the second term 28 and the third term 38 (see Fig. 6.9). It does not matter 

as the pattern will not be affected. At first, she observed a 10-11-13-8-7-14 repeating 

pattern in the differences between consecutive terms (this will be called her Pattern 1), 

but she soon found exceptions such as 2, 4, 5, 16, 17 and 19. About 14 minutes into 

the test, she made a crucial observation about the relationship between the 

‘exceptions’ and the numbers in the 10-11-13-8-7-14 pattern: 

 

19 = 10 + 9, 

11 =   2 + 9, 

13 =   4 + 9, 

17 =   8 + 9, 

16 =   7 + 9, 

14 =   5 + 9. 

 

In other words, the basic pattern is actually the 10-2-4-8-7-5 repeating pattern9, and 

the exceptions are actually 19, 11, 13, 17, 16 and 14, which are different from the 

corresponding numbers in the basic pattern by 9 (this will be called her Pattern 2). 

                                                 
9  Actually, the basic pattern is the 1-2-4-8-7-5 repeating pattern where 10 = 1 + 9, but the student had 

not obtained the number 1 before, so she was unable to make such an observation. 
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This is another way of looking at the Type 2 ‘digital roots’ pattern10 (the reader 

should refer to the task analysis in Appendix E on page 500 to be familiar with the 

different patterns for this task). However, the student did not see this as the underlying 

pattern. So she continued finding more terms to search for patterns. About 27 minutes 

into the investigation, she decided to organise her working in another way as shown in 

Figure 6.10, but she started the list from 7 instead of 10, which will not affect the 

pattern anyway. Although the consecutive differences were shown listed vertically, 

i.e. 7, 5 + 9, 10, 2, 4, 8, etc., she actually wrote the list row by row, i.e. she wrote 7, 7 

+ 9, 7 in the first row, followed by the second row, etc. 

 

 

 
 
 
 
 
 
 
 
 
 
Figure 6.10  Discovery of Most Complicated Pattern for Kaprekar Task by S10 

 
 

The following shows the student’s protocols as she filled in the numbers row by row 

in Figure 6.10. Notice that she said “oh” after writing the three numbers in the first 

row, which suggests that she might have observed something from organising her 

working in the manner shown in the same figure. 

 

                                                 
10  Provided the differences between consecutive terms are less than 20. If the differences are more than 

20, e.g. 22 = 4 + 9 + 9, the pattern will be different from, e.g. 13 = 4 + 9, but the digital roots of both 
13 and 22 are still 4. 

mistake
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“So … is there any pattern? Ok … 7 … then is … 7 + 9 … 7 … 1, 2, 3 … [Start 

writing pattern row by row] 7, 7 + 9, 7 … oh … is … 5 + 9, 14 … 5 + 9, 5 … 10, 

10 + 9, 10 … 2, 2 + 9, 2 + 9 … 4, 4 + 9, 4 + 9 … 8, 8 ” [S10; Kaprekar Task] 

 

Unfortunately, the invigilator interrupted her at this juncture to inform her that she 

had one minute left for the test. She continued to write 8 + 9 in the second last row, 

paused for 4 seconds, and wrote the last line wrongly, when the pattern should have 

gone back to the first row. In particular, the last number 5 + 11 = 16 messed up the 

entire pattern, which caused her to say, “16 … oh, s***!” Then she checked her 

working briefly and asked, “What is wrong?” before the test ended. In other words, 

the student had actually observed the Type 2 ‘digital roots’ pattern, but she made a 

serious mistake while writing down her conjecture when she was interrupted. 

 

To summarise, S10 was able to observe the much more complicated Type 2 ‘digital 

roots’ pattern. But her investigation pathway was incomplete, unlike the complete 

pathway of S5 who only discovered the less complicated Type 1 ‘multiples’ pattern. 

Thus a complete investigation pathway just indicates that the student has progressed 

to the Justifying / Generalising (J/G) stage. In other words, it is possible for a student 

with an incomplete investigation pathway to discover a much more complicated 

pattern than another student with a complete investigation pathway. 

 

(d) Incomplete Pathway for Student S1 

 

We will now analyse an incomplete pathway from another student (S1). The pathway 

in Figure 6.1(d) shows that the student started with the Understanding (U) stage and 

then proceeded to the Specialising / Conjecturing (S/C) stage without going through 
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the Problem-Posing (P) stage. From his protocols and answer script, it was observed 

that he tried Example 1 with starting number 21 (Type 1a sequence) to understand the 

task. Figure 6.11 shows the first part of his working. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.11  First Part of Example 1 of S1 for Kaprekar Task 
 
 

When the student obtained the new number 30, he immediately proceeded to the S/C 

stage to search for patterns, but was unable to find any. He then specialised some 

more using the same example. After reaching the new number 96, he went back to the 

P stage to pose the general problem: “What is the pattern?” He proceeded to the S/C 

stage again to search for patterns, but was unable to find any. He entered the P stage 

the second time by saying that he was trying to find a formula for the general term of 

the sequence by starting from the first term in this manner: 

 

21,   21 + 3,   21 + 3 + 6,   21 + 3 + 6 + 3, … (see his working in Fig. 6.12 later). 

 

This means that he needed to find a pattern for the sums of digits: 3, 6, 3, … He then 

went into the S/C stage for the rest of the investigation. He soon observed that the 

consecutive sums of digits repeat in this manner: 3, 6, 3, 6, 12, 6, 12, 15, 12, 15. He 
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specialised some more using the same example and found that the pattern repeated for 

the second time. He continued finding more terms, but then he discovered some 

counter examples for the sums of digits as shown in bold below: 

 

  3,     6,      3,      6,     12,      6,     12,    15,    12,    15, 

  3,     6,      3,      6,     12,      6,     12,    15,    12,    15, 

  3,     6,      3,      6,     12,      6,     12,    15,    12,    15, 

12,     6,    12,      6,     12,    15. 

 

He then checked his working and realised that “the sequence got some problem” (in 

his own words), so he rejected the pattern. He was not able to observe the Type 1a 

‘multiples’ pattern: the sums of digits are divisible by 3 but not by 9 if the starting 

number is divisible by 3 but not by 9. In fact, there is also a Type 1a ‘digital roots’ 

pattern: the digital roots of the differences between consecutive terms of a Type 1a 

sequence will alternate between 3 and 6 (see the task analysis in Appendix E on page 

500), although the students were not expected to observe the ‘digital roots’ pattern. 

Moreover, there is a simple argument that the differences between consecutive terms 

will never repeat. Notice first that this is an increasing sequence because the next term 

is the sum of the previous term and its digits. This means that the term will get bigger 

and bigger until it reaches a number with so many digits that the sum of its digits will 

be more than 15. In fact, when the pattern started to fail in the above example, the 

numbers had become bigger until the 3’s were replaced by 12’s. Of course, it is still 

possible for 3 to appear again later, e.g. if the bigger number has many zeros. 

Although the student realised that the sums of digits did not repeat, he still attempted 

to describe the terms of the sequence in terms of the first term as shown in Figure 

6.12. However, he concluded verbally that the sequence did not repeat the third time. 
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Figure 6.12  Conclusion of S1 for Kaprekar Task 
 
 

The student then tried Example 2 with starting number 32 (Type 2), but he did not go 

far because he only had 4 minutes left. Again he wrongly believed that the sums of 

digits would repeat, but he soon found a counter example. He was puzzled and he 

asked, “How come it’s like that?” Then the test ended. To summarise, S1 was able to 

see that there were two types of sequences, but he was not able to describe their 

underlying patterns. He kept thinking that the sums of digits would repeat, but he was 

not able to use the simple argument described above to reason that the sums of digits 

would never repeat in that manner. 

 

(e) Incomplete Pathways for the Remaining Six Students 

 

The remaining 6 students (S2-S4,S6-S8) did not complete their investigation pathway, 

just like S1 and S10 described earlier in this section. None of them progressed to the 

Justifying / Generalising (J/G) stage as they were unable to observe the underlying 

patterns. Table 6.1 shows a summary of their investigation pathways and outcomes 

. 
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Table 6.1  Summary of Pathways and Outcomes for Type A Tasks 
 

 Non-trivial Outcomes 
Trivial Outcomes / 

Misinterpreted Task 

Complete Pathway S5 S9 

Incomplete Pathway S10 S1, S2-S4, S6-S8 
 

* Students in bold are those whose transcripts have been described in detail earlier 

 

One would expect some variations in their investigation because no two students’ 

outcomes would be exactly the same. For example, S3 and S8 had actually observed 

the Type 1a ‘multiples’ pattern (the reader should refer to the task analysis in 

Appendix E to be familiar with the different types of patterns and sequences), unlike 

all the other students except for S5 who completed her pathway; but unlike S5, the 

two students (S3,S8) did not realise that this was the underlying pattern and so they 

kept trying to find how the sums of digits (or the differences between consecutive 

terms) would repeat but failed. 

 

Just like S10, S4 and S6 were the other two students who tried to find a pattern for a 

Type 2 sequence, but unlike S10, they were unable to observe the ‘digital roots’ 

pattern: S4 made a mistake towards the end that changed the Type 2 sequence into a 

Type 1b sequence, while S6 made an unusual observation: she thought that the pattern 

was that the difference between two consecutive terms is 10, followed by 4 terms, and 

then the pattern repeats, but it was incorrect (see Figure 7.4 on page 298 in Section 

7.2.4 to understand what her pattern means). 

 

The last two students, S2 and S7, tried to find a pattern in all the three types of 

sequences (Types 1a, 1b and 2), but they were also not successful: S2 tried to fit the 

same pattern in all the three types of sequences, but in the end, he realised that each 
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type of sequences has its own pattern although he could not find it; S7 exhibited the 

most instances of metacognitive behaviours at 14, but these behaviours were not 

effective in helping her observe any pattern. In fact, S7 engaged in metacognitive 

behaviours more often than S5, who completed the investigation pathway but engaged 

in only 11 instances of metacognitive behaviours. 

 

(f) Summary of Mathematical Investigation Pathways for Type A Tasks 

 

Eight out of the 10 students did not complete the investigation pathway for the 

Kaprekar Task (Type A): they stopped at the Specialising / Conjecturing (S/C) stage 

because they were unable to observe the underlying patterns. Only 2 students (S5,S9) 

completed the investigation pathway: they reached the Justifying / Generalising (J/G) 

stage and correctly proved a non-trivial conjecture each. However, it was discovered 

that the pathways of the students did not tell much about their outcomes. Two 

students could have similar pathways but they could have investigated totally 

different things. For example, both S5 and S9 went through the complete investigation 

pathway, but S9 misinterpreted the task and observed patterns that are different from 

those for the original task, while S5 understood the task correctly and discovered the 

Type 1 ‘multiples’ pattern. Similarly, the inability to complete the investigation 

pathway does not mean that the students were poor in their outcomes. For example, 

S10 was stuck in the S/C stage for most of her investigation but she discovered the 

Type 2 ‘digital roots’ pattern, which is a lot more complicated than the Type 1 

‘multiples’ pattern found by S5 who had completed her pathway. 
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6.3 INVESTIGATION PATHWAYS FOR TYPE B TASKS 

 

In this section, the actual investigation pathways for the 10 students when they 

attempted Posttest Task 2 (Sausage, Type B) will be examined. The task is 

reproduced below: 

 

Posttest Investigative Task 2: Sausages 

I need to cut 12 identical sausages so that I can share them equally among 18 

people. Investigate. 

 

Since students are expected to extend a Type B task in order to generalise, a complete 

investigation pathway for a Type B task is a pathway that reaches at least the 

Justifying / Generalising (J/G) stage. This is similar to the complete pathway for a 

Type A task, but the difference is that a student can enter the Justifying (J) stage for a 

Type B task without generalising (G) because he or she can formulate a conjecture 

that is not a general result by using other heuristics and then justify it, as posited in the 

theoretical investigation model of cognitive processes described in Section 3.2.1. 

 

From the students’ thinking-aloud protocols for the Sausage Task, it was found that 

all of them extended the task, but only 5 students (S2-S4,S8,S9) entered the J/G stage. 

Figure 6.13 shows the Investigation Pathway Diagrams (IPD) and Investigation 

Timeline Representations (ITR) for four of the 10 students. The IPD and ITR of the 

first two students (S2,S9) display a complete pathway while those of the other two 

students (S1,S7) show an incomplete pathway. The four students were chosen because 

their investigation outcomes were completely different, which will become clearer at 

the end of the data analysis in this section. 
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Legends:  The no. of arrows in IPD indicates the no. of times the student went through the pathway. 
 If there was more than one pathway from one stage to another in IPD, the black pathway 

occurred first, followed by the blue pathway and then the red pathway. 
 The icon      in ITR indicates metacognitive behaviour. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (a) Complete Pathway (S9) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Complete Pathway (S2) 
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(c) Incomplete Pathway (S1) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(d) Incomplete Pathway (S7) 

 
Figure 6.13  Mathematical Investigation Pathways for Type B Task 
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(a) Complete Pathway for Student S9 

 

The investigation pathway in Figure 6.13(a) shows that the student (S9) went through 

the first cycle from the Understanding (U) stage to the stage of Using Other Heuristics 

(H). From his protocols and answer script, it was observed that he posed Problem 1 

after understanding the task: “How do I share 12 sausages with 18 people?” But his 

idea of how to share was not how to cut since he solved the problem by finding the 

fraction of sausage each person will receive, which is 12/18 = 2/3. This was the end of 

the first cycle as he had finished solving the problem that he had posed. He went into 

the second cycle starting from the Problem-Posing (P) stage to the H stage (see Fig. 

6.13a). He wanted to find out why the method for solving Problem 1 worked, so he 

posed11 Problem 2: “How do I calculate the amount of sausages per person?” Then he 

used the formula ‘amount of sausages divided by amount of people’ to obtain 12/18 = 

2/3. This was the end of the second cycle. 

 

The student went into the third cycle starting from the P stage, but this time he ended 

the cycle at the Extension (E) stage. He posed Problem 3 verbally: “How many times 

did I need to cut the sausages?” He then discussed two methods: cut each sausage into 

3 equal parts (called Cutting Method A or the Usual Method in the task analysis of the 

Sausage Task in Appendix E), and cut each sausage at the 2/3-mark to divide the 

sausage into a 2/3 part and a 1/3 part (called Cutting Method B or the Shortest 

Method). In the end, he found that the least number of cuts required to share the 12 

sausages equally among the 18 people is 12, but he did not realise that this is only a 

conjecture that needs to be proven. Figure 6.14 shows his solution for Problem 3. 

                                                 
11  This was called Problem 2 because he said so himself, and the start of the second cycle was based on 

the start of his Problem 2. At a later stage, he realised that Problem 2 was actually not a problem but 
an explanation of why the method of solution for Problem 1 worked. 
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Figure 6.14  Cutting Method A for Example 1 of S9 for Sausage Task 

 
 

Although the student did not explicitly pose the intended problem of finding the least 

number of cuts needed to share 12 sausages equally among 18 people, he ended up 

doing so when he solved Problem 3 above. He then decided to extend the task to find 

the least number of cuts for different numbers of sausages. After that, he reviewed his 

previous solutions and realised that his Problem 2 was actually not a problem, but an 

explanation of why the method of solution for Problem 1 worked. So he actually 

reversed the order of the Checking (R) stage and the E stage in the theoretical 

investigation model for cognitive processes by extending the task before checking his 

previous solutions. This was the end of the third cycle. 

 

The student then went into a fourth cycle (see Fig. 6.13a). Unlike the previous cycles 

where he only used other heuristics (H), in this cycle, the student also engaged in 

specialising (S), conjecturing (C) and justifying (J) because he extended the task in 

order to generalise (G). He began with Example 2 (specialising): share 10 sausages 

equally among 18 people (the original task, where 12 sausages were shared equally 

among 18 people, was counted as Example 1). But in order to find the least number of 
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cuts for Example 2, he needed to use other heuristics (H) again. This would lead to the 

formulation of a conjecture (C) later. Figure 6.15 shows his working for Example 2. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.15  Example 2 of S9 for Sausage Task 
 
 

In Example 2, the student first found that the fraction of sausage each person will 

receive is 5/9. He then drew 5 sausages and cut them accordingly. After cutting all the 

5 sausages, he was able to divide them equally with no remainder. So he forgot that 

there were actually 10 sausages and 18 people, not 5 sausages and 9 people. Thus he 

wrongly believed that there were only 8 cuts when it should be 16. He tried to find a 

pattern by looking at Example 1 shown in Figure 6.14 and then he observed a pattern 

based on the 2 sausages and 3 people in the figure: the numerator for the fraction of 

sausage each person will receive is the number of sausages, while the denominator 

minus 1 is the least number of cuts. His protocols from the moment he started to 

search for patterns in Example 1 in Figure 6.14 until he made this discovery are given 

below, but there was no indication of how he ever thought of linking the denominator 

of the fraction to the least number of cuts just by subtracting 1. 
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“Why is it 8 cuts? Um … from what you can see … if you actually notice … the 

number of sausages … for the number of cuts, it is actually [point pen at 2/3 in 

first sausage in Example 1 as shown in Fig. 6.14], see that there is, this is the 

fraction, right [box up 5/9 in Example 2 as shown in Fig. 6.15]? Fraction is 

actually … this is also a fraction [box up 2/3 in Example 1] so [clear his throat] in 

fact, the number of sausages is the top one, ah, which is quite true. The number of 

cuts [draw box around 3 for 2/3 in Example 1] is the denominator minus 1 [write 

beside denominator 3: – 1]. This is also [draw box around 9 for 5/9 in Example 2 

and write beside denominator 9: – 1]. It is the same, right?” [S9; Sausage Task] 

 

As shown in the above protocols, he made the same link to Example 2 by subtracting 

1 from the denominator of 5/9 to give 8 cuts. After that, he tried to prove this 

conjecture by using some reasoning for about two minutes but failed. Then he decided 

to use algebra: x sausages and y people. He said that he wanted to derive a formula for 

the least number of cuts in terms of x and y by using the fraction of sausage each 

person will receive, which is x / y. In other words, he had changed his extension from 

finding the least number of cuts for different numbers of sausages to finding the least 

number of cuts for different numbers of people as well. Then he discovered his 

mistake in Example 2: the least number of cuts is 16 since there are 10 sausages and 

18 people, not 5 sausages and 9 people. He struggled to express the least number of 

cuts in terms of x and y for about two minutes and then he realised the main problem: 

 

“That is the problem. You cannot use x … number of sausages … when it is in 

reduced form. How do I write it? How do I write it while it is in reduced form?” 

[S9; Sausage Task] 

 

What he meant is when the fraction of sausage each person will receive is reduced to 

the lowest terms, the numerator might no longer be x, e.g. x / y = 10/18 = 5/9 in 

Example 2, where the numerator is now 5 and not equal to x, which is 10. This means 
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that he had difficulty finding the least number of cuts in terms of x and y since he 

needed the fraction in the lowest terms. After struggling for another 1.5 minutes, the 

following shows his protocols leading to the discovery of the formula for the least 

number of cuts needed to share x sausages equally among y people: y  HCF (x,y). 

 

“How do I derive a formula for this? … The formula, ah … hard leh because it is 

in a fraction, and fractions sometimes it can be improper. Some fractions can be 

bigger and they need to be reduced. Okay. When I reduce the number of cuts …  

Eh, wait! I think I saw something, ah. [Flip to p. 2] Yah! [Underline: 18] 18 

people and [turn back to p. 3] there are 16 cuts. So how should I say about this? 

There are 18 people and 16 cuts … Um … how should I say about this? Eh … 

hey, hey, hey, hey, hey, hey … hey, I found out something! … The HCF [write: 

HCF] which is the highest common factor [continue writing] for x & y [stop 

writing]. Then we … is the HCF for … this one [draw brackets around: HCF for x 

& y]. Wait, I found out something! There are a total of 18 people, right? But there 

are 16 cuts [write: 18 ppl, 16 cuts] is minus 2 [draw arrow to link 18 and 16 and 

write: – 2]. It is exactly the [start writing] HCF for x & y [stop writing]. 

Okay, so we can find out something, right? So the formula is just a conjecture ah. 

The [start writing] Formula is [stop writing] x, eh, no. If I have not remembered is 

y [continue writing] y – (HCF of x & y) [stop writing].” [S9; Sausage Task] 

 

The student first tried to link 16 cuts and 18 people by finding the HCF of these two 

numbers, which is 2. Then he realised that 18  2 = 16, just like what he did for 9  1 

= 8 earlier. In this way, he did not use the fraction in the lowest terms but the original 

fraction x / y. This means that he could relate the least number of cuts to x and y. But 

it was still not clear from his protocols how he ended up with 18  2 = 16. This is a 

strange way of linking HCF(10,18) = 2 to 16 and 18 by subtraction, as the arithmetic 

operations for this kind of sharing problems are often multiplication and division, not 

addition or subtraction. Although this idea might follow from what he did for 9  1 = 

8, the question remains as to why he could think of doing 9  1 = 8 in the first place. 



 
 

254

Unlike his solution to Problem 3 where he did not realise that it was only a conjecture, 

this time round he recognised that “the formula is just a conjecture” as shown in the 

protocols above. He decided that he should “do more examples so that I can be more 

sure [sic] that my conjecture is true”. So he tried Example 3 (specialising): share 12 

sausages equally among 16 people. This was not considered the start of another cycle 

since the fourth cycle had not ended as he had not solved his extension. He used other 

heuristics (H) to solve Example 3 and then entered the C stage by verifying that his 

conjecture was still correct. Next, he entered the J/G stage to prove his conjecture, 

which was a general result, by using reasoning, but he failed. Then the test ended. 

 

To summarise, the student (S9) had done very well to obtain the general formula for 

the least number of cuts. As the formula was not easy to obtain, the students were not 

expected to find it: they were only expected to specialise systematically for different 

numbers of sausages and / or people, and to try to find the formula by searching for 

patterns. But the student (S9) only used two random examples to search for patterns 

and he found the general formula. Although it was not clear from his protocols how 

he managed to do that, a parallel could be drawn about his solution and the formal 

proof for the formula (the reader should refer to Appendix E on page 509 to be 

familiar with the main idea behind the proof). We will just consider Case 2 where the 

number of sausages n is less than the number of people m. If n and m are co-primes 

(Case 2a), the least number of cuts is m – 1. The main idea is to arrange all the 

sausages in a row and treat it as one long sausage as shown in Figure 6.16. Since there 

are m people, the least number of cuts must be m – 1, provided that the cuts do not 

coincide with the gaps between the sausages, which is true if n and m are co-primes. 

Flash back to Example 2 in Figure 6.15 when S9 made a mistake and cut 5 sausages 

for 9 people, instead of 10 sausages for 18 people in his extension. Notice that he cut 
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the sausages from the first one to the last one row by row, as if they were arranged in 

a row. Since 5 and 9 are coprimes, his mistake for Example 2 is actually Case 2a. 

 

 
 

 

 

 
 

Figure 6.16  Proof of General Formula for Sausage Task 
 
 

After the student discovered that it should be 10 sausages and 18 people, where 10 

and 18 are not coprimes (Case 2b in formal proof), this scenario can be treated as 2 

sets of the 5 sausages in Figure 6.15. Since he had found that the formula for the least 

number of cuts for the 5 sausages and 9 people is m – 1 = 9 – 1 = 8, the formula for 

the 10 sausages and 18 people can be viewed as 2(m – 1) = 2m – 2 = m' – HCF(n',m') 

= 18 – HCF (10,18) = 18 – 2 = 16, which is essentially the idea behind the proof for 

Case 2b, although this might not be how the student discovered that 2 = HCF (10,18). 

Thus what the student had done was actually how a person can discover the formula 

by using the underlying structure of the 5 sausages and 9 people, where 5 and 9 are 

coprimes (Case 2a), to generalise to Case 2b, where n' and m' are not co-primes. This 

is what Mason et al. (1985) called the use of the ‘underlying structure’ to explain why 

a proof works, or what Pólya’s (1957) and Lakatos (1976) called the use of ‘heuristic 

reasoning’ as a scaffold to construct a formal proof (see Section 2.2.3e). 

 

This will become clearer if one considers a ‘counter example’ of how I initially did 

this investigation, which will not lead to the general formula. Figure 6.17 shows how I 

gap gap gap 

cut cut cut cut cut cut 
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cut the 5 sausages for the 9 people: since each person will receive 5/9 of a sausage, I 

just cut each sausage at the 5/9-mark to give to 5 people first; then I cut the 4/9 that 

remains of the last sausage into 4 equal parts, so that the remaining 4 people will each 

receive 4/9 + 1/9 = 5/9 part. Thus the least number of cuts is 5 + 3 = 8. Notice that the 

underlying structure of this cutting method is addition, unlike the subtraction structure 

of S9’s method: 9 – 1 = 8. Since the structure of the general formula is also 

subtraction, my method will not lead me to discover the formula. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6.17  Another Cutting Method for Sausage Task 

 
 

It is interesting to note that all the other 9 students did not cut the sausages in the 

manner that S9 did it. For example, all the other 4 students (S1, S4,S8,S10), who used 

Cutting Method B for the original task, cut the sausages at the 2/3-mark in a way 

similar to how I did it in Figure 6.17. Only S9 arranged the sausages in a row and cut 

from left to right, as shown in Figure 6.14 above, where the second sausage was cut at 

the 1/3-mark instead of at the 2/3-mark. This probably explains why all the other 

students did not discover the formula. 

 

5/9-mark 
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(b) Complete Pathway for Student S2 

 

Let us now analyse the investigation pathway of another student (S2) who reached the 

Justifying / Generalising (J/G) stage during the extension of the Sausage Task. Does 

that mean that his investigation outcomes will be quite similar to those of the previous 

student (S9)? The pathway in Figure 6.13(b) shows that the student (S2) went through 

the first cycle from the Understanding (U) stage to the Checking (R) stage without 

entering the Problem-Posing stage (P). From his protocols and answer script, it was 

observed that he did not pose any specific problem, but he just went ahead to find 

how to cut the 12 sausages. He said that “the simplest way” (in his own words) would 

be to cut each sausage into 18 equal parts (called Cutting Method C in the task 

analysis of this task in Appendix E, which the students were not expected to use, as it 

is a long method). Figure 6.18 shows how he drew and cut a sausage into 18 equal 

parts. 

 
 

 
 
 

 
Figure 6.18  Cutting Method C of S2 for Sausage Task 

 
 

In the process of cutting, he found the total number of cuts without posing this as a 

problem. He went into the R stage to review his solution and concluded that the 

cutting method was too troublesome. He then entered the P stage in the second cycle 

(see Fig. 6.13b) by posing the problem of finding the least number of cuts explicitly, 

which was the intended problem for this task. He proceeded into the stage of Using 

Other Heuristics (H) by finding the fraction of sausage each person will receive. But it 

still took him quite a while to figure out that he could cut each sausage into 3 equal 



 
 

258

parts, which is Cutting Method A, and he also found that the total number of cuts was 

24. He did not discover Cutting Method B that gives the least number of cuts at 12. 

Instead, he wrongly accepted that 24 cuts was the least number of cuts because he did 

not try to prove it but went on to extend the task by changing the given to 3 sausages 

and 20 people respectively (Extension 1). 

 

He then went into the H stage in the third cycle to solve his extension by finding how 

to cut the sausages, and the amount of sausages each person will receive. Because the 

numbers 3 and 20 are co-primes, it was very natural for him just to cut each sausage 

into 20 equal parts. Then he just swapped the two numbers around to 20 sausages and 

3 people (Extension 2). This time, he went into the H stage in the fourth cycle to find 

the amount of sausages each person will receive, without even finding the cutting 

method. He then reviewed (R) his solutions and realised that it was “just simple 

division” (in his own words). What he meant was that the amount of sausages each 

person will receive could be found by using a simple division. Next, he tried to think 

of other extensions but he was stuck. There was a period of hesitation (coded as X for 

the stage code and shown as a transition in between stages in the ITR in Fig. 6.13b) 

for about 2 minutes. Suddenly, he entered the Conjecturing (C) stage by writing down 

the general formula for sharing things equally as shown in Figure 6.19. 

 

 
 
 
 

 
Figure 6.19  General Formula for Sharing by S2 for Sausage Task 

 
 

He treated this formula as a conjecture as his subsequent protocols show that he was 

unsure of the formula. Then he entered another period of hesitation (X) as he did not 
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know what to do next. In the end, he extended the task for the third time by randomly 

changing the given to 10 sausages and 17 people respectively (Extension 3). So he 

entered the H stage in the fifth cycle by using the above general formula to find the 

fraction of sausage each person will receive. He then decided to test the formula by 

changing the context of the original task from sharing sausages to sharing the usage of 

a computer among 9 brothers over one week, thus entering into the Justifying / 

Generalising (J/G) stage. He found that each brother will get to use ‘up to 18 3
2  hours 

of computer’ by dividing 7 days  24 hours by 9. In the end, he concluded: 

 

“So it’s proved that, I think it does not only work on food stuff … [start writing] 

works on other things with numerical value [stop writing].” [S2; Sausage Task] 

 

However, there was no need to prove the formula in the first place since the formula 

was derived based on simple reasoning that the student had learnt in primary school 

mathematics on fractions. In the end, he wrongly accepted the formula as true based 

naïve testing. He then entered the R stage to check all his solutions. 

 

To summarise, the student (S2) did not do well for the investigation for two main 

reasons: (i) he was unable to discover Cutting Method B that gives the least number 

of cuts, and (ii) he did not extend the task to generalise the least number of cuts, but 

he went on to find a trivial formula for sharing n items equally among m people, 

unlike the previous student (S9) who found a non-trivial general formula for the least 

number of cuts. Thus the two students (S2,S9) actually went in totally different 

directions in their investigation even though both of them completed their pathway. In 

other words, a complete investigation pathway does not indicate that a student has 

found any non-trivial result for an investigative task. 
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(c) Incomplete Pathway for Student S1 

 

We will now analyse an incomplete investigation pathway of a student (S1). The 

pathway in Figure 6.13(c) shows that the student went through the first cycle from the 

Understanding (U) stage to the Problem-Posing (P) stage, followed by the stage of 

Using Other Heuristics (H). From his protocols and answer script, it was observed 

that he read the task statement only once and immediately posed the problem of 

finding how to cut the 12 sausages. Then he thought of cutting each sausage into 3 

equal parts (Cutting Method A), which solved his first problem. In the process, he 

found that each person will receive 2/3 of a sausage. He then entered the P stage in the 

second cycle by posing his second problem, which was the intended problem for this 

task: “What is the least number of cuts?” He thought about the fraction of sausage 

each person will receive for a while, before discovering Cutting Method B (cut each 

sausage at the 2/3-mark), which gives the least number of cuts at 12. However, he 

accepted this conjecture as true without testing, since he then entered the Checking 

(R) stage to check his solution and he was satisfied that his working was correct. 

 

Next, the student explicitly said that he wanted to extend the task (E). He then 

swapped the two given numbers around to give 18 sausages and 12 people (Extension 

1). While he was writing his Extension 1, he suddenly realised that he needed to find a 

general formula for the least number of cuts (Extension 2), which was the intended 

extension. So he entered the Specialising (S) stage of the third cycle to select another 

example to specialise: he chose 4 sausages and 10 people because he wanted it to be 

similar to the original task, where the number of sausages is less than the number of 

people. Although he had discovered Cutting Methods A and B when solving the 

original task, he was still clueless about how to cut the 4 sausages in his extension. He 
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began by cutting each sausage into 2 equal parts, and then he realised that there were 

not enough pieces to share. In the end, he decided to enter the R stage to review how 

he cut the sausages for the original task. In the process, he queried whether the least 

number of cuts for the original task could be less than the 12 cuts that he had 

obtained. So he entered into the Justifying (J) stage to prove that the least number of 

cuts was indeed 12 by using a non-proof argument (see his proof in Section 7.3.5). 

But there was no generalisation because this was not a general result. That was why 

the J stage was not combined with the Generalising (G) stage in this case. 

 

He then went back to the H stage to try to solve his Extension 2 by applying the 

cutting methods used in the original task. But he was stuck because he did not find the 

LCM when using Method A to cut the sausages for the original task, so he was unable 

to apply the main idea behind Method A, which is LCM, to the extension. At first, he 

thought that the ‘formula’ had something to do with multiples of 10. In the end, after 

struggling for another 2 minutes, he realised that the total number of sausages after 

cutting had to be a multiple of 10, so he discovered that he could use the LCM of 4 

and 10, which is 20, to help him find how to cut the sausages: since there will be 20 

pieces of sausages after cutting to share equally among the 10 people, then each 

sausage should be cut into 20/4 = 5 equal parts, which is essentially Method A. He 

then found that the fraction of sausage each person will receive is 2/5, which led him 

to cut each sausage twice: at the 2/5-mark and the 4/5-mark. This is essentially 

Method B that gives the least number of cuts at 8 in this case. Again, he accepted this 

conjecture as true without testing. He then entered into the Conjecturing (C) stage to 

search for a formula linking the fraction of sausages each person will receive for the 

original task (i.e. 2/3) and for the extension (i.e. 2/5) as shown in his protocols: 
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“Um … 2/5. [Flip to p. 1] This is 2/3. [Turn back to p. 3] Oh yah, um … So if I 

have … there seems to be some relationship between the numbers … Uh, I can 

find a formula maybe.” [S1; Sausage Task] 

 

Then he went back to the H stage to write his solution for his extension properly as 

shown in Figure 6.20. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6.20  Cutting Method B of S1 for Extension of Sausage Task 

 
 

He then entered the C stage again to try to find a formula for the least number of cuts 

by comparing the original task and his extension, but he failed to find one. So he 

decided to go back to the E stage to write down his extension because he had 
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previously posed his extension verbally. This time, he used algebraic notations to 

represent the numbers of sausages and people as shown in his working in Figure 6.21: 

 

 
 
 
 
 
 

 
Figure 6.21  Extension of S1 for Sausage Task 

 
 

He then entered the C stage again to try to generalise the cutting method for his 

extension by using algebraic notations, but he did not know how to write LCM(n,m). 

Instead, he used 2m to represent LCM(4,10) since LCM(4,10) = 20 = 2  10 for the 

extension, where m = 10 is the number of people. He reasoned that each sausage 

should be cut into 2m / n equal parts, which is Cutting Method A, but he then made a 

mistake in thinking that the 10 people will share a total of 2  2m pieces of sausages, 

when in fact it should just be a total of 2m pieces. Soon, he was stuck as he did not 

know how to represent how to cut each sausage in terms of algebraic notations. The 

test ended without him discovering any formula for the least number of cuts. 

 

To summarise, the student (S1) was able to pose the intended problem of finding the 

least number of cuts for the original task, and the intended extension of finding a 

general formula for the least number of cuts. He even proved that 12 is the least 

number of cuts for the original task, but he was unable to discover the general 

formula. Thus he was not able to complete the investigation pathway for the Sausage 

Task. However, compared with the previous student (S2) who completed the pathway 

for the same task, this student (S1) actually performed better in the investigation 

because the previous student (S2) only obtained a trivial formula for sharing n items 
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equally among m people. Therefore, the ability to complete an investigation pathway 

does not mean that the student is able to produce significant outcomes. 

 

(d) Incomplete Pathway for Student S7 

 

We will now analyse an incomplete pathway from another student (S7). The pathway 

in Figure 6.13(d) shows that the student started with the Understanding (U) stage and 

then she went into the Problem-Posing (P) stage. But she did not pose any problem 

explicitly as she just said, “So … I think that … need to find the …” She then went 

into the stage of Using Other Heuristics (H) by finding multiples of 18 and observing 

that 36 is divisible by 12, i.e. she had found the LCM of 12 and 18, which is 36. This 

led her to conclude that each of the 12 sausages should be cut into 3 equal parts 

(Cutting Method A) in order to share them equally among 18 people, and each person 

will get 2 parts. Her working thus far is shown in Figure 6.22. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6.22  Cutting Method A of S7 for Sausage Task 

 
 

She then found the next common multiple of 12 and 18, which is 72, and she obtained 

6 when she divided 72 by 12. This led her to cut each sausage into 6 equal parts (her 
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second cutting method). Immediately, she went into the Conjecturing (C) stage by 

observing that the number of parts each sausage should be cut into is a factor of 18 

since 3 and 6 are factors of 18. But this is wrong because the number of parts each 

sausage can be cut can be any multiple of 18 as well. She then cut each sausage into 9 

parts (her third cutting method), which is a factor of 18, in order to be more certain of 

her observation. She calculated 18  9 = 162, which is not divisible by 12, so she 

thought that her observation was wrong. But she soon discovered her mistake: it 

should be 12  9 = 108, which is divisible by 18 people, so that each person will get 6 

parts. The student then paused to monitor her progress: 

 

“Am I going on the right track? [Flip to p. 1] … I don’t think I know. [Turn back 

to p. 2] … Maybe I should try for another 5 minutes and see how it goes ...” 

[S7; Sausage Task] 

 

She then decided to list the factors of 18, but this time she confused herself: she 

thought that the number of parts each person will get is a factor of 18. She checked 

her working and soon discovered this mistake. Then she cut each sausage into 18 

parts (her fourth cutting method, which happened to be Cutting Method C), which is a 

factor of 18, and realised that it could still work. But she monitored her progress again 

and concluded that she was going nowhere: 

 

“I seem to be going nowhere … I’m just revolving around that … factors of 18.” 

[S7; Sausage Task] 

 

This suggests that she was still in the C stage and she had not yet formulated her 

observation as a conjecture to be proven or refuted. She then decided to think of other 

problems to pose. In the end, she decided to extend the task (E) in order to generalise. 
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She entered the Specialising (S) stage of the second cycle by choosing 12 sausages 

and 20 people. This was considered her Example 2 (the original task of 12 sausages 

and 18 people was considered as Example 1). She then went back into the H stage to 

solve her Example 2 by using the same approach: find factors of 20. She cut each 

sausage into 2 parts, which is a factor of 20, and realised that it did not work. So she 

monitored her progress for the third time and believed that she was on the wrong 

track. Interestingly, she then decided to incubate for a short while: 

 

“Let me rest my mind for a while ... I think I’m very confused. [Pause 3 s]” 

[S7; Sausage Task] 

 

Incubation is a stage of creativity in Wallas’ Creativity Model (see literature review in 

Section 2.2.2e) where a person takes a break from getting stuck in problem solving 

and relaxes the mind: think about the problem in a more relaxed state and 

environment and let the images from the subconscious surface. It was taught to the 

students during Lesson 6 of the teaching experiment (see Appendix C), but incubation 

and thinking aloud are diametrically opposite: you cannot incubate when you are 

thinking aloud. So it was surprising that the student tried to incubate for 3 seconds 

during the test. In fact, she did it three times during the investigation for the Sausage 

Task (she did not incubate for the other posttest task and all the other students did not 

incubate at all). The following shows her protocols for the second incubation period 

where she seems to understand the meaning of incubation: 

 

“I think, perhaps, I should let my mind rest for a while, then maybe an idea will 

just pop up. [Pause 6 s]” [S7; Sausage Task] 
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After her first incubation period of 3 seconds, she went into E stage the second time 

by re-reading the task and thinking of what problems to pose. In the end, she decided 

to extend the task in order to generalise again. She entered the S stage by choosing 5 

sausages and 18 people (Example 3). Then she went back into the H stage to solve her 

Example 3 by using the same approach again: she listed the factors of 18 and then cut 

each sausage into 6 parts, which is a factor of 18, but it did not work. Next, she tried 

cutting each sausage into 3 parts and then 9 parts, which are also factors of 18, but 

they also did not work. So she monitored her progress for the fourth time and then 

decided to try for another five more minutes. In fact, she monitored her progress a 

total of 10 times, but all her metacognitive behaviours were not effective: she did not 

know what else to do except to continue trying in the same direction. 

 

The student decided to go back to try the original task. Since she was still in the same 

H stage as before, there was a need to indicate in her ITR when she was using other 

heuristics (H) to solve her extension and when she was using other heuristics (H) to 

solve the original task (see Fig. 6.13d). This time, she drew all the 12 sausages to 

visualise how to cut, but she ended up listing the multiples of 12, multiples of 18 and 

factors of 18 to help her to think of a cutting method. Then she was stuck again. So 

she decided to enter the S stage by choosing 24 sausages and 9 people (Example 4) 

for her extension. To be clear that she was now extending the task, instead of solving 

the original task, there was a need to indicate this in her ITR (see Fig. 6.13d). She 

then went back into the H stage to solve her Example 4 by listing multiples of 9 and 

factors of 24, but she was still stuck. So she went back into the S stage by choosing 22 

sausages and 8 people (Example 5), followed by the H stage to solve her Example 5. 

This time, she found the HCF of 22 and 8, which is 2, and then she cut each sausage 
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into 2 parts, which did not work. So she went back to the original task and used the 

HCF approach, but it still did not work. Then the test ended. 

 

Overall, the student (S7) went on a wild goose chase. Although she monitored her 

progress numerous times, her metacognitive processes were not effective since she 

did not know what else to do except to continue in the same approach using multiples 

and factors. She was the only student in the present study who tried to search for a 

pattern in the multiples and factors of the numbers of sausages and people in order to 

determine how to cut the sausages. Perhaps she was confused between the two types 

of tasks where she was supposed to search for any pattern in a Type A task, but to 

pose a specific problem to solve for this Type B task. Just like the previous student 

(S1), this student (S7) did not reach the Generalising (G) stage and so did not 

complete the investigation pathway, but she did not do well for her investigation, 

unlike the previous student (S1). This shows once again that whether an investigation 

pathway is complete or incomplete does not tell much about the actual investigation. 

 

(e) Pathways for the Remaining Six Students 

 

For the remaining 6 students, just like S2 and S9 described earlier in this section, 3 of 

them (S3,S4,S8) had completed their investigation pathway by reaching the Justifying 

/ Generalising (J/G) stage since they had attempted to justify a general result during 

the extension of the Sausage Task. The remaining 3 students (S5,S6,S10) did not 

complete their pathway as they did not formulate any conjecture for the extended task. 

Table 6.2 shows a summary of their investigation pathways and outcomes. 
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Table 6.2  Summary of Pathways and Outcomes for Type B Tasks 
 

 Non-trivial Outcomes 
Trivial Outcomes / 

Misinterpreted Task 

Complete Pathway S9, S8 S2, S3, S4 

Incomplete Pathway S1, S10 S7, S5, S6 
 

* Students in bold are those whose transcripts have been described in detail earlier 

 

One would expect some variations in their investigation because no two students’ 

outcomes would be exactly the same although they might have completed the 

pathway. For example, the non-trivial conjectures formulated by S8 and S9 were very 

different in nature: S9 found a general formula for the least number of cuts, while S8 

discovered a generalised cutting method to share 6n sausages equally among 6n + 6 

people. But the trivial conjecture formulated by S4 was quite similar to the one 

formulated by S2: S4 found a general formula for the amount of sausages each person 

will receive, but S2 generalised further to a formula for sharing n items equally 

among m people. All these conjectures will be described in detail in the data analysis 

in Sections 7.3.8 and 7.3.9 later. 

 

For those who did not complete their pathway, one of them (S10) discovered Cutting 

Method B that gives the least number of cuts for the original task, just like S1 

described earlier in this section, while the other two students (S5,S6) did not discover 

Cutting Method B, just like S7 described earlier. However, there were still some 

differences in their investigation. For example, S10 did not extend the task to find a 

formula for the least number of cuts, unlike S1; while S5 did not use factors and 

multiples, unlike S7. On the other hand, S6 also used factors and multiples like S7, 

but unlike S7, S6 was concerned that the middle part of a sausage is different from its 
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rounded ends in terms of shape when a sausage is divided into 3 equal parts. The 

details of their investigation will be described in the data analysis in Section 7.3 later. 

 

(f) Summary of Mathematical Investigation Pathways for Type B Tasks 

 

Five out of the 10 students completed the investigation pathway for the Sausage Task 

(Type B) as they were able to reach the Justifying / Generalising (J/G) stage by 

attempting to justify a general result during the extension of the task. The other 5 

students did not complete the investigation pathway as they were unable to formulate 

any conjecture for the extended task. However, it was discovered that the pathways of 

the students do not reveal much about their outcomes. Two students could have 

similar pathways but they could have investigated totally different things. For 

example, both S2 and S9 completed the pathway, but S9 found a non-trivial general 

formula for the least number of cuts while S2 discovered a trivial formula for sharing 

n items equally among m people. Similarly, the inability to complete an investigation 

pathway does not mean that the student was poor in his or her outcomes. For example, 

S1 did not complete the pathway, but he was able to discover and prove that Cutting 

Method B will give the least number of cuts for the original task, and he tried to find a 

general formula for the least number of cuts, which was the intended extension for the 

task, although he did not succeed. But S2, who completed the pathway, was unable to 

find Cutting Method B, and he did not know how to extend the task to generalise the 

number of cuts that he had found. Instead, he went in a totally different direction and 

found a trivial general result that is clearly true. 
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6.4 INVESTIGATION PATHWAYS ACROSS BOTH TYPES OF TASKS 

 

The theoretical investigation model for cognitive processes developed for the present 

study in Section 3.2.1 had posited that the pathways for the two types of investigative 

tasks would be different because of their diverse natures. After analysing the students’ 

investigation pathways for the Kaprekar Task (Type A) and the Sausage Task (Type 

B) in Sections 6.2 and 6.3 respectively, this section will compare their pathways 

across both types of investigative tasks. 

 

With reference to the students’ IPD and ITR for the Type A task shown in Figure 6.1 

on pages 223-224, it was observed that they had engaged in Specialising / 

Conjecturing (S/C) very often, and they did not use other heuristics (H) or extend (E) 

the task. These were in accordance with what were posited in the theoretical 

investigation model for Type A tasks, where the students were expected to search for 

any pattern (conjecturing) by trying examples (specialising), without the need to 

change the given to extend the task because extension will usually change the task to 

a new one with completely different patterns. With reference to the students’ IPD and 

ITR for the Type B task shown in Figure 6.13 on pages 247-248, it was observed that 

they had spent a lot of time in the H stage, and they only entered the Specialising (S) 

stage or the Conjecturing (C) stage after extending (E) the task. Again, these were 

consistent with the prescription of the theoretical investigation model for Type B 

tasks, where the students were expected to solve specific problems for the original 

task by using other heuristics, before they extend the task to generalise by trying 

examples (specialising) to search for patterns (conjecturing). 
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Another difference between the two types of tasks is the Justifying / Generalising 

(J/G) stage. For Type A tasks, conjectures formulated based on specialising are 

usually general results, so the students could enter the J/G stage to try to justify their 

conjectures, which will lead to generalisation if proven (e.g. see the J/G stage in the 

pathways of S5 and S9 in Figure 6.1). But for Type B tasks, conjectures formulated 

for the original task based on using other heuristics are usually not general results, so 

the students could enter the Justifying (J) stage without generalising (G) even after 

proving their conjectures (e.g. see the J stage in the pathways of S1 and S7 in Figure 

6.13). However, conjectures formulated for the extended task based on specialising 

are usually general results, which will lead to generalisation if proven (e.g. see the J/G 

stage in the pathways of S2 and S9 in Figure 6.13). 

 

On the other hand, the actual pathways show that the students did not follow the 

pathways of the theoretical investigation model exactly. For example, some of them 

skipped the Problem-Posing (P) stage and went straight from the Understanding (U) 

stage to the S/C stage (e.g. see the pathways of S1, S5 and S10 for the Type A task in 

Figure 6.1), while others skipped the Checking (R) stage after solving a problem (e.g. 

see the pathways of the four students for the Type B task in Figure 6.13 where they 

entered some of the new cycles without checking). One of them (S9) even extended 

the task before checking his previous solution for the Type B task. These are to be 

expected as the theoretical investigation model only prescribes the logical pathways 

for an investigation. 
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6.5 SUMMARY OF ANSWER TO RESEARCH QUESTION 1 

 

This section will summarise the main findings from examining the data collected for 

the present study in order to answer Research Question 1. Analysis of the students’ 

investigation pathways in Section 6.2 and 6.3 has suggested that their pathways 

generally do not have a direct relationship with the outcomes across both types of 

investigative tasks. An investigation pathway only presents a global picture of the 

interactions of a student’s processes when he or she attempts an investigative task, but 

it does not tell much about his or her investigation outcomes. Two students could 

have similar pathways but they could have investigated totally different things. For 

example, both S5 and S9 went through the complete pathway for the Type A task, but 

S9 misinterpreted the task and observed patterns that are different from those for the 

original task, while S5 understood the task correctly and discovered a non-trivial 

pattern for the original task. A student could also complete an investigation pathway 

by formulating and attempting to prove a trivial conjecture that is a general result (e.g. 

S2 for the Type B Task). Therefore, a complete investigation pathway does not 

indicate that the student has discovered a non-trivial pattern or solved a non-trivial 

problem that results in a generalisation. 

 

Similarly, the inability to complete the investigation pathway does not mean that the 

students were poor in their outcomes. For example, S10 was stuck in the Specialising 

/ Conjecturing (S/C) stage for most of her investigation but she discovered a non-

trivial pattern for the Type A task, which is a lot more complicated than the pattern 

found by S5 who had completed her pathway. Another example is S1 who had proven 

that Cutting Method B will give the least number of cuts for the Type B task, and he 

even tried to find a general formula for the least number of cuts but failed to complete 
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the pathway, compared with S2 who completed the pathway by attempting to prove a 

trivial general result, but was unable to discover Cutting Method B or extend the task 

to generalise the number of cuts that he had found. Therefore, an incomplete 

investigation pathway does not indicate that the student has not discovered a non-

trivial pattern or formulated a non-trivial conjecture. 

 

6.6 CONCLUDING REMARKS FOR THIS CHAPTER 

 

Chapter 6 has answered Research Question 1 on the relationship between the 

investigation pathways of Secondary 2 students and their outcomes across the two 

types of investigative tasks. Chapter 7 will then answer Research Question 2 on the 

effect of the students’ processes on the outcomes of their investigation. 
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 CHAPTER 7: DATA ANALYSIS OF MATHEMATICAL 

INVESTIGATION PROCESSES AND OUTCOMES 

 

In this chapter, the 20 sets of students’ thinking-aloud protocols and answer scripts 

obtained from the posttest in the present research will be analysed to study the 

investigation processes and outcomes of the 10 Secondary 2 students across the two 

types of investigative tasks in order to answer Research Question 2. The posttest tasks 

were chosen as they provided a wider range of processes and outcomes to examine, 

just like for Research Question 1 as explained at the start of Chapter 6.  

 

7.1 THE SECOND RESEARCH QUESTION 

 

Research Question 2 is reproduced below: 

 

RQ2: What is the effect of the cognitive and metacognitive processes of Secondary 2 

students on the outcomes of their investigation? 

 

Scope of Data Analysis 

 

This chapter will begin by using the Summary Tables of Processes and Outcomes 

(TPO) developed in Chapter 5 to analyse whether the 10 students’ cognitive and 

metacognitive processes had helped them to produce significant outcomes in their 

investigation of the Kaprekar Task (Type A), e.g. posing non-trivial problems and 

formulating non-trivial conjectures. This method of data analysis will be repeated for 

the Sausage Task (Type B). Finally, the data analysis will be used to validate the two 

theoretical investigation models and to refine them if necessary. 
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7.2 MATHEMATICAL INVESTIGATION PROCESSES AND OUTCOMES 

FOR TYPE A TASKS 

 

As explained in Section 5.3 in the construction of the TPO, the processes and 

outcomes are different for each investigation stage and so the format of the TPO 

would be different. Sometimes, it was also necessary to construct more than one TPO 

for each stage because there were too many processes and outcomes to show in one 

table. Table 7.1 shows the processes and outcomes for each investigation stage for the 

Kaprekar Task (Type A). The reasons for grouping the Justifying and Generalising 

stages as the J/G stage have been explained in Section 4.4.4(b). Stage 8 (Extension) is 

not included because the students were not expected to extend the Type A task within 

30 minutes of investigation, and they also did not extend. The classification of an 

outcome (problem posed or conjecture formulated) as trivial or non-trivial had passed 

the inter-coder reliability test (see Section 5.4). 

 

In this section, the 10 sets of thinking-aloud protocols and answer scripts for the 

Kaprekar Task will be analysed to study the effect of the 10 students’ processes on 

their investigation outcomes. The Kaprekar Task is reproduced below. 

 

Posttest Investigative Task 1: Add Sum of Digits to Number 

Choose any number. Add the sum of its digits to the number itself to obtain a new 

number. Repeat this process for the new number and so forth. Investigate. 
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Table 7.1  Investigation Processes and Outcomes for Type A Tasks 
 

Stage Cognitive Processes Metacognitive Processes Outcomes 

Stage 1: 
Understanding 
the Task (U) 

 Re-reading task (RR) 

 Rephrasing task (RT) 

 Highlighting key 
information (HI) 

 Trying example (TE) 

 Monitoring 
understanding (MU) 

 Understood task 
correctly 

 Misinterpreted task 

 Recovered from 
misinterpretation  

Stages 2: 
Problem 
Posing (P) 

Referring to following to 
think of problem to pose: 

 task statement 

 current working 

 previous result 

 given checklist 

 Analysing feasibility of 
goal or problem posed 
(MG) 

 Posed general problem 

 Posed trivial specific 
problems 

 Posed non-trivial 
specific problems 

Stage 3: 
Specialising 
(S) 

 Random specialising 

 Purposeful specialising 

 Systematic specialising 

 Analysing feasibility of 
plan to specialise (MF) 

 Metacognitive 
awareness (MA) 

 Generated 
representative examples 

 Generated non-
representative examples 

Stage 4: 
Conjecturing 
(C) 

Searching for patterns in 
the following: 

 Terms of sequence 

 Differences between 
consecutive terms 

 Across sequences 

 Analysing feasibility of 
plan to search for 
patterns (MF) 

 Metacognitive 
awareness (MA) 

 Observed trivial or non-
trivial patterns 

 Formulated trivial or 
non-trivial conjectures 

Stages 5 / 6: 
Justifying / 
Generalising 
(J/G) 

 Naïve testing to refute 
conjecture 

 Using a non-proof 
argument 

 Using a formal proof 

 Analysing feasibility of 
plan to justify 
conjectures (MF) 

 Metacognitive 
awareness (MA) 

 Proved conjecture 
leading to 
generalisation 

 Proved conjecture but 
did not lead to 
generalisation 

Stage 7: 
Checking (R) 

Checking correctness of 
working (CW): 

 step by step for most 
parts 

 step by step for some 
parts only 

 glancing through it 
briefly 

 Monitoring progress12 
(MP) 

 Reviewing solution to 
see if it had achieved 
the goal (MR) 

 Metacognitive 
awareness (MA) 

 Discovered major errors 
on time 

 Discovered major errors 
late 

 Did not discover major 
errors at all 

 

 

                                                 
12  Since monitoring progress can occur in any stage, and it does not matter at which stage the students 

monitor their progress (unlike metacognitive awareness), it will be more appropriate to analyse this 
process for the entire investigation together with the processes in the checking stage. 
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7.2.1 Understanding the Task (Stage 1) 

 

Table 7.2 shows the TPO for the understanding processes and outcomes for the 10 

students’ investigation of the Kaprekar Task. It was observed that 7 of the 10 students 

tried one example (TE) each while 3 students tried 2 examples each to understand the 

task. Only one student (S2) did not appear to re-read (RR) or rephrase the task (RT), 

highlight key information (HI) or monitor his understanding (MU). The other 9 

students engaged in RR, RT, HI and MU from 4 to 22 instances each. RR occurred a 

lot more frequently than RT, HI and MU, with some students re-reading the task 7 to 

9 times each. Only 5 students engaged in HI. Although 6 students engaged in MU, its 

frequency is the lowest at 9 occurrences. A total of 3 students misinterpreted the task, 

out of whom, 2 of them recovered after about two minutes into the investigation. 

 

Table 7.2 Understanding Processes and Outcomes for Kaprekar Task 
 

 
Processes Outcomes 

TE RR RT HI MU Total** Understood Misinterpreted 

S1 1 3   1 4   

S2 1     0   

S3 1 2+1+2=5*  1 0+1+1=2 8   

S4 1 2 1 3 1 7   

S5 1 8 1 4  13   

S6 2 7 2 3  12  
Recovered after  

2 min 

S7 1 2+0+3=5 4  0+1+1=2 11   

S8 2 3 4   7  
Recovered after  

2 min 

S9 2 9 6 5 2 22  Did not recover 

S10 1 2+3=5   0+1=1 6   

Total 12 47 18 16 9 90 7 
3 misinterpreted; 

2 recovered  
 

* S3 engaged in RR for 2 + 1 + 2 = 5 times means that there were 3 episodes of understanding the task 
and RR happened 2 times in the first episode, 1 time in the second episode, and 2 times in the third 
episode; 3  RR for S1 means that RR happened 3 times in the first episode. 

** The ‘Total’ column shows the total frequency for RR, RT, HI and MU (excluding TE) each student. 
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The issue was whether the understanding processes used by the students had helped 

them to interpret the task correctly or to recover from any misinterpretation, and how 

did these processes help. From the detailed protocol analysis of the 3 students (S6,S8, 

S9) who misinterpreted the task, it was observed that all of them misinterpreted the 

task because they did not re-read, rephrase or highlight the relevant parts of the task 

while trying their first example. The first student (S6) engaged in the understanding 

processes 6 times (not yet 7 times) while trying Example 1 but she still misinterpreted 

the task by not repeating the process for the new number because she did not re-read, 

rephrase or highlight the part of the task that said, “Repeat this process for the new 

number.” It was only after she finished trying Example 2 that she re-read this part of 

the task and immediately she realised her mistake. Similarly, the second student (S8) 

did not re-read, rephrase or highlight the part of the task that said, “Add the sum of its 

digits to the number itself” and so she misinterpreted the task by treating the sum of 

the digits of a number as the new number. But because she ended up with a one-digit 

sum as the new number, she was stuck as she did not know how to find the sum of the 

digits of a one-digit number. Then she re-read “Add the sum of its digits to the 

number itself” three times and finally interpreted the task correctly. 

 

The investigation pathway and outcomes of the third student (S9) for the Kaprekar 

Task had been discussed in detail in Section 6.2(b) on page 229. Just like S8 above, 

S9 misinterpreted the task by not adding the sum of the digits of the starting number 

to itself because he did not re-read, rephrase or highlight the part of the task that said, 

“Add the sum of its digits to the number itself.” Because he was stuck with a one-digit 

sum as the new number, he recovered from his first misinterpretation after about two 

minutes into the investigation when he re-read the relevant part of the task. But he still 
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did not repeat the process for the new number, just like the misinterpretation of S6 

above. It was only after 20 minutes into the investigation when he looked at the task 

statement during the review of a solution that he suddenly realised that he must repeat 

the process. However, he only repeated the process once for each starting number, so 

he did not recover from his second misinterpretation at all. One possible explanation 

why he did not see the need to repeat the process more than once for each starting 

number is because he might have misunderstood that he could extend the task by 

changing the given at this stage. 

 

The above data analysis suggests that the students should re-read one part of the task 

statement, perform the corresponding operation on their first example, and then repeat 

this procedure until all the operations are properly carried out, in order to understand 

the task correctly. In fact, this was exactly what 5 other students (S1,S3-S5,S7) had 

done: they re-read or rephrased all the relevant parts of the task during the trying of 

the first example and they interpreted the task correctly. The remaining 2 students 

(S2,S10) did not re-read, rephrase or highlight the relevant parts of the task while 

trying the first example, but they still managed to interpret the task correctly, although 

it could not be excluded that they might have referred to the task statement when 

trying the first example without reading it aloud. 

 
 
Of the 6 students who monitored their understanding (MU), 3 of them (S1,S4,S9) did 

so at the start of the test but it did not prevent one of them (S9) from misinterpreting 

the task. The other 3 students (S3,S7,S10) engaged in MU at a later stage when they 

did not find any pattern, in order to check whether they had misinterpreted the task by 

performing the operations wrongly, but there was nothing wrong. Thus it seems that 
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quite a number of the students went back to monitor their understanding because they 

were unable to discover any pattern, but students who were able to progress in their 

investigation might not engage in MU. For example, S5 was able to discover some 

patterns and so she did not appear to monitor her understanding. 

 

Summary 

 

To summarise, the main understanding processes that helped the students in the 

present study to interpret the task correctly or to recover from any misinterpretation 

were re-reading or rephrasing the relevant parts of the task statement while trying the 

first example to understand the task. The metacognitive process of monitoring the 

understanding did not seem to be helpful. 

 

7.2.2 Problem Posing (Stage 2) 

 

Table 7.3 shows the TPO for the problem-posing processes and outcomes for the 10 

students’ investigation of the Kaprekar Task. The classification of specific problems 

as trivial or non-trivial had passed the inter-coder reliability test (see Section 5.4). It 

was observed that only 3 students (S3,S7,S9) posed the general problem of searching 

for any pattern at the start of the investigation while the other 7 students just went 

ahead to search for patterns without verbalising the general problem. However, 2 

students (S1,S5) went back to pose the general problem at a later stage when they 

were stuck. In other words, most of the students did not see the need to pose the 

general problem for Type A tasks explicitly. 
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Table 7.3  Problem-Posing Processes and Outcomes for Kaprekar Task 
 

 

Processes Outcomes 

Refer to following to think of problem to pose 
MG 

General 
Problem 

Specific 
Problem Task 

Statement 
Current 
Working 

Previous 
Result 

Given  
Checklist 

S1  1    Later 1 non-trivial 

S2        

S3      Start  

S4        

S5 1  2 3  Later 
2 trivial; 

2 non-trivial 

S6        

S7      Start  

S8        

S9   2   Start 2 trivial 

S10        

Total 1 1 4 3 0 5 
4 trivial; 

3 non-trivial
 
 

It was further observed from Table 7.3 that 3 of the students also posed specific 

problems for the Type A task. The first student (S1) posed the problem of finding a 

formula for the general term of the sequence at about 8 minutes into the investigation 

while looking at his current working to search for patterns. However, he did not 

analyse the feasibility of the goal or the problem (MG). Although this is a non-trivial 

problem that is worth pursuing, it is not easy to find the formula since the differences 

between consecutive terms do not follow a fixed increasing or decreasing pattern. In 

fact, there is no known formula for the general term of a Kaprekar sequence. Even if 

the student could not determine at this stage that it was not going to be easy to find the 

formula, he did not monitor his progress when he was unable to find any pattern.  

Instead, he just persisted in trying to find the formula. As a result, he not only did not 

find the formula, but he also did not discover any other pattern. The rest of his 

investigation had already been discussed in detail in Section 6.2(d). 
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The second student (S5) posed four specific problems. When she failed to find any 

pattern, she referred to the given checklist of investigation processes (see Appendix 

H) before posing Specific Problem 1: look for patterns in the sums of digits of the 

terms. Similarly, she referred to the checklist when she failed to find any pattern 

again, but this time, she re-read the task before posing Specific Problem 2: look for 

patterns in the differences between consecutive sums of digits. Thus she posed the 

two trivial problems by referring to the checklist or the task statement to think of a 

problem to pose. Her two non-trivial problems had been described in detail in her 

investigation pathway in Section 6.2(a) on page 227. She was able to use her previous 

result, which was her Conjecture 1, as a springboard to pose Specific Problems 3 and 

4 with analogous results. This is called problem posing by analogy, which was 

advocated by Kilpatrick (1987) and discussed in detail during the literature review in 

Section 2.2.3(h). Just like the previous student, this student did not analyse the 

feasibility of the goal or the problem (MG), but in her case, the four problems were 

worth pursuing. 

 

The third student (S9) misinterpreted the task by not repeating the process for the new 

number, and his investigation had been described in detail in Section 6.2(b). He posed 

two trivial problems: find a pattern for two-digit numbers (if the process was 

performed once), and find a pattern for two-digit numbers if the process was 

performed twice (at this stage, he had discovered that he did not repeat the process for 

the new number, but he decided to perform the process only twice). In both cases, the 

student referred to the previous result when posing the problem. Just like the previous 

two students, this student did not analyse the feasibility of the goal (MG), but in his 

case, the two problems were worth pursuing. 
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Summary 

 

To summarise, most of the students in the present study did not see the need to pose 

the general problem of searching for any pattern for Type A tasks explicitly, but they 

just went ahead to search for patterns. Unlike understanding the task, where re-

reading or rephrasing the task statement had helped the students to interpret the task 

correctly, most of the specific problems posed for the Type A task were not the result 

of referring to the task statement to think of a problem to pose. Instead, the students 

referred to the given checklist of investigation processes or a previous result to think 

of a problem to pose. What is noteworthy is the ability of one student to use a 

conjecture as a springboard to pose two non-trivial problems with analogous results. 

However, none of the students analysed the feasibility of their goal, which might have 

helped prevent one of them from pursuing a goal that was too difficult to achieve. 

 

7.2.3 Specialising (Stage 3) 

 

Table 7.4 shows the TPO for the specialising processes and outcomes for the 10 

students’ investigation of the Kaprekar Task. Mason et al. (1985) advocated choosing 

examples randomly to understand the task and systematically to search for patterns. 

For example, if a student starts investigating from the number 10, followed by 11 and 

then 12, this is systematic specialising. However, what if a student intends to choose a 

two-digit number, but he or she chooses a random two-digit number instead? This will 

be called ‘purposeful specialising’ since the student purposefully chooses a three-digit 

number although the choice of the number is still random. Thus it is decided that there 

are three types of specialising processes that are mutually exclusive: (i) random 

specialising, (ii) purposeful specialising, and (iii) systematic specialising. Since all the 
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students used the random example(s) generated for understanding the task to search 

for patterns as well, the table has also included these examples under random 

specialising. But examples used to test conjectures (naïve testing) in the justifying 

stage are not included in this table. The examples generated were considered 

representative if the students were able to generate all the three types of sequences: 

Type 1a, Type 1b and Type 2 (see task analysis in Appendix E on page 499). 

 

Table 7.4  Specialising Processes and Outcomes for Kaprekar Task 
 

 

Processes Outcomes 

Types of Specialising 
MF MA 

Total 
no. of 
e.g. 

Rep. 
Examples 

Not Rep. 
Examples Random Purposeful Systematic 

S1 2 (E.g. 1,2)     2  Type 1a,2 

S2 3 (E.g. 1,2,4) 1 (E.g. 3)  1 1 4   

S3 1 (E.g. 1) 2 (E.g. 2,3)    3  Type 1a,2 

S4 1 (E.g. 1) 3 (E.g. 2-4)   1 4  Type 2 

S5 2 (E.g. 1,2) 5 (E.g. 3-7)  2  7   

S6 4 (E.g. 1-4) 2 (E.g. 5,6)    6  Type 1b,2 

S7 
5 (E.g. 1-3, 

5,6) 
2 (E.g. 4,7)    7   

S8 6 (E.g. 1-6)     6   

S9* 2 (E.g. 1-2) 1 (E.g. 3) 2 (E.g. 5-6)   5 NA 

S10 1 (E.g. 1)     1  Type 2 

Total 27 (60%) 16 (36%) 2 (4%) 3 2 45 4 (44%) 5 (56%) 
 

*  S9 misinterpreted the task, so his patterns were no longer the same as the original task. As a result, 
his examples could not be classified as representative because there was only one type of examples. 
Moreover, E.g. 4 was not included because it was used to test conjecture in the justifying stage. 

 
 

From Table 7.4, it was observed that the 10 students generated a total of 45 examples 

to specialise, or an average of 4.5 examples per student. The actual number of 

examples generated by a student ranged from 1 to 7 examples. Since the Type A task 

involves a sequence, it is possible to examine just one sequence because there will be 

many numbers from just one example. In fact, the student (S10) who tried only one 

example generated 37 terms, which was the highest number of terms for a sequence 
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generated among all the students for this task. It was further observed that most of the 

examples (60%) chosen for specialising were random, probably because of how the 

task was phrased: “Choose any number.” So 3 of the students (S1,S8,S10) might think 

that they were supposed to choose random numbers only. Only one student (S9) chose 

systematic examples, accounting for only 4% of all the examples generated for 

specialising, but this was because he misinterpreted the task by not repeating the 

process for the new number and so he chose consecutive starting numbers to search 

for patterns at a later stage of his investigation. 

 

The examples chosen purposefully can be classified into two categories. The first 

category is to choose a particular type of numbers to search for any pattern. For 

example, 4 students (S3,S5,S7,S9) chose numbers with different digits, from one-digit 

to three-digit numbers, to try to find any pattern. The second category is to choose a 

particular type of numbers to be more certain of a pattern before formulating it as a 

conjecture. This is still in the specialising stage, unlike the naïve testing of a 

conjecture in the justifying stage. For example, S2 purposefully chose a starting 

number ending with 0 for his Example 3 because he thought that there was a pattern 

in the last digits of the terms in the sequence in his Example 2 but he was not sure of 

the pattern yet. Similarly, S4 purposefully chose numbers whose sum of digits is 5 for 

his Examples 2-4 because he observed some kind of pattern for his Example 1, where 

the sum of the digits of the starting number is also 5. 

 

It was further observed from Table 7.4 that only 4 students generated representative 

examples that included all the three types of sequences (Types 1a, 1b and 2). Most of 

them tried either 6 or 7 examples, except for one student who tried only 4 examples. 
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Of the other 5 students who did not generate all the representative examples, most of 

them tried between 1 to 4 examples, except for one student who tried 6 examples. So 

it appears that the more examples the students tried, the higher the chance they might 

generate all the types of sequences. This is because they specialised randomly most of 

the time, and so it all depended on luck. However, the students should specialise 

systematically to ensure that they would generate all the representative examples. 

 

Table 7.4 shows that only 2 students analysed the feasibility of their plan to specialise 

(MF), which is a metacognitive process. The first student (S5) could not find any 

pattern, so she referred to the given checklist of investigation processes (see Appendix 

H) on two occasions and analysed the feasibility of the methods given in the checklist, 

but concluded that methods, such as drawing a diagram and guess and check, were not 

suitable for the task. The second student (S2) started with a three-digit number and 

soon obtained a four-digit number. He then analysed the feasibility of the plan to 

specialise further, but for some strange reason, he decided not to continue the example 

because he believed that “it will be difficult” (in his own words). The following 

shows his protocols: 

 

“I already reach 1000, so I don’t think I should continue further as I am unable to 

find … that will be difficult. Narrow my range down to below 1000 …” [S2; 

Kaprekar Task] 

 

For the stage of specialising, students should analyse what numbers to choose to 

specialise purposefully or systematically. Some questions they could ask themselves 

include: “Should I choose to specialise from 1 to 9 systematically? Is it feasible or 

worth pursuing, or should I try 10 to 19 instead?” “Should I try a two-digit or a three-
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digit number? Does the number of digits matter for this task?” “I want to choose 

another starting number where the sum of its digits is 5 to see if this is the pattern. Is it 

feasible or worth pursuing, or should I choose another starting number instead?” 

However, none of the students analysed the feasibility of their plan in this manner. If 

they had, they might have realised that the number of digits in the starting number is 

not crucial for this task because the sequence is increasing, unlike the happy and sad 

numbers which they had encountered in their pretest. Similarly, for the student (S4) 

who purposefully chose a starting number whose sum of digits is 5 for his Examples 

2-4 as described earlier, if he had analysed his plan, he might have realised he was 

restricting himself to only one type of sequences (Type 2) by choosing the starting 

numbers for all his examples13 in this manner. He only accidentally generated another 

type of sequence when he made a calculation mistake in his last example that changed 

the sequence from Type 2 to Type 1b. 

 

Another metacognitive process in this investigation stage is metacognitive awareness. 

This is a new process discovered in the course of the present research and so a new 

code MA was created in the fine-tuning of the coding scheme for the thinking-aloud 

protocols (the reader should refer to Section 4.6.1 on page 189 to be familiar with the 

description of this process). Students who possess MA are constantly aware or 

conscious of what they are doing. This awareness can help them save time as 

explained and illustrated by the following examples. Table 7.4 shows that only 2 

students exhibited MA in the stage of specialising. The first student (S4) was trying 

Example 2 when he obtained 119 as shown in Figure 7.1. 

                                                 
13  Although his Example 1 was chosen randomly, its sum of digits happened to be 5, which caused him 

to purposefully choose Examples 2-4 in this manner because he suspected that there was a pattern. 
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Figure 7.1  Examples Generated by S4 for Kaprekar Task 
 
 

The student realised that 119 had occurred in his Example 1 and he drew an arrow to 

indicate the link. Actually, 109 in his Example 2 had already occurred in his Example 

1 but he did not observe it. Nevertheless, the awareness that 119 had appeared before 

had saved him a lot of precious time because he did not continue his Example 2 since 

the subsequent terms for both examples would be the same. The second student (S2) 

obtained the number 379 in his Example 4 and he thought that he had obtained this 

number before. The following shows his protocols: 

 

“[Start writing] 365 + 14 = 379 [stop writing]. [Flip through the pages] When 

have I come across this before?” [S2; Kaprekar Task] 

 

However, 379 had not appeared before. The closest number that he had obtained was 

369 which appeared in his Example 2. Thus his metacognitive awareness was not 

effective in this case. The importance of MA will become more evident when we look 

at some counter examples. For example, a student (S8) tried an example with starting 

number 4 on page 2 of her answer script, but she did not realise that 4 was also the 

Example 1 Example 2 
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starting number for her Example 1 on page 1 of her answer script (see Fig. 7.2 which 

shows both examples). So she wasted quite a lot of precious time repeating her 

Example 1. Another student (S5) also made the mistake of trying the same starting 

number 12 for her Examples 1 and 5 without realising it. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7.2  Same Examples Generated by S8 for Kaprekar Task 

 
 

Summary 

 

To summarise, most of the students in the present study specialised randomly instead 

of systematically to search for patterns. As a result, most of them did not generate all 

the types of sequences. Some students were able to choose examples purposefully to 

search for any pattern or to be more certain of a pattern, although they did not realise 

that the number of digits is not a crucial element for the Kaprekar Task. There were 

very few instances of metacognitive behaviours and most of them were not effective. 

However, metacognitive awareness had helped one student save a lot of time, but the 

lack of it had resulted in two students repeating examples that they had tried earlier. 

Example 1 on page 1 Redo Example 1 on page 2 
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7.2.4 Conjecturing (Stage 4) 

 

The treatment for the data analysis in this section will be different from the previous 

sections because there is a need to discuss the new outcomes and interactions found in 

the course of the present research, and to analyse the types of patterns and conjectures 

discovered by the students, before examining the effect of the conjecturing processes 

on the investigation outcomes. 

 

(a) New Outcomes and Interactions 

 

Figure 7.3(a) shows parts of the theoretical model for cognitive processes developed 

for the present study (see Section 3.2.1 for the full model). It was posited in the model 

that students should try examples (specialise) and then search for patterns for Type A 

tasks. If they have found a pattern, the observed pattern is only a conjecture. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

   (a)  Theoretical Model         (b)  Refined Model 
 

Figure 7.3  Interaction between Specialising and Conjecturing for Type A Tasks 
 
 

Specialising 

Searching for Patterns 

Formulated Conjecture 

Specialising 

Searching for Patterns 

Observed Pattern 

Formulated Conjecture 

rejected by 

not rejected by 
empirical data 

empirical data 



 
 

292

However, from the students’ thinking-aloud protocols for the Kaprekar Task, it was 

found that all the students in the present study went from ‘Specialising’ to ‘Searching 

for Patterns’ and then back to ‘Specialising’ very often, either because they could not 

find a pattern and so they had to specialise some more, or they tried to search for 

patterns every time they generated a term for the sequence. Table 7.5 shows the 

protocols of a student (S7) who went through a few cycles alternating between trying 

examples (TE) and searching for patterns (SP) for the Kaprekar Task. Thus the 

theoretical model in Figure 7.3(a) needs to be refined to include the loop between 

‘Specialising’ and ‘Searching for Patterns’ as shown in Figure 7.3(b). 

 

Table 7.5  Alternating between Trying Example and Searching for Patterns 
 

Line Time Protocols 
Stage 
Code

Bhvr 
Code

Remarks 

83 13:20 So [start writing] 681 … so + 6 + 8 + 1 = 
[stop writing and use calculator] so 6 + 8 
+ 1 = … eh? + 681 = 696 [write: 696]. 

S TE4 Trying Example 4 

84 13:40 So 696 [write: 696] … [use calculator] 
696 … – 681 = 15 [draw  between 681 
and 696 and write: 15]. 

C SP Searching for patterns 
in differences  
between consecutive 
terms 

85 13:54 [Continue writing] + 6 + 9 + 6 = [stop 
writing and use calculator] 696 + 6 + 9 + 
6 = 717 [write: 717] … 

S TE4 Continue trying 
Example 4 

86 14:09 So 717 [write: 717] minus [use 
calculator] 717 – 696 = 21 [draw  
between 696 and 717 and write: 21]. 
Never mind, I think I should continue 
trying, but 21 and 15, I don’t see any link. 

C SP Searching for patterns 

87 14:27 717 [start writing] + 7 + 1 + 7 = [stop 
writing and use calculator] 7 + 1 + 7 = 15 
… oh, 717 + 7 … + 1 + 7 = 732 [write: 
732].  

S TE4 Continue trying 
Example 4 

88 14:51 732 [draw  between 717 and 732] – 717 
= 15 again [write: 15].  

C SP Searching for patterns 

 
 

Moreover, it was observed from the students’ protocols that there was usually a time 

gap between observing a pattern and considering the pattern as a conjecture, unlike 

what was posited in the theoretical model in Figure 7.3(a) where the observed pattern 

is immediately treated as a conjecture. This was because when the students first 
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spotted a pattern, they were usually unsure that this was the pattern. So the students 

were observed trying more examples to be more certain of the pattern first, before 

they accepted it as a conjecture and then tried to prove it. Sometimes, they even found 

counter examples to reject the observed pattern before they could formulate it as a 

conjecture. Thus there was a need to distinguish between observing a pattern and 

formulating a conjecture, and so two new codes ‘Observed Pattern’ (OP) and 

‘Rejected Observed Pattern’ (RP) were created in the refinement of the coding 

scheme as described in Section 4.4.2(a). Table 7.6 shows the protocols of the same 

student as above (S7) who observed Pattern 2a (OP2a) in her Example 4 (TE4), but 

she was not sure of the pattern, so she continued trying the example and found a 

counter example to reject the pattern (RP2a). If the behaviour in Line 89 was coded as 

SP (searching for patterns) instead of OP2a, then there would not be any pattern to 

reject in Line 92. Therefore, the theoretical model needs to be refined to reflect these 

two outcomes as shown in Figure 7.3(b): the loop between observing a pattern and 

trying more examples, and what happens if a pattern is rejected. The full refined 

investigation model will be shown later in Section 7.4.2. 

 

Table 7.6  Observed Pattern and Rejected Observed Pattern 
 

Line Time Protocols 
Stage 
Code 

Bhvr 
Code 

Remarks 

89 14:57 Eh, I seem to see a pattern in it. C OP2a Observed Pattern 2a: 
Difference between 
consecutive terms 
seem to alternate 
between 15 and 21 

90 14:59 732 [start writing] + 7 + 3 … + 2 = [stop 
writing] … [use calculator] 7 + 3 + 2 = … 
12 … + 732 = 744 [write: 744]. 

S TE4 Continue trying 
Example 4 

91 15:21 744 [write: 744] [draw  between 732 
and 744 and write: 12] 

C SP Searching for patterns 

92 15:24 No, what, it doesn’t seem to be a pattern 
again. 

C RP2a Rejected Pattern 2a 
because of counter 
example 12 in Line 
91 
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However, it was possible for students to treat the observed pattern as a conjecture 

immediately after observing the pattern, in the manner posited in the theoretical 

model in Figure 7.3(a). Table 7.7 shows the protocols of a student (S9) who observed 

a pattern, which he immediately said was his conjecture (FC1) in Line 51. 

 

Table 7.7  Observed Pattern Treated as Conjecture 
 

Line Time Transcript 
Stage 
Code

Bhvr 
Code

Remarks 

43 04:09 Ok … for a … let’s start easy … let’s start 
with 2-digit numbers [write: (2 digit)]. Ok,  
for two-digit numbers like 12 [write 12], we 
add digit 1 and 2 [write: + 1 + 2]  

S TE3 Trying Example 3 

44 04:24   we will get 14 [write: = 14]. S EM2 Minor Error 2: 
should be 15 

45 04:26 And for … another digit [sic: number] like 11 
[write: 11]. 

S EM3 Major Error 3: did 
not repeat process 

46 04:29 We add 1 [write: + 1] we add 1 [write: + 1] 
we will get 13 [write: = 13] … So, what 
about 10 [write: 10]? We will have 1 + 0 
[write: + 1 + 0] 11 [write: 11] … 

S TE3 Continue trying 
Example 3 

47 04:40 Now, now, this is strange, right? … C MA Found numbers 
strange, which led 
to discovery of 
Error 2 in Line 49 

48 04:43 Let’s try one more example. [Start writing] 
13 + 1 + 3 [stop writing] we will get … um, 
if I am not wrong, it’s 17 [write: 17], right? 
… 

S TE3 Continue trying 
Example 3 

49 04:55 Now, I think I calculate this wrongly [cancel 
14]. It’s supposed to be 15 [write: 15]. 

S ED2 Discovered Minor 
Error 2 

50 05:00 Ok, as you can see for two-digit numbers  C SP Searching for 
patterns 

51 05:03 Ok, this is my conjecture. Ok, the conjecture 
[write: Conjecture:] for me now is that … 
um, the 2 [write: the 2] [cancel: the] [replace 
it with: all] all 2 [continue writing] digits 
numbers will add up to a new odd number 
[stop writing] … 

C FC1 Formulated 
Conjecture 1 

 
 

In other words, an observed pattern (OP) is different from a formulated conjecture 

(FC) if the student tries more examples to be more certain of the observed pattern 

first, but if the student treats an observed pattern as a conjecture immediately after 

observing it, then his or her protocol will be coded directly as FC instead of OP. 
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(b) Conjecturing Outcomes 
 
 

There is a need to analyse the types of patterns and conjectures discovered by the 

students before examining the effect of the conjecturing processes on the investigation 

outcomes. Table 7.8 shows the TPO for the conjecturing outcomes for the 10 

students’ investigation of the Kaprekar Task. The term ‘Type 1 Patterns’ refers to 

both Type 1 ‘multiples’ and ‘digital roots’ patterns, and the term ‘Type 2 Patterns’ 

refers to both Type 2 ‘multiples’ and ‘digital roots’ patterns (the reader should refer to 

the task analysis in Appendix E on page 499 to be familiar with these patterns). The 

classification of patterns and conjectures as trivial or non-trivial had passed the inter-

coder reliability test (see Section 5.4). 

 

Table 7.8  Patterns and Conjectures for Kaprekar Task 
 

 

Related to Types 1 and 2 Patterns Other Types of Patterns Total 
No. 
of 

Patt. 

Total 
No. 
of 

Conj. 

Patterns Conjectures Patterns Conjectures 

non-
trivial 

trivial 
non-

trivial 
trivial 

non-
trivial 

trivial 
non-

trivial 
trivial 

S1  2  1  1   3 1 

S2  2   1  1  3 1 

S3 1(1) 2  1  1   4(1) 1 

S4  2  1     2 1 

S5 3(3)  1(1)   3  1 6(3) 2(1) 

S6  2  1  1   3 1 

S7  2    1   3 0 

S8 1(1) 1    1   3(1) 0 

S9     2(1)* 2(1) 2(1) 2(1) 4(2) 4(2) 

S10 1(1) 1 1(1)      2(1) 1(1) 

Total 
6(6) 14 2(2) 4 3(1) 10(1) 3(1) 3(1) 

33(8) 12(4) 
20 (61%) 6 (50%) 13 (39%) 6 (50%) 

 

*  The number in brackets indicates the number of correct patterns or conjectures, e.g. 2(1) trivial 
patterns for S9 indicates that S9 had observed 2 trivial patterns, but only one of them was correct. 
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Table 7.8 shows that the 10 students observed a total of 33 patterns, or an average of 

3.3 patterns per student. The actual number of patterns observed by a student ranged 

from 2 to 6 patterns. Out of the 33 patterns, 6 + 3 = 9 are non-trivial (27%) and 14 + 

10 = 24 are trivial (73%). A total of 20 patterns (or 61%) are related to the Types 1 

and 2 patterns. The table also shows that the 10 students formulated 12 conjectures, or 

an average of 1.2 conjectures per student. The actual number of conjectures formed 

by a student ranged from 0 to 4 conjectures. Out of the 12 conjectures, 2 + 3 = 5 are 

non-trivial (42%) and 4 + 3 = 7 are trivial (58%). A total of 6 conjectures (or 50%) are 

related to the Types 1 and 2 patterns. S5 observed the highest number of patterns 

(which is 6) while S9 formulated the most number of conjectures (which is 4). S4 and 

S10 observed the least number of patterns (which is 2) while two students (S7,S8) did 

not formulate any conjecture at all. 

 

Although Table 7.8 shows that there were 20 patterns and 6 conjectures related to the 

Types 1 and 2 patterns, most of these patterns and conjectures are not the actual 

Types 1 and 2 patterns for the Kaprekar task. For example, S1 initially thought that 

the consecutive sum of digits will repeat in this manner: 3, 6, 3, 6, 12, 6, 12, 15, 12, 

15 (his investigation had been described in detail in Section 6.2d). Although this is 

related to the Type 1a pattern, the actual pattern is that all these sums of digits are 

divisible by 3 but not by 9. Only patterns and conjectures that are the actual Types 1 

and 2 patterns are considered as non-trivial. From Table 7.8, it was observed that only 

4 students (S3,S5,S8,S10) observed the non-trivial actual Type 1 or 2 patterns, and 

only 2 of them (S5,S10) went on to formulate it as a conjecture. Although S3 and S8 

had observed that all the sums of digits or all the terms in some of the sequences that 

they had generated were divisible by 3, they did not see this as the actual pattern. 
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Instead, they kept trying to find how the sums of digits or the differences between 

consecutive terms would repeat, but they failed because this was not the actual 

pattern. S5 was the only student who observed the Type 1 ‘multiples’ patterns and she 

also proved the corresponding conjecture correctly (her investigation had been 

described in detail in Section 6.2a), while S10 was the only student who discovered 

the complicated Type 2 ‘digital roots’ pattern but she wrote down the corresponding 

conjecture wrongly when she was interrupted by the invigilator towards the end of the 

test (her investigation had been described in detail in Section 6.2c). 

 

Let us now examine other types of patterns and conjectures that are not related to the 

Types 1 and 2 patterns. Table 7.8 shows that there were 13 patterns and 6 conjectures 

in this category, and most of them were false, except for 2 correct patterns and 2 

correct conjectures from S9 who had misinterpreted the task and discovered patterns 

and formulated conjectures that were different from those of the original task (his 

investigation had been described in detail in Section 6.2b). For example, S2 observed 

that the last digits of consecutive terms in his Example 2 (Type 1b) were 9, 7, 5, 4, 3, 

2, 1, 0, and then it would repeat (this will be called his Pattern 3). This pattern has 

nothing to do with the Type 1b patterns. In the end, he formulated it as Conjecture 1: 

 

“So there is a chance that this is what I am looking for. But then again it is only a 

theory. It needs to be proved [sic] throughout, ok. [Start writing] Common point: 

0, 9, 7, 5, 4, 3, 2, 1, 0; ending digits of each number [stop writing].” [S2; 

Kaprekar Task] 

 

Pattern 3 and Conjecture 1 of S2 were classified as non-trivial, but the pattern and 

conjecture were actually false. An example of a trivial pattern was from S6 who 

observed that the difference between two consecutive terms in her Example 1 is 10, 
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followed by 4 terms, and then the pattern repeats (this will be called her Pattern 1) as 

shown in Figure 7.4. Although the student found a counter example in Example 1 (not 

shown in the figure) later to reject her Pattern 1, it is puzzling why she came back to 

her Pattern 1 again for her Example 3, which she also rejected after finding a counter 

example in Example 3 (not shown in the figure) later. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7.4  Trivial Pattern Observed by S6 for Kaprekar Task 

 
 

There are other types of patterns not related to the Types 1 and 2 patterns, but they are 

also underlying patterns for the Kaprekar Task, e.g. all the sequences are increasing 

and the self numbers described in the task analysis of this task in Appendix E. 

However, none of the students discovered any of these other patterns. 

 

Example 1 Example 3 
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(c) Conjecturing Processes vs. Outcomes 

 

Table 7.9 shows the TPO for the conjecturing processes and outcomes for the 10 

students’ investigation of the Kaprekar Task. The issue is what had helped the 

students to observe the Types 1 and 2 patterns, so only patterns and conjectures 

related to these types are shown in the table. Since the conjecturing outcomes may 

also depend on the specialising outcomes, such as the number of examples generated 

and whether these examples were representative of the Types 1 and 2 sequences, there 

is also a need to include these specialising outcomes in the table. 

 

Table 7.9  Conjecturing Processes and Outcomes for Kaprekar Task 
 

 

Specialising 
Outcomes 

Conjecturing Processes**** 
Conjecturing Outcomes 
related to Types 1 and 2

No. of 
E.g. 

*Rep. 
Examples 

Searched for patterns in Observed 
Patterns 

Formulated 
Conjectures Terms Diff. b/w Terms Others 

S1 2 Type 1a,2    2 1 

S2 4     2  

S3 3 Type 1a,2    3(1)*** 1 

S4 4 Type 2    2 1 

S5 7     3(3) 1(1) 

S6 6 Type 1b,2    2 1 

S7 7     2  

S8 6     2(1)  

S9 5 NA**    NA** 

S10 1 Type 2    2(1) 1(1) 

Total 45 4 rep. 3 10 4 20(6) 6(2) 
 

*  The examples generated were considered representative if and only if all the three types of sequences 
were generated: Type 1a, Type 1b and Type 2. If otherwise, the type(s) generated will be specified. 

**  S9 misinterpreted the task, so his patterns were no longer the same as the original task. As a result, 
his examples could not be classified as representative because there was only one type of examples. 

*** The number in brackets indicates the number of correct patterns or conjectures, e.g. 3(1) patterns 
for S3 indicates that S3 had observed 3 patterns related to the Types 1 and 2 patterns, but only one 
of them was correct. Since only actual Types 1 and 2 patterns or conjectures were correct, this also 
indicates that S3 had observed one actual Type 1 or 2 pattern. 

**** The students did not analyse the feasibility of the plan (MF). Although some students exhibited 
metacognitive awareness (MA), it was not included in this table because it would be analysed in 
the checking stage in Section 7.2.6 since it had something to do with the students sensing 
something amiss and checking their working. 
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From Table 7.9, it was observed that the number of examples generated in the stage of 

specialising did not correspond to whether the students were able to observe the actual 

Types 1 and 2 patterns in the conjecturing stage. For example, S10 tried only one 

example but she found the complicated Type 2 ‘digital roots’ pattern as explained in 

part (b) of this section, while S7 generated the largest number of examples but she 

was unable to observe any actual pattern. Therefore, whether a student was able to 

observe the actual patterns did not depend on the number of examples generated. 

Similarly, whether the examples generated were representative of the Types 1 and 2 

patterns did not correspond to whether the students were able to observe the actual 

patterns. For example, S2 tried 4 examples that were representative of all the Types 1 

and 2 sequences, but he was unable to observe the actual patterns of these sequences. 

Of course, if the students did not generate any example that belonged to a particular 

type of sequences, they would not be able to observe the actual patterns of that type of 

sequences, e.g. S4 generated only 4 examples and all of them were Type 2 sequences, 

so he would not be able to observe any Type 1 pattern. 

 

Since each example is a sequence, it is possible to generate very few examples but 

many terms for each example, e.g. S10 tried only one example but she generated 37 

terms for the sequence, which is the highest number of terms for a sequence generated 

among the students for this task. Although S10 found the complicated Type 2 ‘digital 

roots’ pattern from this one example, S1 generated 36 terms for a Type 1 sequence but 

he was unable to find the actual patterns. In fact, 7 students (S1-S6,S10) generated 

more than 20 terms for at least one of the sequences that they investigated, but only 4 

students (S3,S5,S8,S10) observed the actual patterns (as indicated by the number in 

brackets in the table), although 2 of them (S3,S8) did not recognise that their observed 

pattern is the actual pattern. This shows that the number of terms generated for a 
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sequence did not correspond to whether the students were able to observe the actual 

patterns. On the other hand, if too few terms were generated, it might be difficult to 

observe any pattern, especially the complicated Type 2 ‘digital roots’ pattern. 

 

It was further observed from Table 7.9 that all the students searched for patterns in the 

differences between consecutive terms, which are equal to the sums of the digits of 

the preceding terms, but only 4 students (S3,S5,S8,S10) were able to observe the 

actual patterns. Another place to search for patterns is the terms of a sequence because 

all the terms are divisible by 3 or 9 for Type 1 sequences, but otherwise for Type 2 

sequences (Types 1 and 2 ‘multiples’ patterns). Table 7.9 shows that 3 students 

(S2,S5,S8) tried to find a pattern in the terms of a sequence, but only S5 was able to 

discover the actual Type 1 ‘multiples’ patterns. Although S8 also observed that all the 

terms in one of her sequences are multiples of 3, she did not recognise that this is the 

actual pattern. This shows that searching for patterns in the correct places might not 

correspond to whether the students were able to observe the actual patterns. 

 

The issue now is to examine what had helped S5 to discover the Type 1 ‘multiples’ 

patterns and S10 to discover the Type 2 ‘digital roots’ patterns. The Secondary 2 

students in the present research had studied some number patterns in Secondary 1, but 

the usual patterns that they had learnt were very different from the Types 1 and 2 

patterns of the Kaprekar Task. The following lists some examples of sequences that 

the students had learnt in Secondary 1. 

 

Linear: 1, 4, 7, 10, 13, … (next term obtained from previous term by adding 3) 

Perfect Squares: 1, 4, 9, 16, 25, … 

Perfect Cubes: 1, 8, 27, 64, 125, … 
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Powers: 3, 9, 27, 81, 243, … 

 

Two special cases of a linear sequence are multiples of 3 and multiples of 9: 

 

Multiples of 3:  3, 6, 9, 12, 15, …  (next term obtained from previous term by 

adding 3) 

Multiples of 9:  9, 18, 27, 36, 45, … (next term obtained from previous term by 

adding 9) 

 

But the multiples of 3 and multiples of 9 sequences are in a fixed increasing order, i.e. 

the next term is obtained from the previous term by adding a constant. This means 

that there is a relationship between the term Tn and its position n, i.e. it is possible to 

find a formula for the n-th term or general term of the sequence, e.g. Tn = 3n for the 

multiples of 3 sequence. This may explain why the students in this study searched for 

differences in consecutive terms of the sequences. However, the Types 1 and 2 

patterns for the Kaprekar Task are different from what the students had learnt. For 

example, consider the Type 1a sequence generated by S1 for his Example 1 below: 

 

21, 24, 30, 33, 39, 51, 57, 69, 84, 96, … 

 

Although these are multiples of 3, they are not in a fixed increasing order, i.e. the next 

term is not obtained from the previous term by adding a constant, and so there is no 

simple relationship between the term Tn and its position n. This means that it is not 

possible to find a simple formula for the n-th term in terms of its position n. In fact, 

the numbers to add to the previous terms to obtain the next terms (or the differences 

between consecutive terms, which are also equal to the sums of the digits of the 

preceding terms for the Kaprekar task) are also multiples of 3 as shown below: 
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3, 6, 3, 6, 12, 6, 12, 15, 12, … 

 

However, there is also no relationship between these numbers and their positions. 

Therefore, some of the students (S3,S8) did not treat the Type 1a ‘multiples’ pattern 

as the actual pattern since this kind of patterns is not the usual types of patterns that 

they had learnt before. Instead, just like most of the other students, they tried to find a 

fixed increasing pattern or a repeating pattern for consecutive sums of digits or the 

differences between consecutive terms. Although the students might not have learnt 

the idea of a repeating pattern in their normal school lessons before, they had 

encountered repeating patterns during the familiarisation lesson where the last digits 

of powers of 3 repeat with a period of 4, and in Pretest Task 1 where the sad numbers 

enter into a loop (see outlines of Lessons 1 and 2 in Appendix C). 

 

From the protocols of the only student (S5) who discovered the Type 1 ‘multiples’ 

patterns, it was observed that she was able to apply the divisibility tests for 3 and 9 to 

prove that the Type 1 ‘multiples’ patterns are always true for Type 1 sequences. 

Therefore, knowing the divisibility tests for 3 and 9 might have helped S5 to discover 

the Type 1 ‘multiples’ patterns for the Kaprekar Task. Although the divisibility tests 

are not in the secondary school mathematics syllabus, it is possible that some students 

in the present study might have learnt them as an enrichment, especially when the 

divisibility test for 3 is an efficient way to check whether a number is divisible by 3, 

and if a number greater than 3 is divisible by 3, then it cannot be a prime number 

(prime numbers are in the Secondary 1 syllabus). However, knowing the divisibility 

tests for 3 and 9, and knowing when to apply them in situation that calls for them, are 

two different things. 
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Similarly, the Type 2 ‘digital roots’ pattern discovered by only one student (S10) is 

also not the usual types of patterns that the students had learnt before. S10 took quite 

a long while to observe that the differences between consecutive terms actually follow 

a basic 10-2-4-8-7-5 repeating pattern14, where the exceptions, 19, 11, 13, 17, 16 and 

14, are different from the corresponding numbers in the basic pattern by 9 as shown 

below (the reader should refer to her full investigation described in Section 6.2(c) on 

page 237 to understand the following). 

 

19 = 10 + 9, 

11 =   2 + 9, 

13 =   4 + 9, 

17 =   8 + 9, 

16 =   7 + 9, 

14 =   5 + 9. 

 

This is actually another way of looking at the Type 2 ‘digital roots’ pattern (the reader 

should refer to the task analysis in Appendix E on page 500 to be familiar with the 

different patterns for this task). But the student did not see this as the actual pattern 

yet. About 20 minutes into the test, she decided to organise her working by listing all 

the first differences between consecutive terms in one line so that it was easier to 

search for patterns. She then looked for patterns in the differences between 

consecutive first differences as shown in Figure 6.9 on page 237, and observed that 

the absolute second differences are 1, 2, 5, 1 and 7 respectively, as illustrated below 

(since she did not write down her observation but she just verbalised it): 

                                                 
14  Actually, the basic pattern is the 1-2-4-8-7-5 repeating pattern where 10 = 1 + 9, but the student had 

not obtained the number 1 before, so she was unable to make such an observation. 
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28,       38,        49,        62,       70,       77,       91   original sequence 
  

      10         11         13         8          7         14       first differences 
 

              1           2           5          1          7       absolute second differences 
 
 

This shows that the student knew how to search for patterns in the second differences, 

although this is not part of the secondary school mathematics syllabus. It is possible 

that the student might have learnt it before during some enrichment, or she might have 

just extended what she knew about searching for patterns in the first differences to 

searching for patterns in the second differences. Whatever the case, this suggests how 

she might have discovered her basic 10-2-4-8-7-5 repeating pattern in the first place: 

she might have tried to find the difference between the first differences 10 and 19, 

which are not consecutive first differences, and observed that 19  10 = 9. This is akin 

to finding the absolute second differences above, although the second differences are 

the differences between consecutive first differences. 

 

In the literature review of Schoenfeld’s problem-solving model in Section 2.2.2(d), 

Schoenfeld (1985) had discovered that some of his students were able to actively 

make use of their mathematical knowledge, which he called ‘resources’, to solve 

mathematical problems. Similarly, it was found in the above data analysis that the 

students in the present study only had the knowledge of the usual types of patterns 

that they had learnt in Secondary 1, and they lacked the knowledge of other types of 

patterns that were critical to the discovery of the Types 1 and 2 patterns for the 

Kaprekar Task. Only one student (S10) was able to apply what she had learnt to 

search for patterns in the second differences which resulted in her discovering the 

Type 2 ‘digital roots’ pattern, while the other student (S5) was able to associate the 

divisibility tests for 3 and 9 with the sums of digits in the Kaprekar Task which 
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resulted in her discovering the Type 1 ‘multiples’ pattern. In other words, 

Schoenfeld’s idea of an active application of resources had played an important role 

in helping the two students to observe the actual patterns. 

 

Table 7.9 shows that 4 students (S5,S7,S8,S10) also searched for patterns in other 

places. As discussed above, S10 looked for patterns in the absolute second differences 

of her Type 2 sequence. Interestingly, S5 also searched for patterns in the absolute 

second differences of her Type 1a sequence15, but she did not find any. The third 

student (S7) tried to search for patterns in the differences between the tens digit of 

consecutive terms, and the differences between the ones digit of consecutive terms, as 

shown in Figure 7.5. She observed that the differences between the tens digit of 

consecutive terms revolved around 0 and 1, but she was unable to proceed further. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7.5  Searching for Pattern by S7 for Kaprekar Task 

 
                                                 
15  Actually, S5 searched for patterns in the absolute differences between consecutive sums of digits. 

But consecutive sums of digits are actually equal to the differences between consecutive terms of a 
Kaprekar sequence. Therefore, the absolute differences between consecutive sums of digits are equal 
to the absolute second differences of the Kaprekar sequence. 
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The fourth student (S8) tried to find a pattern in the differences between consecutive 

odd terms of a sequence as shown in Figure 7.6. She observed that the first two 

differences are 12, but she soon found a counter example in the third difference 21. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7.6  Searching for Pattern by S8 for Kaprekar Task 

 
 

For the conjecturing stage, the students were supposed to analyse the feasibility of 

their plan to search for patterns (MF). An example of such a plan is the plan to search 

for patterns within a sequence or the plan to search for patterns across sequences. But 

the students in the present study just went ahead to search for patterns within a 

sequence without analysing the feasibility of such a plan. As a result, none of them 

searched for patterns across sequences. Although the students did search for patterns 

by referring to different sequences, they were still searching for patterns within each 

of these sequences, such as the differences between consecutive terms. If the students 

had searched for patterns across sequences, they might have discovered the self 

numbers described in the task analysis of this task in Appendix E. Self numbers, such 

as 1, 3, 5, 7, 9, 20 and 31, will never appear as the second or subsequent terms of any 

Kaprekar sequence. These self numbers could only be discovered if the students 

compared the terms across sequences. 

Searching for 
patterns 
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Summary 

 

To summarise, new investigation outcomes and new interactions among the processes 

were discovered from analysing the empirical data obtained in the present study, so 

these new outcomes and interactions were incorporated in the refined investigation 

model for cognitive processes. It was also found that generating all the representative 

examples and searching for patterns in the correct places did not help most of the 

students to observe the Types 1 and 2 patterns of the Kaprekar Task. This was 

because these kinds of patterns were not the usual types of patterns that they had 

learnt during their normal school lessons. However, two students were able to actively 

apply their knowledge, or what Schoenfeld (1985) called ‘resources’, to discover the 

Type 1a ‘multiples’ pattern or the Type 2 ‘digital roots’ pattern. Moreover, all the 

students did not analyse the feasibility of their plan to search for patterns, so none of 

them searched for patterns across sequences and thus they were unable to observe 

patterns that exist across sequences, e.g. the self numbers. 

 

7.2.5 Justifying and Generalising (Stages 5 and 6) 

 

Based on the literature review in Section 2.2.3(e) on page 75, some interesting issues 

for the present study to examine are: (i) Do students justify their conjectures, or do 

they wrongly accept their observed patterns as true without testing or based on naïve 

testing? (ii) Do students justify their conjectures by using a non-proof argument or a 

formal proof? Table 7.10 shows the TPO for the justifying and generalising processes 

and outcomes for the 10 students’ investigation of the Kaprekar Task. 
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Table 7.10  Justifying / Generalising Processes and Outcomes for Kaprekar Task 
 

 Conjecture 
Justifying Processes 

Justifying and Generalising 
Outcomes Naïve 

Testing
Non-proof 
Argument

Formal 
Proof

S1 
Wrong Trivial 
Conjecture 1 

   
Wrongly accepted conjecture as 
true without testing 

S2 
Wrong Non-trivial 
Conjecture 1 

   
Refuted conjecture based on naïve 
testing 

S3 
Wrong Trivial 
Conjecture 1 

   
Test ended after formulating 
conjecture 

S4 
Wrong Trivial 
Conjecture 1 

   
Test ended after formulating 
conjecture 

S5 

Correct Non-trivial 
Conjecture 1 

   
Proven conjecture correctly 
(generalisation) 

Wrong Trivial 
Conjecture 2 

   
Refuted conjecture based on naïve 
testing 

S6 
Wrong Trivial 
Conjecture 1 

   
Wrongly accepted conjecture as 
true without testing 

S9** 

Wrong Trivial 
Conjecture 1 

   
Refuted conjecture based on naïve 
testing 

Correct Trivial 
Conjecture 2 

   
Proven conjecture correctly 
(generalisation) 

Correct Non-trivial 
Conjecture 3 

   
Proven conjecture correctly 
(generalisation) 

Wrong Non-trivial 
Conjecture 4 

   Test ended during justifying 

S10 
Correct Non-trivial 
Conjecture 1 

   
Test ended after formulating 
conjecture 

Total 12 4 4 1 3 proven; 3 generalisation* 
 

* There was no generalisation for all the conjectures except for the three proven conjectures. 
**  S7 and S8 were omitted from the table because they did not formulate any conjecture to justify; S9 

misinterpreted the task, so his conjectures were no longer the same as the original task. 
*** The students did not exhibit the metacognitive behaviours, MF and MA, in this stage. 
 
 

It was observed from Table 7.10 that only 8 students (except S7 and S8) had 

formulated at least one conjecture, but 2 of them (S1, S6) wrongly accepted their 

conjecture as true without testing. For 3 of the students (S3,S4,S10), the test ended 

just after they had formulated their conjecture and it could not be inferred from their 

protocols whether they would accept their conjecture as true without testing. The 

remaining 3 students (S2,S5,S9) understood that they needed to justify their 

conjecture(s). All 3 of them tried naïve testing, which was advocated by Lakatos 

(1976) to refute a conjecture based on counter examples. For S2, he refuted his only 

conjecture based on naïve testing. For S5 and S9, they both refuted one of their 
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conjectures based on naïve testing. None of the students wrongly accepted their 

conjectures as true based on naïve testing. 

 

Table 7.10 shows that 2 of the students (S5,S9) also tried to justify their conjecture(s) 

using a non-proof argument. For S5, she correctly proved her Conjecture 1 on the 

Type 1a ‘multiples’ pattern, which was described in detail in Section 6.2(a), by using 

the divisibility tests for 3 and 9 (see her proof in Figure 6.3 on page 229). For S9, he 

misinterpreted the task and so his conjectures were different from those of the original 

task. However, he was able to use the underlying structure to correctly prove two of 

his conjectures, one of which was a non-trivial one (see his proofs in Figure 6.5 and 

Figure 6.7 in Section 6.2b). But for his last conjecture, he made a mistake and so his 

non-trivial conjecture was wrong. Again he tried to use the underlying structure to 

prove the conjecture, but the test ended while he was still in the process of justifying. 

Only one student (S5) attempted to use a formal proof involving algebra. The 

following shows her protocols when she formulated Conjecture 2 verbally and then 

tried to use algebra to prove the conjecture but failed: 

 

“So if the start number is … odd number, then the final number also be [sic] odd 

number ... If the … start number is even number [write: even number] even 

number, the rest will be even number ... But can I prove this finding? ... Can I use 

algebra to try … this example? ... Hmm, the two digits are a and b [write: ab ] ... 

a and b, so now I use ab  + a + b ... so ab  [continue writing] + a + b = ... 11a + 

2b [stop writing] ... Here what I want is that ... a + ... a + ... b = ... no, a + ... Oh, 

cannot use algebra [cancel her algebra working].” [S5; Kaprekar Task] 

 

None of the students in the present study analysed the feasibility of their plan to 

justify (MF). If S5 had done so, she would have realised that she could have easily 

referred to her previous five examples, which also involved an odd or an even starting 
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number, to see if she could find any counter example to refute her Conjecture 2 (naïve 

testing). In fact, there were many counter examples in her previous five examples 

which she could have used, without even resorting to the use of algebra. In the end, 

because she did not know how to prove her conjecture, she tried another example 

(naïve testing) and soon found a counter example to refute the conjecture. 

 

Table 7.10 shows that only 3 of the 12 conjectures were correctly proven by 2 

students (S5,S9). Since these conjectures were general results, the proven conjectures 

were generalisations. As posited in the theoretical investigation model for cognitive 

processes described in Section 3.2.1, the issue in the generalising stage is whether a 

proven conjecture will lead to a generalisation. 

 

Summary 

 

To summarise, 2 of the 10 students still wrongly accepted their conjecture as true 

without testing, even after the teaching experiment, but none of the students wrongly 

accepted their conjectures as true based on naïve testing. Only 3 students attempted to 

justify their conjecture(s). All 3 of them attempted naïve testing and refuted their 

conjecture(s) based on counter examples, while 2 of them managed to prove their 

conjecture(s) using a non-proof argument, leading to generalisation. Only one student 

tried a formal proof using algebra but failed. It seems that formal proofs are beyond 

the level of Secondary 2 students. None of the students analysed the feasibility of 

their plan to justify (MF) nor exhibited any metacognitive awareness (MA) in this 

stage. 
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7.2.6 Checking (Stage 7) 

 

Table 7.11 shows the TPO for the checking processes and outcomes for the 10 

students’ investigation of the Kaprekar Task. As explained in the theoretical model 

for cognitive processes in Section 3.2.1, students should check their working (coded 

as CW in the protocols) occasionally in all stages and not wait until the Checking (R) 

stage. However, it is more appropriate to analyse all the checking processes and 

outcomes together in the same section. Similarly, monitoring progress (MP), and 

metacognitive awareness (MA) where students sensed something amiss16, will also be 

analysed in this section although they could occur in previous stages. Reviewing the 

solution to see if it has met the goal of the task (MR) is a metacognitive process which 

includes examining whether the answer is reasonable or logical, evaluating the 

efficacy of a method of solution, and looking for an alternative method. The errors 

made (EM) are classified as major or minor. Major errors are defined as those that 

will have a serious impact on the investigation, e.g. mistakes that change the 

underlying patterns so that the students are not able to discover the correct patterns. 

But if the students discover these errors almost immediately afterwards, then these 

errors will be considered as minor because the impact on the investigation will not be 

so great. 

 
 

                                                 
16  Metacognitive awareness (MA) that helped students to be aware of what they were doing, which 

might have helped them save time by not repeating what they had done before, were dealt with in 
the stages that it had occurred, e.g. in Section 7.2.3 for the Kaprekar Task. 
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Table 7.11  Monitoring / Checking Processes and Outcomes for Kaprekar Task 
 

 

Processes Outcomes 

Check Working 
MP MR MA 

Errors 
Made* 

Errors 
Discovered Most 

Parts 
Some 
Parts 

Glance 
Briefly 

Total 

S1 2 2  4   1 1 minor 1 minor 

S2    0 4  1 
3 major +  

1 minor = 4 
1 minor 

S3 1  2 3 4   
2 major +  

2 minor = 4 

1 major (20 min 
later**) + 1 
minor = 2 

S4 3   3    
4 major +  

1 minor = 5 

1 major (7 min 
later) + 1 minor 

= 2 

S5   2 2 5 2 2 
3 major +  

3 minor = 6 

1 major (8 min 
later) + 1 minor 

= 2 

S6  3  3   1 
1 major +  

4 minor = 5 
2 minor 

S7  1  1 11  1 3 minor 1 minor 

S8   1 1 10   1 major 0 

S9   1 1 5 2 2 
1 major +  

7 minor = 8 

1 major (1 min 
later) + 5 minor 

= 6 

S10 1 1 1 3   1 
1 major +  

1 minor = 2 
1 minor 

Total 7 7 7 21 39 4 9 
16 major + 23 

minor = 39 
6 major + 14 
minor = 20 

 

* Errors due to misinterpretation had been dealt with in Table 7.2, and errors due to accepting 
conjectures as true without testing or based on naïve testing had been dealt with in Table 7.10, so 
these errors were omitted from this table. Observing incorrect patterns or formulating incorrect 
conjectures, as discussed in Table 7.8, were not errors. 

** The time indicated in brackets for ‘Errors Discovered’ refers to the time interval between making 
the major error and discovering the error. No time is indicated for the discovery of a minor mistake 
because the discovery time is not an important factor when the mistake is minor. 

 
 

Table 7.11 shows that 9 students checked their working on 21 occasions, or between 1 

to 4 times each. Only S2 did not appear to check his working at all. From their 

protocols, it was observed that only S5 checked all her working in the checking stage 

of the review phase, while S9 checked his working once during the transition between 

the conjecturing and justifying stages. Since all the other students did not reach the 

checking stage, all their checking was done in the specialising and conjecturing stages 

when they were trying examples and searching for patterns. The frequencies for the 
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three processes of checking happened to be the same: 7 times for checking working 

step by step for most parts of an example (or the entire example), 7 times for checking 

working step by step for some parts of an example, and 7 times for checking working 

by just glancing through it briefly. None of the students checked their working by 

other means, such as working backwards. 

 

The issue is which checking processes were effective in helping the students discover 

their mistakes. A detailed analysis of their protocols suggests that metacognitive 

awareness (MA), which includes the ability to sense something amiss, had played a 

more important role than any of the checking processes in helping the students to 

discover their errors. For example, S1 obtained a 9 for the sum of the digits of the 

number 234 in his Example 1, and he immediately sensed something amiss because 

all the previous sums of digits were either 3, 6, 12 or 15, but never 9. He asked, “How 

come is 9?” Then he recalculated only some parts of his working (i.e. the previous 

step) and discovered the error very soon: it should not be 234 but 237, whose sum of 

digits is 12. This calculation error was considered minor because he discovered it 

almost immediately afterwards. Another example is when S2 obtained 16 for the sum 

of the digits of the number 439 in his Example 2, he immediately realised that 

something was amiss because all the previous sums of digits were either 9 or 18. The 

following shows his protocols: 

 

“[Continue writing] 432 + 9 = 441; 439 + 16 [stop writing]. Then why do you get 

16? Oh, 441. Error … [cancel previous 2 lines] [start writing] 432 + 9 = 441; 441 

+ 9 = 450.” [S2; Kaprekar Task] 

 

The protocols show that he discovered his mistake because he sensed that something 

was amiss when he obtained a questionable result. These two vignettes (S1,S2) also 
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suggest that it is not necessary to check all the working step by step all the time, 

which is very time consuming, if the students are able to sense something amiss when 

they obtain a questionable result. 

 

Let us now look at a counter example. S4 made two calculation mistakes in his 

Example 1 that changed the patterns, which prevented him from observing the actual 

patterns. When he was stuck, he paused for 12 seconds while flipping through the two 

pages of his answer script. Since he did not say anything during the pause, he may 

have been checking his working by glancing through it, because he soon discovered 

the first major mistake, though this is unclear. Then he redid Example 1 from the 

beginning, so the second mistake in his original example was no longer relevant. 

Probably because of his earlier mistake, he decided to pause on three separate 

occasions to check most parts of his working, but his working was correct. However, 

towards the end of the test, he had stopped checking his working altogether, probably 

due to the time constraint. This was when he made a calculation error in his Example 

4 that changed the pattern as shown in Figure 7.7. But he did not sense anything amiss 

when the sums of digits had changed drastically from the 5-10-11-13-17-7 pattern to 

the 9-18 pattern. He even concluded that the sums of digits from 153 onwards were 

mostly 9 with an exception of 18. Thus the lack of metacognitive awareness had 

resulted in the student checking his working at the wrong places. 

 

Most of the minor mistakes were calculation errors which the students discovered 

soon enough (within one minute). However, most of the students did not explicitly 

check their working before spotting these errors, although it is possible that the 

students might have glanced through the previous step of their working. 
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Figure 7.7  Failure to Spot Mistake by S4 for Kaprekar Task 
 
 

Table 7.11 shows that only 2 students (S5,S9) reviewed their solution (MR) since 

both of them were the only ones who had justified a conjecture and so they should 

review if the solution had met the goal of the task. The first student (S5) reviewed her 

solution twice by glancing through her working briefly to check that her proven 

Conjecture 1 was only true for some of her examples, but she acknowledged that she 

was unable to find a pattern for the other examples. Then she concluded that this was 

the result of her investigation. The second student (S9) reviewed his solution after 

proving his Conjecture 2 and realised that the conjecture was not relevant (actually, 

the conjecture was just very trivial). The following shows his protocols: 

 

“[Flip back to p. 1] Ok, I am referring back … All 2-digit numbers … which [sic] 

tens place is odd will have a new number that is odd [flip back to p. 2] … Ok, that 

seems not the … real task is wanting me to find. [Flip back to p. 1] So … the task 

is wanting me to find … the pattern. Ok … so I think that my second conjecture 

is a little bit off topic.” [S9; Kaprekar Task] 

 

mistake 
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S9 reviewed his solution the second time after proving his Conjecture 3 and realised 

that he had “answered the question to a certain extent” (in his own words). Then he 

discovered that he did not repeat the process for the new number, a misinterpretation 

error discussed earlier in Section 7.2.1 under the understanding stage. This suggests 

that both students were able to review their solution effectively when they realised 

that they had not fully met the goal of the task. However, both students did not engage 

in other aspects of reviewing their solution: they did not examine whether their 

solution was reasonable or logical, nor did they evaluate the efficacy of their method 

of solution or look for an alternative method. 

 

Table 7.11 shows that only 6 students exhibited overt signs of monitoring progress 

(MP) during their investigation for a total of 39 times. Two students (S7,S8) 

monitored their progress the most frequently on 10 to 11 occasions each, but that does 

not mean that they were able to produce significant outcomes, such as non-trivial 

patterns or conjectures. On the contrary, it was precisely because they were stuck that 

they monitored their progress so often, but it was not effective. The following shows 

some of the protocols of S7 when she was monitoring her progress: 

 

“I think I’m going on the wrong track … I think I shall search for a new pattern 

instead.” 

“Never mind, I think I, I shall see if … I think I try to re-read the question …” 

“I think I’m going on the wrong track ... My answer don’t [sic] seem logical ... 

Never mind, I continue.” 

“I think I might … Am I going on the right track? ... I don’t think I know 

[emphasis mine] … Maybe I’ll try for another, for a while more … and see 

how it goes …” 

“I think I’m going nowhere … Should I think of … a new approach [emphasis 

mine] instead? … Never mind, I think I try another number …” 

[S7; Kaprekar Task] 
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Her second last protocol sums up the main problem: she realised that there was no 

way for her to know whether she was going on the right track. Thus the only thing 

that she could do was to keep going in the same direction for a while or to change 

approach. But she did not know of any new approach, so she continued trying another 

example, as shown in her last protocol above. On the other hand, one student (S3) 

decided to check his working while monitoring his progress when he was stuck. The 

following shows his protocols: 

 

“I’m stuck. I’ve no idea what I’m looking for. Choose any number. Add the sum 

of digits to the number itself. Investigate. Ok, 6, 12, ok, maybe I’ve some 

calculation error, so maybe I should just check.” [S3; Kaprekar Task] 

 

However, he only glanced through his working on two occasions without doing any 

recalculation, so he did not discover the two calculation errors that changed the 

patterns in his Examples 1 and 2, which prevented him from discovering the actual 

patterns. It was only 20 minutes after making the second major error that he decided 

to check his working step by step for most parts of his Example 1, which helped him 

to discover that mistake. 

 

Another student (S5) monitored her progress when she was stuck by referring to the 

given checklist of investigation processes (see Appendix E) to find out what she could 

do to observe a pattern. When she read ‘Pose a related problem’ in the checklist, she 

changed her approach from looking for patterns in consecutive sums of digits (her 

Specific Problem 1) to looking for patterns in the differences between consecutive 

sums of digits (her Specific Problem 2). When she listed these differences, which 

were either 3 or 6, she realised something was amiss when she obtained 5, which 
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enabled her to discover one of her major errors (her investigation had been described 

in detail in Section 6.2a). Since she was able to progress after discovering this mistake 

at about 11 minutes into the test, she did not appear to monitor her progress for the 

rest of her investigation. 

 

Summary 

 

To summarise, metacognitive awareness (MA), which includes the ability to sense 

something amiss when a questionable result is obtained, had played a more important 

role than the checking processes in helping the students to discover their mistakes. 

Only two students reviewed their solution, and they were able to review effectively 

when they realised that their solution had not fully met the goal of the task. But none 

of the students evaluated the efficacy of their method of solution or looked for an 

alternative method during the review of their solution. It was also found that most of 

the students monitored their progress only when they were stuck. Some of them did 

not know what else to do when monitoring their progress, except to continue in the 

same direction, or to ‘change approach’ by trying a new example, which is not very 

different from continuing in the same direction; while others were able to monitor 

their progress more effectively by changing the approach to search for patterns 

elsewhere or by checking their working to see if they had made any mistake. 
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7.3 MATHEMATICAL INVESTIGATION PROCESSES AND OUTCOMES 

FOR TYPE B TASKS 

 

In this section, the 10 sets of thinking-aloud protocols and answer scripts for the 

Sausage Task (Type B) will be analysed to study the effect of the 10 students’ 

processes on their investigation outcomes. The Sausage Task is reproduced below. 

 

Posttest Investigative Task 2: Sausages 

I need to cut 12 identical sausages so that I can share them equally among 18 

people. Investigate. 

 

Table 7.12 shows the processes and outcomes for each investigation stage for the 

Sausage Task. As posited in the theoretical investigation model for cognitive 

processes in Section 3.2.1, some of the processes and outcomes for Type B tasks are 

different from those for Type A tasks. For example, the students were expected to 

extend Type B tasks, and so Stage 8 (Extension) is included in the table together with 

Stage 2 (Problem Posing) since both stages involve posing problems. Similarly, the 

students were expected to use other heuristics in Stage 3 to solve the problems that 

they had posed, and they would also have to specialise during extension in order to 

generalise, so Stage 3 in the table includes both Specialising and Using Other 

Heuristics. The classification of an outcome (problem posed or conjecture formulated) 

as trivial or non-trivial had passed the inter-coder reliability test (see Section 5.4). 
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Table 7.12  Investigation Processes and Outcomes for Type B Tasks 
 

Stage Cognitive Processes Metacognitive Processes Outcomes 

Stage 1: 
Understanding 
the Task (U) 

 Re-reading task (RR) 

 Rephrasing task (RT) 

 Highlighting key 
information (HI) 

 Visualising Information 
(VI) 

 Monitoring 
understanding (MU) 

 Understood task 
correctly 

 Misinterpreted task 

 Recovered from 
misinterpretation  

Stages 2: 
Problem 
Posing (P) and 
Extension (E) 

Referring to following to 
think of problem to pose: 

 task statement 

 current working 

 previous result 

 given checklist 

 Analysing feasibility of 
goal or problem posed 
(MG) 

 Posed trivial specific 
problems 

 Posed non-trivial 
specific problems 

Stage 3: 
Specialising 
(S) and Using 
Other 
Heuristics (H) 

 Random specialising 

 Purposeful specialising 

 Systematic specialising 

 Using reasoning 

 Using algebra 

 Analysing feasibility of 
plan to specialise or use 
other heuristics (MF) 

 Metacognitive 
awareness (MA) 

 Formulated correct 
conjecture to generalise 

 Used other heuristics 
effectively, quite 
effectively or 
ineffectively 

Stage 4: 
Conjecturing 
(C) 

 Using reasoning 

 Using algebra 

 Analysing feasibility of 
plan to formulate 
conjecture (MF) 

 Metacognitive 
awareness (MA) 

 Formulated trivial or 
non-trivial conjectures 

Stages 5 / 6: 
Justifying / 
Generalising 
(J/G) 

 Naïve testing to refute 
conjecture 

 Using a non-proof 
argument 

 Using a formal proof 

 Analysing feasibility of 
plan to justify 
conjectures (MF) 

 Metacognitive 
awareness (MA) 

 Proved conjecture 
leading to 
generalisation 

 Proved conjecture but 
did not lead to 
generalisation 

Stage 7: 
Checking (R) 

Checking correctness of 
working (CW): 

 step by step for most 
parts 

 step by step for some 
parts only 

 glancing through it 
briefly 

 working backwards 

 Monitoring progress17 
(MP) 

 Reviewing solution to 
see if it had achieved 
the goal (MR) 

 Metacognitive 
awareness (MA) 

 Discovered major errors 
on time 

 Discovered major errors 
late 

 Did not discover major 
errors at all 

 

 
 

                                                 
17  Since monitoring progress can occur in any stage, and it does not matter at which stage the students 

monitor their progress (unlike metacognitive awareness), it will be more appropriate to analyse this 
process for the entire investigation together with the processes in the checking stage. 
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7.3.1 Understanding the Task (Stage 1) 

 

Table 7.13 shows the TPO for the understanding processes and outcomes for the 10 

students’ investigation of the Sausage Task. It was observed that 2 of the 10 students 

(S1,S8) did not appear to re-read (RR) or rephrase the task (RT), highlight key 

information (HI), visualise information (VI) or monitor their understanding (MU). 

The other 8 students engaged in the understanding processes from 1 to 11 instances 

each. RR, RT and VI occurred a lot more frequently than HI and MU. Only 4 students 

engaged in MU, which has the lowest total frequency at 6. A total of 3 students 

misinterpreted the task (same as the Kaprekar Task described in Section 7.2.1), out of 

which 2 of them recovered after about 4 minutes and 8 minutes into the investigation. 

Unlike the Kaprekar Task (Type A), there was no need for the students to try 

examples (TE) to understand the Sausage Task (Type B) but they could visualise the 

given information (VI) by drawing a diagram. 

 

Table 7.13  Understanding Processes and Outcomes for Sausage Task 
 

 
Processes Outcomes 

RR RT HI VI MU Total Understood Misinterpreted 

S1      0   

S2    1  1   

S3 3+1=4* 1+1=2 1 0+2=2 1+1=2 11  
Recovered after  

4 min 
S4  1 1   2   

S5 2 2 1 3  8  
Recovered after  

8 min 
S6 1  1 1  3  Did not recover 

S7 2 2  2 1 7   

S8      0   

S9  3 3  1 7   

S10 1+1=2 1+2=3  0+2=2 1+1=2 9   

Total 11 13 7 11 6 48 7 
3 misinterpreted; 

2 recovered  
 

* S3 engaged in RR for 3 + 1 = 4 times means that there were 2 episodes of understanding the task and 
RR happened 3 times in the first episode and 1 time in the second episode; 1  HI for S3 means that 
HI happened 1 time in the first episode. 
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The issue was whether the understanding processes used by the students had helped 

them to interpret the task correctly or to recover from any misinterpretation, and how 

did these processes help. From the detailed protocol analysis of the 3 students (S3,S5, 

S6) who misinterpreted the task, it was observed that the understanding processes did 

not help them to interpret the task correctly, but re-reading the relevant parts of the 

task had helped 2 of them (S3,S5) to recover from their misinterpretation. 

 

For example, S5 engaged in 8 instances of understanding processes during the 

Understanding (U) stage, but she still misinterpreted the task when she rephrased the 

first part of the task statement wrongly: “I want to cut them into 12 identical 

sausages.” What she meant was that she wanted to cut one sausage into 12 identical 

parts to share them among the 18 people, so she wrote down her problem: “Problem: 

How the 18 people share 12 pieces of sausages? Is this method working?” But then 

she was stuck when she realised that 12 pieces of sausages were not enough to share 

among the 18 people. She even suggested getting another 6 pieces so that there would 

be enough to share among the 18 people! At about 8 minutes into the investigation, 

she re-read the entire task statement to think of how to solve the problem (different 

from re-reading to understand the task) and paused for 4 seconds. Then she cancelled 

‘12 pieces of sausages’ in her problem stated above and wrote ‘12 identical sausages’. 

Her subsequent working shows that she had found her mistake from re-reading the 

relevant parts of the task on ‘12 identical sausages’. Similarly, the other student (S3) 

did not realise that he had to cut the sausages despite engaging in the understanding 

processes 11 times, but he managed to recover from his misinterpretation at about 4 

minutes into the test when he re-read the relevant parts of the task ‘I need to cut’ 

while thinking of a problem to pose (different from re-reading to understand the task). 
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For the last student (S6) who misinterpreted the task but did not recover, it was a 

totally different problem. She had no issue with dividing a sausage with rounded ends 

into 3 equal parts, but she believed that each person should receive an equal number 

of rounded ends and an equal number of middle portions. Figure 7.8 shows that she 

named the 3 parts of a sausage ‘a’, ‘b’ and ‘c’, and there were a total of 12 ‘a’ and 24 

‘b & c’ for the 12 sausages. In other words, she treated the rounded ends as different 

from the middle portions ‘a’, but the rounded ends ‘b’ and ‘c’ as the same. However, 

this problem cannot be solved unless one subscribes to the hidden assumption that the 

shape of the sausages does not matter, as explained in the task analysis of this task in 

Appendix E. It is possible that the student had confused the word ‘identical’ in the ‘12 

identical sausages’ in the task statement with the parts of the sausages to be shared 

equally with the 18 people: ‘equal’ parts for the 18 people means equal in volume, not 

necessarily ‘identical’ in shape. This possibility was inferred when she later cut each 

sausage into 2 parts and then said that the 2 parts are “identical” (in her own word). 

 

 
 
 
 
 
 
 
 

Figure 7.8  Misinterpretation of Task by S6 for Sausage Task 
 
 

Let us now examine what might have helped the other 7 students understand the task 

correctly. Three of them (S7,S9,S10) engaged in 7 to 9 instances of understanding 

processes each. One of them (S7) specifically mentioned that drawing a diagram was 

“a simpler way to understand” (in her own words). Thus these processes might have 

helped the 3 students to interpret the task correctly. However, it was possible to 
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engage in very few instances of these processes to understand the task correctly since 

the other 4 students (S1,S2,S4,S8) engaged in 0 to 2 instances of these processes each. 

For example, S1 read the task once and immediately posed a problem, suggesting that 

it is possible to read the task once and understood the task correctly without engaging 

in any of these processes. 

 

Summary 

 

To summarise, the understanding processes had helped some students in the present 

study to interpret the task correctly, but these processes did not prevent 3 students 

from misinterpreting the task. Nevertheless, one of these processes had helped 2 of 

them to recover from their misinterpretation when they re-read the relevant parts of 

the task (same as the Kaprekar Task discussed in Section 7.2.1). On the other hand, it 

is possible for some students to interpret the Sausage Task correctly by reading the 

task only once, which is not possible for the Kaprekar Task since the students need to 

try examples to understand the latter, which will include re-reading the task for the 

instructions. That is why the students engaged in the understanding processes for a 

total of 90 times for the Kaprekar Task, which is a lot more than the 48 times for the 

Sausage Task. 

 

7.3.2 Problem Posing (Stage 2) 

 

The treatment for the data analysis in this section will be different from the previous 

section as there is a need to analyse in detail the types of specific problems posed by 

the 10 students for the Sausage Task before the empirical data could be examined to 

study the effect of the problem-posing processes on the outcomes in this stage. 
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(a) Problem-Posing Outcomes 

 

During the task analysis of the Sausage Task in Appendix E, some possible problems 

that students could pose for this task were identified and classified as trivial or non-

trivial. They are reproduced below. Problem 5 is the intended problem for this task. 

 

 Problem 1 (P1): Find how to cut the 12 identical sausages to share them equally 

among the 18 people. [Trivial] 

 

 Problem 2 (P2): Find the amount of sausages each person will receive when the 12 

identical sausages are shared equally among the 18 people. [Trivial] 

 

 Problem 3 (P3): Find the number of cuts needed to share the 12 identical sausages 

equally among the 18 people. [Non-Trivial] 

 

 Problem 4 (P4): Find a few methods to cut the 12 identical sausages to share them 

equally among the 18 people. [Non-Trivial] 

 

 Problem 5 (P5): Find the least number of cuts needed to share the 12 identical 

sausages equally among the 18 people. [Non-Trivial; Intended Problem] 

 

Table 7.14 shows the TPO for the problem-posing outcomes for the 10 students’ 

investigation of the Sausage Task. The classification of specific problems as trivial or 

non-trivial had passed the inter-coder reliability test (see Section 5.4). ‘Other Trivial 

Problems’ refer to trivial problems other than P1 and P2. No student had posed other 

non-trivial problems. It was observed that the 10 students posed a total of 22 specific 

problems for the Sausage Task, or an average of 2.2 problems per student. The actual 

number of problems posed by a student ranged from 1 to 4 problems. Out of the 22 

problems, 12 of them (or 55%) were trivial while the other 10 (or 45%) were non-

trivial. P1 was the most common problem that the students posed, but only 2 students 
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(S1,S5) posed this problem explicitly. The other 6 students just went ahead to find 

how to cut the sausages without posing it as a problem. Although only one student 

(S9) posed the problem of finding the amount of sausages each person will get (P2), 6 

other students (S1,S2,S4,S5,S8,S10) also found the amount of sausages each person 

will receive when solving other problems such as P1 or P5. In other words, these 6 

students did not set out to solve P2. 

 

Table 7.14  Problems Posed for Sausage Task 
 

 
P1 

(trivial) 
P2 

(trivial) 

P3 
(non-

trivial) 

P4 
(non-

trivial) 

P5 
(non-

trivial) 

Other 
Trivial 
Prob. 

Total 
No. of 
Trivial 
Prob. 

Total No. 
of Non-
Trivial 
Prob. 

Total 
No. 
of 

Prob. 

S1       1 1 2 

S2 *  *    1 2 3 

S3 *     1 2 0 2 

S4 *     1 2 0 2 

S5       1 1 2 

S6 *      1 1 2 

S7 *      1 0 1 

S8       0 1 1 

S9     * 1 2 2 4 

S10 *      1 2 3 

Total 8 1 3 2 5 3 12 10 22 
 

* Did not pose problem explicitly 
 
 

It was further observed that 50% of the students (S3-S7) did not find the number of 

cuts for this task. Only 3 students (S2,S9,S10) posed the problem of finding the 

number of cuts (P3) and the least number of cuts (P5) needed to share the 12 identical 

sausages equally among the 18 people, while 2 students (S1,S8) posed P5 directly. 

Thus a total of 5 students attempted to find the number of cuts, with all 5 of them 

posing P5 in the end. However, P5 was the intended problem for this task, which 

means that only 50% of the students in this study were able to pose this problem. 
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Since a Type B investigative task, such as the Sausage Task, is obtained from a 

mathematical problem by removing the original intended problem and replacing it 

with the word ‘investigate’ (Frobisher, 1994) as explained in Section 2.1.4(b), the 

implication of this finding is that teachers need to be aware that there is a possibility 

of ‘losing’ the intended problem that they might want their students to solve. Thus 

there is a need for teachers to think about how to guide their students to pose the 

intended problem for a Type B task, and yet not close up the task by restricting the 

students’ freedom and creativity to pose other types of problems to solve. 

 

A detailed analysis of the students’ protocols shows that the students posed P1 to P5 

in ascending order of the number. For example, S9 posed P2, then P3, followed by P5. 

This is not surprising since P1 to P5 had been formulated in a logical sequence during 

the task analysis of this task. However, it does not mean that the students must pose 

all these problems in order, e.g. S5 posed P1 and P4, but she did not pose P2 and P3. 

 

None of the students posed other non-trivial problems, but 3 students (S3,S4,S9) 

posed other trivial problems. The first student (S3) posed the trivial problem of 

finding factors of 18, or “numbers that can be divided by 18 without decimals” (in his 

own words), at the start of the test. The second student (S4) posed the problem of 

finding the number of times he needed to cut the sausages, which is different from 

finding the number of cuts (P3), since he had this idea that the knife might not be long 

enough to cut all the sausages together at one go, as shown in his protocols below. 

 

“So maybe the knife is very small, so I can only cut one sausage at a time. So 

how many times should I need to cut in order to, so each person should, will get 

2/3 of sausage [write: 2/3]?” [S4; Sausage Task] 
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What he meant was made clearer when he then proceeded to cut all the 12 sausages 

together at one go with a long knife, i.e. he cut a total of only one time, instead of 12 

times with a ‘very small’ knife. The third student (S9) posed the problem of finding 

how to share the sausages at the start of the test, which is different from finding how 

to cut the sausages (P1) because his answer was just “each person would get 2/3 of a 

sausage”. 

 

(b) Effect of Problem-Posing Processes on Outcomes 

 

After analysing the different types of problems (outcomes) posed by the students for 

the Sausage Task, we now turn our attention to study the effect of the problem-posing 

processes on the outcomes. Table 7.15 shows the TPO for the problem-posing 

processes and outcomes for the 10 students’ investigation of the Sausage Task. The 

ability to pose a problem does not depend only on the final outcome: whether it is 

non-trivial or trivial. It also depends on whether the student is able to pose the 

problem ‘naturally’ without struggling, or whether the student struggles to pose the 

problem ‘eventually’. From the data analysis in part (a) of this section, it was 

observed that the students posed P1 to P5 in ascending order of the number, so this is 

how Table 7.15 should be interpreted, e.g. S9 posed P2, then P3, followed by P5. As 

for the 3 students (S3,S4,S9) who posed one ‘other problem’ each, both S3 and S9 

posed the ‘other problem’ as their first problem while S4 posed the ‘other problem’ as 

his second problem. 
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Table 7.15  Problem-Posing Processes and Outcomes for Sausage Task 
 

 

Processes** Outcomes*** 

Refer to following to think of problem 
P1 P2 P3 P4 P5 

Other 
Prob. Task 

Current 
Working 

Previous 
Result 

Check
-list 

S1 1  1  N    N  

S2 1 1 1  N*  N*  N  

S3 2    E*     E 

S4 2    N*     E 

S5 1  1  N   N   

S6 1   1 N*   E   

S7 1    N*      

S8 1        N  

S9 1 1 2   N N  N* N 

S10 3 1 2 2 E*  E  E  

Total 14 3 7 3 8 1 3 2 5 3 

 
* Did not pose problem explicitly. 
**  The students did not analyse the feasibility of the goal or the problem (MG). 
***  ‘N’ indicates posing the problem naturally while ‘E’ indicates posing the problem eventually. 
 
 

Table 7.15 shows that 8 students (S1,S2,S4,S5-S9) posed their first problem (either 

P1, P5 or the ‘other problem’ for S9) naturally. A detailed analysis of their protocols 

shows that all the 8 students had referred to the task statement in the understanding 

stage, before posing their first problem (S1,S5,S8,S9) or going ahead to find how to 

cut the sausages without posing it as a problem explicitly (S2,S4,S6,S7). The 

following shows the protocols of a student (S1) who read the task once and then 

posed the problem naturally: 

 

“I need to cut 12 identical sausages so that I can share them equally among 18 

people. Investigate. The question is [write: Q:] is that [start writing] How am I 

going to cut the 12 sausages [stop writing].” [S1; Sausage Task] 

 

However, the ability to pose the first problem without much difficulty does not mean 

that the students could also pose subsequent problems naturally after solving their first 
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problem. Table 7.15 shows that 4 students (S1,S2,S5,S9) posed their subsequent 

problems naturally. A detailed analysis of their protocols shows that all the 4 students 

had either referred to (i) their current working, or (ii) a previous result that they had 

obtained, when thinking of a new problem to pose. For example, S2 did not pose his 

first problem explicitly but he just went ahead to find how to cut the sausages (P1). 

He then used a cutting method that involves cutting each of the 12 sausages into 18 

equal parts. In the process of cutting (i.e. referring to the current working), he went on 

to find the total number of cuts (P3) without posing it as a problem explicitly. After 

solving both P1 and P3, he looked at his solutions (i.e. referring to the previous 

results) and said that the cutting method was too troublesome, which prompted him to 

pose the problem of finding the least number of cuts (P5) explicitly. In other words, 

for students who posed problems naturally for the Sausage Task, referring to the task 

statement had helped them to pose their first problem, but for subsequent problems, 

what was more helpful was their current working or previous results, which had acted 

as a springboard for more problems. 

 

Table 7.15 shows that 15 of the 22 problems (or 68%) were posed naturally while 7 

problems (or 32%) were posed eventually. It was observed from the same table that 2 

students (S3,S10) struggled to pose all their problems while 2 other students (S4,S6) 

struggled to pose their second problem. A detailed analysis of their protocols suggests 

that the processes that had helped them to pose their problem(s) eventually were the 

reference to (i) the task statement, (ii) a previous result, and (iii) the given checklist of 

investigation processes (see Appendix H). For example, S10 read the task statement at 

the start of the test and then proceeded to cut the 12 identical sausages to share them 

equally among the 18 people, but she did not treat this as solving P1. It was after she 

had referred to the checklist, re-read the task statement, and checked her current 
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working, before she realised that she had solved a problem, as shown in her protocols 

below. 

 

“Um, okay, so this is already the solution.” [S10; Sausage Task] 

 

This suggests that she did not pose P1 naturally. Then she struggled to think of a 

second problem. In the end, she referred to her previous result or solution of P1 before 

posing her second problem eventually: find the number of cuts (P3). After solving this 

problem, she was again stuck for some time. Then she referred to the checklist, re-

read part of the task statement once, and referred to the previous result where she read 

part of her solution, before posing her third problem eventually: find the least number 

of cuts (P5). Thus what had helped her to think of a problem to pose were the 

reference to the task statement, a previous result, and the checklist. Although she had 

referred to her current working before she realised that she had solved P1, the process 

of referring to her current working was not for the purpose of posing more problems 

to solve. In fact, none of the students who struggled to pose problems for this task 

referred to their current working when thinking of what to pose. 

 
 
None of the students analysed the feasibility of their goal or problem (MG) to see if it 

was worth pursuing. If they had, they might have realised that most of their problems, 

such as finding a cutting method (P1) and the amount of sausage that each person will 

receive (P2), are trivial. Although the students could still solve these trivial problems, 

they should try to think of more non-trivial problems to solve, such as finding the 

number of cuts (P3) and the least number of cuts (P5). 
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Summary 

 

To summarise, 5 of the 10 students in the present study were unable to pose the 

intended problem for the Sausage Task, which is to find the least number of cuts. 

Some of them also encountered difficulty in thinking of other problems to pose. For 

students who were able to pose problems naturally, referring to the task statement 

helped them think of their first problem, and their current working or previous results 

were a fertile source for subsequent problems. For those who struggled to think of 

problems to pose, referring to the task statement, previous results, or the given 

checklist of investigation processes, helped in posing a problem eventually. None of 

the students analysed the feasibility of their goal, which might have helped them to 

think of non-trivial problems to pose and solve, instead of just solving trivial ones. 

 

7.3.3 Using Other Heuristics (Stage 3) 

 

As posited in the theoretical investigation model for cognitive processes in Section 

3.2.1, the students should use other heuristics such as reasoning (coded as RE in the 

protocols), algebra (AL), and visualising information (VI) by drawing a diagram, to 

think of how to solve the problem that they had posed for the Sausage Task (Type B). 

However, none of the students used algebra for this task. Specialising in this stage 

will be discussed later in Section 7.3.7 after the students had extended the task to 

generalise. During the task analysis of this task in Appendix E, three cutting methods 

to share the 12 identical sausages equally among the 18 people were identified. They 

are reproduced below: 
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 Cutting Method A (Usual Method): Cut each of the 12 sausages into three equal parts. 

Then each person gets two parts. Total number of cuts = 12 × 2 = 24. 

 

 Cutting Method B (Shortest Method): Cut each sausage once at the 2/3-mark to divide 

it into two parts: 2/3 and 1/3 of a sausage respectively. Then each person either gets 1 

× 2/3 of a sausage, or 2 × 1/3 of a sausage. Total number of cuts = 12. 

 

 Cutting Method C (Long Method18): Cut each sausage into 18 equal parts. Then each 

person receives one part from each of the 12 sausages, i.e. a total of 12 parts. Total 

number of cuts = 12 × 18 = 216. 

 

For Type B tasks, the ability to use other heuristics effectively is task dependent. For 

the Sausage Task, students could make use of the fraction of sausage each person will 

receive to discover Cutting Method B, or the LCM of the number of sausages and the 

number of people to help find Cutting Method A. As Method A is what most people 

would naturally use, students who only discovered this method were reckoned to have 

used other heuristics ‘ineffectively’. If they struggled but eventually discovered 

Method B that gives the least number of cuts, they were reckoned to have used other 

heuristics ‘quite effectively’. But if they were able to discover Method B naturally 

without struggling, whether right from the beginning or after using Method A, then 

they were reckoned to have used other heuristics ‘effectively’. It was expected that the 

students would not use Method C since it is clear that it would give more cuts than 

Method A, and it is very troublesome to cut each sausage into so many parts. 

 

                                                 
18  There is no longest method because the number of parts each of the 12 sausages can be cut, so that 

they can be shared equally among 18 people, can be any multiple of 18, although there is a practical 
limit as to how small a sausage can be cut. 



 
 

335

Table 7.16 shows the TPO for the processes and outcomes of using other heuristics 

for the 10 students’ investigation of the Sausage Task. The three reasoning processes 

that the students had used to help them think of how to cut the sausages are: (i) the 

fraction of sausage each person will receive, (ii) the lowest common multiple (LCM) 

of 12 and 18, and (iii) the factors of 12 and 18. 

 

Table 7.16  Using Other Heuristics for Sausage Task 
 

 

Processes* Outcomes 

Reasoning using 
VI MF MA 

Cutting Methods 

Fraction LCM Factors A B C Others Total 

S1    1       2 

S2    1       2 

S3    3      1 2 

S4    1      1 2 

S5    1       2 

S6    11      4 5 

S7    7 1 1    2 4 

S8*    7      4 6 

S9    8       2 

S10    2       2 

Total 7 5 3 42 1 1 9 5 3 12 29 
 

* Although S8 also exhibited metacognitive awareness (MA) in this stage, it was not included in this 
table because it would be analysed in the checking stage in Section 7.3.10 since it had something to 
do with her sensing something amiss and checking her working. 

 
 

Table 7.16 shows that most of the students (i.e. 9 of them) attempted Cutting Method 

A as expected. The remaining student (S4) did not use Method A but went straight to 

use Method B. So a total of 5 students used Method B. However, it was surprising 

that 3 students actually used Method C, which is to cut each of the 12 sausages into 18 

equal parts. Five students also tried other cutting methods, such as cutting each 

sausage into halves or into 6 equal parts. Most of these ‘other cutting methods’ will 

not work. In total, the 10 students tried 29 cutting methods, or an average of 2.9 
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methods per student for the original task. The actual number of cutting methods 

attempted by a student ranged from 2 to 6 methods. 

 

A detailed analysis of the students’ protocols suggests that reasoning using the 

fraction of sausage each person will receive has helped the 5 students (S1,S4,S8-S10) 

to think of Method B, which gives the least number of cuts. Table 7.16 shows that 7 

students (including the 5 students who discovered Method B) found the fraction of 

sausage each person will receive. The first student (S1) used Method A first, then 

thought for a while about the 2/3 of a sausage that each person will receive before 

discovering Method B, which requires each sausage to be cut at the 2/3-mark. The 

second student (S4) used the LCM of 12 and 18 to reason that there will be a total of 

36 pieces of sausages to be shared equally among the 18 people. But he did not use 

Method A. Instead, he reasoned further that each person will get 2 pieces or 2/3 of a 

sausage19, which led him to discover Method B. The third student (S9) reasoned 

straightaway that it was enough to cut each sausage at the 2/3-mark since each person 

will receive 2/3 of a sausage. Therefore, these 3 students (S1,S4,S9) were able to 

reason ‘effectively’ using the fraction of sausage each person will receive to help 

them discover Method B naturally without struggling, whether right from the 

beginning or after using Method A. 

 

The other two students (S8,S10) discovered Method B only at a later stage when they 

found the fraction of sausage each person will receive, so their use of other heuristics 

was ‘quite effective’. For example, after using LCM and Method A, S8 then cut the 

sausages any old how. Her ‘other methods’ include cutting the first 4 sausages into 

                                                 
19  This was a longer way to obtain 2/3 of a sausage: 12 divided by 18 will give 2/3 straightaway. 
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halves and the next 4 sausages into 3 parts each, which did not work out; cutting the 

first 5 sausages into halves and the remaining 7 sausages into 3 parts each, which also 

did not work out; and cutting the first 6 sausages into halves, which also did not work 

out. She did not understand that she could not cut the sausages any old how because 

the fraction of sausage each person will receive is critical in determining how the 

sausages should be cut. Finally, she thought of the fraction of sausage each person 

will receive and discovered Method B. The following shows her protocols when she 

started to think of 2/3. 

 

“Ok … I … think eventually right, each person should have 2/3 of a sausage. Yah 

… So that means … I might have to cut … like … Oh, I know already … Instead 

of cutting into half right [draw 5 ovals], when I slice one, I can slice it into … I 

can split it into 1/3 and 2/3.” [S8; Sausage Task] 

 

Therefore, finding the fraction of sausage each person will receive had helped these 5 

students (S1,S4,S8-S10) to think of Method B. But it was not helpful for two other 

students (S2,S5) who found the fraction of sausage each person will receive because 

they did not discover Method B, e.g. one of them (S2) did not reduce the fraction of 

sausage each person will receive (i.e. 12/18) to the lowest terms (i.e. 2/3), so 12/18 

did not lead him to Method B.  

 

On the other hand, finding the LCM of 12 and 18 naturally led to Method A for 3 

students (S7,S8,S10). Table 7.16 shows that 5 students (S4,S6-S8,S10) found the 

LCM of 12 and 18. Four of them (except S6) started to find a cutting method by 

calculating the LCM of 12 and 18 to give 36. This means that, after cutting, there will 

be 36 pieces of sausages to be shared equally among the 18 people, i.e. each of the 12 
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sausages must be cut into 3 pieces. So using the LCM of 12 and 18 naturally led to 

Method A for 3 of the 4 students (S7,S8,S10). As discussed above, the fourth student 

(S4) did not use Method A but he went on to reason that each person will get 2 pieces 

or 2/3 of a sausage, which led him to discover Method B. The fifth student (S6) did 

not use any of the three reasoning processes but she just cut each sausage into 3 parts 

(Method A). However, she was concerned that the rounded ends were different from 

the middle portions, which had been discussed earlier in Section 7.3.1. So she ended 

up trying different methods of cutting, including cutting each sausage into halves or 

quarters, which did not work out. In the process, she tried using factors of 18, factors 

of 12, and then the LCM of 12 and 18, which were not helpful, since there is no 

solution if the rounded ends are considered different from the middle portions. 

 

Other than S6 described in the preceding paragraph, Table 7.16 shows that 2 other 

students (S7,S8) also found the factors of 12 and 18, but it did not help them to 

discover Method A or B. Table 7.16 also shows that one other student (S3) did not use 

any of the three reasoning processes but he just cut each sausage into 2 equal parts, 

which did not work out; so he just cut each sausage into 3 equal parts (Method A) and 

it worked, but he did not discover Method B. Hence, the ability to identify and use 

critical information, such as the fraction of sausage each person will receive, had 

helped 5 students (S1,S4,S8-S10) to discover Method B. 

 

Table 7.16 shows that 3 students actually used Method C, which is very troublesome 

since each sausage has to be cut into 18 equal parts. The first student (S2) started with 

Method C, which he initially said was “the simplest way to cut” (in his own words). 

But he soon recovered and found Method A. The second student (S5) tried to find 
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different cutting methods and so she just listed Method C as one possible method after 

using Method A. The last student (S7) used Method C as she was trying to find out 

whether the number of parts each sausage should be cut is a factor of 18. 

 

The use of other heuristics includes not only reasoning as described above, but also 

visualising information. Table 7.16 shows that all the students visualised information 

by drawing a diagram with a total frequency of 42 times. Generally, the students drew 

a diagram in this stage for three purposes: (i) to think of a cutting method, (ii) to try 

out a cutting method that they had thought of to see if it works, and (iii) to present the 

solution. For example, S7 drew 12 sausages and then said: 

 

“So these 12 sausages must be divided between 18 people ... So … how should I 

divide? …” [S7; Sausage Task] 

 

The student was (i) visualising information to think of a cutting method, but it was not 

helpful. So she used multiples and factors to help her think of how to cut. After a 

short while, she decided to cut each sausage into 3 equal parts, but she was not sure 

whether the method will work. So she (ii) tried out the cutting method by drawing two 

vertical lines to cut each sausage. After cutting the eighth sausage into 3 equal parts, 

she reasoned that there will be a total of 36 parts, which can be shared among the 18 

people. In other words, the student was now certain that her cutting method will work. 

Then she (iii) presented her solution by drawing two vertical lines for each of the four 

remaining sausages, and she even shaded the first few sausages as shown in Figure 

7.9, although she probably decided that it was too troublesome to continue shading 

the rest of the sausages. 
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Figure 7.9  Visualising Information by S7 for Sausage Task 

 
 

Just like S7 above, 5 other students (S3,S5,S6,S8,S10) who drew a diagram to think 

of how to cut the sausages were unable to find a workable cutting method just by 

visualising the sausages alone. On the other hand, visualising information was more 

helpful in checking whether a cutting method would work, e.g. in addition to S7, 

visualising information had helped 5 other students (S1-S3,S6,S8) to do so. In fact, 

drawing 17 cuts on a sausage to divide it into 18 equal parts had led one student (S2) 

to realise that his cutting method (Method C) was too troublesome, so he went on to 

find a shorter method (Method A). 

 

Table 7.16 shows that only one student (S7) engaged in 2 instances of metacognitive 

behaviours. She analysed the feasibility of her plan (MF) in using multiples or factors 

to think of a cutting method on one occasion, but it was not effective because it did 

not work out. However, she exhibited metacognitive awareness (MA) on another 

occasion when she realised that she had tried a cutting method before, thus saving her 

precious time from trying the same cutting method again. None of the other students 

analysed whether their cutting method will work before trying it out, and thus wasted 
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a lot of time when the method failed. For example, as discussed above, S8 initially cut 

the sausages any old how without analysing whether the cutting method will work, so 

she wasted precious time on a wild goose chase until finally, she realised that each 

person must receive 2/3 of a sausage, which led her to discover Method B. 

 

Summary 

 

To summarise, some of the students in the present study were able to reason 

effectively by using critical information, such as the fraction of sausage each person 

will receive, to find the shortest method, while others were not able to do so. Some of 

them did not even try to analyse whether their cutting method was feasible or worth 

pursuing, but they just went ahead to cut the sausages any old how. On the other hand, 

visualising information by drawing a diagram had helped some of the students to 

check whether their cutting method will work, but visualising information per se did 

not help them to think of a workable cutting method. Metacognitive awareness had 

also helped one student not to repeat a cutting method that she had tried earlier. 

 

7.3.4 Conjecturing (Stage 4) 

 

As explained in the theoretical model for cognitive processes in Section 3.2.1, 

students can solve a problem that they had posed for the original task by using other 

heuristics with or without formulating any conjecture. For example, students can 

solve the problem of finding a method to cut the 12 sausages to share them equally 

among the 18 people for the Sausage Task without formulating any conjecture. But if 

they want to find a method that gives the least number of cuts, then the method is only 

a conjecture (coded as FC in the protocols) unless they can justify whether it will 

indeed give the least number of cuts. Therefore, the processes for the conjecturing 
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stage for Type B tasks are actually using other heuristics, such as reasoning, in the 

previous stage, and the outcomes in this stage are whether the conjectures formulated 

are non-trivial or trivial, and whether they are correct or wrong. Table 7.17 shows the 

TPO for the conjecturing processes and outcomes for the 10 students’ investigation of 

the Sausage Task. Only 5 students were shown because they were the only ones who 

posed the problem of finding the least number of cuts and so only their cutting 

method was a conjecture to be proven or refuted. The conjectures were classified as 

trivial or non-trivial based on the task analysis in Appendix E and the classification 

had passed the inter-coder reliability test (see Section 5.4). 

 
 

Table 7.17 Conjecturing Processes and Outcomes for Sausage Task 
 

 Processes* Outcomes 

 Reasoning Conjecture 
Trivial or 

non-trivial? 
Correct or wrong? 

S1 Effective Conjecture 1 Non-trivial Correct (use Cutting Method B) 

S2 Ineffective Conjecture 1 Non-trivial Wrong (use Cutting Method A) 

S8 Quite Effective Conjecture 1 Non-trivial Correct (use Cutting Method B) 

S9 Effective Conjecture 1 Non-trivial Correct (use Cutting Method B) 

S10 Quite Effective Conjecture 1 Non-trivial Correct (use Cutting Method B) 

Total 1 ineffective 5 conjectures 5 non-trivial 4 correct; 1 wrong 
 

* The students did not exhibit the metacognitive behaviours, MF and MA, in this stage. 
 
 

Table 7.17 shows that 4 of the 5 conjectures were correct because 4 of the students 

(S1,S8-S10) were able to use reasoning ‘effectively’ or ‘quite effectively’ to discover 

Cutting Method B, which will give the least number of cuts. Although another student 

(S4) also used Method B as discussed in the previous section, he did not pose the 

problem of finding the least number of cuts, so his solution was not a conjecture to be 

proven or refuted. All the conjectures were non-trivial although the conjecture for S2 

was wrong because he used Method A, which will not give the least number of cuts. 
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7.3.5 Justifying and Generalising (Stages 5 and 6) 

 

Table 7.18 shows the TPO for the justifying and generalising processes and outcomes 

for the 10 students’ investigation of the Sausage Task. Only 5 students were shown 

because they were the only ones who posed the problem of finding the least number 

of cuts and so only their cutting method was a conjecture to be proven or refuted. 

 

Table 7.18  Justifying / Generalising Processes and Outcomes for Sausage Task 
 

 Conjecture 
Justifying Processes* 

Justifying and 
Generalising Outcomes Naïve 

Testing 
Non-proof 
Argument 

Formal 
Proof 

S1 
Correct Non-trivial 
Conjecture 1 

   
Proven conjecture correctly 
(no generalisation) 

S2 
Wrong Non-trivial 
Conjecture 1 

   
Wrongly accepted conjecture as 
true without testing 

S8 
Correct Non-trivial 
Conjecture 1 

   
Wrongly accepted conjecture as 
true without testing 

S9 
Correct Non-trivial 
Conjecture 1 

   
Wrongly accepted conjecture as 
true without testing 

S10 
Correct Non-trivial 
Conjecture 1 

   
Proven conjecture correctly 
(no generalisation) 

Total 4 correct; 1 wrong 0 2 0 2 proven; 0 generalisation** 
 

* The students did not exhibit the metacognitive behaviours, MF and MA, in this stage. 
** There was no generalisation for all the conjectures since these conjectures were not general results. 
 
 

Table 7.18 shows that 3 of the 5 students wrongly accepted their conjecture as true 

without testing while the other 2 students proved their conjecture correctly without 

leading to any generalisation since their conjecture was not a general result. One of 

the students (S2) only managed to discover Cutting Method A, so he wrongly 

accepted that the least number of cuts is 24 without any justifiable basis. The other 4 

students used Cutting Method B, but 2 of them (S8,S9) accepted that the least number 

of cuts is 12 without any basis. In fact, another student (S1) did not prove his 

conjecture initially, but he decided to review his solution for the original task when he 
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was stuck with an extension. In the process, he showed that the least number of cuts is 

12 by using a non-proof argument as follows: 

 

“But you have to share … every sausage have to cut [italics mine]. How about … 

not cut? How about leave the whole sausage? Leaving the whole sausages, yes 

that will save … a lot of them, quite a lot of the number of cuts … Um, but how 

am I going to do that? … How to cut? … How to avoid, cutting a sausage, that 

means, that leaving some sausages as a whole? … So that means that 1, 12 among 

18 people, but have to involve fraction [italics mine]. Yes.” [S1; Sausage Task] 

 

Although he did not phrase his argument properly, he did say the essence of it: each 

sausage must be cut at least once because no one will receive one whole sausage as 

each person will receive only 2/3 of a sausage; and since he had found a method that 

involves cutting each of the 12 sausage only once (Method B), then the least number 

of cuts is 12. A more detailed argument along this line is given in the task analysis of 

this task in Appendix E. 

 

The last student (S10) tried to prove her conjecture immediately after formulating it, 

but her non-proof argument was not as rigorous as that of the previous student 

because she did not mention about the need to cut each sausage at least once. Instead, 

she tried to see if she could cut the 12 sausages using 6 cuts instead of 12 cuts. The 

reason why she used 6 cuts was because there were only 12 sausages but there were 

18 people, so there was a need to cut the sausages 6 times to give a total of 18 pieces 

in order that each person will get one piece. In the end, the student realised that it was 

not possible to cut the sausages only 6 times. Mason et al. (1985) discussed the need 

to convince oneself before convincing others. So what S10 had done was that she had 

convinced herself that the least number of cuts is 12, but her reasoning was not 
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rigorous enough to convince others. Table 7.18 shows that none of the students used 

naïve testing or a formal proof in this stage. 

 

7.3.6 Extension (Stage 8) 

 

The next stage should be the checking stage in the review phase before extending the 

task to generalise. Since the processes and outcomes of the checking stage do not 

depend on whether the students are solving the original task or the extended task, it is 

more appropriate to analyse all the checking processes and outcomes together in 

Section 7.3.10 later. So we will proceed directly to the extension stage. The treatment 

for the data analysis in this section will be the same as that for problem posing in 

Section 7.3.2 because there is a need to analyse in detail the types of extensions posed 

by the 10 students for the Sausage Task before the empirical data could be examined 

to study the effect of the extension processes on the outcomes in this stage. 

 

(a) Extension Outcomes 

 

During the task analysis of the Sausage Task in Appendix E, some possible extensions 

that students could pose for this task were identified and classified as trivial or non-

trivial. They are reproduced below. Extension 2 is the intended extension for this task. 

Both extensions are for the purpose of generalising. 

 

 Extension 1 (E1): Find the amount of sausages that each person will receive when n 

identical sausages are shared equally among m people. [Trivial] 

 

 Extension 2 (E2): Find the least number of cuts needed to share n identical sausages 

equally among m people. [Non-Trivial; Intended Extension] 
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Table 7.19 shows the TPO for the extension outcomes for the 10 students’ 

investigation of the Sausage Task. The classification of extensions as trivial or non-

trivial had passed the inter-coder reliability test (see Section 5.4). ‘Other Extensions’ 

refer to extensions other than E1 and E2. As explained in the theoretical model for 

cognitive processes in Section 3.2.1, the students were expected to extend Type B 

tasks to generalise, but they could also extend the tasks without generalising. 

 

Table 7.19  Extensions for Sausage Task 
 

 
E1 

(trivial) 

E2 
(non-

trivial) 

Other Extensions 
to generalise 

Other Extensions 
but not to generalise

Total No. of Extensions 

Trivial 
Non-

Trivial 
Trivial 

Non-
Trivial 

Trivial 
Non-

Trivial 
All 

S1     1  1 1 2 

S2     2  3 0 3 

S3    1* 1  1 1 2 

S4     2  3 0 3 

S5     1  1 0 1 

S6     3  3 0 3 

S7   1    1 0 1 

S8    1   0 1 1 

S9       0 1 1 

S10    1 1  1 1 2 

Total 2 2 1 3 11 0 14 5 19 
 

* Did not pose extension explicitly 
 
 

Table 7.19 shows that the 10 students posed a total of 19 extensions for the Sausage 

Task, or an average of 1.9 extensions per student. The actual number of extensions 

posed by a student ranged from 1 to 3 extensions. Out of the 19 extensions, 14 of 

them (or 74%) were trivial while the other 5 (or 26%) were non-trivial. Only 8 

extensions (or 42%) were for the purpose of generalising (including E1 and E2), while 

the other 11 (or 58%) were not for the purpose of generalising. Two students (S5,S6) 

did not attempt to generalise at all. 
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It was observed that only 2 students (S1,S9) posed the intended extension (E2) of 

finding a formula for the least number of cuts to share n identical sausages equally 

among m people. From the data analysis in Section 7.3.2, it was found that 5 of the 

students (S3-S7) did not even find the number of cuts for the original task (because 

they did not pose P3 or P5), so they could not possibly pose E2. Out of the other 5 

students (S1,S2,S8-S10) who posed the problem of finding the least number of cuts 

(P5) for the original task, only 2 of them (S1,S9) tried to generalise the result (E2), 

while the other three (S2,S8,S10) tried to generalise in different manners: S2 tried to 

find a formula for the amount of sausages that each person will receive (E1), S8 tried 

to find the conditions for her cutting method to work (which will be discussed later in 

this section), while S10 tried to find any formula but decided that this type of tasks 

could not have any formula. Another student (S4) also posed E1. 

 

Table 7.19 shows that 8 students (S1-S7,S10) also posed other trivial extensions, but 

most of these extensions were not for the purpose of generalising. Although 7 students 

(S1-S6,S10) changed the number of sausages and / or the number of people in the task 

statement, they did not have the intention to generalise. For example, S2 changed the 

numbers of sausages and people to 3 sausages and 20 people respectively, and he just 

found how to cut the sausages and the amount of sausages each person will receive. 

Then he changed the numbers to 20 sausages and 3 people. This time, he only found 

the amount of sausages each person will receive, without even finding how to cut the 

sausages. Next, he tried to think of other extensions but he was stuck. This shows that 

he did not have the intention to generalise his first two extensions, which were 

considered as trivial. It was only later that he decided to generalise by finding a 

general formula for sharing things (i.e. divide the number of items to be shared by the 
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number of recipients) when he extended the task for the third time by changing the 

numbers to 10 sausages and 17 people. This last extension was actually similar to E1. 

Although another 4 of the 7 students decided to generalise eventually, just like S2, the 

remaining 2 students (S5,S6) did not generalise at all. 

 

Two students (S4,S6) also changed other variables. The first one (S4) changed the 

context to money: find how much each person had to pay for his share of sausages if 

the cost of each sausage was $1. Surprisingly, the student believed that “the money 

cannot be divided” (in his own words), i.e. each person cannot pay $0.66 (he did not 

round 2/3 = 6.0   up to $0.67). So he decided that the “simplest way” was for 3 people 

to share $2 to buy 3 sausages. In the end, he rounded up to $0.70 per person, but there 

will be an extra 10 cents for the 3 people when they paid $2.10, instead of $2, for the 

2 sausages. The second student (S6) changed the shape of the sausages to rectangle 

and hexagon since she could not solve the original task as she wrongly believed that 

the rounded ends of the sausages were different from the middle portions, which had 

been described earlier in Section 7.3.1. As a result, she experimented with hexagonal 

sausages where it was possible to cut each hexagon20 into 6 equal parts to share them 

equally among the 18 people. 

 

Table 7.19 shows that 3 students (S3,S8,S10) also posed other non-trivial extensions 

to generalise. A detailed analysis of their protocols shows that all the 3 students tried 

to generalise how to cut n sausages to share them equally among m people. The first 

one (S3) extended the task to generalise Cutting Method A for x sausages and y 

people. The second student (S8) tried to generalise Cutting Method B for different 

                                                 
20  She did not mention that the hexagons must be regular. 



 
 

349

numbers of sausages and people, but in a different manner. She wanted to know 

whether Method B would work for which numbers of sausages and people. In the end, 

she found a general cutting method (which is not generalised Method B) that allowed 

her to share 6n sausages equally among 6n + 6 people, although this method will not 

give the least number of cuts (her conjecture will be discussed later in Section 7.3.8). 

The third student (S10) wanted to find a general formula for a cutting method. 

Initially, she said that her cutting method used the idea of LCM, but she then realised 

that there was actually no need to use the LCM to find the cutting method. So she 

decided that it was not possible to find a general formula for a cutting method. 

 

(b) Effect of Extension Processes on Outcomes 

 

After analysing the different types of extensions (outcomes) posed by the students for 

the Sausage Task, we now turn our attention to study the effect of the extension 

processes on the outcomes. Table 7.20 shows the TPO for the extension processes and 

outcomes for the 10 students’ investigation of the Sausage Task. The ability to extend 

does not depend only on the final outcome: whether it is non-trivial or trivial. It also 

depends on whether the student is able to extend ‘naturally’ without struggling, or 

whether the student struggles to extend the task ‘eventually’. It was observed that only 

one student posed the intended extension (E2) naturally, while the other 3 students 

posed E1 or E2 eventually. In fact, out of the 19 extensions, only a small proportion 

(5 extensions or 26%) were posed naturally. This was unlike the problem-posing stage 

where most of the problems (68%) were posed naturally (see Section 7.3.2). This 

suggests that the students had more difficulty extending the task than posing problems 

for the original task. 
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Table 7.20  Extension Processes and Outcomes for Sausage Task 
 

 

Processes Outcomes** 

Refer to following to think of extension 

MG E1 E2 

Other 
Extensions 

to 
generalise 

Other 
Extensions 
but not to 
generalise 

Task 
Current 
Working 

Previous 
Result 

Check-
list 

S1 1 1     N  1N 

S2   2 1  E   2E 

S3 2  1     1E* 1E 

S4 1  1 1  E   2E 

S5 1        1N 

S6 1   3     3E 

S7 1       1N  

S8   1     1N  

S9 1  1    E   

S10    2 1   1E 1E 

Total 8 1 6 7 1 2 2 4 11 
 

* Did not pose extension explicitly 
**  ‘N’ indicates extending the task naturally while ‘E’ indicates extending the task eventually. 
 
 

Table 7.20 shows that 4 students (S1,S5,S7,S8) extended the task naturally. A detailed 

analysis of their protocols shows that all the 4 students either referred to (i) the task 

statement, (ii) the current working, or (iii) a previous result, to think of a problem to 

extend. For example, the first student (S1) said that he wanted to extend the task, then 

re-read the task statement once and immediately swapped the two given numbers 

around to give 18 sausages and 12 people. While he was writing down his first 

extension (i.e. referring to his current working), he suddenly realised that he needed to 

find some formula, which led him to his second extension to find a general formula 

for the least number of cuts (he did not continue his first extension anymore). Two 

other students (S5,S7) also re-read the task statement once before extending the task 

naturally by changing the number of sausages and / or the number of people. The last 

student (S8) used her previous result to extend the task naturally by asking whether 

her cutting method for the original task could be applied to share what other number 
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of sausages equally among how many other people. For the other 6 students (S2-

S4,S6,S9,S10) who extended the task eventually, a detailed analysis of their protocols 

suggests that the processes that had helped them were the reference to (i) the task 

statement (S3,S4,S6,S9), (ii) a previous result (S2-S4,S9), and (iii) the given checklist 

of investigation processes (S2,S4,S6,S10). Interestingly, the findings tally exactly 

with the processes that had helped the students to pose their problems for the original 

task (see Section 7.3.2). 

 

It was further observed from Table 7.20 that one student (S10) analysed the feasibility 

of her goal (MG) when extending the task. This was the only instance in the pretest 

and the posttest that a student engaged in MG. The student was struggling to extend 

the task when she thought of finding a formula: 

 

“No problem already … Let me think for a while … No problem … Formula? 

But this one, how to have formula? … Um, this one is find the LCM first. 

Actually no need. Yah. Eh? …” [S10; Sausage Task] 

 

The student analysed the feasibility of extending the task to find a formula. At first, 

she believed that there would not be a formula for this kind of tasks: “But this one, 

how to have formula?” Then she thought that the formula might be to find the LCM 

first, but she realised that it was not necessary to find the LCM in order to find a 

cutting method. However, she was unable to see the need to find a formula for the 

least number of cuts, which she had obtained for the original task. In the end, she did 

not pursue the extension to find a formula, so her analysis of the feasibility of 

extending the task to find a formula was not effective. 
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Summary 

 

To summarise, 8 of the 10 students in the present study were unable to pose the 

intended extension for the Sausage Task, which is to find a general formula for the 

least number of cuts, partly because 5 of them did not even find the number of cuts for 

the original task. Instead, they extended the task to find a general formula for the 

amount of sausages each person will receive, or to find a general cutting method. 

Most of the students also encountered greater difficulty in extending the task than in 

posing problems for the original task. In fact, some students just changed the variables 

in the task statement without realising that the intention is to generalise. Nevertheless, 

all the students actually extended the task in one way or another. Just like the findings 

in the problem-posing stage, referring to the task statement, current working, or 

previous results, had helped some students to extend the task naturally, but for those 

who struggled to extend the task, referring to the task statement, previous results, or 

the given checklist of investigation processes, had helped some of them to extend the 

task eventually. There was only one instance when a student analysed the feasibility 

her goal to extend the task, but it was not effective. 

 

7.3.7 Specialising and Using Other Heuristics (Stage 3) for Extension of Task 

 

As posited in the theoretical investigation model for cognitive processes in Section 

3.2.1, after extending the task, the students should specialise at this stage in order to 

generalise. But for each specific example that they specialise, they might have to use 

other heuristics to solve, just like for the original task. 
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(a) Specialising 

 

Unlike the Kaprekar Task analysed in Section 7.2.3, the examples generated for the 

Sausage Task could not be classified as representative because there was only one 

type of pattern. Therefore, the specialising outcomes for the Sausage Task are actually 

the same as the conjecturing outcomes: whether the students were able to formulate a 

correct conjecture for their extension. Table 7.21 shows the TPO for the specialising 

processes and outcomes for the 10 students’ extension of the Sausage Task. It does 

not include the first example for specialising, which is actually the original task: 12 

sausages to be shared equally among 18 people. However, the table includes all the 

examples where the students changed the number of sausages and / or the number of 

people without the intention to generalise, and where they changed the context. 

 

Table 7.21 shows that the 10 students generated a total of 29 examples to specialise, 

or an average of 2.9 examples per student, for the Sausage Task. This is lower than 

the average of 4.5 examples per student for the Kaprekar Task (see Section 7.2.3), 

which is not surprising since it will take a longer time to solve an example generated 

for the Sausage Task than to generate a sequence for the Kaprekar Task. The actual 

number of examples generated by a student for the Sausage Task ranged from 1 to 4 

examples each, with an outlier of 10 examples generated by one student (S8). Just like 

the Kaprekar Task, most of the examples (55%) generated by the students for the 

Sausage Task were random. It was further observed that only 17 of the 29 examples 

were for the purpose of generalising (indicated by * in the table) and they were 

generated by 5 students (S1,S2,S7-S9), but most of them (i.e. 10 examples) were from 

the same student (S8). Although there were 3 other students (S3,S4,S10) who also 
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extended the task to generalise, they did not generate examples for that purpose 

because they could use the example in the original task. 

 

Table 7.21  Specialising Processes and Outcomes for Extension of Sausage Task 
 

 
Processes*** Outcomes 

Random Purposeful Systematic 
Total No. of 
Examples 

Formulated correct 
conjecture to generalise? 

S1 1 (E.g. 2) 1 (E.g. 3*)  2 
Extend to generalise but no 
conjecture 

S2 1 (E.g. 4*) 2 (E.g. 2,3)  3 
Formulated trivial correct 
conjecture to generalise 

S3 1 (E.g. 2)   1 
Formulated non-trivial correct 
conjecture to generalise** 

S4 2 (E.g. 2,3)   2 
Formulated trivial correct 
conjecture to generalise** 

S5 1 (E.g. 2)   1 
Extend but did not try to 
generalise 

S6 4 (E.g. 2-5)   4 
Extend but did not try to 
generalise 

S7 4 (E.g. 2-5)*   4 
Extend to generalise but no 
conjecture 

S8  
10 

(E.g. 2-11)* 
 10 

Formulated one trivial wrong 
conjecture and one non-trivial 
correct conjecture to generalise 

S9 1 (E.g. 2*)   1 
Formulated two non-trivial 
conjecture (one correct and 
one wrong) to generalise 

S10 1 (E.g. 2)   1 
Extend to generalise but no 
conjecture** 

Total 16 (55%) 13 (45%) 0 29 
5 formulated correct 

conjecture to generalise 
 
* Example generated for purpose of generalising. 
**  Did not generate examples to generalise because the students used the example in the original task. 
*** The students did not exhibit the metacognitive behaviours, MF and MA, in this stage. 
 
 

A detailed analysis of the students’ protocols suggests that the students generally did 

not have any preference as to which variable to change first: the number of sausages 

or the number of people. For example, 4 students (S6-S9) changed the number of 

sausages while keeping the number of people constant at 18, 3 students (S3,S4,S7) 

changed the number of people while keeping the number of sausages constant at 12, 

and 7 students (S1,S2,S5-S8,S10) changed both the number of sausages and the 

number of people at the same time. This finding is not surprising as it really does not 



 
 

355

matter which variable of the Sausage Task is changed first since the students were 

expected to specialise systematically by keeping one of the two variables constant in 

order to try to find the formula for the least number of cuts. The task analysis in 

Appendix E shows two tables of values as exemplars on page 507: the first one for the 

case where the number of sausages is kept constant at n = 12, and the second one for 

the case where the number of people is kept constant at m = 18. Admittedly, it is not 

easy to observe the formula just by looking at these systematic examples because the 

formula m – HCF(m, n) is not easily discernible. But one student (S9) was able to 

discover the formula without even specialising systematically: he just tried a random 

example, and together with the example in the original task, he managed to observe 

the formula (see his investigation which had been discussed in detail in Section 6.3a). 

 

Let us now examine the 13 purposeful examples generated by the 3 students (S1,S2, 

S8). The first student (S1) was more concerned about whether the number of sausages 

was greater or less than the number of people. This is a valid concern because if the 

number of sausages is greater than the number of people, then there is no need to cut 

some of the sausages. For example, if 18 identical sausages are to be shared equally 

among 12 people, each person will get one whole sausage first, and then what are left 

will be 6 sausages to be shared equally among the 12 people. In fact, after sharing all 

the possible whole sausages equally among the people, it would reduce to the case 

where the number of sausages is less than the number of people. But none of the 

students were able to argue in this manner. 

 

Instead, S1 started with a random example (his Example 2) by swapping the given 

numbers around to give 18 sausages and 12 people, before realising immediately that 
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he should generalise to find a formula for the least number of cuts. He then chose his 

next example (his Example 3) to be similar to the original task (which is considered as 

Example 1) where the number of sausages is less than the number of people: he 

purposefully chose 4 sausages and 10 people for his Example 3. After solving this 

example, he tried to search for patterns to find the formula but failed to observe any. 

 

The second student (S2) observed that the numbers in the original task, 12 and 18, 

have common factors (other than 1), so he extended the task by trying numbers that 

are co-primes: he purposefully chose 3 sausages and 20 people for his Example 2. But 

he just solved this example by finding the fraction of sausage each person will receive 

without finding the number of cuts at all, unlike the original task where he found the 

least number of cuts. Then he purposefully selected more sausages than people by 

swapping the two numbers around to give 20 sausages and 3 people (his Example 3). 

Similarly, he solved this example by finding the fraction of sausage each person will 

receive without finding the number of cuts at all. He then went into a long period of 

hesitation, not knowing what else to investigate. It is indeed puzzling how the student 

decided that the key criteria in deciding what numbers to change were whether the 

numbers are co-primes, or whether the number of sausages is greater or less than the 

number of people. 

 

The third student’s (S8) extension is totally different from all the other 9 students. She 

wanted to know whether her Cutting Method B for the original task would work for 

which number of sausages, where the number of people is kept constant at 18. She 

suspected that Method B might work for multiples of 6, so she purposefully chose 24 

sausages for her Example 2. She used the same Method B (cut each sausage at the 



 
 

357

2/3-mark) but she did not realise that it will no longer give the least number of cuts. 

She then purposefully chose 9 sausages (multiples of 9) for her Example 3, 27 

sausages (multiples of 3) for Example 4, and 32 sausages (multiples of 2) for Example 

5, but she found out that Method B did not work for these three examples. So she 

went back to test whether Method B will only work for multiples of 6: she chose 54 

sausages for Example 6, but this time, Method B failed. She then purposefully chose 

144 sausages (multiples of 12) for Example 7: although Method B works, it no longer 

gives the least number of cuts. She did not realise that there was actually no need to 

cut the sausages for both Examples 6 and 7. 

 

The student then tried to find out why Method B worked for multiples of 6 and 12. 

She observed that the number of people is 6 more than the number of sausages in the 

original task. So she purposefully chose 14 sausages and 20 people for Example 8, 

where she changed the number of people for the first time, but Method B did not 

work. She then tried a new cutting method (her 7th one for the investigation): cut each 

sausage at the 3/4-mark, instead of at the 2/3-mark for Method B, which also did not 

work for Example 8. So she tried multiples of 6 again: she chose 18 sausages and 24 

people for Example 9, but this time, her 7th cutting method worked. At this stage, she 

was no longer interested in a cutting method that gives the least number of cuts, but a 

general cutting method that can work for certain numbers of sausages and people. She 

then suspected that her 7th cutting method worked for multiples of 18, so she chose 36 

sausages but still 24 people for Example 10, and discovered that her 7th cutting 

method still worked. Then she wrongly accepted that her 7th cutting method worked 

for multiples of 18 based on only two examples, but this trivial conjecture was false. 
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The student decided to go back to try the case where the number of people is 6 more 

than the number of sausages, but her examples that followed suggest that she had 

another condition: both numbers must be multiples of 6. In other words, she was 

trying to find a general cutting method to share 6n sausages equally among 6n + 6 

people. So she purposefully chose 30 sausages and 36 people for Example 11. With a 

sudden insight, she decided to cut each sausage at the 4/5-mark (her 8th cutting 

method), instead of at the 3/4-mark, but it did not work. Then she realised that she 

should cut each sausage at the 5/6-mark (her 9th cutting method) and it worked this 

time. This led her to formulate a non-trivial conjecture about a general cutting method 

to share 6n sausages equally among 6n + 6 people, which is to cut each sausage at the 

1n

n
-mark, although she did not use algebraic notations to describe her conjecture. 

 

Therefore, it was observed that the 3 students (S1,S2,S8) specialised purposefully for 

completely different reasons, and that purposeful specialising had helped one of them 

(S8) to formulate a non-trivial conjecture. It did not help the other two students to 

formulate their conjectures because their types of conjectures do not depend on the 

way they purposefully chose the number of sausages or the number of people. 

Similarly, the types of conjectures formulated by S3 and S4 also do not depend on 

how they chose the number of sausages or the number of people. These conjectures 

will be discussed in more detail in Section 7.3.8. 

 

(b) Using Other Heuristics 

 

For each specific example that the students specialised for the Sausage Task in order 

to generalise, they had to use other heuristics to solve, just like for the original task. 
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Table 7.22 shows the TPO for the processes and outcomes of using other heuristics 

for the 10 students’ extension of the Sausage Task (the reader should refer to Section 

7.3.3 to be familiar with the three reasoning processes and the three cutting methods 

that the students had used for the original task). There is a need to include a new 

metacognitive behaviour, incubation (MI), in this table. Although all the students 

extended the task, not all of them did it to find the least number of cuts. 

 

Table 7.22  Using Other Heuristics for Extension of Sausage Task 
 

 

Processes Outcomes 

Reasoning using 
VI MF MI 

Cutting Methods 

Fraction LCM Factors A B C Others Total 

S1    2 1     1 3 

S2    4       2 

S3    2       1 

S4           0 

S5    2       2 

S6    4      1 1 

S7    1 1 3     0 

S8    9      3 4 

S9    10       1 

S10    5       1 

Total 6 2 1 39 2 3 4 4 2 5 15 
 

* Although S9 also exhibited metacognitive awareness (MA) in this stage, it was not included in this 
table because it would be analysed in the checking stage in Section 7.3.10 since it had something to 
do with him sensing something amiss and checking his working. 

 
 

Table 7.22 shows that 2 students (S4,S7) did not use any cutting method for their 

extension at all. This was because one of them (S4) was no longer interested in 

finding the least number of cuts but the fraction of sausage each person will receive in 

order to generalise, while the other one (S7) did not know how to cut the sausages: 

she tried using the LCM and factors of the number of sausages and the number of 

people, which led her nowhere. It was observed that 4 students used Cutting Method 
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A, 4 students used Method B and 2 students used Method C for their extension. A 

check with Table 7.16 in Section 7.3.3 shows that these students had used the same 

method(s) for the original task. This means that the students just applied the same 

method(s) for the original task to different examples in their extension, but it was not 

a straightforward application, as explained below. 

 

For example, one student (S1) was initially clueless about how to cut 4 sausages to 

share them equally among 10 people in his extension although he had discovered 

Methods A and B when solving the original task. So he began by cutting each sausage 

into 2 equal parts (which falls under ‘Others’ in Table 7.22), and then realised that 

there were not enough pieces to share. It took him quite a while (about 5 minutes) to 

refer back to his solution for the original task before he discovered how to solve his 

extension: he found the LCM of 4 and 10 to give 20, which led him to cut each of the 

4 sausages into 5 equal parts, so that there will be a total of 20 pieces to be shared 

equally among the 10 people (Method A). As discussed earlier in Section 7.3.3, 

finding the LCM will naturally lead to Method A. He then found the fraction of 

sausage each person will receive to be 2/5, which led him to cut each sausage twice: 

at the 2/5-mark and the 4/5-mark (Method B). As discussed in Section 7.3.3, there is a 

need to find the fraction of sausage each person will receive in order to apply Method 

B, which gives the least number of cuts at 8 in this case. Similarly, 2 other students 

(S9,S10) also found the fraction of sausage each person will receive before applying 

Method B to find the least number of cuts for their extension. However, one student 

(S8) was unable to see beyond the specifics (i.e. cut at the 2/3-mark) to the general 

idea (i.e. cut at the fraction of sausage each person will receive) behind Method B, so 

she ended up cutting all the sausages at the 2/3-mark for 7 of her examples in her 

extension, and it did not work in most cases. 



 
 

361

Table 7.22 shows that 9 students visualised information (VI) by drawing a diagram in 

this stage. Only S4 did not draw any diagram because he wanted to generalise the 

fraction of sausage each person will receive, so there was no need for him to visualise 

how to cut the sausage. Similar to the data analysis in Section 7.3.3 on visualising 

information when solving the original task, the students drew a diagram during 

extension for the same three purposes: (i) to think of a cutting method, (ii) to try out a 

cutting method that they had thought of to see if it works, and (iii) to present the 

solution. Similar to the findings in Section 7.3.3, visualising information did not help 

the students to think of a cutting method during extension, but it was more useful in 

helping the students test whether a cutting method would work. 

 

It was further observed from Table 7.22 that only 2 students (S1,S7) analysed the 

feasibility of their plan to use other heuristics (MF). As discussed above, the first 

student (S1) was having difficulty thinking of a cutting method for his extension of 

sharing 4 sausages equally among 10 people, so he referred back to Cutting Method A 

for the original task. He then analysed the feasibility of using the same method for his 

extension, but realised that something was missing: 

 

“Um … that the above cutting 18 among 12 … Okay, yes, it may be work, it may 

work very … very well. But I need to find the formula first before I go to the 

different cases, yah.” [S1; Sausage Task] 

 

This was because he did not find the LCM when using Method A to cut the sausages 

for the original task, so he was unable to apply the idea behind Method A to the 

extension. At first, he thought that the ‘formula’ had something to do with multiples 

of 10. In the end, after struggling for another 2 minutes, he realised that the total 
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number of sausages after cutting had to be a multiple of 10, so he discovered the LCM 

of 4 and 10, which enabled him to apply Method A to his extension. In other words, 

analysing the feasibility of his plan to use the same cutting method as the original task 

for his extension had helped him to solve his extension. But MF was not helpful for 

the other student (S7) because it led her nowhere: she analysed the feasibility of using 

multiples or factors to think of a cutting method for her extension, just like for the 

original task in Section 7.3.3, but both multiples and factors did not help her. 

 

S7 also incubated (MI) 3 times in this stage21. These were the only instances in the 

pretest and the posttest that a student engaged in MI. Incubation is a stage of creativity 

in Wallas’ Creativity Model (see literature review in Section 2.2.2e) where a person 

takes a break from getting stuck in problem solving and relaxes the mind: think about 

the problem in a more relaxed state and environment and let the images from the 

subconscious surface. It was taught to the students during Lesson 6 of the teaching 

experiment (see Appendix C), but incubation and thinking aloud are diametrically 

opposite: you cannot incubate when you are thinking aloud. So it was surprising that 

the student tried to incubate during the test. She incubated for only 3 seconds during 

the first instance, 6 seconds during the second instance 13 minutes later, and another 6 

seconds during the last instance 3 minutes later. Her incubation period was very short 

because she needed to think aloud. Therefore, her incubation was not effective. The 

following shows her protocols during the second incubation period: 

 

“I think, perhaps, I should let my mind rest for a while, then maybe an idea will 

just pop up. [Pause 6 s]” [S7; Sausage Task] 

 

                                                 
21  Incubation was coded as XC (Unable to Code) in the protocols because this behaviour was not 

previously observed in the other posttest transcripts used to develop the Final Coding Scheme. 
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Summary 

 

To summarise, none of the students in the present study specialised systematically to 

try to find a formula for the least number of cuts. Most of them specialised randomly 

and it was not effective in general, although one student did discover the formula for 

the least number of cuts by just looking at two random examples. Three students also 

specialised purposefully for different purposes. Most of the students used the same 

cutting method(s) that they had used to solve the original task for the examples in 

their extension, but it was not easy for some students to apply the same method(s) 

directly because they did not understand the underlying idea behind the method(s). 

One student also invented three other cutting methods, which proved to be special 

cases of a more general cutting method to share 6n sausages equally among 6n + 6 

people. Only 2 students analysed the feasibility of their plan, which was useful only 

for one of them. One student also incubated 3 times, but it was not effective. 

 

7.3.8 Conjecturing (Stage 4) for Extension of Task 

 

Table 7.23 shows the TPO for the conjecturing processes and outcomes for the 10 

students’ extension of the Sausage Task. The conjectures were classified as trivial or 

non-trivial based on the task analysis in Appendix E and the classification had passed 

the inter-coder reliability test (see Section 5.4). Only 5 students were shown as they 

were the only ones who formulated conjectures for the extension. None of the 10 

students analysed the feasibility of their plan (MF) or exhibited any metacognitive 

awareness (MA) in this stage. It was observed that the 5 students formulated a total of 

7 conjectures, out of which 4 of them were non-trivial and 5 of them were correct. 

Only one student (S9) formulated 2 conjectures to find a general formula for the least 
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number of cuts while 2 other students (S2,S4) formulated a conjecture to find a 

general formula to share n items equally among m recipients. The last 2 students 

(S3,S8) formulated a total of 3 conjectures to generalise a cutting method. 

 

Table 7.23  Conjecturing Processes and Outcomes for Extension of Sausage Task 
 

 
Processes Outcomes 

MF MA Conjecture 
Trivial or 

non-trivial? 
Correct or wrong? 

S2   Conjecture 2* Trivial 
Correct: general formula to share n items 
equally among m recipients** 

S3   Conjecture 1 Non-trivial Correct: generalised Cutting Method A 

S4   Conjecture 1 Trivial 
Correct: generalised fraction of sausages 
that each person will receive** 

S8 
  Conjecture 2 Trivial 

Wrong: generalised cutting method to share 
18n sausages equally among 24 people 

  Conjecture 3 Non-trivial 
Correct: generalised cutting method to share 
6n sausages equally among 6n + 6 people 

S9 
  Conjecture 2 Non-trivial 

Wrong: general formula for least number of 
cuts, but made a mistake in the number of 
sausages in the conjecture 

  Conjecture 3 Non-trivial 
Correct: general formula for least number of 
cuts 

Total 0 0 7 conjectures 
3 trivial; 

4 non-trivial 
5 correct; 2 wrong 

 

* Conjecture 2 means the student had formulated Conjecture 1 for the original task. 
** These two results were clearly true (i.e. no need to prove) but the students treated it as a conjecture. 
 
 

From his protocols, it was observed that S9 extended the task by sharing 10 sausages 

equally among 18 people, but he solved the problem wrongly for only 5 sausages, so 

his Conjecture 2 based on these 5 sausages was false. After he had discovered the 

mistake, he was able to formulate his Conjecture 3 on the general formula for the least 

number of cuts for sharing x identical sausages equally among y people, which is 

y  HCF(x,y). His full investigation had already been described in Section 6.3(a). 

 

The two conjectures from S2 and S4 were actually very trivial because they were 

clearly true, but the two students actually tested their conjecture using naïve testing. 

The first student (S2) generalised the amount of sausages each person will receive by 
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using the formula of dividing the number of items to be shared by the number of 

recipients. He even tested the formula on a different context: how to share the usage 

of a computer with 9 brothers over a week. In the end, he concluded: 

 

“I think it does not only work on food stuff … [start writing] works on other 

things with numerical value [stop writing].” [S2; Sausage Task] 

 

The other student (S4) decided to test what he called the ‘relationship ratio’, i.e. the 

ratio of the number of sausages to the number of people, on three examples: he 

randomly chose 68 sausages and 42 people for his first example, purposefully chose 9 

sausages and 3 people for his second example so that the ‘relationship ratio’ will be 

whole numbers, and randomly chose 18 sausages and 12 people for his third example 

by swapping the two given numbers in the original task. In the end, he verified that 

the ‘relationship ratio’ worked. It is indeed puzzling why the two students (S2,S4) 

took so long to develop this simple formula for the amount of sausages each person 

will receive because the formula could easily be obtained by simple reasoning which 

they had learnt in primary schools. For example, a common question in primary 

school mathematics on fractions is: 

 

12 identical sausages are shared equally among 18 people. Find the fraction of 

sausage that each person gets. 

 

Since these two students were from a high-performing secondary school, they would 

have solved this question easily when they were in primary schools: the answer is just 

the number of sausages divided by the number of people, which is 12/18, or 2/3. So it 

came as a surprise when the two students took such a long time to develop the general 

formula of dividing the number of sausages by the number of people, and they even 



 
 

366

had to test it on some examples to be more certain of the formula. Therefore, by 

opening up this kind of questions into open investigative tasks, the two students were 

thrown off balance and they were unable to do a simple direct application of what 

they had learnt in primary schools. 

 

The last 2 students (S3,S8) formulated a total of 3 conjectures to generalise a cutting 

method. One of them (S8) started with the intention to generalise Cutting Method B 

by finding out whether the method would work for which numbers of sausages and 

people. Along the way, she realised that Method B did not work most of the time, so 

she tried another cutting method (her 7th one for the investigation) and generalised the 

method to share 18n sausages equally among 24 people, but her Conjecture 2 was 

false. Finally, she formulated her non-trivial Conjecture 3 on a general cutting method 

to share 6n sausages equally among 6n + 6 people. Her two conjectures had already 

been described in detail in Section 7.3.7(a) on page 356. The other student (S3) tried 

to generalise Cutting Method A for x sausages and y people. He did not use the LCM 

of 12 and 18 to help him find Method A for the original task: instead he just cut each 

sausage into 2 equal parts, which did not work out; so he just cut each sausage into 3 

equal parts (Method A) and it worked. Then he extended the task by finding a method 

to cut the 12 sausages to share them equally among 30 people. After drawing 12 

sausages, he just cut each sausage into 5 equal parts and found that there were a total 

of 60 parts, which is divisible by 30, so each person will receive 2 parts. Then he 

realised that he needed to find the LCM: 

 

“Ok, it seems that, um … if I’ve a certain number of sausages and a certain 

number of people, and I want to share the sausages equally among the number of 

people, I’ve to find the, um … lowest common multiple.” [S3; Sausage Task] 
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So he decided to generalise Cutting Method A for x sausages and y people. Using the 

LCM of 12 and 30, which is 60, as an example, he reasoned that the number of parts 

that each sausage should be cut is the LCM of the two numbers, x and y, divided by 

the number of sausages, x. He also reasoned that the number of parts of sausages that 

each person will get is the total number of parts divided by the number of people, y. 

 

7.3.9 Justifying and Generalising (Stages 5 and 6) for Extension of Task 

 

Table 7.24 shows the TPO for the justifying and generalising processes and outcomes 

for the 10 students’ extension of the Sausage Task. Only 5 students were shown 

because they were the only ones who had formulated conjectures for the extension. 

The other 5 students did not analyse the feasibility of their plan (MF) and none of the 

10 students exhibited metacognitive awareness (MA) in these stages. 

 

Table 7.24  Justifying / Generalising Processes and Outcomes for Extension of 
Sausage Task 

 

 Conjecture 
Justifying Processes** 

Justifying and 
Generalising Outcomes Naïve 

Testing 
Non-proof 
Argument 

Formal 
Proof 

MF 

S2 
Correct Trivial 
Conjecture 2* 

    
Accepted conjecture as 
true based on naïve testing

S3 
Correct Non-trivial 
Conjecture 1 

    
Accepted conjecture as 
true based on naïve testing 

S4 
Correct Trivial 
Conjecture 1 

    
Accepted conjecture as 
true based on naïve testing 

S8 

Wrong Trivial 
Conjecture 2 

    
Accepted conjecture as 
true without testing 

Correct Non-trivial 
Conjecture 3 

    
Tried but failed to justify 
conjecture 

S9 

Wrong Non-trivial 
Conjecture 2 

   1 
Tried but failed to justify 
conjecture 

Correct Non-trivial 
Conjecture 3 

    
Tried but failed to justify 
conjecture 

Total 5 correct; 2 wrong 5 3 0 1 
0 proven; 

0 generalisation*** 
 

* Conjecture 2 means the student had formulated Conjecture 1 for the original task. 
** The students did not exhibit metacognitive awareness (MA) in this stage. 
*** There was no generalisation either because the conjecture was wrong or it had not been proven. 
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Table 7.24 shows that 3 of the 5 students accepted their conjecture as true based on 

naïve testing while one of them (S8) accepted one of her two conjectures as true 

without testing. However, the latter did try to justify her other conjecture by using a 

non-proof argument in the middle of naïve testing using three examples, but failed. 

The last student (S9) also tried to justify his two conjectures using a non-proof 

argument but failed (his full investigation had already been described in Section 6.3a). 

It was observed from Table 7.24 that S9 also analysed the feasibility of his plan to 

justify his conjecture (MF): 

 

“But I don’t know how to prove it. I think it is a little off my limits. How do I prove 

this conjecture? The conjecture is uh, a little bit pretty much complicated. Eh, no, 

the conjecture is not complicated, but is very hard to prove.” [S9; Sausage Task] 

 

In the end, he still decided to try to prove it by using a non-proof argument, but he 

was unable to explain why the formula worked22. No student used formal proofs. 

Although 5 of the 7 conjectures formulated were correct and were general results, 

none of the students was able to prove any of them, so there was no generalisation. 

 

7.3.10 Checking (Stage 7) 

 

Table 7.25 shows the TPO for the checking processes and outcomes for the 10 

students’ investigation of the Sausage Task. As explained in Section 7.2.6, it is more 

appropriate to analyse all the checking and monitoring processes and outcomes, 

including metacognitive awareness (MA) where students sensed something amiss23, 

                                                 
22  The students were not expected to prove this formula because the proof might be beyond them (see 

the proof in the task analysis of this task in Appendix E). 
23  Metacognitive awareness (MA) that helped students to be aware of what they were doing, which 

might have helped them save time by not repeating what they had done before, were dealt with in 
the stages that it had occurred, e.g. in Section 7.3.3 for the Sausage Task. 
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together in the same section although some of them could occur in other stages. The 

classification of errors made as major or minor had been explained in Section 7.2.6. 

 
 

Table 7.25  Monitoring / Checking Processes and Outcomes for Sausage Task 
 

 

Processes Outcomes 

Check Working 
MP MR MA 

Errors 
Made 

Errors 
Discovered Most 

Parts 
Some 
Parts 

Glance 
Briefly 

Others Total 

S1    1 1 1 1  1 minor 0 

S2   1 2 3  2  3 minor 0 

S3     0  1  0 0 

S4 1    1  1  
1 major + 
3 minor = 

4 
2 minor 

S5   4  4  3  0 0 

S6     0    
2 major + 
1 minor = 

3 
1 minor 

S7  1  1 2 9   6 minor 3 minor 

S8    1 1   1 
2 major + 
3 minor = 

5 

1 major (2 
min later) 

+ 1 minor = 
2 

S9  2   2  2 1 
1 major + 
3 minor = 

4 

1 major (4 
min later) 

+ 3 minor = 
4 

S10  2 1 1 4  2  0 0 

Total 1 5 6 6 18 10 12 2 
6 major + 
20 minor 

= 26 

2 major + 
10 minor = 

12 
 

* Errors due to misinterpretation had been dealt with in Table 7.13, and errors due to accepting 
conjectures as true without testing or based on naïve testing had been dealt with in Tables 7.18 and 
7.24, so these errors were omitted from this table. Formulating incorrect conjectures, as discussed in 
Tables 7.17 and 7.23, were not errors. 

** The time indicated in brackets for ‘Errors Discovered’ refers to the time interval between making 
the major error and discovering the error. No time is indicated for the discovery of a minor mistake 
because the discovery time is not an important factor when the mistake is minor. 

 
 

Table 7.25 shows that 8 students checked their working on 18 occasions, or between 1 

to 4 times each. Only 2 students (S3,S6) did not appear to check their working at all. 

Unlike the Kaprekar Task discussed in Section 7.2.6 where the frequencies for the 

three processes of checking (most parts, some parts and glance briefly) happened to 
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be the same and no student checked their working by other means such as checking 

backwards, the students seldom checked most parts of their working step by step for 

the Sausage Task, and some of them also checked their working backwards. For 

example, the following shows the protocols of a student (S1) who checked his 

working backwards for using Cutting Method B for the original task by verifying that 

it was possible to share the 12 sausages equally among the 18 people from the fact 

that each one of them will receive 2/3 of a sausage: 

 

“When you cut, there’s 12 people already have 2/3 of the … 2/3, that means that 

12 people have … their sausages, left with 6 people who don’t have, and the 

remaining 12 1/3’s is 6 2/3’s that means that 6 people, yah that means that 6 

people will also have their sausages. And everybody share the equal amount of 

the sausages, that is 2/3 of one piece… okay. [Turn to p. 2] It’s done, this 

question.” [S1; Sausage Task] 

 

The issue is which checking processes were effective in helping the students discover 

their mistakes. A detailed analysis of their protocols suggests that metacognitive 

awareness (MA), which includes the ability to sense something amiss, had played a 

more important role than any of the checking processes in helping the students to 

discover their errors, just like the Kaprekar Task discussed in Section 7.2.6. For 

example, one student (S8) was using Cutting Method B for the Sausage Task as 

shown in Figure 7.10: she had divided each sausage at the 2/3-mark in order to share 

the 12 sausages equally among the 18 people. But she verbally grouped the last 1/3 

part of every three sausages to give to each person, when she should have grouped the 

1/3 part of every two sausages since each person receives 2/3 of a sausage. Thus she 

could only share the 12 sausages among 16 people and so she wrongly believed that 

Cutting Method B failed. Later, she cut each sausage into 3 equal parts (Cutting 
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Method A) as shown in the same figure. She then grouped the first two 1/3 parts of 

the first 6 sausages to give to 6 people by circling them. Then she grouped the last 1/3 

part of the first two sausages to give to the 7th person. As she grouped the last 1/3 part 

of the third and fourth sausages for the 8th person, she paused halfway as she sensed 

something amiss. After grouping the last 1/3 part of the fifth and sixth sausages for 

the 9th person, she concluded that she had earlier counted wrongly for Cutting Method 

B, i.e. she should have grouped the last 1/3 part of every two sausages instead of 

every three sausages. Therefore, her metacognitive awareness in sensing something 

was amiss had helped her to discover her first major error. 

 

 
 
 
 
 
 
 
 
 
 

Figure 7.10  Discovery of Error by S8 for Sausage Task 
 
 

Table 7.25 shows that 7 students reviewed their solution (MR) for the Sausage Task 

on 12 occasions. For example, one student (S1) reviewed his solution to check 

whether it had met the goal of finding the least number of cuts. Then he used a non-

proof argument to reason why 12 was the least number of cuts (his argument had been 

discussed in Section 7.3.5 on page 344), which he should have done earlier. Another 

student (S9) reviewed his solutions for the first three problems that he had posed, and 

realised that the solution for his second problem was actually to explain why the 

solution for his first problem worked, so he concluded, “Problem 2 is actually not 

really called a problem.” The same student later reviewed his solution for his first 

Cutting Method B 

Cutting Method A 
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extension and realised that the result “is still a conjecture” (in his own words), i.e. he 

had not proven the conjecture yet. Three of the 7 students (S2,S3,S5) also evaluated 

the efficacy of their method of solution and looked for alternative methods. For 

example, one student (S5) reviewed her solution for the original task and concluded 

that her cutting method was “fair” (in her own word). Then she realised that she could 

look for alternative cutting methods, which led her to amend her original problem of 

finding how to share the 12 sausages equally among the 18 people to include finding 

how many cutting methods and evaluating which cutting method is better. 

 

Table 7.25 shows that only 2 students exhibited overt signs of monitoring progress 

(MP) during their investigation, for a total of 10 times. One of them (S7) monitored 

her progress on 9 occasions because she was stuck, but just like the Kaprekar Task 

described in Section 7.2.6, her metacognitive behaviour for the Sausage Task was not 

effective because she did not know what else to do other than to continue in the same 

direction, which was to use factors and multiples to help her think of a suitable cutting 

method. She did not realise that the critical factor in cutting the sausages was the 

fraction of sausage each person will receive, not factors and multiples. It was further 

observed that the students monitored their progress a lot more often for the Kaprekar 

Task (39 times) than the Sausage Task (10 times). This was because the students had 

more trouble finding an underlying pattern for the Kaprekar Task than solving a 

problem in the Sausage Task. For example, one student (S8) monitored her progress 

for the Kaprekar Task 10 times because she had difficulty observing the underlying 

patterns, but she was able to solve some specific problems for the Sausage Task and 

so she did not pause to monitor progress at all. 
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Summary 

 
To summarise, metacognitive awareness (MA), which includes the ability to sense 

something amiss when a questionable result is obtained, had played a more important 

role than the checking processes in helping the students to discover their mistakes. 

But unlike the Kaprekar Task, some students also checked their working backwards, 

evaluated the efficacy of their method of solution, and looked for alternative methods 

for the Sausage Task. The students also monitored their progress a lot less often for 

the Sausage Task than for the Kaprekar Task because they were able to progress in 

the Sausage Task and so most of them did not pause to monitor their progress. 

 

7.4 SUMMARY OF ANSWER TO RESEARCH QUESTION 2 

 
This section will summarise the main findings from analysing the data collected for 

the present study in order to answer Research Question 2. Section 7.4.1 will sum up 

the data analysis of the processes and outcomes of the 10 students when they 

attempted the Kaprekar Task (Type A) and the Sausage Task (Type B): whether these 

processes had helped them to produce significant outcomes in their investigation, such 

as posing the intended problem and formulating non-trivial conjectures. Section 7.4.2 

will use the empirical data collected to validate and refine the two theoretical 

investigation models for cognitive and metacognitive processes. 

 

7.4.1 Processes and Outcomes of Mathematical Investigation 

 
(a) Understanding the Task 

 
Understanding the task correctly is very important. If students misinterpret the task, 

they will end up on a wild goose chase (Schoenfeld, 1987). Some students in the 



 
 

374

present study had wasted precious time because they misinterpreted the task. If only 

they had spent a bit more time trying to understand the task at the beginning, they 

would have saved a lot of time if they had embarked on the correct track right from 

the start of the investigation. The main understanding processes that had helped the 

students in the present study to interpret both types of tasks correctly, or to recover 

from any misinterpretation, were the re-reading or the rephrasing of the relevant parts 

of the task statement. The difference between understanding the two types of tasks is 

that the students needed to spend a lot more time to understand the Kaprekar Task 

(Type A) by trying examples, while some students understood the Sausage Task 

(Type B) correctly by reading the task only once. The metacognitive process of 

monitoring the understanding did not seem to be helpful. 

 

(b) Problem Posing 

 

The ability to pose problems to solve was an integral part of investigation, but it 

affected Type B tasks more than Type A tasks since students could just search for any 

pattern for Type A tasks but they had to pose specific problems to solve for Type B 

tasks. For the Kaprekar Task (Type A) in the present study, most of the students did 

not see the need to pose the general problem of searching for any pattern explicitly, 

but they just went ahead to search for patterns. One student even used a conjecture as 

a springboard to pose two non-trivial specific problems with analogous results. This is 

called problem posing by analogy, which was advocated by Kilpatrick (1987) and 

discussed in detail in Section 2.2.3(h). For the Sausage Task (Type B), only 5 students 

were able to pose the intended problem of finding the least number of cuts. This 

suggests that teachers could not just design an investigative task by removing the 

intended problem from a mathematical problem, as proposed by Frobisher (1994), 
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without considering the possibility of ‘losing’ the intended problem that they might 

want their students to solve. Thus there is a need for teachers to think about how to 

guide their students to pose the intended problem, and yet not close up the task by 

restricting the students’ freedom to pose other types of problems to solve. 

 

Unlike understanding the task where re-reading or rephrasing the task statement had 

helped most students to interpret the task correctly, most of the specific problems 

posed for both types of tasks were the result of referring to their current working, 

previous results, or the given checklist of investigation processes (see Appendix H). 

There were some exceptions. For students who were able to pose specific problems 

naturally for the Sausage Task, referring to the task statement was enough for them to 

think of their first problem, but for subsequent problems, their current working or 

previous results were still a fertile source of new problems. But for those who 

struggled to think of specific problems to pose for the Sausage Task, referring to the 

task statement or the checklist of investigation processes had helped some of them to 

pose a problem eventually. None of the students analysed the feasibility of the goal, 

which might have helped prevent some of them from pursuing goals that were too 

trivial or too difficult to achieve. 

 

(c) Extension 

 

Students are not expected to extend a Type A task by changing the given because it 

will usually produce a completely new task with different patterns, but they are 

expected to extend a Type B task in order to generalise. Most of the students in the 

present study were unable to pose the intended extension of finding a general formula 

for the least number of cuts for the Sausage Task (Type B) because of two reasons: 
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half of them did not even find the number of cuts for the original task, and some of 

them did not fully understand that the intention of changing the variables in the task 

statement is to generalise. Instead, they extended the task to find a general formula for 

the amount of sausages each person will receive, or to find a general cutting method. 

Most of the students also encountered greater difficulty in extending the task than in 

posing problems for the original task, but all of them actually extended the task in one 

way or another. Just like the findings in the problem-posing stage, referring to the task 

statement, current working, or previous results, had helped some students to extend 

the task naturally, but for those who struggled to extend the task, referring to the task 

statement, previous results, or the given checklist of investigation processes, had 

helped some of them to extend the task eventually. There was only one instance when 

a student analysed the feasibility her goal to extend the task, but it was not effective. 

 

(d) Specialising 

 

Specialising is one of the four main mathematical thinking processes (Mason et al., 

1985). For Type A tasks, students need to specialise to look for patterns, but for Type 

B tasks, students need to specialise only later when they extend the task to generalise. 

For both the Kaprekar Task (Type A) and the Sausage Task (Type B), most of the 

students in the present study specialised randomly instead of systematically to search 

for patterns. As a result, some students were unable to observe the underlying patterns 

for the Kaprekar Task as they did not generate all the types of sequences, and most 

students did not discover the general formula for the least number of cuts for the 

Sausage Task although one student did discover the formula just by looking at two 

random examples. Some students were also able to choose examples purposefully to 

search for any pattern or to be more certain of a pattern. There were few instances of 
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metacognitive behaviours in this stage and most of them were not effective. However, 

metacognitive awareness had helped one student save a lot of time, but the lack of it 

had resulted in two students repeating examples that they had tried earlier. 

 

(e) Using Other Heuristics 

 

Using other heuristics is mainly for Type B tasks, where the students can solve the 

problems posed for the original task or the extended task using heuristics other than 

specialising, such as reasoning and visualising information. For the Sausage Task 

(Type B) in the present study, some students were able to reason ‘effectively’ by 

using critical information, such as the fraction of sausage each person will receive, to 

find the shortest method, while others were not able to do so. Some of them did not 

even try to analyse whether their cutting method was feasible or worth pursuing, but 

they just went ahead to cut the sausages any old how. Most of the students used the 

same cutting method(s) that they had used to solve the original task for the examples 

in their extension, but it was not easy for some students to apply the same method(s) 

directly because they did not understand the underlying idea behind the method(s). On 

the other hand, visualising information by drawing a diagram did not help the students 

to think of a workable cutting method, but it was more helpful for them to check 

whether their cutting method would work. Metacognitive awareness had also helped 

one student not to repeat a cutting method that she had tried earlier. Only 2 students 

analysed the feasibility of their plan, which was useful only for one of them. One 

student also incubated 3 times, but it was not effective. 
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(f) Conjecturing 

 

Conjecturing is one of the four main mathematical thinking processes (Mason et al., 

1985). For Type A tasks, students need to specialise in order to search for patterns so 

as to formulate conjectures, but for Type B tasks, students can solve some specific 

problems with or without formulating any conjecture. For the Kaprekar Task (Type 

A) in the present study, all the students searched for patterns within a sequence, but 

none of them searched for patterns across sequences because they did not analyse 

where to search for patterns. As a result, they were unable to observe patterns that 

exist across sequences, such as self numbers. On the other hand, generating all the 

representative sequences and searching for patterns within each sequence did not help 

most of the students to observe the Types 1 and 2 patterns as these patterns were not 

the usual types of patterns that they had encountered. However, two students were 

able to actively apply their knowledge, or what Schoenfeld (1985) called ‘resources’, 

to discover the Type 1a ‘multiples’ pattern or the complicated Type 2 ‘digital roots’ 

pattern (see the task analysis in Appendix E for a description of these patterns). 

 

For the Sausage Task (Type B), only 5 of the 10 students posed the intended problem 

of finding the least number of cuts for the original task, but only 4 of them were able 

to use reasoning ‘effectively’ to formulate the correct conjecture that the least number 

of cuts is 12. For the extension, only 2 students posed the intended extension of 

finding a general formula for the least number of cuts for sharing x identical sausages 

equally among y people, but only one of them was able to formulate the correct 

conjecture that the formula is y  HCF(x,y). Four other students also formulated at 

least one conjecture each, but their conjectures were different in nature, depending on 

the types of extensions that they had posed. Two of them formulated a conjecture 
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about a formula for the fraction of sausage each person will receive, but the result was 

clearly true, meaning that it should not be a conjecture in the first place. The last two 

students formulated a conjecture about a general cutting method, e.g. one of them 

found a cutting method to share 6n sausages equally among 6n + 6 people, which is to 

cut each sausage at the 
1n

n
-mark. 

 
(g) Justifying 

 
Justifying is one of the four main mathematical thinking processes (Mason et al., 

1985). Students need to recognise that a result obtained from specialising has to be 

justified because it is only a conjecture. For the Kaprekar Task (Type A), 2 of the 10 

students still wrongly accepted their conjecture as true without testing, even after the 

teaching experiment, but none of them accepted their conjectures as true based on 

naïve testing. For the Sausage Task (Type B), 3 students accepted their conjecture for 

the original task as true without testing, and one of them also accepted her conjecture 

for the extension as true without testing. In addition, 3 students also wrongly accepted 

their conjectures for the extension as true based on naïve testing. Some students tried 

to prove their conjectures using a non-proof argument, with 2 of them succeeding in 

proving a total of 3 conjectures for the Kaprekar Task, and another 2 of them in 

proving their conjecture about the least number of cuts for the original Sausage Task. 

No student managed to prove any conjecture for the extension of the Sausage Task. 

Only one student attempted a formal proof using algebra (this is for the Kaprekar 

Task), but failed. It seems that formal proofs are beyond the level of Secondary 2 

students. Only one student analysed the feasibility of proving his conjecture (this is 

for the general formula for the least number of cuts for the Sausage Task) and 

concluded that it was beyond him. 
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(h) Generalising 

 

Generalising is one of the four main mathematical thinking processes (Mason et al., 

1985). When a conjecture has been proven correctly, generalisation has taken place if 

the conjecture is a general result. For the Kaprekar Task (Type A), there were 3 

generalisations when 2 of the students succeeded in proving their 3 conjectures, which 

are general results. In particular, one of them was the Type 1 ‘multiples’ pattern. For 

the Sausage Task (Type B), there was no generalisation because the 2 proven 

conjectures about the least number of cuts for the original task are not general results. 

Although most of the conjectures for the extension of the Sausage Task are general 

results, the students were unable to prove them and so there was no generalisation. 

 

(i) Checking 

 

Checking working and monitoring progress are important processes that should occur 

throughout the investigation, not just at the end after proving a conjecture or solving a 

problem. It was found that metacognitive awareness (MA), which includes the ability 

to sense something amiss when a questionable result is obtained, had played a more 

important role than the checking processes in helping the students to discover their 

mistakes for both the Kaprekar Task (Type A) and the Sausage Task (Type B). It was 

also discovered that most of the students monitored their progress only when they 

were stuck. Some of them did not know what else to do when monitoring their 

progress, except to continue in the same direction, while others were able to monitor 

their progress more effectively for the Kaprekar Task by changing the approach to 

search for patterns elsewhere or by checking their working to see if they had made 

any mistake. However, the students monitored their progress a lot less often for the 
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Sausage Task than for the Kaprekar Task as they were able to progress in the Sausage 

Task and so most of them did not pause to monitor their progress. It was further 

observed that some students were able to review their solution effectively when they 

realised that their solution had not fully met the goal of the task. Some students also 

evaluated the efficacy of their method of solution, and looked for alternative methods 

for the Sausage Task. 

 

7.4.2 Validation and Refinement of Mathematical Investigation Models 

 

From the data analysis above, it was found that the two theoretical investigation 

models for cognitive and metacognitive processes have provided a fairly accurate 

description of the main processes and their interactions among one another according 

to the pathways shown in the models. However, there was a need to refine both 

models slightly, based on new insights gleaned from the students’ investigation. 

 

(a) Refined Investigation Model for Cognitive Processes 

 

The Theoretical Investigation Model for Cognitive Processes developed for the 

present study is shown in Figure 3.1 in Section 3.2.1, while the Refined Investigation 

Model for Cognitive Processes is shown in Figure 7.11 in this section. As described in 

Section 7.2.4, the analysis of empirical data for the Kaprekar Task had revealed that 

all the students in the present study went from ‘Specialising’ to ‘Searching for 

Patterns’ and then back to ‘Specialising’ very often, either because they could not find 

a pattern and so they had to specialise some more, or they tried to search for patterns 

in every step of the process that they repeated for each example. Thus there was a 

need to include in the investigation model this new pathway of going back from 
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‘Searching for Patterns’ to ‘Specialising’, as indicated by the thick pathway, in the 

Refined Investigation Model for Cognitive Processes. 

 

A new outcome called ‘Observed Pattern’ was also discovered and discussed in 

Section 7.2.4. In the theoretical model, it is posited that the patterns observed by the 

students will be considered as conjectures, so their protocols will be coded as 

‘Formulated Conjecture’ (FC). But it was discovered that there was generally a time 

gap between observing a pattern and formulating it as a conjecture since the students 

were usually unsure of their observed pattern and so they would specialise some more 

to be more certain of the observed pattern first, before formulating it as a conjecture. 

Sometimes, they even found counter examples to reject the observed pattern before 

they could formulate it as a conjecture. Thus there was a need to distinguish between 

observing a pattern and formulating a conjecture. The Refined Investigation Model 

for Cognitive Processes in Figure 7.11 shows the new outcome ‘Observed Pattern’ 

and the corresponding pathways, which are indicated by the darker box and the 

thicker pathways respectively. In other words, when a student first observes a pattern, 

he or she might treat the observed pattern as a conjecture to be proven or refuted, or 

he or she might try more examples to be more certain of the pattern first (first level of 

testing), before formulating it as a conjecture. Then the student should try to justify 

the conjecture. However, the student might not know how to prove the conjecture by 

using a non-proof argument or a formal proof, so he or she might end up trying more 

examples in naïve testing to see if the conjecture could be refuted by counter 

examples (second level of testing). This is consistent with Frobisher’s (1994) model 

where he differentiated between ‘conjecturing’ and ‘hypothesising’ with two levels of 

testing using empirical data (see Section 2.2.2g on page 59), although most educators 

(e.g. Lampert, 1990; Mason et al., 1985) do not distinguish between them. 
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Legend: Process is indicated by an unshaded box  

Outcome is indicated by a shaded box or circle 

 
Figure 7.11  Refined Investigation Model for Cognitive Processes 
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(b) Refined Investigation Model for Metacognitive Processes 

 

Table 7.26 shows a summary of the types and frequencies of metacognitive processes 

engaged by the students for the Kaprekar Task (Type A) and the Sausage Task (Type 

B) in the present study. The number in each square bracket indicates the frequency of 

the particular metacognitive behaviour observed when the student was attempting the 

task. The data for the table were obtained from the respective tables in Sections 7.2 

and 7.3. However, there was a need to combine the data in some tables, e.g. the 

frequency for ‘analysing feasibility of plan’ (MF) during ‘using other heuristics’ for 

the original task in Table 7.16 was combined with the frequency for MF during ‘using 

other heuristics’ for the extension in Table 7.22. Although ‘monitoring progress’ 

(MP) and ‘metacognitive awareness’ (MA) were analysed under the checking stage 

for the Kaprekar Task and the Sausage Task in Sections 7.2.6 and 7.3.10 respectively, 

these metacognitive processes generally do not occur in the checking stage, so there 

was a need to examine the students’ protocols to find out which cognitive processes 

that these metacognitive processes interact with. 

 

It was observed from Table 7.26 that all 10 students engaged in at least one 

metacognitive process for the Kaprekar Task, but only 9 students (except S6) did so 

for the Sausage Task. In fact, S6 showed only one overt sign of metacognitive 

behaviour for the Kaprekar Task. Although S7 exhibited metacognitive behaviours 

most frequently with a total of 14 + 13 = 27 occasions for both tasks, her 

metacognition was not effective as analysed previously in this chapter. 
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Table 7.26  Metacognitive Processes for Kaprekar and Sausage Tasks 
 

Metacognitive 
Process 

Cognitive 
Process 

Kaprekar Task Sausage Task 
Total 

Student 
Sub-
total

Student 
Sub-
total 

Monitoring 
Understanding 
(MU) 

Understanding 
the Task 

S1[1], S3[2], 
S4[1], S7[2], 
S9[2], S10[1] 

6[9] 
S3[2], S7[1], 
S9[1], S10[2] 

4[6] 6[15] 

Analysing 
Feasibility of 
Goal (MG) 

Problem Posing  0  0 0 

Extension  0 S10[1] 1[1] 1[1] 

Sub-total  0 S10[1] 1[1] 1[1] 

Analysing 
Feasibility of 
Plan (MF) 

Specialising S2[1], S5[2] 2[3]  0 2[3] 

Using Other 
Heuristics 

 0 S1[1], S7[2] 2[3] 2[3] 

Conjecturing  0  0 0 

Justifying / 
Generalising 

 0 S9[1] 1[1] 1[1] 

Sub-total S2[1], S5[2] 2[3] 
S1[1], S7[2], 

S9[1] 
3[4] 5[7] 

Monitoring 
Progress (MP) 

Specialising 
S2[1], S7[3], 

S8[1] 
3[5]  0 3[5] 

Using Other 
Heuristics 

 0 S7[9] 1[9] 1[9] 

Conjecturing 
S2[3], S3[4], 
S5[5], S7[8], 

S8[9] 
5[29] S1[1] 1[1] 6[30] 

Justifying / 
Generalising 

S9[5] 1[5]  0 1[5] 

Sub-total 
S2[4], S3[4], 
S5[5], S7[11], 
S8[10], S9[5] 

6[39] S1[1], S7[9] 2[10] 7[49] 

Reviewing 
Solution (MR) 

Checking S5[2], S9[2] 2[4] 

S1[1], S2[2], 
S3[1], S4[1], 
S5[3], S9[2], 

S10[2] 

7[12] 7[16] 

Metacognitive 
Awareness 
(MA) 

Specialising 
S2[2], S4[1], 
S6[1], S7[1] 

4[5]  0 4[5] 

Using Other 
Heuristics 

 0 
S7[1], S8[1], 

S9[1]
3[3] 3[3] 

Conjecturing 
S1[1], S5[2], 
S9[2], S10[4] 

4[9]  0 4[9] 

Justifying / 
Generalising 

 0  0 0 

Sub-total 

S1[1], S2[2], 
S4[1], S5[2], 
S6[1], S7[1], 
S9[2], S10[4] 

8[14] 
S7[1], S8[1], 

S9[1] 
3[3] 9[17] 

Metacognitive 
Processes 

Total 

S1[2], S2[7], 
S3[6], S4[2], 
S5[11], S6[1], 
S7[14],S8[10], 
S9[11], S10[5] 

10[69] 

S1[3], S2[2], 
S3[3], S4[1], 
S5[3], S7[13], 
S8[1], S9[5], 

S10[5] 

9[36] 10[105] 

 

* The number in each square bracket indicates the frequency of the particular metacognitive behaviour 
observed when the student was attempting the task. 
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Table 7.26 shows that the 10 students exhibited about twice as many metacognitive 

behaviours for the Kaprekar Task as those for the Sausage Task. The main bulk came 

from ‘monitoring progress’ (MP), which occurred 39 times for the Kaprekar Task, 

compared with only 10 times for the Sausage Task. As analysed earlier in Sections 

7.2.6 and 7.3.10, the students monitored their progress a lot more often for the 

Kaprekar Task because they were stuck, but most of them were able to progress more 

smoothly for the Sausage Task and so they paused less often to monitor their 

progress. It was observed that the two metacognitive processes least engaged in by the 

students were ‘analysing feasibility of goal’ (MG) and ‘analysing feasibility of plan’ 

(MF). In fact, MG occurred only once when a student (S10) analysed the feasibility of 

her goal during the extension of the Sausage Task (see Section 7.3.6). 

 

It was discovered that the interactions between some metacognitive processes and 

their corresponding cognitive processes as posited in the Theoretical Investigation 

Model for Metacognitive Processes (see Fig. 3.2 in Section 3.2.2) were not observed 

for the students in the present study (indicated by 0 in Table 7.26), although it does 

not mean that these interactions are not possible. Figure 7.12 shows the Refined 

Investigation Model for Metacognitive Processes based on the data analysis above. A 

dotted arrow from a metacognitive process to a cognitive process indicates that the 

interaction had not been observed in the current study, while a solid arrow indicates 

that the interaction had been observed. The shaded box indicates that the 

metacognitive process was not hypothesised in the theoretical model, but had been 

observed in the present study. The thick arrows indicate the interactions between the 

newly found metacognitive process and the various cognitive processes. For example, 

the students were supposed to analyse the feasibility of their goal (MG) and their plan 
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(MF), but none of them engaged in MG in the problem-posing stage, and in MF in the 

conjecturing stage (indicated by the dotted arrows). Thus there was a need to pay 

more attention to develop these two metacognitive processes in the students. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.12  Refined Investigation Model for Metacognitive Processes 
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the present research was on how students regulated their cognition during 

investigation, my original intention was not to study the students’ knowledge of 

cognition. But in the course of the analysis of the data collected for the present 

research, it was discovered that some students exhibited a more active awareness of 

their cognition, rather than a passive knowledge of cognition. This metacognitive 

awareness had proven to be useful to help some students discover their mistakes when 

they sensed something amiss, or to save time by being aware that they had generated a 

sequence or tried a cutting method before, and so they should not redo the 

investigation. 

 

Figure 7.12 shows that MA had manifested itself during specialising, using other 

heuristics and conjecturing during the investigation of the two tasks. Although MA 

was not observed during justifying and generalising in the present study, it does not 

mean that there is no interaction between this metacognitive process and the cognitive 

processes of justifying and generalising. On the contrary, more research needs to be 

done to study the possibility of this interaction. 

 

7.5 CONCLUDING REMARKS FOR THIS CHAPTER 

 

Chapter 7 has answered Research Question 2 on the effect of the cognitive and 

metacognitive processes of Secondary 2 students on the outcomes of their 

investigation. Certain processes that had helped the students to produce significant 

outcomes had been identified. The two theoretical investigation models developed for 

the present study had also been validated and refined by the empirical data collected 

for the current research. Chapter 8 will then answer Research Question 3 on the 

development of investigation processes. 
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 CHAPTER 8: DATA ANALYSIS OF DEVELOPMENT OF 

MATHEMATICAL INVESTIGATION PROCESSES 

 

In this chapter, the 40 sets of students’ thinking-aloud protocols and answer scripts 

obtained from the pretest and the posttest in the present research will be analysed to 

study the development of investigation processes of the 10 Secondary 2 students 

across the two types of investigative tasks in order to answer Research Question 3. 

There is also a need to develop the fourth data analysis tool for the current study, the 

Investigation Scoring Rubric (ISR), to aid in the analysis. 

 

8.1 THE THIRD RESEARCH QUESTION 

 

Research Question 3 is reproduced below: 

 

RQ3: What is the effect of the teaching experiment on the development of 

Secondary 2 students’ mathematical investigation processes? 

 

Scope of Data Analysis 

 

This chapter will study the development of mathematical investigation processes of 

the 10 students via two methods. The first method is to assign a score to the test of the 

students using an Investigation Soring Rubric (ISR) and then compare the test scores 

of the pretest and the posttest for the two types of tasks quantitatively using 

descriptive statistics (Section 8.2). The second method is to follow up from the test 

scores to study which processes that the students had or had not developed, and the 

extent of the development, by analysing the data obtained from their thinking-aloud 

protocols and answer scripts for the pretest and the posttest qualitatively (Section 8.3). 
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8.2 PROFICIENCY IN MATHEMATICAL INVESTIGATION 

 

The proficiency of a student’s performance in the pretest and posttest was measured 

using an Investigation Scoring Rubric (ISR). On one hand, students who were well 

versed in processes might not discover anything significant because they might lack 

what Schoenfeld (1985) called resources, e.g. mathematical conceptual knowledge 

and procedural skills. On the other hand, students who were poor in processes might 

discover some non-trivial patterns as they had more mathematical resources at their 

disposal. Thus there was a need to evaluate both the processes and outcomes in order 

to assess the quality of an investigation. Therefore, the ISR was developed to evaluate 

a student’s proficiency in investigation based on the quality of his or her processes 

and outcomes as explicated in the data analysis in the previous chapter. 

 

8.2.1 Investigation Scoring Rubric (ISR) 

 

Table 8.1 shows the ISR. There were six categories based on the stages of the 

theoretical investigation models, but with some modifications as follows: 

 

 Problem Posing (P) and Extension (E) were combined as one category for two 

reasons: (i) the two processes were similar in that both involved posing 

problems, and (ii) there was no need for the students to extend Type A tasks, 

so they might get a zero if there was a separate category for Extension (E), 

which would not be reflective of their actual performance. 

 Justifying (J) and Generalising (G) were combined as one category, just as in 

the first two data analysis instruments (i.e. the Investigation Pathway Diagram 

and the Investigation Timeline Representation) described in Section 5.2. 
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Table 8.1  Scoring Rubric for Evaluating Student’s Proficiency in Investigation 
 

Category Level 0 Level 1 Level 2 

Understanding 
the task (U) 

 Misinterpreted task, but 
did not recover or monitor 
understanding 

 Misinterpreted task but 
recovered late (i.e. after 
more than 5 min); 

 or misinterpreted task and 
monitored understanding, 
but did not recover 

 

 Interpreted task correctly; 
 or misinterpreted task but 

recovered on time (i.e. 
within 5 min) 

Problem 
Posing and / or 
Extension 
(P/E) 

 Did not understand what 
to investigate and so did 
not search for any pattern 
or pose any specific 
problem to solve or 
extend 

 Posed general problem to 
search for patterns 
explicitly or otherwise; 

 or posed at least one 
trivial specific problem to 
solve or extend; 

 or posed at least one non-
trivial specific problem to 
solve or extend, without 
any intention to generalise 

 

 Posed at least one non-
trivial specific problem to 
solve or extend, with the 
intention to generalise 

Specialising / 
Using Other 
Heuristics 
(S/H) 

 Chose examples 
randomly; 

 or did not use other 
heuristics effectively 

 Chose at least one 
example purposefully; 

 or used other heuristics 
quite effectively 

 Chose at least one set of 
systematic examples; 

 or used other heuristics 
effectively 

 

Conjecturing 
(C) 

 Did not observe any 
pattern or formulate any 
conjecture; 

 or observed incorrect 
patterns or formulated 
incorrect conjectures; 

 or observed correct trivial 
patterns 

 

 Observed at least one 
correct non-trivial pattern; 

 or formulated at least one 
correct trivial conjecture 
 

 Formulated at least one 
correct non-trivial 
conjecture 

Justifying and 
Generalising 
(J/G) 

 Did not formulate any 
conjecture to justify; 

 or did not prove any 
conjecture due to lack of 
time; 

 or tried but failed to 
justify any conjecture; 

 or correctly proved trivial 
conjectures that will not 
lead to any generalisation; 

 or refuted incorrect trivial 
conjectures; 

 or wrongly accepted all 
conjectures as true 
without testing or based 
on naïve testing 

 

 Correctly proved at least 
one trivial conjecture that 
will lead to generalisation; 

 or refuted at least one 
incorrect non-trivial 
conjecture; 

 or tried but failed to prove 
at least one correct non-
trivial conjecture 
 

 Correctly proved at least 
one non-trivial conjecture 

Checking (R)  Made major errors but did 
not discover; 

 or did not make any major 
error, but never or seldom 
checked working, 
reviewed solution and 
monitored progress 

 Made major errors but 
discovered only some of 
them, or discovered all of 
them but some late (i.e. 
after more than 5 min); 

 or did not make any major 
error, but occasionally 
checked working, 
reviewed solution and 
monitored progress 
 

 Made major errors but 
discovered all on time (i.e. 
within 5 min); 

 or did not make any major 
error, but often checked 
working, reviewed 
solution and monitored 
progress 

 
Total: ______ / 12 
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There were 3 levels for each category in the scoring rubric: Levels 0 to 2. The total 

possible score for the scoring rubric was 12. The descriptors for each level included 

the student’s processes and outcomes for the investigation of both types of tasks. 

However, some of the processes might not be observed, but the students might have 

engaged in these processes mentally without thinking them aloud. On one hand, the 

scoring rubric could only score the processes that were observed. On the other hand, 

the scoring rubric should not over-penalise students for failing to verbalise their 

thinking processes, especially when they were able to produce the outcomes. 

 

For example, in the first category of understanding the task (U), a student might 

interpret the task correctly without showing any observable understanding process, 

but this does not mean that the student did not engage in these processes mentally. 

Thus the student should not be over-penalised, so he or she should obtain the highest 

score of 2 for this category. However, if the student had misinterpreted the task, the 

criterion would be whether he or she had recovered fast enough. If the student 

recovered on time (within 5 minutes), he or she would still be at Level 2 as the ability 

to recover on time was also an important one. But if the student recovered late (after 5 

minutes), he or she would be at Level 1. If the student did not recover at all, the 

criterion would be whether the student had monitored his or her understanding. If the 

student had shown signs of monitoring understanding but still did not recover, the 

student would be at Level 1 for his or her effort in trying. But if the student did not 

show any sign of monitoring understanding and did not recover, he or she would be at 

Level 0. In this manner, the scoring rubric tried to balance between scoring 

observable processes, and not over-penalising students for producing outcomes but 

failing to verbalise their thinking processes. 
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In the second category of problem posing and extension (P/E), the descriptors 

distinguished between the two types of investigative tasks. For Type A tasks, a 

student who posed the general problem to search for any pattern, whether explicitly or 

otherwise, would be at Level 1. But a student could also pose specific problems to 

solve or extend at a later stage for Type A tasks. If the student posed at least one non-

trivial problem with the intention to generalise, he or she would be at Level 2. But if 

the student could only pose trivial problems, or non-trivial problems without any 

intention to generalise, then he or she would be at Level 1. For Type B tasks, a student 

would need to pose specific problems to solve or extend. Similarly, whether the 

student was at Level 1 or 2 depended on whether the specific problems posed were 

trivial or non-trivial, and whether there was any intention to generalise. Level 0 was 

reserved for students who did not understand what to investigate and so did not search 

for any pattern or pose any specific problem to solve or extend. A problem was 

classified as trivial or non-trivial based on the task analysis described in Appendix E, 

and the classification had passed an inter-coder reliability test (see Section 5.4). 

 

In the third category of specialising and using other heuristics (S/H), the descriptors 

also distinguished between the two types of investigative tasks. For Type A tasks, the 

process of specialising was divided into 3 levels: systematic (Level 2), purposeful 

(Level 1) and random (Level 0). The definitions of the three types of specialising 

were given in Section 7.2.3. For Type B tasks, the use of other heuristics was task 

dependent. This means that the scoring rubric could only divide the process broadly 

into 3 levels: use other heuristics effectively (Level 2), quite effectively (Level 1) and 

ineffectively (Level 0). The definitions of the three types of effectiveness for Posttest 

Task 2 (Sausage) were given in Section 7.3.3. Since Pretest Task 2 (Toast) is parallel 
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to Posttest Task 2 in the structure of their solutions, i.e. the three toasting methods are 

parallel to the three cutting methods as explained in Table 3.5 in Section 3.6.4, then 

the three types of effectiveness for Pretest Task 2 are similarly defined: if the students 

discovered only Toasting Method A, they were reckoned to have used other heuristics 

‘ineffectively’ (Level 0); if they struggled but eventually discovered Toasting Method 

B that gives the least toasting time, they were reckoned to have used other heuristics 

‘quite effectively’ (Level 1); if they were able to discover Toasting Method B 

naturally without struggling, whether right from the beginning or after using Toasting 

Method A, they were reckoned to have used other heuristics ‘effectively’ (Level 2). 

 

In the fourth category of conjecturing (C), a student would be at Level 2 if he or she 

was able to formulate at least one correct non-trivial conjecture. But if the conjecture 

was correct but trivial, the student would be at Level 1. Sometimes, a student might 

discover a correct non-trivial pattern, but he or she did not see it as the underlying 

pattern and so did not formulate any conjecture. In this case, the student would still be 

at Level 1. Level 0 was reserved for students who did not observe any pattern or 

formulate any conjecture, or observed incorrect patterns or formulated incorrect 

conjectures, or observed correct but trivial patterns. 

 

In the fifth category of justifying and generalising (J/G), a student would be at Level 2 

if he or she was able to prove at least one non-trivial conjecture correctly. It did not 

matter whether the proof would lead to any generalisation because the main criterion 

was that the conjecture must be non-trivial. But if the proven conjecture was trivial, 

then generalisation would play a part in determining whether a student was at Level 1 

or 0. If a student correctly proved at least one trivial conjecture that will lead to 
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generalisation, or refuted at least one incorrect non-trivial conjecture, or tried but 

failed to prove at least one correct non-trivial conjecture, then he or she would be at 

Level 1. Level 0 was reserved for students who did not formulate any conjecture to 

justify, or did not prove any conjecture due to lack of time, or tried but failed to 

justify any conjecture, or correctly proved trivial conjectures that will not lead to any 

generalisation, or refuted incorrect trivial conjectures, or wrongly accepted 

conjectures as true without testing or based on naïve testing. 

 

In the last category of checking (R), the main criterion would be whether the checking 

and monitoring processes, such as checking working (CW), reviewing solution (MR) 

and monitoring progress (MP), had helped a student in discovering all the major 

errors on time (i.e. within 5 minutes). If this happened, the student would be at Level 

2. But if the student only discovered some major errors, or discovered all the major 

errors but some of them late (i.e. after more than 5 minutes), he or she would be at 

Level 1. If the student did not discover any major error, he or she would be at Level 0. 

However, the above criterion applied if and only if a student had made at least one 

major error. But if the student did not make any major error, the criterion would be 

the total frequency of checking and monitoring processes: T = CW + MR + MP. The 

student would be at Level 2, 1 or 0 depending on whether he or she had engaged in all 

these processes often (T  9), occasionally (T = 5 to 8), or seldom or never (T  4) 

respectively. 

 

8.2.2 Actual Scoring for Sample Students 

 

This section will describe how the scoring rubric was used to score the pretest and the 

posttest in the present study by going through in detail the scoring for a student for 
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each type of investigative tasks. The student selected for the Kaprekar Task (Type A) 

was S5 while the student chosen for the Sausage Task (Type B) was S9. These two 

students were selected because their pathway for the respective task was complete, so 

it was possible to illustrate how to score for each category of the scoring rubric. Table 

8.2 shows the breakdown of the score for each category for the investigation of the 

Kaprekar Task by S5. The maximum possible score for each category is 2 and the 

maximum possible total score is 12. 

 

Table 8.2  Scoring of S5 for Kaprekar Task 
 

Category U P/E S/H C J/G R Total 

Level 2 2 1 2 2 1 10 

 
 

To score each category, reference was made to the respective tables in the data 

analysis in Section 7.2 in the previous chapter: 

 

 From Table 7.2 in Section 7.2.1, it was observed that S5 interpreted the task 

correctly, so she was at Level 2 for the category of understanding the task (U). 

 From Table 7.3 in Section 7.2.2, it was observed that S5 posed two non-trivial 

specific problems with the intention to generalise, so she was at Level 2 for 

the category of problem posing and extension (P/E). 

 From Table 7.4 in Section 7.2.3, it was observed that S5 chose five examples 

purposefully but she did not specialise systematically, so she was at Level 1 

for the category of specialising and using other heuristics (S/H). 

 From Table 7.8 in Section 7.2.4, it was observed that S5 formulated one 

correct non-trivial conjecture, so she was at Level 2 for the category of 

conjecturing (C). 
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 From Table 7.10 in Section 7.2.5, it was observed that S5 proved her non-

trivial conjecture correctly, so she was at Level 2 for the category of justifying 

and generalising (J/G). 

 From Table 7.11 in Section 7.2.6, it was observed that S5 only discovered one 

of her three major errors at about 8 minutes after making the error, so she was 

at Level 1 for the category of checking (R). 

 

Therefore, based on the data analysis of her processes and outcomes in Section 7.2, 

S5 obtained a total score of 10 for her investigation of the Kaprekar Task. Table 8.3 

shows the breakdown of the score for each category for the investigation of the 

Sausage Task by S9. The maximum possible score for each category is 2 and the 

maximum possible total score is 12. 

 

Table 8.3  Scoring of S9 for Sausage Task 
 

Category U P/E S/H C J/G R Total 

Level 2 2 2 2 1 2 11 

 
 

To score each category, reference was made to the respective tables in the data 

analysis in Section 7.3: 

 

 From Table 7.13 in Section 7.3.1, it was observed that S9 interpreted the task 

correctly, so he was at Level 2 for the category of understanding the task (U). 

 From Table 7.14 in Section 7.3.2, it was observed that S9 posed two non-

trivial specific problems for the original task, without any intention to 

generalise. It was further observed from Table 7.19 in Section 7.3.6 that S9 

posed one non-trivial specific problem to extend the task, with the intention to 
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generalise. Thus he was at Level 2 for the category of problem posing and 

extension (P/E) for posing at least one non-trivial specific problem with the 

intention to generalise. 

 From Table 7.16 in Section 7.3.3, it was observed that S9 discovered Cutting 

Method B that gives the least number of cuts. From his protocols discussed in 

the same section, it was found that he was able to reason effectively to 

discover Method B naturally without struggling. It was further observed from 

Table 7.22 in Section 7.3.7 that he used Method B during the extension of the 

task. Thus he was at Level 2 for using other heuristics (H) effectively. 

 From Table 7.17 in Section 7.3.4, it was observed that S9 formulated a correct 

non-trivial conjecture for the original task. It was further observed from Table 

7.23 in Section 7.3.8 that he also formulated a correct non-trivial conjecture 

during the extension of the task. Thus he was at Level 2 for the category of 

conjecturing (C) for formulating at least one correct non-trivial conjecture. 

 From Table 7.18 in Section 7.3.5, it was observed that S9 wrongly accepted 

his conjecture for the original task as true without testing. It was further 

observed from Table 7.24 in Section 7.3.9 that he tried but failed to prove his 

correct non-trivial conjecture for the extension. Thus he was at Level 1 for the 

category of justifying and generalising (J/G) for trying to prove at least one 

correct non-trivial conjecture but failed. 

 From Table 7.25 in Section 7.3.10, it was observed that S9 made only one 

major error but he discovered it on time (i.e. within 5 minutes), so he was at 

Level 2 for the category of Checking (R). 
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Therefore, based on the data analysis of his processes and outcomes in Section 7.3, S9 

obtained a total score of 11 for his investigation of the Sausage Task. As can be seen 

from the above scoring system, most of the descriptors in the scoring rubric are 

objective, e.g. whether a student misinterpreted the task or whether he recovered 

within 5 minutes. The only descriptors that are subject to interpretation are whether 

the problem posed or conjectures formulated by the students are trivial or non-trivial. 

However, the classification of these outcomes as trivial or non-trivial had passed an 

inter-coder reliability test (see Section 5.4). This suggests that the scoring rubric is a 

reliable instrument to measure a student’s proficiency in mathematical investigation. 

 

8.2.3 Analysis of the Pretest and Posttest Scores 

 

In this section, the pretest and posttest scores of the 10 students for the present study 

will be compared using descriptive statistics. Since the sample for the current research 

was a purposeful one (see Section 3.6.2) and not a random one, no inference will be 

made using statistical testing. Table 8.4 shows the detailed scores for the two pretest 

tasks and the two posttest tasks for the 10 students based on the scoring rubric 

described earlier in this chapter. The maximum score for each category is 2 and the 

maximum total score is 12. Table 8.5 shows the means and standard deviations of the 

test scores across tasks while Table 8.6 shows a summary of the test scores across 

students. 
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Table 8.4  Detailed Pretest and Posttest Scores 
 

 
Pretest Task 1 (Type A) Posttest Task 1 (Type A) 

U P/E S/H C J/G R Total U P/E S/H C J/G R Total 

S1 0 2 0 0 0 0 2 2 2 0 0 0 1 5 

S2 2 1 0 1 0 1 5 2 1 1 0 1 0 5 

S3 0 1 1 0 0 0 2 2 1 1 1 0 1 6 

S4 2 1 1 1 0 0 5 2 1 1 0 0 0 4 

S5 2 1 1 2 0 0 6 2 2 1 2 2 1 10 

S6 0 1 1 0 0 0 2 2 1 1 0 0 0 4 

S7 0 1 0 0 0 2 3 2 1 1 0 0 2 6 

S8 0 1 0 1 0 0 2 2 1 0 1 0 0 4 

S9 0 2 0 1 0 1 4 1 1 2 2 2 2 10 

S10 1 1 1 1 0 0 4 2 1 0 2 0 0 5 

Ave 0.7 1.2 0.5 0.7 0 0.4 3.5 1.9 1.2 0.8 0.8 0.5 0.7 5.9 

S.d. 0.9 0.4 0.5 0.6 0 0.7 1.4 0.3 0.4 0.6 0.9 0.8 0.8 2.2 
 
 

 
Pretest Task 2 (Type B) Posttest Task 2 (Type B) 

U P/E S/H C J/G R Total U P/E S/H C J/G R Total 

S1 0 1 0 0 0 0 1 2 2 2 2 2 0 10 

S2 2 1 0 0 0 0 3 2 1 0 1 0 1 5 

S3 0 1 0 0 0 0 1 2 2 0 2 0 0 6 

S4 0 2 2 2 1 1 8 2 1 2 1 0 0 6 

S5 2 1 1 0 0 0 4 1 1 0 0 0 2 4 

S6 2 1 0 0 0 0 3 0 1 0 0 0 0 1 

S7 0 2 0 0 0 0 2 2 1 0 0 0 2 5 

S8 2 1 1 0 0 0 4 2 2 1 2 1 1 9 

S9 2 2 0 1 0 2 7 2 2 2 2 1 2 11 

S10 1 1 1 0 0 0 3 2 2 1 2 2 0 9 

Ave 1.1 1.3 0.5 0.3 0.1 0.3 3.6 1.7 1.5 0.8 1.2 0.6 0.8 6.6 

S.d. 0.9 0.5 0.7 0.6 0.3 0.6 2.2 0.6 0.5 0.9 0.9 0.8 0.9 2.9 

 
 

Table 8.5  Means and Standard Deviations of Test Scores Across Tasks 
 

Mean 
Type A Tasks Type B Tasks 

U P/E S/H C J/G R Total U P/E S/H C J/G R Total 

Pre 0.7 1.2 0.5 0.7 0 0.4 3.5 1.1 1.3 0.5 0.3 0.1 0.3 3.6 

Post 1.9 1.2 0.8 0.8 0.5 0.7 5.9 1.7 1.5 0.8 1.2 0.6 0.8 6.6 

Diff 1.2 0 0.3 0.1 0.5 0.3 2.4 0.6 0.2 0.3 0.9 0.5 0.5 3.0 
 
 

S.d. 
Type A Tasks Type B Tasks 

U P/E S/H C J/G R Total U P/E S/H C J/G R Total 

Pre 0.9 0.4 0.5 0.6 0 0.7 1.4 0.9 0.5 0.7 0.6 0.3 0.6 2.2 

Post 0.3 0.4 0.6 0.9 0.8 0.8 2.2 0.6 0.5 0.9 0.9 0.8 0.9 2.9 

Diff -0.6 0 0.1 0.3 0.8 0.1 0.8 -0.3 0 0.2 0.3 0.5 0.3 0.7 
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Table 8.6  Summary of Test Scores Across Students 
 

 Pretest 1 Posttest 1 Difference Pretest 2 Posttest 2 Difference 

S1 2 5 3 1 10 9 

S2 5 5 0 3 5 2 

S3 2 6 4 1 6 5 

S4 5 4 -1 8 6 -2 

S5 6 10 4 4 4 0 

S6 2 4 2 3 1 -2 

S7 3 6 3 2 5 3 

S8 2 4 2 4 9 5 

S9 4 10 6 7 11 4 

S10 4 5 1 3 9 6 

Ave 3.5 5.9 2.4 3.6 6.6 3.0 

S.d. 1.4 2.2 2.0 2.2 2.9 3.4 

 
 

(a) Comparison between Pretest Task 1 and Posttest Task 1 (Type A) 

 

Table 8.4 shows that the students obtained an average total score of 3.5 and 5.9 (out 

of 12) for Pretest Task 1 and Posttest Task 1 respectively. If a student was at Level 1 

for all the 6 categories, the total score would be 6. This means that, on average, the 

students were below Level 1 for the pretest task, but they had improved by 2.4 points 

to Level 1 for the posttest task. Table 8.5 shows that the students had improved in 

most categories for Posttest Task 1, except for problem posing24 (P) and conjecturing 

(C) where there was not much difference. In particular, the students had improved the 

most for understanding the task (U) with a rise of 1.2 points, followed by justifying 

and generalising (J/G) with an increase of a moderate 0.5 point. The students had also 

improved slightly for specialising25 (S) and checking (R) with an increase of 0.3 point 

each. The extreme scores were 0 for J/G for Pretest Task 1 and almost the maximum 2 

for U for Posttest Task 1. 

 

                                                 
24  The students did not extend (E) the two Type A tasks. 
25  The students did not use other heuristics (H) for the two Type A tasks. 
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In terms of spread, Table 8.5 shows that the standard deviation (s.d.) for Pretest Task 

1 was highest for U at 0.9, and lowest for J/G at 0, but the s.d. for Posttest Task 1 was 

highest for C at 0.9, and second highest for J/G and R at 0.8, while it was lowest for U 

at 0.3. For the pretest task, the s.d. was the biggest for U at 0.9 since some students 

understood the task correctly, some misinterpreted the task but recovered, while the 

rest did not recover. But for the posttest task, most of them understood the task 

correctly, with the score very close to the maximum 2 at 1.9, and so the s.d. was the 

smallest for U at 0.3. On the other hand, the students all scored 0 for J/G for the 

pretest task, so the s.d. was the smallest at 0. But for the posttest task, some students 

had improved a lot, some had improved a little, while the rest had not improved at all, 

and so the s.d. for J/G was the second biggest at 0.8. Although the largest s.d. for the 

posttest task was for C at 0.9, the s.d. for C for the pretest task was already quite big 

at 0.6. This suggests that some students had improved for C while the others had not 

improved, thus making the s.d. even bigger. Overall, the s.d. for the Type A tasks had 

also become bigger from 1.4 to 2.2, which means that there was more variation in the 

students’ posttest performance compared with the pretest. 

 

Table 8.6 shows that the highest score for Pretest Task 1 was 6 for S5, followed by 5 

for S2 and S4. But for Posttest Task 1, the highest score was 10 for S5 and S9, 

followed by 6 for S3. The top student (S5) for the pretest task ended up joint top for 

the posttest task, with an improvement of 4 points. But the 2 students (S2,S4) who 

scored the second highest for the pretest task performed only equally well or even 

slightly worse for the posttest task. One of the students (S4) was sick when he took 

the posttest, which might have affected his performance. However, one student (S9), 

who accomplished only a below average performance for the pretest task with a score 
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of 4, improved the most by 6 points to be joint top for the posttest task. At the other 

end, 3 students (S3,S6,S7) obtained the lowest score of 2 for Pretest Task 1 while 2 

students (S6,S8) obtained the lowest score of 4 for Posttest Task 1. This means that 

S6 was consistently the lowest scorer for both tasks, while S3 and S7 had improved 

by 4 points and 3 points respectively. S8 improved only by 2 points, thus ending up 

joint lowest for the posttest task. 

 

(b) Comparison between Pretest Task 2 and Posttest Task 2 (Type B) 

 

Table 8.4 shows that the students obtained an average total score of 3.6 and 6.6 (out 

of 12) for Pretest Task 2 and Posttest Task 2 respectively. This means that, on 

average, the students were below Level 1 for the pretest task, but they had improved 

by 3 points to Level 1 for the posttest task, just like for the two Type A tasks. Table 

8.5 shows that the students had improved in all the categories for Posttest Task 2. In 

particular, the students had improved the most for conjecturing (C) with an increase of 

0.9 point, followed by a moderate improvement of 0.5 to 0.6 point for understanding 

the task (U), justifying and generalising (J/G), and checking (R). The students had 

also improved slightly for problem posing and extension (P/E), and specialising and 

using other heuristics (S/H), with an increase of 0.2 to 0.3 point each. The extreme 

scores were 0.1 for J/G for Pretest Task 2 and 1.7 for U for Posttest Task 2, just like 

for the two Type A tasks.  

 

In terms of spread, Table 8.5 shows that the s.d. for Pretest Task 2 was highest for U 

at 0.9, and lowest for J/G at 0.3, but the s.d. for Posttest Task 2 was highest for S/H, C 

and R at 0.9, and second highest for J/G at 0.8, while it was lowest for P/E at 0.5. Just 

like for Pretest Task 1, the s.d. for Pretest Task 2 was the biggest for U at 0.9. But for 
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Posttest Task 2, although most students understood the task correctly, there was still 

some variation and so the s.d. for U only dropped slightly to 0.6, which was unlike the 

biggest drop for Posttest Task 1. On the other hand, the biggest rise in the s.d. for 

Posttest Task 2 was an increase of 0.5 point for J/G from 0.3 to 0.8, which was similar 

to the biggest rise in the s.d. for Posttest Task 1. Overall, the s.d. for the Type B tasks 

had also increased from 2.2 to 2.9, which means that there was more variation in the 

students’ posttest performance compared with the pretest, just like for the Type A 

tasks. 

 

Table 8.6 shows that the highest score for Pretest Task 2 was 8 for S4, followed by 7 

for S9. But for Posttest Task 2, the highest score was 11 for S9, followed by 10 for 

S1, and 9 for S8 and S10. The top student (S4) for the pretest task ended up 

performing worse for the posttest task, probably because he was sick when he took 

the posttest. However, the student (S9) with the second highest pretest score ended up 

the top student for the posttest task with a score of 11: he was the only one who found 

the complicated formula for the least number of cuts for Posttest Task 2 (see Section 

6.3a). At the other end, 2 students (S1,S3) obtained the lowest score of 1 for Pretest 

Task 2 while one student (S6) obtained the lowest score of 1 for Posttest Task 2. The 

student with the biggest improvement was S1, who improved by 9 points from the 

joint lowest pretest score of 1 to the second highest posttest score of 10. This was 

because he did not understand the requirements for Pretest Task 2 and so did not 

know what to investigate. But he had learnt what to investigate for Posttest Task 2 and 

he managed to solve the problems that he had posed, thus leading to such a great 

improvement. 

 



 
 

405

(c) Comparison Across the Two Types of Tasks 

 

In general, Table 8.5 shows that the students performed equally badly for the two 

pretest tasks, with an average score of 3.5 and 3.6 (out of 12) respectively. But they 

had improved by quite a bit for the two posttest tasks: an increase of 2.4 and 3 points 

respectively. Nevertheless, they were still at about Level 1 on average for both the 

posttest tasks, with an average score of 5.9 and 6.6 respectively. In other words, the 

students performed better and improved more for Posttest Task 2 (Type B) than for 

Posttest Task 1 (Type A). On closer analysis of the two pretest tasks, the students 

performed the best in problem posing and extension (P/E) with a score of 1.2 and 1.3 

respectively, and the worst in justifying and generalising (J/G) with a score of 0 and 

0.1 respectively. But for the two posttest tasks, the students performed the best in 

understanding the task (U) with a score of 1.9 and 1.7 respectively, but the worst was 

still in J/G with a score of 0.5 and 0.6 respectively. Thus the main process that the 

students had improved a lot for both types of tasks was U: an increase of 1.2 and 0.6 

point respectively. But for the Type B tasks, the improvement for U was only the 

second highest, while the greatest increase of 0.9 point was for conjecturing (C). On 

the other hand, the main process that showed the least improvement for both types of 

tasks was P/E: no difference for the Type A tasks and an increase of only 0.2 point for 

the Type B tasks. 

 

In terms of spread of the total scores, Table 8.5 shows that the s.d. for the two Type B 

tasks were bigger than those for the two Type A tasks, and the s.d. for the posttest 

tasks were also bigger than those for the pretest tasks. In fact, the s.d. for Pretest Task 

2 (Type B) was already equal to the s.d. for Posttest Task 1 (Type A). This suggests 

that there was more variation in the students’ performance for Type B tasks compared 
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with Type A tasks. On closer analysis, the s.d. for both pretest tasks were highest for 

U at 0.9, and lowest for J/G at 0 and 0.3 respectively. For both posttest tasks, the s.d. 

were among the highest for C, J/G and R from 0.8 to 0.9, and among the lowest for U 

and P/E from 0.3 to 0.6. There were two other similarities between the two types of 

tasks: the s.d. remained the same for P/E from the pretest to the posttest, and the 

increase in the s.d. from the pretest to the posttest was highest for J/G. Table 8.6 

shows that 3 students (e.g. S3,S4,S7) had improved or performed worse by about the 

same amount from the pretest to the posttest across both types of tasks, while the 

improvement of the other students was task dependent, e.g. 3 students (S5,S6,S9) had 

improved more for Type A tasks, but the remaining 4 students (S1,S2,S8,S10) had 

shown greater improvement for Type B tasks. This suggests that the development of 

processes might depend on the types of tasks. 

 

The above analysis examined the students’ performance in mathematical investigation 

for the pretest and the posttest quantitatively. The next section will examine the 

students’ performance for the tests qualitatively, and in particular, the development of 

the investigation processes. 

 

8.3 DEVELOPMENT OF INVESTIGATION PROCESSES 

 

In this section, the development of investigation processes for the 10 students in the 

present study will be examined by comparing the processes and outcomes for the 

pretest and the posttest across the two types of tasks (the reader should refer to 

Appendix D to be familiar with the four tasks). Unlike the previous chapter, the 

analysis in this section will not follow the order of the investigation stages, but it will 

follow the order of the categories in the scoring rubric in Section 8.2.1. For example, 
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the second category combined the investigation stages of problem posing and 

extension because both stages were related to the main process of posing problems, 

the only difference being whether the given in the task statement was changed. Just 

like in the previous chapter where the students’ protocols and test answer scripts for 

Posttest Task 1 (Kaprekar) and Posttest Task 2 (Sausage) were analysed and the 

findings displayed in the Summary Tables of Processes and Outcomes (TPO), the 

students’ protocols and test answer scripts for Pretest Task 1 (Happy) and Pretest 

Task 2 (Toast) were similarly analysed and the findings displayed in corresponding 

TPO in Appendix M. But for ease of comparison between the pretest and the posttest 

in this section, the relevant information from all the TPO of the four tasks had to be 

extracted and presented in another type of summary tables as shown below. 

 

8.3.1 Understanding the Task (Stage 1) 

 

Table 8.7 shows a summary of the proficiency level of understanding the task (U) 

attained by the 10 students for the four tasks while Table 8.8 shows a summary of the 

frequencies of the understanding processes that might have helped the students to 

understand the task correctly. The information for the two pretest tasks was extracted 

from Tables M1.1 and M2.1 in Appendix M while the information for the two posttest 

tasks was obtained from Tables 7.2 and 7.13 in the previous chapter. Since some of 

the levels have more than one descriptor, Table 8.7 separates them in order to present 

a clearer picture as to how many students were at a particular level because of a 

certain descriptor. For example, for Pretest Task 1, the table shows that 3 students 

were at Level 2, but 2 of them interpreted the task correctly (Descriptor A) while the 

last student recovered from the misinterpretation within 5 minutes of the investigation 

(Descriptor B). 
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Table 8.7  Proficiency Level of Understanding the Task 
 

Descriptors 
Pretest 1 
(Type A) 

Posttest 1 
(Type A) 

Pretest 2 
(Type B) 

Posttest 2 
(Type B) 

Level 2 Descriptor A: Interpreted task 
correctly 

2 
(S4,S5) 

7 (S1-S5, 
S7,S10) 

3 
(S2,S6,S8) 

7 (S1,S2, 
S4,S7-S10) 

Level 2 Descriptor B: Misinterpreted task 
but recovered on time (i.e. within 5 min) 

1 
(S2) 

2 
(S6,S8) 

2 
(S5,S9) 

1 
(S3) 

Level 2: Level 2 Descriptors A and B 
3 

(S2,S4,S5) 
9 

(S1-S8,S10)
5 (S2,S5, 
S6,S8,S9) 

8 (S1-S4, 
S7-S10) 

Level 1 Descriptor A: Misinterpreted task 
but recovered late (i.e. after > 5 min) 

1 
(S10) 

0 
1 

(S10) 
1 

(S5) 
Level 1 Descriptor B: Misinterpreted task, 
and monitored understanding, but did not 
recover 

0 
1 

(S9) 
0 0 

Level 1: Level 1 Descriptors A and B 
1 

(S10) 
1 

(S9) 
1 

(S10) 
1 

(S5) 

Level 0: Misinterpreted task, but did not 
recover or monitor understanding 

6 (S1,S3, 
S6-S9) 

0 
4 (S1,S3, 
S4,S7) 

1 
(S6) 

Average Score for Level (out of 2) 0.7 1.9 1.1 1.7 

Standard Deviation (s.d.) 0.9 0.3 0.9 0.6 

 
 

Table 8.8  Frequencies of Processes for Understanding the Task 
 

Processes 
Pretest 1 
(Type A) 

Posttest 1 
(Type A) 

Pretest 2 
(Type B) 

Posttest 2 
(Type B) 

Re-read Task (RR) 
36 

(S1,S3-S8,S10) 
47 

(S1,S3-S10) 
16 (S1-S3,S5-

S7,S10) 
11 

(S3,S5-S7,S10) 

Rephrased Task (RT) 
7 

(S3-S6) 
18 

(S4-S9) 
6 

(S1,S3,S6,S9) 
13 (S3-S5,S7, 

S9,S10) 

Highlighted Key 
Information (HI) 

1 
(S3) 

16 
(S3-S6,S9) 

4 
(S1,S10) 

7 
(S3-S6,S9) 

Visualised Information 
(VI) 

0 0 
6 

(S2,S5-S7,S9) 
11 (S2,S3,S5-

S7,S10) 

Monitored Understanding 
(MU) 

1 
(S5) 

9 (S1,S3,S4, 
S7,S9,S10) 

11 (S2,S5,S6, 
S8-S10) 

6 
(S3,S7,S9,S10) 

Total Frequency 
45 

(S1,S3-S8,S10) 
90 

(S1,S3-S10) 
43 

(S1-S3,S5-S10) 
48 

(S2-S7,S9,S10) 

 

 

(a) Comparison between Pretest Task 1 and Posttest Task 1 (Type A) 

 

Table 8.7 shows that only 2 students understood Pretest Task 1 correctly at the start 

while 7 students interpreted Posttest Task 1 correctly (Level 2). Although 2 other 

students recovered from misinterpreting Pretest Task 1, with one of them recovering 
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on time (Level 2) but the other late (Level 1), 6 students still misinterpreted the task in 

the end (Level 0). But for Posttest Task 1, only one student did not recover from 

misinterpreting the task, but he did monitor his understanding (Level 1), so no one 

was at Level 0. Thus the students had performed better in understanding the task for 

Posttest Task 1 than for Pretest Task 1. Table 8.8 shows that the students had engaged 

in understanding processes, such as RR, RT, HI and MU, twice as often for Posttest 

Task 1 compared with Pretest Task 1. The timings on their protocols also show that 

they had spent more time understanding the posttest task than the pretest task. This 

suggests that engaging in these processes more often and for a longer period of time 

might have helped more students to correctly interpret Posttest Task 1 than Pretest 

Task 1. However, it was possible for some students to correctly understand the task 

without appearing to engage in these processes, e.g. S2 did not exhibit any 

understanding behaviour for Posttest Task 1 but he interpreted the task correctly. 

 

(b) Comparison between Pretest Task 2 and Posttest Task 2 (Type B) 

 

Table 8.7 shows that 3 students and 7 students correctly understood Pretest Task 2 

and Posttest Task 2 respectively (Level 2). Although 3 other students recovered from 

misinterpreting Pretest Task 2, with 2 of them recovering on time (Level 2) but the 

other late (Level 1), 4 students still misinterpreted the task in the end (Level 0). But 

for Posttest Task 2, only one student did not recover from misinterpreting the task 

(Level 0). Thus the students had performed better in understanding the task for 

Posttest Task 2 than for Pretest Task 2, just like for the two Type A tasks. 

 

Table 8.8 shows that the students had engaged in understanding processes, such as 

RR, RT, HI, VI and MU, slightly less often for Pretest Task 2 than for Posttest Task 2. 
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On closer analysis, it was observed that the students highlighted key information and 

visualised information less often for the pretest task than for the posttest task. They 

also re-read or rephrased Pretest Task 2 for 16 + 6 = 22 times, which was slightly 

lower than 11 + 13 = 24 times for Posttest Task 2. But the task statement for Pretest 

Task 2 contained a lot more information, such as the various timings for toasting one 

side of each slice of bread, putting in and taking out a slice, and turning a slice over. 

In other words, despite the fact that the task statement for Posttest Task 2 was much 

shorter, the students still re-read or rephrased the posttest task slightly more often than 

the pretest task. The students also monitored their understanding for Pretest Task 2 

more often than for Posttest Task 2, probably because there were more given 

conditions in the task statement of Pretest Task 2 to clarify. But this metacognitive 

process was still not so helpful in preventing them from misinterpreting the pretest 

task. Overall, more students might have interpreted Posttest Task 2 correctly because 

they had engaged in these understanding processes a bit more often than for Pretest 

Task 2. 

 

(c) Development of Understanding Processes 

 

The above analysis shows that the students had engaged in the understanding 

processes more often for the two posttest tasks compared with the two pretest tasks. 

Before the pretest, the students only went through a two-hour familiarisation lesson to 

learn what to investigate when given an open investigative task, and to practise 

thinking aloud for the pretest (see outline of Lesson 1 in Appendix C), so the focus 

was not on the understanding processes. But the students had learnt during their 

normal school lessons to read textbook exercise questions carefully and to highlight 

key information before attempting to solve them. These strategies were very similar to 
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the processes for understanding an investigative task. However, they did not engage in 

these processes often enough for the two pretest tasks, thus leading to most of them 

misinterpreting the pretest tasks. 

 

During the first two-hour developing lesson of the teaching experiment after the 

pretest, part of the focus was on the processes for understanding an investigative task 

(see outline of Lesson 2 in Appendix C). The students were reminded of the usual 

strategies for understanding textbook exercise questions: they were guided me, who 

was the teacher, to articulate that they should read the task carefully, re-read or 

rephrase important parts of the task, and highlight key information. In addition, they 

were taught that they should try at least one example to understand a Type A task, and 

to visualise information by drawing a diagram if applicable. They were also taught 

that they should monitor their understanding to ensure that they had interpreted the 

task correctly before proceeding to the next stage of problem posing.  

 

As a result, the students engaged in these processes more often for the two posttest 

tasks. In particular, they exhibited twice as many behaviours for understanding 

Posttest Task 1 as Pretest Task 1. Despite the fact that the task statement for Posttest 

Task 2 was much shorter and contained less information than that of Pretest Task 2, 

they still re-read or rephrased Posttest Task 2 slightly more often than Pretest Task 2. 

Thus more students interpreted the two posttest tasks correctly compared with the two 

pretest tasks. In other words, the students needed constant reminders during the 

teaching experiment to apply what they had learnt about the processes for 

understanding textbook exercise questions to understand investigative tasks. 
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8.3.2 Problem Posing and Extension (Stages 2 and 8) 

 

Table 8.9 shows the proficiency level of problem posing and extension (P/E) attained 

by the 10 students for the four tasks, Table 8.10 shows the types of problems and 

extensions that the students had posed for the four tasks, Table 8.11 shows the number 

of students who had posed the intended problem or the intended extension for the two 

Type B tasks, while Table 8.12 shows the frequencies of the problem-posing and 

extension processes that might have helped the students to pose specific problems for 

the four tasks. The information for the two pretest tasks was extracted from Tables 

M1.2 and M2.2a to M2.2d in Appendix M while the information for the two posttest 

tasks was obtained from Tables 7.3, 7.14, 7.15, 7.18 and 7.19 in the previous chapter. 

It was possible for a student to fulfil more than one descriptor in the level that he or 

she was in, e.g. 7 students were at Level 1 for Pretest Task 2 as shown in Table 8.9, 

but 5 of them (S1-S3,S6,S8) satisfied more than one descriptor in that level. However, 

if a student was at a higher level but also satisfied some descriptors at a lower level, 

he or she would not be included at the lower level to avoid confusion, e.g. one other 

student (S7) also fulfilled Level 1 Descriptor C for Pretest Task 2, but she was not 

included at that level since she was already at Level 2. 
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Table 8.9  Proficiency Level of Problem Posing and Extension 
 

Descriptors 
Pretest 1 
(Type A) 

Posttest 1 
(Type A) 

Pretest 2 
(Type B) 

Posttest 2 
(Type B) 

Level 2 Descriptor A: Posed at least one 
non-trivial specific problem to solve, with 
the intention to generalise 

2 
(S1,S9) 

2 
(S1,S5) 

0 0 

Level 2 Descriptor B: Posed at least one 
non-trivial specific problem to extend, 
with the intention to generalise 

0 0 
3 

(S4,S7,S9) 
5 (S1,S3, 
S8-S10) 

Level 2: Level 2 Descriptors A and B 
2 

(S1,S9) 
2 

(S1,S5) 
3 

(S4,S7,S9) 
5 (S1,S3, 
S8-S10) 

Level 1 Descriptor A: Posed general 
problem to search for any pattern 
explicitly 

0 
3 

(S3,S7,S9) 
0 0 

Level 1 Descriptor B: Search for patterns 
without posing general problem explicitly 

8 
(S2-S8,S10) 

5 (S2,S4, 
S6,S8,S10)

0 0 

Level 1 Descriptor C: Posed at least one 
trivial specific problem to solve 

1 
(S8) 

1 
(S9) 

5 (S1-S3, 
S6,S8) 

5 (S2,S4, 
S5-S7) 

Level 1 Descriptor D: Posed at least one 
trivial specific problem to extend 

0 0 
1 

(S3) 
5 (S2,S4, 
S5-S7) 

Level 1 Descriptor E: Posed at least one 
non-trivial specific problem to solve, 
without any intention to generalise 

0 0 
7 (S1-S3,S5, 
S6,S8,S10) 

3 
(S2,S5,S6) 

Level 1 Descriptor F: Posed at least one 
non-trivial specific problem to extend, 
without any intention to generalise 

0 0 0 0 

Level 1: Level 1 Descriptors A-F 
8 

(S2-S8,S10) 
8 (S2-S4, 
S6-S10) 

7 (S1-S3,S5, 
S6,S8,S10) 

5 (S2,S4, 
S5-S7) 

Level 0: Did not search for any pattern or 
pose any specific problem to solve or 
extend 

0 0 0 0 

Average Score for Level (out of 2) 1.2 1.2 1.3 1.5 

Standard Deviation (s.d.) 0.4 0.4 0.5 0.5 

 
 

Table 8.10  Types of Problems and Extensions 
 

Problems and Extensions 
Pretest 1 
(Type A) 

Posttest 1 
(Type A) 

Pretest 2 
(Type B) 

Posttest 2 
(Type B) 

No. of Trivial Problems 
2 

(S8) 
4 

(S5,S9) 
8 

(S1-S3,S6-S8) 
12 

(S1-S7,S9,S10) 

No. of Non-Trivial 
Problems 

2 
(S1,S9) 

3 
(S1,S5) 

9 
(S1-S6,S8-S10) 

10 (S1,S2,S5, 
S6,S8-S10) 

Total No. of Problems 
4 

(S1,S8,S9) 
7 

(S1,S5,S9) 
17 

(S1-S10) 
22 

(S1-S10) 

No. of Trivial Extensions 0 0 
5 

(S3,S7,S9) 
14 

(S1-S7,S10) 

No. of Non-Trivial 
Extensions 

0 0 
3 

(S4,S7,S9) 
5 

(S1,S3,S8-S10) 

Total No. of Extensions 0 0 
8 

(S3,S4,S7,S9) 
19 

(S1-S10) 

Total No. of Problems 
and Extensions 

4 
(S1,S8,S9) 

7 
(S1,S5,S9) 

25 
(S1-S10) 

41 
(S1-S10) 
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Table 8.11  Intended Problem and Intended Extension for Type B Tasks 
 

Intended Problem or 
Extension 

Pretest 2 
(Type B) 

Posttest 2 
(Type B) 

No. of students who posed 
intended problem 

8 
(S1-S6,S9,S10) 

5 
(S1,S2,S8-S10) 

No. of students who posed 
intended extension 

2 
(S4,S9) 

2 
(S1,S9) 

 
 

Table 8.12  Frequencies of Processes for Problem Posing and Extension 
 

Processes 
Pretest 1 
(Type A) 

Posttest 1 
(Type A) 

Pretest 2 
(Type B) 

Posttest 2 
(Type B) 

Referred to Task Statement 
1 

(S1) 
1 

(S5) 
15 

(S1-S10) 
22 

(S1-S10) 

Referred to Current Working 
2 

(S8,S9) 
1 

(S1) 
1 

(S1) 
4 

(S1,S2,S9,S10) 

Referred to Previous Result 0 
4 

(S5,S9) 
9 (S1,S3,S4, 

S7-S9) 
13 (S1,S2-S5, 

S8-S10) 

Referred to Given Checklist 0 
3 

(S5) 
0 

10 
(S2,S4,S6,S10) 

Analysed Feasibility of Goal 
(MG) 

0 0 0 
1 

(S10) 

Total Frequency 
3 

(S1,S8,S9) 
9 

(S1,S5,S9) 
25 

(S1-S10) 
50 

(S1-S10) 

 
 

(a) Comparison between Pretest Task 1 and Posttest Task 1 (Type A) 

 

Table 8.9 shows that only 2 students were at Level 2 for both Pretest Task 1 and 

Posttest Task 1, and the remaining 8 students were at Level 1 for both tasks. No 

student was at Level 0. This means that the students had performed equally well in 

problem posing for both tasks. Although the students could search for any pattern 

(general problem) without posing specific problems, Table 8.10 shows that they had 

posed almost twice the number of specific problems for Posttest Task 1 compared 

with Pretest Task 1. Table 8.12 shows that the frequencies of referring to the task 

statement and the current working to think of specific problems to pose were about 

the same for both Pretest Task 1 and Posttest Task 1. But the students had also 

referred to the given checklist (see Appendix H) and the previous result to think of 
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problems for Posttest Task 1, which did not happen in Pretest Task 1. The former was 

because the students were not given any checklist during the pretest since they would 

not have understood most of the investigation processes on the checklist. The latter 

suggests that a few students had learnt how to use previous results in Posttest Task 1 

as a springboard to pose more specific problems to solve. None of the students 

analysed the feasibility of their goal (MG) for either Type A task. 

 

(b) Comparison between Pretest Task 2 and Posttest Task 2 (Type B) 

 

Table 8.9 shows that only 3 students posed at least one non-trivial specific problem to 

extend with the intention to generalise (Level 2) for Pretest Task 2, but 5 students 

were at that level for Posttest Task 2. This indicates that slightly more students were 

able to pose non-trivial extensions with the intention to generalise for the posttest task 

compared with the pretest task. All the remaining students were at Level 1 for both 

tasks. No student was at Level 0. Thus they had performed slightly better in problem 

posing for Posttest Task 2 than for Pretest Task 2. Table 8.10 shows that the students 

had posed 41 problems and extensions for Posttest Task 2, which were about 1.6 

times the 25 problems and extensions that they had posed for Pretest Task 2. A closer 

analysis shows that they had posed 19 extensions for the posttest task compared with 

only 8 extensions for the pretest task. This suggests that they had learnt how to extend 

the task during the posttest. 

 

It was observed from Table 8.12 that the students referred to the task statement, 

current working and previous results to think of problems to pose for Posttest Task 2 

more often than for Pretest Task 2. In addition, they also referred to the checklist 

during the posttest, but they were not given the checklist for the pretest. Only one 
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student analysed the feasibility of her goal (MG) for Posttest Task 2, but it was not 

effective (see Section 7.3.6b). No student exhibited this metacognitive behaviour for 

Pretest Task 2. In total, they engaged in these problem-posing processes twice as 

often for Posttest Task 2 compared with Pretest Task 2. This suggests that the 

frequent references to such processes might have helped them to pose more problems 

and extensions for the posttest task than for the pretest task. Comparing the 

frequencies of problem-posing processes across the two types of tasks in Table 8.12, 

it was observed that the students engaged in these processes far more often for the two 

Type B tasks than for the two Type A tasks. This was probably because they just 

needed to search for any pattern (general problem) for the Type A tasks and so they 

did not need to look at the task statement, current working or previous results to think 

of a specific problem to pose, unlike the Type B tasks where they had to refer to the 

task statement to think of the first specific problem to pose, and subsequently they 

also had to refer to their current working or previous results to think of other problems 

to pose or to extend. 

 

Another issue to examine was whether the students were able to pose the intended 

problem or extension. Table 8.11 shows that 8 students had posed the intended 

problem of finding the least toasting time for Pretest Task 2, but only 2 students were 

able to pose the intended extension of generalising the least toasting time for toasting 

n slices in a grill that contains exactly 2 slices (no student posed the other intended 

extension where the grill contains exactly m slices). For Posttest Task 2, the same 

table shows that 5 students had posed the intended problem of finding the least 

number of cuts while only 2 students were able to pose the intended extension of 

generalising the least number of cuts for sharing n sausages equally among m people. 
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A closer analysis suggests that the task statement had played an important role in 

determining why more students had posed the intended problem for Pretest Task 2 

compared with Posttest Task 2. For the pretest task, various timings were given for 

toasting one side of a slice of bread, putting a slice in, taking a slice out, and turning a 

slice over. Thus it was natural for the students to find the total toasting time, which 

might lead to finding the least toasting time later. In fact, 5 students (S2,S4,S5,S9, 

S10) went straight to find the least toasting time without posing the problem to find 

the total toasting time. But out of the 8 students who posed the intended problem, only 

2 of them went on to generalise the least toasting time. However, for the posttest task, 

nothing was mentioned about the number of cuts in the task statement. It only stated: 

‘I need to cut 12 identical sausages …’ Thus most of the students found it natural to 

just find how to cut the sausages, with only 5 students finding the number of cuts. In 

fact, all these 5 students also posed the intended problem of finding the least number 

of cuts, out of whom, only 2 of them went on to generalise the least number of cuts. 

Therefore, the ability to pose the intended problem or extension depends on the 

particular task and how the task statement is phrased. 

 

(c) Development of Problem-Posing Processes 

 

The above analysis shows that the students posed very few specific problems for the 

two Type A tasks compared with the two Type B tasks. This was expected because 

they had understood after the familiarisation lesson (see Lesson 1 in Appendix C), 

which was before the pretest, that the goal of a Type A task was to search for any 

pattern (general problem), so they just set out to search for patterns for both Type A 

tasks. In the developing lesson on problem posing (see Lesson 3), there was only 

enough time to focus on teaching them how to pose specific problems for Type B 
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tasks. Although they were also taught briefly how to pose specific problems for Type 

A tasks such as “Is the sum of two happy numbers happy or sad?” for Pretest Task 1, 

the data for Posttest Task 1 suggested that they had not learnt how to do so. They 

were also taught in the familiarisation lesson that they could generalise by extending 

Type B tasks, but the habit to generalise whenever possible was only developed in the 

last lesson on extension (see Lesson 6 in Appendix C). Thus some of the students 

were not sure during the pretest that they could change the given in the task statement. 

For example, the following shows the protocols of one student (S7) during the pretest: 

 

“Last time I investigate total time taken to toast the three slices of bread. Then 

now I should ... change ... Can I change the question? Can I change to like 5 

slices?” [S7; Pretest Task 2] 

 

Another student (S3) changed the number of slices to be toasted without any intention 

to generalise at all. He first found the total toasting time for 6 slices and then for 12 

slices. But he stopped there and struggled to think of another problem to investigate. 

This suggests that some of the students were either unsure during the pretest that they 

could change the given to generalise, or they did not fully understand that the purpose 

of changing the given was to generalise. However, Table 8.10 shows that all the 

students knew that they could change the given for Posttest Task 2 because all of 

them extended the task, but quite a number of them (S1-S6,S10) still changed the 

given without understanding that the purpose was to generalise. Therefore, there is a 

need for teachers to emphasise to their students that the purpose of changing the given 

in Type B tasks is to generalise. 

 

Table 8.10 shows that metacognition was very much lacking in the problem-posing 

and extension stages. There was only one instance of analysing the feasibility of the 
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goal (MG) during the extension of Posttest Task 2, but it was not effective. Despite 

teaching the students during Lesson 3 of the teaching experiment (see Appendix C) 

the need to analyse their problems or extensions to see whether they were worth 

pursuing or whether they were too trivial or too difficult to pursue, it seems that this 

process was not easy for them to pick up. However, this is an important metacognitive 

process. For example, one student (S1) pursued a challenging problem of finding a 

formula for the general term of a Kaprekar sequence for Posttest Task 1 without 

analysing whether the problem was feasible, and he failed to solve it; while 2 students 

(S2,S4) tried to find a formula for the amount of sausages each person will receive for 

Posttest Task 2, without realising that it was a very trivial problem as the result was 

clearly true. This suggests that teachers should focus on this metacognitive process to 

teach their students the need to analyse whether a problem is worth pursuing, or else 

the students might end up on a wild goose chase. 

 

8.3.3 Specialising and Using Other Heuristics (Stage 3) 

 

Table 8.13 shows the proficiency level of specialising and using other heuristics (S/H) 

attained by the 10 students for the four tasks, Table 8.14 shows the frequencies of 

metacognitive processes exhibited in this stage for the four tasks, while Table 8.15 

shows the number of examples that the 10 students specialised systematically, 

purposefully and randomly for the two Type A tasks. The information for the two 

pretest tasks was extracted from Tables M1.3, M2.3a and M2.3b in Appendix M 

while the information for the two posttest tasks was obtained from Tables 7.4, 7.16 

and 7.21 in the previous chapter. 
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Table 8.13  Proficiency Level of Specialising and Using Other Heuristics 
 

Descriptors 
Pretest 1 
(Type A) 

Posttest 1 
(Type A) 

Pretest 2 
(Type B) 

Posttest 2 
(Type B) 

Level 2 Descriptor A: Chose at least one 
set of systematic examples  

0 
1 

(S9) 
0 0 

Level 2 Descriptor B: Used other 
heuristics effectively 

0 0 
1 

(S4) 
3 

(S1,S4,S9) 

Level 2: Level 2 Descriptors A and B 0 
1 

(S9) 
1 

(S4) 
3 

(S1,S4,S9) 

Level 1 Descriptor A: Chose at least one 
example purposefully 

5 
(S3-S6,S10) 

6 
(S2-S7) 

0 0 

Level 1 Descriptor B: Used other 
heuristics quite effectively 

0 0 
3 

(S5,S8,S10) 
2 

(S8,S10) 

Level 1: Level 1 Descriptors A and B 
5 

(S3-S6,S10) 
6 

(S2-S7) 
3 

(S5,S8,S10) 
2 

(S8,S10) 

Level 0 Descriptor A: Chose examples 
randomly 

5 (S1,S2, 
S7-S9) 

3 
(S1,S8,S10)

0 0 

Level 0 Descriptor B: Did not use other 
heuristics effectively 

0 0 
6 (S1-S3, 
S6,S7,S9) 

5 (S2,S3, 
S5-S7) 

Level 0: Level 1 Descriptors A and B 
5 (S1,S2, 
S7-S9) 

3 
(S1,S8,S10)

6 (S1-S3, 
S6,S7,S9) 

5 (S2,S3, 
S5-S7) 

Average Score for Level (out of 2) 0.5 0.8 0.5 0.8 

Standard Deviation (s.d.) 0.5 0.6 0.7 0.9 

 
 

Table 8.14  Frequencies of Metacognitive Processes for Specialising and Using 
Other Heuristics 

 

Processes 
Pretest 1 
(Type A) 

Posttest 1 
(Type A) 

Pretest 2 
(Type B) 

Posttest 2 
(Type B) 

Analysed Feasibility of 
Plan (MF) 

0 
3 

(S2,S5) 
4 

(S4,S5,S9) 
3 

(S1,S7) 

Metacognitive Awareness 
(MA) 

7 
(S2,S5,S10) 

2 
(S2,S4) 

2 
(S4,S9) 

1 
(S7) 

Total Frequency 
7 

(S2,S5,S10) 
5 

(S2,S4,S5) 
6 

(S4,S5,S9) 
4 

(S1,S7) 

 
 

Table 8.15  Frequencies of Examples for Specialising 
 

Processes 
Pretest 1 
(Type A) 

Posttest 1 
(Type A) 

No. of Systematic Examples 0 
2 [or 4%] 

(S9) 

No. of Purposeful Examples 
15 [or 19%] 
(S3-S6,S10) 

16 [or 36%] 
(S2-S7,S9) 

No. of Random Examples 
66 [or 81%] 

(S1-S10) 
27 [or 60%] 

(S1-S10) 

Total No. of Examples 81 45 
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(a) Comparison between Pretest Task 1 and Posttest Task 1 (Type A) 

 

Table 8.13 shows that the main process for the two Type A tasks at this stage was 

specialising. For Pretest Task 1, no student specialised systematically, 5 students 

specialised purposefully, and 5 students specialised randomly. For Posttest Task 1, 

one student specialised systematically, 6 students specialised purposefully, and 3 

students specialised randomly. Thus they had performed slightly better in specialising 

for Posttest Task 1 than for Pretest Task 1. Table 8.15 shows that the students 

generated a lot more examples for Pretest Task 1 than for Posttest Task 1. This was 

partly because 7 students (S1-S3,S6,S8-S10) misinterpreted the pretest task by not 

repeating the process for the new number, so they tried separate examples with 

different starting numbers. But based on percentages, they generated more purposeful 

(36%) and systematic examples (4%) for the posttest task than for the pretest task. 

 

It was observed from Table 8.14 that the students did not analyse the feasibility of 

their plan to specialise (MF) for Pretest Task 1, but 2 of them (S2,S5) engaged in this 

metacognitive process for a total of 3 times for Posttest Task 1. However, MF was not 

effective in helping the students to specialise more systematically (see data analysis in 

Section 7.2.3). On the other hand, Table 8.14 shows that there were more instances of 

metacognitive awareness (MA) being observed for Pretest Task 1 than for Posttest 

Task 1. This was probably because of the nature of the underlying patterns for the 

task. For the pretest task, the sequences merge very frequently. The following shows 

some sequences of sad numbers (the reader should refer to the task analysis in 

Appendix E to be familiar with these numbers). For example, a student who started 

with 11 for one sequence and 15 for another sequence will end up with the same 
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number 16 at some point. In fact, there are many sequences that will also reach the 

number 16, e.g. a sequence with starting number 33, 56, 62 or 154, just to name a few. 

 

              15    26        65    18    33 

         

              62    40        61    56 

            

     11    2    4    16    37    58 

                                      

    20   42   145   89 

      

             154 

 
 

But for Posttest Task 1, two Kaprekar sequences that start with two different self 

numbers will not merge when the numbers are less than 100 (see Appendix E). Since 

it was rarer for the sequences in Posttest Task 1 to merge than for the sequences in 

Pretest Task 1, there would be fewer opportunities for the students to be aware that a 

term in a particular sequence was equal to a term in another sequence for the posttest 

task, even if they might have possessed the ability. Metacognitive awareness is 

important because some students did not even realise when a sequence they were 

investigating had already merged with another sequence they had investigated earlier, 

so they wasted precious time by finding more terms for the sequence that they were 

investigating. For example, one student (S4) obtained the number 89 in the sequence 

in his Example 5 for Pretest Task 1, but he was not aware that 89 had also appeared in 

the sequence in his Example 2, so he wasted precious time by finding more terms for 

the sequence in his Example 5. However, for Posttest Task 1, the same student 

obtained the number 119 in the sequence in his Example 2, but he realised that 119 

had also appeared in the sequence in his Example 1, so he did not waste time finding 

more terms for the sequence in his Example 2 (see Fig. 7.1 in Section 7.2.3). 
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(b) Comparison between Pretest Task 2 and Posttest Task 2 (Type B) 

 

Table 8.13 shows that the main process for the two Type B tasks in this stage was 

using other heuristics. For Pretest Task 2, only one student used other heuristics 

‘effectively’ to discover Toasting Method B that gives the least toasting time (see task 

analysis in Appendix E) while 3 students used other heuristics ‘quite effectively’, i.e. 

they struggled but finally discovered Method B. The remaining 6 students used other 

heuristics ‘ineffectively’ as they just used the usual Toasting Method A without 

discovering Method B. For Posttest Task 2, 3 students used other heuristics 

‘effectively’ to discover Cutting Method B that gives the least number of cuts, while 2 

students used other heuristics ‘quite effectively’, i.e. they struggled but finally found 

Method B (see data analysis in Section 7.3.3). The remaining 5 students used other 

heuristics ‘ineffectively’ as they just used the usual Cutting Method A without 

discovering Method B. Thus the students performed slightly better in using other 

heuristics for Posttest Task 2 than for Pretest Task 2. Table 8.14 shows that 3 students 

(S4,S5,S9) analysed the feasibility of their plan to use other heuristics (MF) on 4 

occasions for Pretest Task 2, while 2 students (S1,S7) engaged in this metacognitive 

process on 3 occasions for Posttest Task 2. For the pretest task, the 3 students 

analysed the feasibility of pursuing different possibilities after toasting one side of the 

first two slices of bread. The following shows the protocols of one of the students. 

 

“After these 30 seconds … I will … what should I do ah? Should I take out both? 

Or just turn one and take out another one?” [S4; Pretest Task 2] 

 

In the end, the student (S4) decided to take out one slice but turn over the other slice. 

In this manner, he discovered Toasting Method B that gives the least toasting time. 

But the second student (S5), despite analysing the feasibility of pursuing different 
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possibilities using the same reasoning, did not discover Method B until towards the 

end of the test. The third student (S9) analysed different toasting methods on two 

occasions, such as toasting one slice first before toasting the other two slices, and 

toasting one slice at a time, but his metacognitive behaviours were not effective in 

helping him discover Method B. For Posttest Task 2, the first student (S1) analysed 

the feasibility of using Cutting Method A for his extension, which helped him to 

understand the idea behind the cutting method so that he could apply it successfully to 

his extension. But analysing the feasibility of using multiples or factors to think of a 

cutting method on two occasions was not effective for the other student (S7) since the 

cutting method does not depend on multiples or factors per se26 (see data analysis in 

Sections 7.3.3 and 7.3.7b). It was further observed from Table 8.14 that 2 students 

(S4,S9) engaged in metacognitive awareness (MA) on 2 occasions for Pretest Task 2, 

while one student (S7) exhibited MA on one occasion for Posttest Task 2. For the 

pretest task, the first student (S4) realised that the total time for toasting the 3 slices of 

bread using Toasting Method A was too big as shown in his protocols: 

 

“And this number is surely very big [double underline: 159 s] and there must be a 

way which is even faster. So I will now think of a way …” [S4; Pretest Task 2] 

 

It is puzzling why the student would think that 159 seconds was too long a timing, but 

this metacognitive awareness had resulted in his search for a shorter method (i.e. 

Toasting Method B), which he found soon afterwards. For the second student (S9), he 

was extending the task to toast 4 slices of bread. He was aware immediately that he 

could use the total toasting time for toasting 2 slices of bread in Toasting Method A 

                                                 
26  Although students can use the LCM to think of Cutting Method A, and the general formula for the 

least number of cuts depends on the HCF, the student (S7) did not find the LCM or the HCF: she 
just used multiples and factors. 
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(for which he finished toasting the first 2 slices before toasting the third slice), and 

multiply it by 2 to give the total toasting time for the 4 slices. This might seem 

obvious to the reader, but there were 3 students (S3,S4,S7) who actually wasted 

precious time by going through the steps of toasting the slices starting from 2 slices 

all over again. Thus metacognitive awareness had resulted in S9 saving precious time. 

For Posttest Task 2, the student (S7) was aware that she had tried a cutting method 

before, thus saving her precious time from trying the same method again (see data 

analysis in Section 7.3.3). 

 

(c) Development of the Processes of Specialising and Using Other Heuristics 

 

The above analysis shows that the students had improved slightly in the process of 

specialising for Posttest Task 1 compared with Pretest Task 1. However, systematic 

specialising was still lacking in the posttest task. This is indeed surprising because the 

students were taught to specialise systematically to search for patterns during Lesson 

4 of the teaching experiment (see Appendix C) and they usually specialised 

systematically during the other lessons as well. So it appears that the students were 

confused by the instruction in the task statement of Posttest Task 1: “Choose any 

number.” They seem to take this literally as choosing a number randomly. Thus most 

of the students did not specialise systematically for the posttest task despite being 

taught to do so during the teaching experiment. As such, care must be taken to teach 

students to specialise systematically to search for patterns even in such situations. 

 

For Type B tasks, the students had improved slightly in using other heuristics, such as 

reasoning, more effectively to solve the problems posed. These heuristics were 

usually task specific, and they were developed by letting students try various Type B 
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tasks during the teaching experiment, rather than taught specifically, although 

effective reasoning was part of the focus for Lesson 4. Both the pretest and the 

posttest data show that there is a lot of scope for developing in the students effective 

reasoning skills because the average score was rather low. 

 

We will now examine some examples of ineffective reasoning for both Type B tasks. 

For Pretest Task 2, one student (S3) used a toasting method similar to Toasting 

Method A to toast the 3 slices of bread. Then he wanted to find out whether the total 

time taken to toast one slice was equal to the total toasting time for the 3 slices 

divided by 3. Although the answer was clearly negative (since Method A involves 

toasting the first 2 slices together before toasting the third slice), he actually went 

through the steps of toasting one slice on both sides in order to find the total toasting 

time. When he realised that the answer was negative, he wanted to know what had 

caused the difference. So he went through the steps of toasting the first 2 slices all 

over again, before he was able to account for the difference. Thus he lacked the ability 

to reason effectively because he took so long to understand such a simple fact. 

 

Another student (S9) wanted to find the fastest way to toast the 3 slices of bread for 

Pretest Task 2. He started with Toasting Method A. Then he decided to toast one slice 

at a time (Toasting Method C). Although it was evident that Method C would take a 

longer time than Method A (since Method A involves toasting the first 2 slices 

together), he did not realise that. Instead, he went through the steps of toasting one 

slice at a time. When he finally calculated the total toasting time, he was shocked: 

 

“What?! So we toast one bread by one bread is a bad idea.” [S9; Pretest Task 2] 
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Then he tried what he called an ‘ingenious way of cooking [sic] the bread’: 

 

“You know we can turn the bread outside, right, so that it doesn’t affect us when 

we are turning the bread inside … like, cost time. So this is the creatively, make, 

making, so I’m creatively making use of time.” [S9; Pretest Task 2] 

 

In other words, after toasting the first two slices on one side, he decided to take out 

the two slices and then put them back in the grill because he believed that this action 

would not involve turning the slices, so he would save the 3 seconds to turn a slice in 

the grill. But this method will be much longer since it takes 5 seconds to take out a 

slice and another 5 seconds to put the slice back into the grill. However, the student 

did not realise this, so he went through the steps of toasting the 3 slices using his 

‘ingenious way’. When he finally calculated the total toasting time, he was shocked: 

 

“Oh my god! It takes more time!” [S9; Pretest Task 2] 

 

But this was the same student who later discovered the complicated general formula 

for the least number of cuts for Posttest Task 2 as described in Section 6.3(a). It is 

indeed puzzling that he was unable to observe this simple fact in the pretest but he 

was able to reason so effectively in the posttest. 

 

For Posttest Task 2, most of the students were also unable to reason effectively, 

although there was a slight improvement. Although 7 students could reason that each 

person will get 2/3 of a sausage for Posttest Task 2, only 3 of them were able to see 

straightaway that each sausage could be cut at the 2/3-mark (Cutting Method B) 

instead of dividing each sausage into 3 equal parts (Cutting Method A), while another 

2 students had to struggle to discover Method B (see data analysis in Section 7.3.3). 
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What was surprising was that 3 students (S2,S5,S7) even attempted to cut each 

sausage into 18 equal parts (Cutting Method C) in order to share the 12 sausages 

equally among the 18 people, just like 3 students (S1,S6,S9) who attempted Toasting 

Method C (toast one slice at a time) for Pretest Task 2 when two slices could be 

toasted together. Thus there is a lot of room for improvement in teaching the students 

how to reason effectively. 

 

One possible reason that the students toasted the bread or cut the sausages any old 

how was that they did not pause to analyse the feasibility of their plan (MF). The 

above analysis shows that very few students actually engaged in this metacognitive 

process, which was helpful only in very few cases. During Lesson 4 of the teaching 

experiment (see Appendix C), the students were taught the need to analyse their plan 

to see whether it was worth pursuing. But just like the analysis of the feasibility of the 

goal (MG) in the problem-posing stage and the extension stage, the analysis of the 

feasibility of the plan in the stage of specialising and using other heuristics was also 

not easy for the students to pick up. Therefore, there is a need for teachers to focus 

more on developing this important metacognitive process. 

 

Metacognitive awareness is a newly discovered process during the course of the 

present research. Although it was already exhibited in the pretest, the limited time 

window between the pretest and the developing lessons did not allow me to transcribe 

and code the 20 pretest transcripts in time to discover this process. As such, I did not 

teach or develop this important process during the teaching experiment, as explained 

earlier in this section. Moving forward, there is a need for further research to study 

how this process could be developed in the students. 
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8.3.4 Conjecturing (Stage 4) 

 

Table 8.16 shows the proficiency level of conjecturing (C) attained by the 10 students 

for the four tasks, Table 8.17 shows the frequencies of conjecturing outcomes, while 

Table 8.18 shows the different processes that the students used to search for patterns. 

The information for the two pretest tasks was extracted from Tables M1.4a, M1.4b, 

M2.4a and M2.4b in Appendix M while the information for the two posttest tasks was 

obtained from Tables 7.8, 7.9, 7.17 and 7.23 in the previous chapter. 

 

Table 8.16  Proficiency Level of Conjecturing 
 

Descriptors 
Pretest 1 
(Type A) 

Posttest 1 
(Type A) 

Pretest 2 
(Type B) 

Posttest 2 
(Type B) 

Level 2: Formulated at least one correct 
non-trivial conjecture 

1 
(S5) 

3 
(S5,S9,S10) 

1 
(S4) 

5 (S1,S3, 
S8-S10) 

Level 1 Descriptor A: Observed at least 
one correct non-trivial pattern 

3 
(S2,S4,S10) 

2 
(S3,S8) 

0 0 

Level 1 Descriptor B: Formulated at least 
one correct trivial conjecture 

2 
(S8,S9) 

0 
1 

(S9) 
2 

(S2,S4) 

Level 1: Level 1 Descriptors A and B 
5 (S2,S4, 
S8-S10) 

2 
(S3,S8) 

1 
(S9) 

2 
(S2,S4) 

Level 0 Descriptor A: Did not observe 
any pattern 

0 0 0 0 

Level 0 Descriptor B: Did not formulate 
any conjecture 

3 
(S3,S6,S7) 

1 
(S7) 

7 (S2,S5-
S8,S10) 

3 
(S5-S7) 

Level 0 Descriptor C: Observed incorrect 
patterns 

4 (S1,S3, 
S6,S7) 

5 (S1,S2, 
S4,S6,S7) 

0 0 

Level 0 Descriptor D: Formulated 
incorrect conjectures 

1 
(S1) 

3 
(S1,S2,S4) 

2 
(S1,S3) 

0 

Level 0 Descriptor E: Observed correct 
trivial patterns 

1 
(S3) 

0 0 0 

Level 0: Level 1 Descriptors A-E 
4 (S1,S3, 
S6,S7) 

5 (S1,S2, 
S4,S6,S7) 

8 (S1-S3, 
S5-S8,S10) 

3 
(S5-S7) 

Average Score for Level (out of 2) 0.7 0.8 0.3 1.2 

Standard Deviation (s.d.) 0.6 0.9 0.6 0.9 
 

* It was possible for a student to fulfil more than one descriptor in the level that he or she was in, e.g. 4 
students were at Level 0 for Pretest Task 1, but 3 of them (S3,S6,S7) satisfied more than one 
descriptor in that level. However, if a student was at a higher level but also fulfilled some descriptors 
at a lower level, he or she would not be included at the lower level to avoid confusion, e.g. one other 
student (S5) also satisfied Level 1 Descriptor A for Pretest Task 1, but she was not included at that 
level since she was already at Level 2. 
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Table 8.17  Frequencies of Outcomes for Conjecturing 
 

Outcomes 
Pretest 1 
(Type A) 

Posttest 1 
(Type A) 

Pretest 2 
(Type B) 

Posttest 2 
(Type B) 

No. of Non-Trivial 
Conjectures 

2* 
(S2,S5) 

5 
(S2,S5,S9,S10) 

9 
(S1,S3,S4,S9) 

9* 
(S1-S3,S8-S10) 

No. of Trivial Conjectures 
7 

(S1,S8,S9) 
7* 

(S1,S3-S6,S9) 
2* 

(S4,S9) 
3* 

(S2,S4,S8) 

No. of Correct Conjectures 
4 

(S5,S8,S9) 
4 

(S5,S9,S10) 
4 

(S4,S9) 
9 

(S1-S4,S8-S10) 

No. of Incorrect 
Conjectures 

5* 
(S1,S2,S9) 

8* 
(S1-S6,S9,S10) 

7* 
(S1,S3,S9) 

3* 
(S2,S8,S9) 

Total No. of Conjectures 
9 

(S1,S2,S5,S8,S9) 
12 

(S1-S6,S9,S10) 
11 

(S1,S3,S4,S9) 
12 

(S1-S4,S8-S10) 
 

* These figures are the actual ones for the outcomes. They are different from those in Table 8.16 as the 
figures in Table 8.16 are only for the students in that level. For example, S2 had formulated an 
incorrect non-trivial conjecture for Pretest Task 1, so it was included in this table, but this Level 0 
outcome was excluded from Table 8.16 to avoid confusion since the student was already in Level 1. 

 
 

Table 8.18  Processes for Searching for Patterns 
 

Processes 
Pretest 1 
(Type A) 

Posttest 1 
(Type A) 

No. of students who searched for patterns in the terms of 
the sequence 

5 
(S2,S4,S5,S7,S10) 

3 
(S2,S5,S8) 

No. of students who searched for patterns in the 
differences between consecutive terms of the sequence 

5 
(S2,S3,S6,S9,S10) 

10 
(S1-S10) 

No. of students who searched for other patterns within 
the sequence 

3 
(S1,S8,S10) 

4 
(S5,S7,S8,S10) 

No. of students who searched for patterns across 
sequences 

0 0 

No. of students who exhibited metacognitive processes 
(MF or MA) 

0 0 

 
 

(a) Comparison between Pretest Task 1 and Posttest Task 1 (Type A) 

 

Table 8.16 shows that 3 students were at Level 2 for formulating at least one correct 

non-trivial conjecture for Posttest Task 1, but only one student was at the same level 

for Pretest Task 1. However, 5 students were at Level 1 for the pretest task compared 

with only 2 students for the posttest task. Therefore, on average, there was negligible 

difference in their performance between the pretest (score = 0.7) and the posttest 

(score = 0.8). On the other hand, Table 8.17 shows that more students were able to 
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formulate conjectures for the posttest task than for the pretest task: 8 students had 

formulated a total of 12 conjectures for Posttest Task 1, out of which 5 were non-

trivial, while only 5 students had formulated a total of 9 conjectures for Pretest Task 

1, out of which only 2 were non-trivial. Although the students had formulated more 

non-trivial conjectures for Posttest Task 1 than Pretest Task 1, the number of correct 

conjectures was the same for both tasks, which accounted for the negligible difference 

between the scores for the two tests. 

 

For Pretest Task 1, sequences of sad numbers will end in a loop while sequences of 

happy numbers will terminate at the number 1 (the reader should refer to Appendix E 

to be familiar with the different patterns for the two tasks). Thus 5 students were on 

the right track when they searched for patterns in the terms of the sequence, as shown 

in Table 8.18. However, one of them (S7) misinterpreted the task and did not recover. 

Another one (S2) observed only sad numbers as he did not specialise systematically, 

and he spent the rest of his time trying to find out why it worked this way but failed. 

Two other students (S4,S10) treated the happy numbers as exceptions instead of 

another pattern in its own right: it seems that they were unable to accept that a 

sequence can terminate, or that there is more than one type of patterns. Only one 

student (S5) was able to formulate the non-trivial conjecture that there are only these 

two types of sequences. For Posttest Task 1, 3 students observed the Type 1a 

‘multiples’ pattern, but only one of them (S5) formulated it as a non-trivial conjecture. 

The other 2 students (S3,S8) failed to accept this as the underlying pattern because 

this was not one of the usual patterns that they had learnt in school (see data analysis 

in Section 7.2.4). Although all the 10 students tried to search for patterns in the 

differences between consecutive terms, they were unable to observe the much more 

complicated ‘digital roots’ pattern, except for one student (S10). 
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(b) Comparison between Pretest Task 2 and Posttest Task 2 (Type B) 

 

Table 8.16 shows that 5 students were at Level 2 for formulating at least one correct 

non-trivial conjecture for Posttest Task 2, but only one student was at the same level 

for Pretest Task 2. Moreover, 2 students were at Level 1 for Posttest Task 2 compared 

with only one student for Pretest Task 2. Thus only 3 students were at Level 0 for the 

posttest task while 8 students were at the same level for the pretest task. Therefore, 

they had performed much better in conjecturing for Posttest Task 2 than for Pretest 

Task 2. But Table 8.17 shows that the number of conjectures formulated for both 

tasks was about the same, although more students were able to formulate conjectures 

for the posttest task than for the pretest task: 8 students had formulated a total of 12 

conjectures for Posttest Task 1 while only 4 students had formulated a total of 11 

conjectures for Pretest Task 1. The number of non-trivial conjectures formulated was 

the same for both tasks, but there were far more correct conjectures for Posttest Task 

1 than Pretest Task 1, which accounted for the much higher posttest score. 

 

For Pretest Task 2, most of the students (except S7 and S8) posed the problem of 

finding the least toasting time for the original task (see Table M2.2a in Appendix M), 

but only 4 of them discovered Toasting Method B that gives the least toasting time 

(see Table M2.3a). This means that the other 6 students, who used another toasting 

method, would be unable to formulate a correct conjecture about the least toasting 

time. However, out of the 4 students who used Method B, one student (S8) did not 

pose the problem of finding the least toasting time, and 2 students (S5,S10) did not 

finish solving the problem. Thus only the last student (S4) obtained a correct non-

trivial conjecture about the least toasting time, so he was at Level 2. For the extension, 

4 students extended the task (see Table M2.2c), but only one of them (the same 
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student S4) obtained a correct non-trivial conjecture using Method B to generalise the 

least toasting time (see Table M2.4b). One other student (S9) posed a correct trivial 

conjecture, so he was at Level 1. Therefore, so few students (only 2 of them) were at 

Level 1 or 2 because (i) most students were unable to discover Toasting Method B to 

formulate a correct conjecture, and (ii) most students did not extend the task, so there 

were fewer opportunities to formulate other conjectures as there was essentially only 

one conjecture for the original task. 

 

For Posttest Task 2, only 5 students discovered Cutting Method B that gives the least 

number of cuts, but one of them (S4) did not pose the problem of finding the least 

number of cuts. In the end, only 4 students (S1,S8-S10) obtained a correct non-trivial 

conjecture about the least number of cuts (see data analysis in Sections 7.3.2 to 7.3.4), 

so they were at Level 2. For the extension, all the students extended the task in 

different ways, not necessarily to generalise the least number of cuts. Thus there were 

more opportunities for one more student (S3) to formulate a correct non-trivial 

conjecture (Level 2) and 2 more students (S2,S4) to formulate a correct trivial 

conjecture each (Level 1) for the extension (see data analysis in Section 7.3.8). 

Therefore, the majority of the students (i.e. 7 of them) were at Level 1 or 2 because (i) 

slightly more students were able to discover Method B to formulate a correct 

conjecture for the posttest task than the pretest task, and (ii) all the students extended 

the task, thus there were more opportunities to formulate other conjectures. 

 

(c) Development of Conjecturing Processes 

 

The above analysis shows that there was not much difference in the conjecturing 

process among the students between the pretest and the posttest for the two Type A 
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tasks, but there was a big improvement for the two Type B tasks. During Lesson 4 of 

the teaching experiment (see Appendix C), the students were taught to specialise 

systematically for Type A tasks to search for patterns. However, the students did not 

specialise systematically for Posttest Task 1, which had affected their ability to 

observe the underlying patterns (conjecturing). Moreover, the tasks used in that lesson 

were not on sequences although one of the two tasks still involved number patterns: 

palindromic numbers (see Appendix D). During Lesson 2 when the students were 

given more time to attempt Pretest Task 1 after some discussion on what they could 

have investigated during the test, the students were guided to search for patterns 

within the sequence and across sequences, but the focus during that lesson was on 

understanding the task. In fact, all the other tasks used in the teaching experiment did 

not involve sequences. Therefore, there is room for improvement in teaching students 

to search for patterns within and across sequences, especially in identifying unfamiliar 

patterns which they have not learnt before. 

 

For the two Type B tasks, the factors that affect whether the students will formulate a 

correct conjecture include (i) the use of effective reasoning to find the optimal 

toasting or cutting method, and (ii) the habit to extend the task to generalise, which 

will provide the students further opportunities to formulate other conjectures. As 

discussed in Section 8.3.3, the students had learnt to be slightly more effective in 

using reasoning for the posttest task than the pretest task, and as discussed in Section 

8.3.2, all the students had developed the habit to extend the posttest task compared 

with very few students who extended the pretest task. Therefore, the students 

performed a lot better in the conjecturing stage because of these processes in other 

stages. 
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Despite teaching the students in Lesson 4 of the teaching experiment the need to 

analyse the feasibility of their plan to conjecture (MF) for both types of tasks, the 

students did not exhibit this metacognitive behaviour during the posttest (nor did they 

exhibit this process on their own during the pretest). If they had, it might have helped 

them, for example, to realise that they could search for patterns across sequences for 

Posttest Task 1, which might lead them to discover the self numbers (see task analysis 

in Appendix E); or to reason more effectively so as to discover the optimal cutting 

method in order to formulate a correct conjecture about the least number of cuts for 

Posttest Task 2. Therefore, there is a need for teachers to focus on developing this 

metacognitive process when teaching their students to do investigation. 

 

8.3.5 Justifying and Generalising (Stages 5 and 6) 

 

Table 8.19 shows the proficiency level of justifying and generalising (J/G) attained by 

the 10 students for the four tasks, Table 8.20 shows the frequencies of justifying and 

generalising outcomes, while Table 8.21 shows the frequencies of justifying processes 

that might have helped the students to prove or refute their conjectures. The 

information for the two pretest tasks was extracted from Tables M1.5, M2.5a and 

M2.5b in Appendix M while the information for the two posttest tasks was obtained 

from Tables 7.10, 7.18 and 7.24 in the previous chapter. 
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Table 8.19  Proficiency Level of Justifying and Generalising 
 

Descriptors 
Pretest 1 
(Type A) 

Posttest 1 
(Type A) 

Pretest 2 
(Type B) 

Posttest 2 
(Type B) 

Level 2: Correctly proved at least one 
non-trivial conjecture 

0 
2 

(S5,S9) 
0 

2 
(S1,S10) 

Level 1 Descriptor A: Correctly proved 
at least one trivial conjecture that will 
lead to generalisation 

0 0 
1 

(S4) 
0 

Level 1 Descriptor B: Refuted at least 
one incorrect non-trivial conjecture 

0 
1 

(S2) 
0 0 

Level 1 Descriptor C: Tried but failed to 
prove at least one correct non-trivial 
conjecture  

0 0 0 
2 

(S8,S9) 

Level 1: Level 1 Descriptors A-D 0 
1 

(S2) 
1 

(S4) 
2 

(S8,S9) 

Level 0 Descriptor A: Did not formulate 
any conjecture to justify 

5 (S3,S4, 
S6,S7,S10) 

2 
(S7,S8) 

8 (S1-S3, 
S5-S8,S10) 

3 
(S5-S7) 

Level 0 Descriptor B: Did not prove any 
conjecture due to lack of time 

0 
3 

(S3,S4,S10) 
0 0 

Level 0 Descriptor C: Tried but failed to 
justify any conjecture 

2 
(S1,S2) 

0 0 0 

Level 0 Descriptor D: Correctly proved 
trivial conjectures that will not lead to 
any generalisation 

0 0 0 0 

Level 0 Descriptor E: Refuted incorrect 
trivial conjectures 

1 
(S9) 

0 0 0 

Level 0 Descriptor F: Wrongly accepted 
all conjectures as true without testing 

1 
(S8) 

1 
(S1,S6) 

3 
(S1,S3,S9) 

1 
(S2) 

Level 0 Descriptor G: Wrongly accepted 
all conjectures as true based on naïve 
testing 

4 (S1,S5, 
S8,S9) 

0 0 
3 

(S2-S4) 

Level 0: Level 0 Descriptors A-G 
10 

(S1-S10) 
7 (S1,S3,S4, 
S6-S8,S10) 

9 (S1-S3, 
S5-S10) 

6 
(S2-S7) 

Average Score for Level (out of 2) 0 0.5 0.1 0.6 

Standard Deviation (s.d.) 0 0.8 0.3 0.8 
 

* It was possible for a student to fulfil more than one descriptor in the level that he or she was in. 
However, if a student was at a higher level but also fulfilled some descriptors at a lower level, he or 
she would not be included at the lower level to avoid confusion. 
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Table 8.20  Frequencies of Outcomes for Justifying and Generalising 
 

Outcomes 
Pretest 1 
(Type A) 

Posttest 1 
(Type A) 

Pretest 2 
(Type B) 

Posttest 2 
(Type B) 

Test ended after formulating 
conjecture 

0 
3 

(S3,S4,S10) 
0 0 

Wrongly accepted conjecture 
as true without testing 

1 
(S8) 

2 
(S1,S6) 

10* 
(S1,S3,S4,S9) 

4* 
(S2,S8,S9) 

Test ended during naïve 
testing 

1 
(S1) 

0 0 0 

Test ended during justifying 
using non-proof argument 

0 
1* 

(S9) 
0 0 

Wrongly accepted conjecture 
as true based on naïve testing 

4 
(S1,S5,S8,S9) 

0 0 
3 

(S2-S4) 

Refuted incorrect conjecture 
based on naïve testing 

1 
(S9) 

3* 
(S2,S5,S9) 

0 0 

Tried non-proof argument but 
failed to justify conjecture 

1 
(S2) 

0 0 
3* 

(S8,S9) 

Tried formal proof but failed 
to justify conjecture 

1 
(S1) 

0 0 0 

Proven conjecture using non-
proof argument, which led to 
generalisation 

0 
3 

(S5,S9) 
1 

(S4) 
0 

Proven conjecture using non-
proof argument, which did not 
lead to any generalisation 

0 0 0 
2 

(S1,S10) 

Proven conjecture using 
formal proof 

0 0 0 0 

Total No. of Conjectures 
9 (S1,S2, 
S5,S8,S9) 

12 
(S1-S6,S9,S10)

11 
(S1,S3,S4,S9) 

12 (S1-S4, 
S8-S10) 

Total No. of Proven 
Conjectures 

0 
3 

(S5,S9) 
1 

(S4) 
2 

(S1,S10) 

Total No. of Generalisation 0 
3 

(S5,S9) 
1 

(S4) 
0 

 

* These figures are the actual ones for the outcomes. They are different from those in Table 8.18 as the 
figures in Table 8.18 are only for the students in that level. For example, S5 and S9 also refuted 
incorrect conjectures for Posttest Task 1, so they were included in this table, but they were excluded 
from Table 8.18 for this Level 1 outcome to avoid confusion since they were already in Level 2. 

 
 

Table 8.21  Frequencies of Processes for Justifying 
 

Processes 
Pretest 1 
(Type A) 

Posttest 1 
(Type A) 

Pretest 2 
(Type B) 

Posttest 2 
(Type B) 

Naïve Testing 
6 

(S1,S5,S8,S9) 
4 

(S2,S5,S9) 
0 

5 
(S2-S4,S8,S9) 

Non-proof Argument 
1 

(S2) 
4 

(S5,S9) 
1 

(S4) 
5 

(S1,S8-S10) 

Formal Proof 1 (S1) 1 (S5) 0 0 

Analysed Feasibility of Plan (MF) 0 0 0 1 (S9) 

Metacognitive Awareness (MA) 0 0 0 0 
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(a) Comparison between Pretest Task 1 and Posttest Task 1 (Type A) 

 

Table 8.19 shows that all the 10 students were at Level 0 for Pretest Task 1 but 7 

students were at the same level for Posttest Task 1. One of the remaining 3 students 

was at Level 1 while the other 2 students were at Level 2 for the posttest task. Thus 

they had performed better in justifying for Posttest Task 1 than for Pretest Task 1. 

Table 8.20 shows that more students had formulated more conjectures to justify for 

the posttest task than for the pretest task: 8 students had formulated a total of 12 

conjectures for Posttest Task 1 compared with only 5 students who had formulated a 

total of 9 conjectures for Pretest Task 1. But this cannot be the main reason to account 

for the difference in performance in justifying since the number of correct conjectures 

formulated for each of the two tasks to be proven was the same at 4 (see Table 8.17). 

In other words, it depends on what the students did with their correct conjectures. On 

closer analysis of Pretest Task 1 in Table M1.5 in Appendix M, it was observed that 

all the 3 students (S5,S8,S9) wrongly accepted all their 4 correct conjectures as true 

without testing or based on naïve testing. But for Posttest Task 1, only one student 

(S10) did not justify her correct conjecture as the test ended just after she formulated 

it, while the other 2 students (S5,S9) proved their 3 conjectures correctly using a non-

proof argument (see data analysis in Section 7.2.5). 

 

Table 8.20 shows that 4 students (S1,S5,S8,S9) wrongly accepted 5 conjectures (4 

correct and 1 incorrect) as true without testing or based on naïve testing for Pretest 

Task 1. But for Posttest Task 1, only 2 students (S1,S6) accepted 2 (incorrect) 

conjectures as true without testing, but no student accepted any conjecture as true 

based on naïve testing. Table 8.21 also shows that the students used naïve testing 

slightly more often for Pretest Task 1 than for Posttest Task 1, but they used a non-
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proof argument slightly more often for the posttest task27. This suggests that more 

students had understood during the posttest that they should not accept a conjecture as 

true based on naïve testing, but they must justify their conjecture using a non-proof 

argument or a formal proof. But very few students attempted a formal proof using 

algebra, and the 2 students (S1,S5) who tried were unable to justify any conjecture. 

The students also did not analyse the feasibility of their plan to justify (MF), and they 

did not exhibit any metacognitive awareness (MA) at this stage for either task. 

 

(b) Comparison between Pretest Task 2 and Posttest Task 2 (Type B) 

 

Table 8.19 shows that only one student was at Level 1 while all the other 9 students 

were at Level 0 for Pretest Task 2, compared with 2 students at Level 2 and 2 students 

at Level 1 for Posttest Task 2. Thus they had performed better in justifying for 

Posttest Task 2 than for Pretest Task 2. Unlike the analysis of the two Type A tasks 

earlier, the students formulated about the same number of conjectures for the two 

Type B tasks, but there were far more correct conjectures formulated for Posttest Task 

2 than for Pretest Task 2: Table 8.17 shows that there were 9 correct conjectures for 

the posttest task compared with only 4 correct conjectures for the pretest task. With 

more correct conjectures to justify for Posttest Task 2, it was possible that they had a 

higher chance to prove these conjectures for the posttest task than for the pretest task. 

On closer analysis of Pretest Task 2 in Tables M2.5a and M2.5b in Appendix M, it 

was observed that 2 students (S4,S9) accepted a total of 3 correct conjectures as true 

without testing, and only one student (S4) proved a trivial conjecture correctly using a 

non-proof argument. But for Posttest Task 2, 5 students (S2-S4,S8,S9) wrongly 

                                                 
27 Although S2 tried to use a non-proof argument in Pretest Task 1 to explain the pattern of sad 

numbers, he was unsuccessful. 
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accepted a total of 5 correct conjectures as true without testing or based on naïve 

testing, while 4 students (S1,S8-S10) tried to justify the other 4 correct conjectures, 

with only 2 of them (S1,S10) succeeding in proving their 2 conjectures correctly using 

a non-proof argument (see data analysis in Sections 7.3.5 and 7.3.9). 

 

Table 8.20 shows that for Pretest Task 2, 4 students accepted a total of 10 conjectures 

(3 correct and 7 incorrect) as true without testing, and no student accepted any 

conjecture as true based on naïve testing. But for Posttest Task 2, 5 students accepted 

a total of 7 conjectures (5 correct and 2 incorrect) as true without testing or based on 

naïve testing. Table 8.21 shows that the students engaged in the justifying processes a 

lot more often for Posttest Task 2 than for Pretest Task 2. Half the number of students 

engaged in naïve testing for the posttest task because they had extended the task to 

generalise, so their conjectures would involve different numbers of sausages and 

people, thus allowing the possibility to test their conjectures using naïve testing. But 

for the pretest task, 6 of the 10 students did not extend the task to generalise, so there 

were fewer opportunities for them to test their conjectures using naïve testing. In fact, 

only 3 students (S3,S4,S9) managed to formulate a total of 7 conjectures to generalise 

for Pretest Task 2, but 6 of these conjectures were accepted as true without testing. 

Only one student (S4) succeeded in proving the non-trivial conjecture about a general 

formula for the least time needed to toast n slices of bread by using a non-proof 

argument (see Table M2.5b in Appendix M). However, for the posttest task, Table 

8.21 shows that 4 students had learnt to use a non-proof argument to try to justify 

their 5 conjectures. No student attempted a formal proof for both tasks. 

 

The students did not exhibit any metacognitive awareness (MA) in this stage for 

either task, but one of them (S9) analysed the feasibility of his plan to justify his 
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conjecture (MF). The following shows his protocols after he had found the general 

formula for the least number of cuts: 

 
“But I don’t know how to prove it. I think it is a little off my limits. How do I 

prove this conjecture? The conjecture is uh, a little bit pretty much complicated. 

Eh, no, the conjecture is not complicated, but is very hard to prove.” [S9; Posttest 

Task 2] 

 

Nevertheless, the student decided to try to prove the conjecture by using a non-proof 

argument to explain why the general formula works because there was still a bit of 

time left for the test and there was nothing else for him to do. But he failed to justify 

because the proof was not easy, which he had realised earlier. 

 

(c) Development of Justifying Processes 

 

The above analysis shows that the students had improved in the process of justifying 

for both the posttest tasks compared with the two pretest tasks due to three factors: (i) 

the students had formulated more correct conjectures to justify for Posttest Task 2 

than for Pretest Task 2, thus increasing the chances of proving the conjectures, (ii) 

more students had extended Posttest Task 2 to generalise, thus providing more 

opportunities to formulate and justify other conjectures, and (iii) more students had 

realised in the posttest that they should prove their conjectures, instead of accepting 

their conjectures as true without testing or based on naïve testing, which happened 

more frequently during the pretest. 

 

In Lesson 5 of the teaching experiment (see Appendix C), the students were taught 

that an observed pattern might not be true by using Task 9 (Chords and Regions). The 

pattern for the maximum number of regions in a circle formed by the chords, where n 
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is the number of points on the circumference of the circle, is 1, 2, 4, 8, 16, … (see 

Appendix D for the task). Most people would guess that the formula for the general 

term is 2n–1, but the formula based on the observed pattern is actually wrong. This 

example was also used to show that naïve testing is not fool proof since the formula 

works for n = 1 to 5, but it fails when n = 6. Thus the students were convinced of the 

need to treat an observed pattern as a conjecture: it could be refuted by a counter 

example from naïve testing, but it must be proven by a non-proof argument or a 

formal proof. As the actual formula28 for Task 9 was beyond the students, Task 10 

(Tiles) was used for the students to learn how to prove a formula by using a non-proof 

argument and a formal proof. This task was selected partly for its complicated 

formula for the number of cracked square tiles, m + n – LCM(m, n), where m and n 

are the dimensions of the rectangle, which in a way is similar to the complicated 

formula for the least number of cuts for Posttest Task 2, m – HCF(m, n), where m is 

the number of people and n is the number of sausages. 

 

Hence, some of the students realised the need to prove their conjectures in the posttest 

while others still did not do so. For example, 2 students (S1,S10) proved that their 

cutting method will give the least number of cuts for Posttest Task 2, but none of the 

students realised that they had to prove that their toasting method will give the least 

toasting time for Pretest Task 2. Similarly, none of the students accepted their 

conjectures as true based on naïve testing for Posttest Task 1 compared with 4 

students who did so for Pretest Task 1. 

 

                                                 

28 The correct formula for the maximum number of regions in the circle is 
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Despite teaching the students in Lesson 5 of the teaching experiment the need to 

analyse the feasibility of their plan to justify (MF) for both types of tasks, they did not 

exhibit this metacognitive process during the posttest (nor did they exhibit this 

behaviour on their own during the pretest). If they had, it might have helped them to 

realise that they must not accept their conjectures as true without testing or based on 

naïve testing. Thus there is a need for teachers to focus on developing this 

metacognitive process when teaching their students to do investigation. 

 

8.3.6 Checking (Stage 7) 

 

Table 8.22 shows the proficiency level of checking (R) attained by the 10 students for 

the four tasks, Table 8.23 shows the frequencies of checking outcomes, while Table 

8.24 shows the frequencies of checking and monitoring processes that might have 

helped the students to discover their mistakes. The information for the two pretest 

tasks was extracted from Tables M1.6 and M2.6 in Appendix M while the information 

for the two posttest tasks was obtained from Tables 7.11 and 7.25 in the previous 

chapter. The errors in these tables do not include errors due to misinterpretation and 

errors due to accepting conjectures as true without testing or based on naïve testing, as 

these had been dealt with in the understanding stage and justifying stage respectively. 
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Table 8.22  Proficiency Level of Checking 
 

Descriptors 
Pretest 1 
(Type A) 

Posttest 1 
(Type A) 

Pretest 2 
(Type B) 

Posttest 2 
(Type B) 

Level 2 Descriptor A: Made major 
errors but discovered all on time (i.e. 
within 5 min) 

0 
1 

(S9) 
0 

1 
(S9) 

Level 2 Descriptor B: Did not make 
any major error, but often checked 
working, reviewed solution and 
monitored progress 

1 
(S7) 

1 
(S7) 

1 
(S9) 

2 
(S5,S7) 

Level 2: Level 2 Descriptors A and B 
1 

(S7) 
2 

(S7,S9) 
1 

(S9) 
3 

(S5,S7,S9) 
Level 1 Descriptor A: Made major 
errors but discovered only some of 
them 

1 
(S9) 

3 
(S3-S5) 

0 
1 

(S8) 

Level 1 Descriptor B: Made major 
errors and discovered all of them but 
some late (i.e. after more than 5 min) 

1 
(S2) 

0 0 0 

Level 1 Descriptor C: Did not make 
any major error, but occasionally 
checked working, reviewed solution 
and monitored progress 

0 0 
1 

(S4) 
1 

(S2) 

Level 1: Level 1 Descriptors A-C 
2 

(S2,S9) 
3 

(S3-S5) 
1 

(S4) 
2 

(S2,S8) 

Level 0 Descriptor A: Made major 
errors but did not discover 

4 
(S3-S6) 

4 (S2,S6, 
S8,S10) 

1 
(S8) 

2 
(S4,S6) 

Level 0 Descriptor B: Did not make 
any major error, but never or seldom 
checked working, reviewed solution 
and monitored progress 

3 
(S1,S8,S10) 

1 
(S1) 

7 (S1-S3, 
S5-S7,S10) 

3 
(S1,S3,S10) 

Level 0: Level 0 Descriptors A and B 
7 (S1,S3-

S6,S8,S10) 
5 (S1,S2, 

S6,S8,S10) 
8 (S1-S3,S5-
S7,S8,S10) 

5 (S1,S3, 
S4,S6,S10) 

Average Score for Level (out of 2) 0.4 0.7 0.3 0.8 

Standard Deviation (s.d.) 0.7 0.8 0.6 0.9 

 
 

Table 8.23  Frequencies of Outcomes for Checking 
 

Outcomes 
Pretest 1 
(Type A) 

Posttest 1 
(Type A) 

Pretest 2 
(Type B) 

Posttest 2 
(Type B) 

No. of Major Errors Made 
10 

(S2-S6,S9) 
16 (S2-S6, 
S8-S10) 

5 
(S8) 

6 
(S4,S6,S8,S9) 

No. of Minor Errors Made 
28 (S1-S7, 

S9,S10) 
23 (S1-S7, 

S9,S10) 
14 

(S1-S9) 
19 (S1,S2, 
S4,S6-S9) 

Total No. of Errors Made 
38 (S1-S7, 

S9,S10) 
39 

(S1-S10) 
19 

(S1-S9) 
25 (S1,S2, 
S4,S6-S9) 

No. of Major Errors Discovered 
3 

(S2,S9) 
6 

(S3-S5,S9) 
0 

2 
(S8,S9) 

No. of Minor Errors Discovered 
20 

(S1-S7,S9) 
14 (S1-S7, 

S9,S10) 
10 (S1,S3-

S7,S9) 
10 

(S4,S6-S9) 

Total No. of Errors Discovered 
23 

(S1-S7,S9) 
20 (S1-S7, 

S9,S10) 
10 (S1,S3-

S7,S9) 
12 

(S4,S6-S9) 
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Table 8.24  Frequencies of Processes for Checking 
 

Outcomes 
Pretest 1 
(Type A) 

Posttest 1 
(Type A) 

Pretest 2 
(Type B) 

Posttest 2 
(Type B) 

Checked Most Parts of Working 
3 

(S1,S4) 
7 

(S1,S3,S4,S10) 
4 

(S2,S3) 
1 

(S4) 

Checked Some Parts of 
Working 

8 (S3,S4, 
S9,S10) 

7 
(S1,S6,S7,S10) 

9 (S1,S3-S5, 
S7,S9,S10) 

5 
(S7,S9,S10) 

Just Glanced Through Working 
to Check 

1 
(S9) 

7 
(S3,S5,S8-S10)

1 
(S9) 

6 
(S2,S5,S10) 

Other Ways of Checking 
Working, e.g. Work Backwards 

0 0 
1 

(S4) 
6 (S1,S2, 

S7,S8,S10) 

Total for Checking Working 
(CW) 

12 (S1,S3, 
S4,S9,S10) 

21 
(S1,S3-S10) 

15 (S1-S5, 
S7,S9,S10) 

18 (S1,S2,S4, 
S5,S7-S10) 

Monitored Progress (MP) 
31 (S1,S3, 
S4,S6-S10) 

39 (S2,S3, 
S5,S7-S9) 

4 
(S4,S6,S9) 

10 
(S1,S7) 

Reviewed Solution (MR) 
5 

(S1,S4,S5,S9) 
4 

(S5,S9) 
15 (S1,S4, 
S6,S8,S9) 

12 (S1-S5, 
S9,S10) 

Total for CW + MP + MR 
48 

(S1,S3-S10) 
64 

(S1-S10) 
34 

(S1-S10) 
40 (S1-S5, 
S7-S10) 

Metacognitive Awareness (MA) 
4 

(S1,S9) 
12 (S1,S2,S5-

S7,S9,S10) 
3 

(S5,S7,S10) 
2 

(S8,S9) 

 
 

(a) Comparison between Pretest Task 1 and Posttest Task 1 (Type A) 

 

Table 8.22 shows that for Pretest Task 1, one student was at Level 2, 2 students were 

at Level 1, and 7 students were at Level 0. But for Posttest Task 1, 2 students were at 

Level 2, 3 students were at Level 1, and 5 students were at Level 0. Thus they had 

performed slightly better in checking for Posttest Task 1 than for Pretest Task 1. 

Table 8.23 shows that the total number of errors made by the students for the two 

tasks was about the same, but the students made more major errors for Posttest Task 

1. However, the students had also discovered more major errors for the posttest task, 

although the total number of errors discovered was slightly more for the pretest task. 

This explained why they had scored better for Posttest Task 1 as they had discovered 

more major errors for the posttest task. 
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Table 8.24 shows that the students had checked working (CW) and monitored 

progress (MP) more often for Posttest Task 1 than for Pretest Task 1, but the 

frequency for reviewing the solution to see if it had met the goal of the task (MR) was 

about the same for both tasks. Thus the total frequency for the processes, CW + MP + 

MR, was a lot higher for the posttest task. Although a large portion of this frequency 

belonged to MP, this metacognitive process was not very effective: the students 

monitored their progress for Posttest Task 1 more often when they were stuck, but this 

process did not help most of them make any progress (see data analysis in Section 

7.2.6). A detailed analysis of the students’ protocols and answer scripts for Pretest 

Task 1 had revealed the same finding. For example, S7 monitored progress the most 

often at 11 times for Pretest Task 1 and 11 times for Posttest Task 1, but she was still 

stuck. Table 8.24 also shows that a lot more students exhibited metacognitive 

awareness (MA) for Posttest Task 1 than for Pretest Task 1. For Posttest Task 1, MA 

had played a more critical role than all the checking processes in helping the students 

discover their errors by sensing something amiss (see data analysis in Section 7.2.6). 

A detailed analysis of the students’ protocols and answer scripts for Pretest Task 1 

also revealed that MA had helped S1 and S9 to discover their errors, but checking 

working was not so effective in helping them discover their errors. 

 

(b) Comparison between Pretest Task 2 and Posttest Task 2 (Type B) 

 

Table 8.22 shows that for Pretest Task 2, one student was at Level 2, one student was 

at Level 1, and 8 students were at Level 0. But for Posttest Task 2, 3 students were at 

Level 2, 2 students were at Level 1, and 5 students were at Level 0. Thus they had 

performed better in checking for the posttest task than for the pretest task. Table 8.23 

shows that the students had made more errors for Posttest Task 2 than for Pretest Task 



 
 

447

2, but the number of major errors made was about the same for both tasks. However, 

the students had also discovered more major errors for the posttest task, although the 

total number of minor errors discovered was the same for both tasks. This explained 

why they had scored better for Posttest Task 2 as they had discovered more major 

errors for the posttest task. 

 

Table 8.24 shows that the students had checked working (CW) slightly more often for 

Posttest Task 2 than for Pretest Task 2, but they had monitored progress (MP) more 

often for the posttest task. However, they reviewed the solution to see if it had met the 

goal of the task (MR) slightly less often for the posttest task. Overall, the total 

frequency for the processes, CW + MP + MR, was slightly higher for Posttest Task 2 

than for Pretest Task 2. But the total frequencies for the two Type B tasks were low 

when compared with those for the two Type A tasks. On closer analysis, they seldom 

monitored their progress for the Type B tasks, unlike the very high frequency of MP 

for the Type A tasks. This was due to more students being unable to discover any 

pattern in the Type A tasks, which caused most of them (6 to 8 students) to monitor 

their progress a lot more frequently, unlike the Type B tasks where most students 

thought that they could solve the problems that they had posed, which resulted in only 

a few students (2 to 3 students) monitoring their progress. Just like for the Type A 

tasks, MP was generally not effective for the Type B tasks because they did not know 

what else to do. However, they reviewed their solution (MR) more often for the Type 

B tasks than for the Type A tasks. This was probably due to more students being 

unable to observe any pattern in the Type A tasks, and so there was no complete 

solution to review to see if it had met the goal of the task, unlike the Type B tasks 

where more students had solved their problems. 
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As for metacognitive awareness (MA), there was not much difference in the 

frequencies for both tasks. For Posttest Task 2, MA had played a critical role in 

helping some students sense something amiss, which led them to discover their errors 

(see data analysis in Section 7.3.10). A detailed analysis of the students’ protocols and 

answer scripts for Pretest Task 2 also revealed that MA had helped S5 to discover an 

error, and S7 to check her working but the test ended before she could discover her 

error. Although more students had checked their working more often for Pretest Task 

2 than for Posttest Task 2, this process was not critical in helping them discover their 

errors. For example, out of the 8 students who checked most or some parts of their 

working for Pretest Task 2 for a total of 4 + 9 = 13 times, only 2 of the checking 

occasions led to the discovery of 2 minor errors for 2 students (S3,S5). 

 

(c) Development of Checking Processes 

 

The above analysis shows that the students had improved in the process of checking 

for both the posttest tasks compared with the pretest tasks, although the improvement 

for the Type A tasks was only a slight one. The main factor that contributed to the 

discovery of errors was the ability to sense something amiss (MA), which resulted in 

the students checking only the necessary parts of their working. 

 

In Lesson 6 of the teaching experiment (see Appendix C), the students were reminded 

that they should check their working occasionally, not just at the end after solving a 

problem. Since it was too time consuming to check every single step of their working 

all the time, they were also taught to check their answer by using other means, such as 

working backwards and examining whether their answer was reasonable or logical, if 

possible. They were told that they should always review their solution after solving a 
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problem to see if it had met the goal of the task, to evaluate the efficacy of their 

method of solution, and to look for alternative methods. In Lesson 4 of the teaching 

experiment, they were taught to monitor their own progress every 5 minutes or so. In 

lesson 5, I tried to develop in the students the habit to regulate their investigation by 

monitoring their own progress. As a result, they had engaged in the checking and 

monitoring processes more often for the two posttest tasks than for the two pretest 

tasks. In particular, they had engaged in other means of checking their working, such 

as working backwards for Posttest Task 2. But what was lacking was their ability to 

sense something amiss (MA) when there was an error. As explained at the end of 

Section 8.3.3, the teaching experiment did not teach them metacognitive awareness as 

this process was only discovered after the data collection. 

 

8.4 SUMMARY OF ANSWER TO RESEARCH QUESTION 3 

 

This section will summarise the main findings from analysing the data collected for 

the present study in order to answer Research Question 3. In general, most students 

had improved for both posttest tasks, with some students showing better improvement 

for one type of tasks over the other. Overall, the students had improved slightly more 

for the Type B tasks than for the Type A tasks, although on average, the students were 

still at Level 1 for both posttest tasks. The greatest improvement was in the category 

of understanding the task (U) for the Type A tasks, and in the category of conjecturing 

(C) for the Type B tasks. At the other end, the least improvement was in the category 

of problem posing and extension (P/E) for both types of tasks. There was also 

negligible difference in performance in the category of conjecturing (C) for the Type 

A tasks. 
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(a) Understanding the Task 

 

One of the main problems that students faced for the two pretest tasks was the 

misinterpretation of the tasks due to the lack of engagement in the understanding 

processes. Although they had learnt during their normal lessons to read textbook 

exercise questions carefully and to highlight key information before solving, they did 

not transfer these skills when attempting the two pretest tasks. But after the teaching 

experiment, they engaged in these processes more often for the two posttest tasks, and 

in particular, a lot more frequently for Posttest Task 1, thus leading to the greatest 

improvement in this category of understanding the task (U) for the Type A task. 

 

(b) Problem Posing and Extension 

 

There was not much improvement for problem posing and extension (P/E) for both 

types of tasks. For Type A tasks, it was understandable since the students just posed 

the general problem of searching for any pattern. Although they could pose specific 

problems to solve, there was not enough time in the teaching experiment to develop 

these processes since the focus was to teach them how to pose specific problems for 

Type B tasks to solve and to extend to generalise. As a result, all the students actually 

extended Posttest Task 2, but most of them still did not fully realise that the purpose 

of extending Type B tasks is to generalise. Thus there was only a slight improvement 

for the category of P/E for Type B tasks. 

 

(c) Specialising and Using Other Heuristics 

 

There was only a slight improvement for specialising and using other heuristics (S/H) 

for both types of tasks. Although the students were taught to specialise systematically 
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to search for patterns for Type A tasks during the teaching experiment, they still failed 

to do so for Posttest Task 1. It seems that they literally took the instruction in the task 

statement ‘choose any number’ to mean choosing a number randomly. Thus care must 

be taken to teach them to specialise systematically even in such situations. For Type B 

tasks, it was not easy to teach them how to use other heuristics effectively since this 

was task dependent. But the metacognitive process of analysing the feasibility of the 

plan to use other heuristics (MF) had helped some students to examine their reasoning 

more effectively. This suggests that there is a need to develop this important 

metacognitive process as it was clearly lacking in all the four tasks. 

 

(d) Conjecturing 

 

For the Type B tasks, the greatest improvement was in the category of conjecturing 

(C), but for the Type A tasks, there was negligible difference in this category. There 

were three factors to account for the negligible difference for the Type A tasks: (i) the 

students did not specialise systematically to search for patterns, so many of them were 

unable to observe the underlying patterns; (ii) most of the tasks used in the teaching 

experiment were not sequences like the two Type A tasks, so they had not fully learnt 

how to search for patterns within and across sequences; and (iii) they had difficulty 

identifying unfamiliar patterns which they had not learnt before, as they failed to 

recognise that the patterns they had observed were actually the underlying patterns. 

Thus there is a need to improve in these areas when teaching students the process of 

conjecturing. On the other hand, they had improved in formulating conjectures for the 

Type B tasks because of other processes: (i) the ability to reason more effectively, 

which resulted in finding the optimal cutting method and thus a correct conjecture 

formulated; and (ii) the habit to extend the task to generalise, which provided more 
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opportunities to formulate other conjectures. This shows how the main processes are 

linked together and how they could affect one another. 

 

(e) Justifying and Generalising 

 

There was an improvement for justifying and generalising (J/G) for both types of 

tasks because of three factors: (i) the students had formulated more conjectures for 

Posttest Task 2 and thus providing more opportunities to justify; (ii) more students 

had extended Posttest Task 2 to generalise and thus leading to more conjectures that 

will generalise; and (iii) they had learnt from the teaching experiment that they should 

prove their conjectures, instead of accepting the conjectures as true without testing or 

based on naïve testing, which happened very often during the pretest. They had also 

learnt how to use a non-proof argument to justify their conjectures, but they seldom 

used a formal proof involving algebra, which was too difficult for them since they 

were only in Secondary 2. 

 

(f) Checking 

 

There was an improvement for checking (R) for both types of tasks, although the 

improvement for the Type A tasks was only a slight one. The students had learnt from 

the teaching experiment to engage in the checking and monitoring processes more 

often during the posttest, and in particular, some students were able to check their 

working by using other means, such as working backwards, for Posttest Task 2. But it 

was found that the main factor that enabled some students to discover their errors was 

metacognitive awareness (MA): the ability to sense something amiss when they made 
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a mistake. But MA is a newly discovered process in the course of the present study 

and so there is a need for further research on how to develop this process. 

 

(g) Metacognitive Processes 

 

In general, the students seldom engaged in metacognitive processes for all the four 

tasks, especially in analysing the feasibility of their goal (MG) and analysing the 

feasibility of their plan (MF). Although these processes were taught in the teaching 

experiment, it seems that it was not easy for the students to pick them up. On the other 

hand, the main bulk of metacognitive processes came from monitoring progress (MP), 

and the main contributors were 2 students (S7,S8) who monitored their progress from 

9 to 11 times for the two Type A tasks and for Posttest Task 2. However, most of the 

MP were not effective as they did not know what else to do. Therefore, there is a need 

to research further into how to develop in students the habit to perform MG and MF 

more frequently, and how to monitor their progress more effectively. 

 

8.5 CONCLUDING REMARKS FOR THIS CHAPTER 

 

Chapter 8 has answered Research Question 3. The students generally performed better 

for the posttest than for the pretest for both types of tasks. The analysis has identified 

which processes the students had developed well, and which processes the students 

needed more time to develop. Although the teaching experiment was effective in 

developing the investigation processes to a certain extent, there were some areas that 

could be improved on. Chapter 9 will present the main contributions for the present 

study and conclude with some implications for teaching and research. 
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 CHAPTER 9: CONCLUSION AND IMPLICATIONS 

 

This chapter will present the main contributions of the present research, delineate the 

limitations of the current study, and draw some implications for teaching and further 

research. 

 

9.1 MAIN CONTRIBUTIONS OF PRESENT RESEARCH 

 

The main contributions of the present study are based mostly on the findings of the 

three research questions in Chapters 6-8. A summary of the answer to each research 

question has been given at the end of each of the previous three chapters. 

 

9.1.1 Relationship between Investigation and Problem Solving 

 

Although many educators (e.g. Evans, 1987; Pirie, 1987) agree that there is an overlap 

between investigation and problem solving, these same educators still end up 

separating them into two distinct processes: investigation must involve (open) 

investigative tasks while problem solving must involve (closed) mathematical 

problems. Another conflicting view in current literature is that some researchers (e.g. 

Orton & Frobisher, 1996) believed that mathematical problems include investigative 

tasks while others (e.g. Cai & Cifarelli, 2005) believed that investigation includes 

problem solving. To resolve these issues, I realised that the problem lies in the 

different usages of the term ‘investigation’, and so I decided to separate investigation 

as a task, a process and an activity (see Sections 2.1.2 and 2.1.3). 
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With this alternative viewpoint, the relationship between investigation and problem 

solving becomes clearer. Investigation, as an activity, involves the use of an (open) 

investigative task, and it includes both problem posing and problem solving. But there 

are generally two approaches to problem solving (Pólya, 1957; Lakatos, 1976): the 

inductive approach that involves specialising, conjecturing, justifying and 

generalising (which is the investigation process), and the deductive approach that uses 

other heuristics such as reasoning. The clarification of the relationship between 

investigation and problem solving is not just academic. Since it has been identified 

which processes in investigation are similar to those in problem solving, students can 

apply the same processes in both investigation and problem solving. Research in these 

problem-solving processes can also be applied to research in investigation, especially 

when there is a lack of research in investigation processes. 

 

9.1.2 Mathematical Investigation Models, Coding Scheme and Scoring Rubric 

 

Based on the literature review in Chapter 2 and some modifications on my part, two 

theoretical mathematical investigation models have been developed for the current 

research to display the investigation pathways or interactions among the processes: 

one model for cognitive processes and the other model for metacognitive processes 

(see Section 3.2). These models were then validated and refined based on the 

empirical data obtained from the posttest of the present study (see Section 7.4.2). 

 

An important finding during the validation is that the process of conjecturing is 

actually much more complicated than posited in the theoretical model for cognitive 

processes, where students are supposed to treat their observed patterns as conjectures 

to be proven or refuted. Although this was confirmed by some students who did just 
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that, there were some other students who would try further examples to be more 

certain of their observed pattern before treating it as a conjecture. This means that 

testing using examples could occur at two levels: (i) between observing a pattern and 

formulating it as a conjecture, and (ii) after formulating it as a conjecture before 

proving it (see Section 7.2.4a). This is consistent with Frobisher’s (1994) model 

where he differentiated between ‘conjecturing’ and ‘hypothesising’ with two levels of 

testing using empirical data (see Section 2.2.2g on page 59), although most educators 

(e.g. Lampert, 1990; Mason et al., 1985) do not distinguish between them. In other 

words, ‘observing a pattern’ and ‘formulating a conjecture’ in the refined model for 

the present study would correspond to ‘conjecturing’ and ‘hypothesising’ in 

Frobisher’s model respectively. This distinction is not just an academic issue because 

it would affect how teachers teach their students, e.g. teachers should teach their 

students to be more certain of an observed pattern by testing using further examples, 

instead of hastily accepting it as a conjecture and then try to prove it, when the pattern 

could have easily been refuted by counter examples. 

 

Another important finding is metacognitive awareness, or knowledge of cognition, 

which was usually portrayed in most literature as something that was more passive 

than active (e.g. Desoete & Veenman, 2006; Schraw & Moshman, 1995). That was 

why most research studies on knowledge of cognition (e.g. Mevarech & Fridkin, 

2006; Wong, 1989) used a paper-and-pencil test to try to understand the knowledge in 

the minds of the subjects. However, it was found that some students in the present 

research exhibited a more active awareness of their cognition, rather than a passive 

knowledge of cognition. This metacognitive awareness had proven to be useful to 

help some students discover their mistakes when they sensed something amiss, or to 
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save time by being aware that they had generated a sequence or tried a cutting method 

before, and so they should not redo the investigation. The refined investigation model 

on metacognitive processes shows that this metacognitive process had manifested 

itself during specialising, using other heuristics and conjecturing during the 

investigation of the two posttest tasks. 

 

The Final Coding Scheme was devised in Chapter 4 to code the students’ cognitive 

and metacognitive behaviours in their thinking-aloud protocols in order to inform the 

two investigation models, and the Investigation Scoring Rubric was formulated in 

Chapter 8 to evaluate the students’ proficiency in investigation based on the quality of 

their processes and outcomes. Since there are few empirical studies on investigation 

processes, the two Refined Investigation Models, the Final Coding Scheme and the 

Investigation Scoring Rubric developed in the present research could be useful to help 

other researchers and educators to study the nature and development of investigation 

processes in other setting. 

 

9.1.3 Effect of Processes on Outcomes in Mathematical Investigation 

 

The study has revealed that re-reading or rephrasing the relevant parts of the task 

statement has helped some students to understand the task correctly or to recover from 

any misinterpretation. But referring to the task statement does not seem to help some 

students to pose specific problems for Type B tasks. In fact, the students still had 

great difficulty posing the intended problem and the intended extension for Posttest 

Task 2 (Sausage) despite going through the teaching experiment. The data analysis 

has suggested that the ability to pose the intended problem or extension depends on 

the particular task and how the task statement is phrased (see Section 8.3.2b). Since a 



 
 

458

Type B investigative task is obtained from a mathematical problem by removing the 

original intended problem and replacing it with the word ‘investigate’ (Frobisher, 

1994), the implication of this finding is that the teachers ought to be aware that there 

is a possibility of ‘losing’ the intended problem or extension that they might want 

their students to solve. Therefore, there is a need for teachers to think about how to 

guide their students to pose the intended problem or extension for a Type B task, and 

yet not close up the task by restricting the students’ freedom and creativity to pose 

other types of problems and extensions to solve. 

 

It was found that most of the students specialised randomly for the two Type A tasks 

instead of systematically as advocated by Mason et al. (1985). It seems that the 

students literally took the instruction in both task statements ‘choose any number’ to 

mean choosing a number randomly. Thus care must be taken to teach students to 

specialise systematically even in such situations. The present study also found that 

most of the students wrongly accepted their conjectures as true without testing or 

based on naïve testing (Lakatos, 1976) during the pretest, but this had improved for 

the posttest where more students tried to prove their conjectures. However, most of 

the students used a non-proof argument (Stylianides, 2008), instead of a formal proof, 

to justify their conjectures. Very few students attempted a formal proof involving 

algebra, which also did not work out. Although some educators (e.g. Holding, 1991; 

Tall, 1991) preferred the rigour found in formal proofs, it seems that formal proofs 

might be beyond the abilities of these Secondary 2 students. 

 

Another finding is that the students were unable to observe patterns that were not the 

usual types of patterns that they had learnt before. For example, consecutive terms of 
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a Kaprekar sequence (Posttest Task 1) are not in a fixed increasing order, i.e. the next 

term is not obtained from the previous term by adding a constant, and so there is no 

relationship between the term Tn and its position n (see Section 7.2.4c on page 301). 

This means that it is not possible to find a formula for the n-th term in terms of its 

position n, unlike the sequences that the students had learnt in their normal school 

lessons where they could usually find a formula for the general term, e.g. Tn = 3n for 

the multiples of 3 sequence: 3, 6, 9, … For the latter sequence, the teacher would not 

accept patterns like ‘the sequence is increasing’ and ‘all the terms are divisible by 3’ 

because these patterns are clearly true. As a result, the students failed to realise that 

‘the sequence is increasing’ and ‘all the terms are divisible by 3 if the starting term is 

divisible by 3’ could be treated as patterns for Kaprekar sequences because they might 

not be true. However, two students were able to actively apply their knowledge, or 

what Schoenfeld (1985) called ‘resources’, to discover the Type 1a ‘multiples’ pattern 

or the complicated Type 2 ‘digital roots’ pattern. Another student was also able to 

discover the complex general formula for the least number of cuts for Posttest Task 2 

(Sausage) just by searching for patterns from two random examples. 

 

The study also found that most of the students lacked metacognitive skills. Those who 

could progress in their investigation seldom stopped to monitor their progress, while 

those, who monitored their progress often, did so because they were stuck. However, 

this metacognitive behaviour was not so effective since the students did not know 

what else to do, other than to continue in the same approach. The students could have 

analysed the feasibility of their plan to solve the problem before blindly continuing in 

the same ineffective approach, but most of them did not do so. Only one student 

analysed the feasibility of her goal, but it was also not effective. This probably 
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explains why some of the students ended up pursuing very trivial or very difficult 

problems because they did not pause to analyse whether these problems were feasible. 

 

9.1.4 Development of Processes in Mathematical Investigation 

 

In general, the cognitive processes that had developed rather well during the teaching 

experiment were the main processes of understanding the task and justifying. During 

the pretest, many students did not spend much time trying to understand the task 

properly, so quite a number of them misinterpreted the task. Since they had learnt the 

usual processes for understanding textbook exercise questions during their normal 

school lessons, it was naturally very easy for them to pick these up for understanding 

investigative tasks. But the point is that teachers should not assume that students 

would automatically apply these processes for understanding textbook exercise 

questions to understanding other types of tasks, unless they are reminded to do so. As 

for justifying, some students had learnt during the teaching experiment that they 

should not accept a conjecture as true without testing or based on naïve testing 

(Lakatos, 1976), which partly accounted for the improvement in the justifying 

process. The other reason was that the students had formulated more conjectures 

during the posttest, thus providing more opportunities to justify. 

 

The cognitive processes that did not develop so well during the teaching experiment 

were the main processes of problem posing and extension. Although all the students 

had learnt how to extend the Type B task during the posttest, quite a number of them 

still did not fully understand that the purpose of such extension was to generalise, so 

they just changed the given variables per se without the intention to generalise. 

Therefore, there was a need to improve in this aspect of developing in students the 
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habit to generalise whenever possible because “generalisations are the life-blood of 

mathematics” (Mason et al., 1985, p. 8). There was also a need to teach students how 

to pose non-trivial specific problems for Type A tasks, especially the sub-process of 

analogy (Kilpatrick, 1987) in using a previous result as a springboard to pose more 

problems to solve or extend. Although this sub-process was taught in the teaching 

experiment, albeit briefly due to the lack of time, the study has found that only very 

few students were able to pose problems using analogy. 

 

However, the development of the main process of conjecturing was mixed. There was 

negligible difference for conjecturing between the two Type A tasks in the pretest and 

the posttest, but there was a great improvement for the Type B task in the posttest. 

The students did not specialise systematically to search for patterns within and across 

sequences for the Type A posttest task, and they had difficulty identifying unfamiliar 

patterns which they had not learnt before. But for the Type B posttest task, the ability 

to formulate more correct non-trivial conjectures was partly due to the ability to use 

reasoning more effectively in the main process of using other heuristics, and partly 

due to the habit to extend the task to generalise which provided more opportunities to 

formulate other conjectures. This suggests how the main processes are intricately 

linked together and how they could affect one another. 

 

Despite teaching students various metacognitive processes, it was found that most of 

these processes were not easily picked up by the students, except for monitoring of 

progress although it was not so effective. Thus there was a need to look into how to 

develop in students the habit to engage in these metacognitive processes, especially in 
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analysing the feasibility of their goal and the feasibility of their plan, since these two 

processes were seldom engaged by the students in both the pretest and the posttest. 

 

9.2 LIMITATIONS OF PRESENT STUDY 

 

The following are some limitations of the current study. 

 

 The data analysis in this study was mainly qualitative. Although steps have 

been taken to improve the validity and reliability of the present research, such 

as inter-coder reliability tests for the coding scheme and the classification of 

the quality of certain investigation outcomes as trivial or non-trivial, 

interpreting behaviours is still very much a human endeavour which could 

never be 100% accurate in such studies. 

 

 Although the thinking-aloud method is found most suitable to track students’ 

actual thinking processes and the students in this study had been trained and 

given some practice in thinking aloud to alleviate some of the shortfalls, some 

students might still be uncomfortable in verbalising their thoughts, especially 

when they were videotaped doing it. The time available for the students to 

practise thinking aloud was also limited by what the school could spare for this 

research. As a result, some students kept silent during the pretest and posttest 

occasionally, so it could not be inferred what they were thinking during this 

time. Therefore, valuable insight into the students’ minds at critical periods 

might be lost. On the other hand, thinking aloud might also interfere with the 

students’ investigation and thus affect the outcomes. 
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 Due to the time that the school could spare for the present study, the duration 

of the teaching experiment was rather short, consisting of only six lessons 

lasting two hours each, and the duration of the pretest and the posttest was 

only one hour each, with 30 minutes for each task. As a result, there was not 

enough time to develop each process more fully. Moreover, the short duration 

to investigate each task during the test means that the students might not have 

time to pose more problems to solve or to observe more patterns. 

 

 An in-depth study with a small sample size and a small number of tasks for the 

pretest and the posttest mean that the findings for the present study have 

limited generalisability. A bigger sample size with more investigative tasks of 

other varieties for the tests would provide more insights into the nature of the 

students’ investigation processes. 

 

9.3 IMPLICATIONS AND RECOMMENDATIONS FOR TEACHING AND 

RESEARCH 

 

The purpose of the present study is to inform teachers and researchers on the nature 

and development of processes in mathematical investigation. Based on the findings 

and limitations of the present study, some recommendations for teaching and research 

are outlined below. 

 

9.3.1 Implications and Recommendations for Teaching  

 

An implication of the findings in the present study for teaching is that teachers could 

teach their students to use the investigation process in solving mathematical problems 
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since these processes (namely, specialising, conjecturing, justifying and generalising) 

are similar in both investigation and problem solving. Using the Handshake Problem 

(Task 4) in Section 2.1.2(d) as an example, if students do not know how to solve it by 

using other heuristics such as reasoning, they could be taught to investigate by trying 

smaller numbers of participants (specialising) in order to search for patterns 

(conjecturing) in order to generalise. But the students need to learn that the observed 

pattern is just a conjecture that needs to be justified. 

 

Another implication is how teachers could develop in their students the processes in 

mathematical investigation, based on the understanding of the nature of investigation 

processes as depicted in the two investigation models and the development of such 

processes in the teaching experiment. The following are some suggestions for teachers 

to consider when teaching students how to do mathematical investigation using open 

investigative tasks. 

 

 Trying some examples to make sense of Type A investigative tasks (Mason et 

al, 1985) is a new skill that should be taught because most students would not 

have learnt it during normal school lessons. But there is also a need to remind 

students to apply the usual processes for understanding textbook exercise 

questions which they have learnt, such as reading the question carefully, to 

understand an investigative task properly. This is important because if students 

misinterpret the task, they would end up on a wild goose chase (Schoenfeld, 

1987), which was exactly what happened to most students in the present study 

who did not spend much time understanding the task during the pretest. 
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 Students need to be taught what to investigate for an investigative task that 

contains no stated problem. For Type A tasks, after teaching and some 

exposure, the students generally know that they were supposed to search for 

any pattern. But for Type B tasks, it is not easy to teach students how to pose 

the intended problem as suggested by Frobisher (1994). One way is to discuss 

in class after each student has spent some time thinking about it, so that 

collectively, there is a higher chance that someone might pose the intended 

problem. But it does not really matter if no one poses the intended problem if 

some of them are able to pose other ‘unexpected’ problems that are interesting 

(Brown & Walter, 2005). On one hand, students should be encouraged to pose 

difficult problems that they might not be able to solve (Mason et al, 1985). On 

the other hand, teachers should emphasise that it does not mean that they have 

to solve them (because some students in the present study wasted the entire 

investigation pursuing such unachievable goals). Therefore, the students need 

to be taught how to analyse which problems are feasible or worth pursuing, a 

skill that was clearly lacking even in the posttest of the present study. 

 

 Teachers should teach their students to specialise systematically to search for 

patterns (Mason et al, 1985), but there is a need to let the students attempt 

investigative tasks that tell them to ‘choose any number’, so as to emphasise to 

them that this does not mean that they should choose numbers randomly to 

specialise. Students should be exposed to more unusual patterns that they have 

not come across before because most of the students in the present study had 

difficulty recognising these unfamiliar patterns as ‘the patterns’ even when 

they had observed them. They should be taught to be more metacognitively 
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aware of what they are investigating, and not specialise or search for patterns 

blindly. For example, they should be aware of the previous examples that they 

have tried before so that they will not redo the same examples, or they should 

use some reasoning to explain why the differences between consecutive 

numbers in a Kaprekar sequence will never repeat so that they will not waste 

time searching for a pattern that will never exist. This also includes teaching 

students to analyse the feasibility of their plan of attack (Schoenfeld, 1987). 

 

 There is a need to use a concrete example to demonstrate to students that an 

observed pattern is actually not the underlying pattern (see Task 9 on Chords 

and Regions in Appendix D) in order to convince them that they should 

always test their conjectures. Although most of the students had learnt to do so 

in the posttest, some of them still accepted their conjectures as true without 

testing or based on naïve testing. This means that teachers should spend more 

time developing in their students the habit to justify conjectures. In particular, 

there is a need to teach students that some results obtained from using other 

heuristics (i.e. not an observed pattern) are also conjectures, e.g. just because a 

method gives a shorter toasting time or a fewer number of cuts than all the 

other methods does not mean that this method will give the least toasting time 

or the least number of cuts (this was a mistake that some students still made 

during the posttest as it was not emphasised during the teaching experiment). 

 

 On the other hand, teachers should teach their students not to hastily accept an 

observed pattern as a conjecture and then try to justify it. Instead, the students 

should learn to verify that the observed pattern could at least withstand the 

weight of a few more examples because there are occasions in the present 
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study when the students could have easily rejected the observed patterns based 

on some counter examples but they spent so much time trying to think of a 

proof. At Secondary 2 level, teachers should probably focus on teaching 

students to use a non-proof argument to justify their conjectures (Mason et al., 

1985; Stylianides, 2008) because the students in the present study, who are 

from a high-performing Singapore school, are not able to cope with formal 

proofs. At higher level, teachers could then consider developing in students the 

ability to use algebra as a formal proof (Holding, 1991; Tall, 1991). 

 

 Since it is not feasible to check working at every step, teachers should teach 

their students to check essential working occasionally because some students 

in the present study could go through the entire investigation without checking 

any working when they had actually made some mistakes. The students should 

also be taught to review their solution to see if it had met the goal of the 

investigative task (Jacobs & Paris, 1987; Schraw, 2001), e.g. if the students are 

to ask themselves whether they have solved the problem of finding a cutting 

method that will give the least number of cuts, it might make them realise that 

they need to prove that the number of cuts is actually the least. 

 

 Although students need to be taught to extend Type B tasks by changing the 

given, the teachers should emphasise that the purpose of such extension is to 

generalise (Mason et al., 1985) since quite a number of students still changed 

the given in the posttest without trying to generalise. For Type A tasks, the 

students should be taught to pose more specific problems by using analogy 

(Kilpatrick, 1987), especially by using previous results as a springboard to 

pose more problems to solve, with or without extending the task. 
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9.3.2 Implications and Recommendations for Research  

 

The following are some suggestions for further research on investigation using open 

investigative tasks. 

 

 More research needs to be done to study the development of some of the 

investigation processes because they were clearly lacking in the students even 

after the teaching experiment, e.g. how to teach students to pose the intended 

problem or the intended extension, how to teach students to monitor progress 

effectively, and how to develop metacognitive awareness among the students, 

especially the ability to sense something amiss when a mistake occurs. 

 

 On the other hand, some of the processes might not have developed because 

they might take a longer time. Therefore, a suggestion for further research is to 

conduct a much longer teaching experiment to study whether the students are 

able to develop more of these processes, e.g. analysing the feasibility of the 

goal or the plan, and the habit to generalise whenever possible. 

 

 Average and low-achieving students might approach mathematical 

investigation differently from the high-achieving students in the present study. 

Similarly, students at different age groups might engage in the investigation 

processes differently from the Secondary 2 students in this research. Thus a 

suggestion for further research is to study the similarities and differences in 

the investigation processes across students of different age groups and with 

academic achievements. 
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 Since it was found that formal proofs involving algebra were beyond the high-

achieving Secondary 2 students in this study, a suggestion for further research 

is to study the nature and development of formal proofs in mathematical 

investigation by involving high-achieving Upper Secondary students. 

 

 Tanner (1989) observed that group work and discussion during investigation 

had helped the students to generate and test ideas, and to practise the 

communication of ideas which would force them to clarify and redefine their 

ideas if necessary. Thus a suggestion for further research is to study the effect 

of group work or pair work on the development of investigation processes. 

 

 Research has suggested that affect, which includes beliefs and attitudes, plays 

an important role in a student’s learning. Many studies have found that a 

positive correlation between attitude and achievement in mathematics 

(McLeod, 1992). Schoenfeld (1985) has also conducted some studies to 

suggest that students’ beliefs could also influence their problem-solving 

behaviour. Thus a suggestion for further research is to examine the effect of 

students’ affective variables on the investigation processes and outcomes. 
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9.4 EPILOGUE 

 

Although mathematical investigation is important in many school curricula and there 

are a lot of resources on investigation, there are very few empirical studies on the 

thinking processes that students engage in when they attempt open investigative tasks. 

Therefore, the present study has contributed to current research on investigation by 

opening a window into the 10 students’ minds to glimpse the nature of their cognitive 

and metacognitive processes during mathematical investigation, and by suggesting 

how some of these processes could be developed in the classroom. 
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APPENDIX A: INITIAL SMALL STUDY TEST INSTRUMENT 
 
This appendix shows the two tasks for a small study involving a class of pre-service teachers 
as described in Section 3.3. The purpose was to fine-tune the test instrument for the initial 
exploratory study. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Task 1 
 
Natural numbers are positive whole numbers: 1, 2, 3, 4, … 
 
Polite numbers are natural numbers that can be expressed as the sum of consecutive 
natural numbers. For example, 

  9 = 2 + 3 + 4 
11 = 5 + 6 
18 = 3 + 4 + 5 + 6. 

Investigate. 
 
Questions: Write down your honest thoughts and feelings when you first see this 

question. Have you seen this question before? Do you know what to 
investigate? If you don’t know what to investigate, what do you do? If 
you know what to investigate, start investigating now. 

 
Note: It is ok if you don’t know what to do. You will not get a poorer grade just 

because you write down you don’t know what to do. Just be honest. 

Task 2 
 
Natural numbers are positive whole numbers: 1, 2, 3, 4, … 
 
Polite numbers are natural numbers that can be expressed as the sum of consecutive 
natural numbers. For example, 
 

  9 = 2 + 3 + 4 
11 = 5 + 6 
18 = 3 + 4 + 5 + 6. 

 
Which numbers are polite? 
 
Questions: Do you know how to start if the task is phrased this way? How do you go 

about finding the answer? Write down what you are thinking when you 
try to solve this problem. We are interested to find out how you try to 
solve the problem and why you try to solve it in this way. For example, 
you can write, “I suddenly think of trying out some examples to see if I 
can see any pattern…” and then you show your working to try out. 

 
Note: We are also interested in your draft working as well. It is ok if you write 

down some working to solve the problem but then you get stuck halfway. You 
will not get a poorer grade just because you write this down. The question will 
then be, “What are you going to do next?” 
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APPENDIX B: EXPLORATORY STUDY TEST INSTRUMENT 
 
This appendix shows the three tasks for the initial exploratory study described in Section 3.3. 
Since this test instrument was not used for the main study, only the tasks (but not the 
instructions for students and invigilators, the questionnaire for the survey, and the 
retrospective interview schedule) are shown here due to space constraint. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Mathematical Investigative Task 1: Powers of a Number 
 
95 means 9 multiplied by itself 5 times, i.e. 95 = 9  9  9  9  9 = 59 049. 
Powers of 9 are 91, 92, 93, 94, 95, 96, … etc. 
Investigate the powers of 9. 
 
For example, you can investigate the following or you can pose your own questions: 
(a) Find as many patterns as you can about the powers of 9. 
(b) Explain why these patterns occur. 
(c) Do these patterns occur for powers of other numbers? 

Mathematical Investigative Task 2: Polite Numbers 
 
Natural numbers are positive whole numbers: 1, 2, 3, 4, … 
Polite numbers are natural numbers that can be expressed as the sum of two or more 
consecutive natural numbers. For example, 
 

  9 = 2 + 3 + 4 = 4 + 5 
11 = 5 + 6 
18 = 3 + 4 + 5 + 6. 

 
Investigate. 

Mathematical Investigative Task 3: Basketball Tournament 
 
In a basketball tournament, each team must play against every other team once. 
(a) How many matches will there be if there are 20 teams in the tournament? 
(b) What else do you want to investigate? When you pose a question to investigate, 

write it down first. 
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APPENDIX C: OUTLINES OF FAMILIARISATION LESSON 
AND DEVELOPING LESSONS 

 
Table C1 shows the outline and purpose of each lesson for the teaching experiment (see 
Section 3.6.3a for more details). Lesson 1 was the familiarisation lesson, and Lessons 2 to 6 
were developing lessons. Each lesson lasted two hours. The detailed investigative tasks are 
given in Appendix D and the instructional strategies are given in Section 3.6.3(b). 
 

Table C1  Outlines of Familiarisation Lesson and Developing Lessons 
 

Lesson Tasks Purpose Outline of Lesson 

1  Task 1: Powers 
of a Number 

 Task 2: 
Handshakes 

To familiarise students with 
what to do during mathematical 
investigation; to make students 
aware that they can generalise; 
and to teach students how to 
think aloud for the pretest 

Students were taught what to do 
when given a task that ended 
with the word ‘Investigate’: they 
were taught to search for any 
pattern for Type A tasks and to 
pose specific problems to solve 
for Type B tasks; in particular, 
they were taught that they could 
change the given in Type B tasks 
to generalise, but it was not 
emphasised that they should 
generalise whenever possible; 
the students also practised 
thinking aloud during 
investigation 

Pretest  Pretest Task 1: 
Happy 
Numbers  

 Pretest Task 2: 
Toast 

The first task was to find out 
whether the students knew how 
to search for any pattern; the 
second task was to find out 
whether the students knew how 
to pose specific problems to 
solve and to generalise whenever 
possible 

Each student was videotaped 
separately while they thought 
aloud during the pretest 

2  Task 3: Happy 
Numbers 
(same as 
Pretest Task 1) 

 Task 4: Toast 
(same as 
Pretest Task 2) 

Focus was on the processes for 
understanding the task, and what 
students could have investigated 
for their pretest tasks: what were 
some patterns for Pretest Task 1 
and how to generalise for Pretest 
Task 2 

Students were reminded of the 
strategies for understanding 
textbook questions, e.g. read the 
task carefully, re-read or 
rephrase task, highlight key 
information, and visualise given 
information; they were taught a 
new process: try example to 
understand Type A tasks 

3  Task 5: Magic 
Trick 

 Task 6: 
Amazing Race 

Focus was on developing 
students’ problem-posing 
processes and to convince them 
that it was alright to pose a 
difficult problem that they may 
not be able to solve; and on 
analysing the feasibility of their 
goal or problem 

Students were taught to pose 
specific problems for both types 
of tasks, but focus was on posing 
problems for Type B tasks, since 
students were expected to search 
for any pattern for Type A tasks; 
they were also taught to analyse 
whether the problem was too 
easy and so not worth pursuing, 
or whether it was too difficult to 
pursue 
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Lesson Tasks Purpose Outline of Lesson 

4  Task 7: 
Squares 

 Task 8: 
Palindromic 
Numbers 

Focus was on developing 
students’ problem-solving 
heuristics, especially, 
specialising to search for 
patterns (conjecturing) and using 
reasoning to solve problems 
which may result in the 
formulation of conjectures; and 
on how to regulate their own 
investigation using some 
metacognitive processes 

Students were taught to 
specialise systematically to 
search for patterns, and to use 
other heuristics such as 
reasoning to solve problems or 
to formulate conjectures; they 
were also taught to analyse the 
feasibility of their plan of attack 
(specialising, using other 
heuristics, conjecturing) to see 
whether it was worth pursuing, 
and to monitor their own 
progress every 5 minutes or so 

5  Task 9: Chords 
and Regions 

 Task 10: Tiles 

Focus was on developing 
students’ justifying processes; 
(Task 9 was a good example to 
show that an obvious observed 
pattern was not the underlying 
pattern); developing the habit to 
regulate their own investigation; 
and to let students practise 
thinking aloud for the posttest 

Students were taught that certain 
results were actually conjectures 
to be proven or refuted; how to 
test conjectures using naïve 
testing; how to justify 
conjectures using a non-proof 
argument or a formal proof; how 
to analyse the feasibility of their 
justifying plan to see whether it 
was worth pursuing; and to 
develop the habit of monitoring 
their own progress; students also 
practised thinking aloud during 
investigation 

6  Task 11: GST 
and Discount 

 Task 12: Polite 
Numbers 

Focus was on developing in 
students the habit to generalise 
whenever possible and to extend 
the task; what to do when they 
were stuck, and in particular, the 
need to incubate; to develop the 
habit of checking their working 
and reviewing their solution; and 
to let students practise thinking 
aloud for the posttest 

Students were taught they should 
always extend Type B tasks to 
generalise whenever possible; to 
analyse their plan of attack when 
they were stuck and to incubate 
if necessary; to occasionally 
check their working step by step, 
or by working backwards, or by 
examining whether the answer 
was reasonable or logical; to 
always review their solution 
after solving a problem to see if 
it had met the goal of the task, to 
evaluate the efficacy of their 
method of solution, and to look 
for alternative methods; students 
also practised thinking aloud 
during investigation 

Posttest  Posttest Task 
1: Kaprekar 
Sequences 

 Posttest Task 
2: Sausage 

The first task was to find out 
whether the students knew how 
to search for any pattern; the 
second task was to find out 
whether the students knew how 
to pose specific problems to 
solve, including the habit to 
generalise 

Each student was videotaped 
separately while they thought 
aloud during the posttest 
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APPENDIX D: INVESTIGATIVE TASKS FOR LESSONS, 
PRETEST AND POSTTEST 

 
This appendix shows the tasks used in the lessons and the two tests. Further elaboration of the 
tasks and the rationales for choosing them are given in Section 3.6.4. 
 
Lesson 1 (Familiarisation Lesson): 
 

 Investigative Task 1: Powers of a Number 
 
35 means 3 multiplied by itself 5 times, i.e. 35 = 3  3  3  3  3 = 243. 
Powers of 3 are 31, 32, 33, 34, 35, 36, … etc. Investigate. 
 

 Investigative Task 2: Handshakes 
 

At a workshop, each of the 20 participants shakes hand once with each of the other 
participants. Investigate. 

 
Pretest 
 

 Pretest Investigative Task 1: Square Each Digit and Add 
 

Choose any number. Square each digit of the number and add to obtain a new 
number. Repeat this process for the new number until you have a good reason to stop. 
Investigate. 

 
 Pretest Investigative Task 2: Toast 

 
Three slices of bread are to be toasted under a grill. The grill can hold exactly two 
slices. Only one side of each slice is toasted at a time. It takes 30 seconds to toast one 
side of a slice of bread, 5 seconds to put a slice in or to take a slice out, and 3 seconds 
to turn a slice over. Investigate. 

 
Lesson 2 (Developing Lesson): 
 

 Investigative Task 3: Square Each Digit and Add 
 

[Same as Pretest Investigative Task 1] 
 

 Investigative Task 4: Toast 
 

[Same as Pretest Investigative Task 2] 
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Lesson 3 (Developing Lesson): 
 

 Investigative Task 5: Magic Trick 
 

Choose any three-digit number. Reverse the digits to get another number. Subtract the 
smaller number from the larger number to obtain another number. Add this number to 
its reverse to obtain a final number. Investigate. 

 
 Investigative Task 6: Amazing Race 

 
In a 100-metre race, Ali beats Bernard by 10 metres. The two boys plan to have 
another race (where both boys will still run at the same rate as before). Bernard 
suggests that he should be given a head start: he wants to start 10 metres in front of 
the start line while Ali still starts at the starting line. However, Ali disagrees. He 
suggests that he (Ali) will start 10 metres behind the start line while Bernard still 
starts at the starting line. Investigate. 

 
Lesson 4 (Developing Lesson): 
 

 Investigative Task 7: Squares 
 

The diagram below shows a 3 × 3 square grid. There are many squares inside this 
grid. Investigate. 

 
   

   

   

 
 Investigative Task 8: Palindromic Numbers 

 
Palindromic numbers read the same forwards and backwards, e.g. 33, 828, 1441 and 
71617. Someone claims that all 4-digit palindromic numbers are divisible by a certain 
number. Investigate. 

 
Lesson 5 (Developing Lesson): 
 

 Investigative Task 9: Chords and Regions 
 

The figure below shows a circle with 5 points on its circumference. Each point is 
joined to every other point by a line (called a chord). Notice that no three chords 
intersect at the same point inside the circle. Investigate. 
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 Investigative Task 10: Tiles 
 

The diagram below shows a 4-by-3 rectangular table covered with square tiles and a 
crack along its diagonal. The crack affects 6 squares which have to be replaced. 
Investigate. 
 

    

    

    

 
 

Lesson 6 (Developing Lesson): 
 

 Investigative Task 11: GST and Discount 
 

There is a 10% discount on an item that costs $100 but there is also a 7% GST. The 
salesperson wants to charge your friend the GST first before giving him or her the 
discount. However, your friend disagrees. He or she insists that the salesperson gives 
the discount first before charging the GST. Investigate. 

 
 Investigative Task 12: Polite Numbers 

 
Natural numbers are positive whole numbers: 1, 2, 3, 4, … 
Polite numbers are natural numbers that can be expressed as the sum of two or more 
consecutive natural numbers. For example, 
 

  9 = 2 + 3 + 4 = 4 + 5 
11 = 5 + 6 
18 = 3 + 4 + 5 + 6. 

 
Investigate. 

 
Posttest 
 

 Posttest Investigative Task 1: Add Sum of Digits to Number 
 

Choose any number. Add the sum of its digits to the number itself to obtain a new 
number. Repeat this process for the new number and so forth. Investigate. 

 
 Posttest Investigative Task 2: Sausages 

 
I need to cut 12 identical sausages so that I can share them equally among 18 people. 
Investigate. 
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APPENDIX E: TASK ANALYSES FOR THE PRETEST AND 
POSTTEST ITEMS 

 
This appendix contains the task analyses for the two investigative tasks used in the pretest and 
the two investigative tasks used in the posttest. Secondary 2 students are not expected to 
discover the more complicated patterns or to justify conjectures using complicated formal 
proofs. But the task analyses should be more comprehensive, i.e. they will include the more 
complicated patterns and formal proofs if applicable. 
 

Task Analysis for Pretest Task 1 (Happy Numbers29) 
 
 
 
 
 
 
 
 
 
Stage 1: Understanding the Task (U) 
 
 Students should try an example to make sense of the task. For example: 

                 28  
         22 + 82 =   68 
         62 + 82 = 100 
  12 + 02 + 02 =     1 

 Possible mistakes or problems in understanding the task: 
 misinterpret the ‘new number’ in the task statement to mean ‘choosing a completely 

new number’, and thus does not repeat the process for the new number; 
 does not know how to add the squares of the digits for a one-digit number. 

 
Stage 2: Problem Posing (P) 
 
 Students should pose the general problem of searching for any pattern. 
 Students could also pose specific problems to investigate. The following shows a list of 

trivial and non-trivial problems. The classification of a problem as trivial or non-trivial 
has been subjected to an inter-coder reliability test in Section 5.4. 

 Some trivial problems: 
 Is there any pattern in consecutive new numbers (i.e. consecutive terms of the 

sequence)? 
 Is there any pattern in the differences between consecutive new numbers? 
 Is there any pattern in the last digit of consecutive new numbers? 

 Some non-trivial problems: 
 Is there a general formula to obtain the next term of the sequence? 
 Is there a general formula for a happy number or a sad number? 
 Are there more happy numbers than sad numbers? 
 Are there infinitely many happy numbers and sad numbers? 
 Is the sum of two happy numbers happy or sad? 
 Is the product of two happy numbers happy or sad? 

                                                 
29  The term ‘Happy Numbers’ will be used in this thesis for ease of discussion, but the students in the 

present study were not expected to know the term. In fact, the heading for this task in the pretest was 
‘Square Each Digit and Add’. 

Pretest Investigative Task 1: Square Each Digit and Add 
 
Choose any number. Square each digit of the number and add to obtain a new number. 
Repeat this process for the new number until you have a good reason to stop. 
Investigate. 



 
 

487

Stage 3: Specialising (S) 
 
 Students should try examples systematically to search for patterns, instead of using other 

heuristics. 
 Students should discover four shortcuts when specialising: 

 if a number appears in a zapping30 sequence, there is no need to use that number as a 
starting number to investigate, e.g. if the student has found the zapping sequence 28, 
68, 100, 1, ... , there is no need to investigate what will happen if the starting number 
is 28, 68, 100 or 1, because all these numbers will belong to the same sequence31; 

 if a number appears in a zapping sequence, there is no need to investigate when will 
happen for another number obtained by changing the order of the digits of the former 
number, e.g. the numbers 123, 132, 213, 231, 312 and 321 will all give the same 
number in the next zapping; 

 if a number appears in a zapping sequence, there is no need to investigate when will 
happen for another number obtained by adding zeros to the former number, e.g. the 
numbers 12, 102, 120 and 1002 will all give the same number in the next zapping; 

 if a number in a zapping sequence appears in another zapping sequence, then the two 
sequences can be merged at that number to investigate together. 

 
Stage 4: Conjecturing (C) 
 
 For ease of discussion in this thesis, the following shows two types of patterns. 

 
Pattern 1: Some zapping sequences will terminate at the number 1, e.g. 

                  28  
         22 + 82 =   68 
         62 + 82 = 100 
  12 + 02 + 02 =     1 
          12 =     1 

All the numbers in the zapping sequence, 28, 68, 100 and 1, are called Happy 
Numbers. The following shows a list of happy numbers less than or equal to 
100 for easy reference: 1, 7, 10, 13, 19, 23, 28, 31, 32, 44, 49, 68, 70, 79, 82, 
86, 91, 94, 97, 100. 

 
Pattern 2: Some zapping sequences will end in the same loop. The following shows 

some numbers in such sequences. These numbers are called Sad Numbers. 
  

             15    26        65    18    33 

                        

             62    40        61    56 

                           

     11    2    4    16    37    58 

                                                

              20   42   145   89 

              

           154 

 
                                                 
30  The process of adding the square of each digit of a number is called ‘zapping’, and the sequence is 

called a ‘zapping sequence’. The students in the present study were not expected to know these 
terms or other technical terms such as ‘happy number’ and ‘sad number’. 

31  The reader may think that this is obvious, but it was not obvious to some students in this study. 
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 The following shows a list of trivial and non-trivial conjectures. The classification of a 
pattern or conjecture as trivial or non-trivial has been subjected to an inter-coder 
reliability test in Section 5.4. Conjectures 1-3 are trivial while Conjectures 4-9 are non-
trivial. Conjectures 4, 8 and 9 are false, while Conjectures 1-3, 5 and 7 are true. I do not 
know whether Conjecture 6 is true or false. This is a good example to illustrate that it is 
not possible for the teacher to know everything in mathematical investigation. 

 
Conjecture 1: If a number in a zapping sequence is happy or sad, then all the numbers 

in the same sequence are also happy or sad respectively, e.g. 28  68  
100  1, so all the numbers, 28, 68, 100 and 1, are happy numbers. 
[Trivial; true] 

 
Conjecture 2: The rearrangement of the digits of a number does not matter in 

determining whether the number is happy or sad, e.g. 28 and 82 are both 
happy. [Trivial; true] 

 
Conjecture 3: The insertion or removal of any number of zeros anywhere in a number 

does not affect whether the number is happy or sad, e.g. 47, 407 and 
7040 are all sad. [Trivial; true] 

 
Conjecture 4: When two zapping sequences first merge at the same number, the 

preceding terms before this number in the two sequences will be 
different numbers but with the same unique combination, i.e. the 
difference in the preceding terms will just be rearrangements of the digits 
and/or insertion of zeros anywhere in the terms. For example, if two 
zapping sequences merge at the same number 100, then the preceding 
terms will be one of these numbers: 68, 86, 608, 680, 806, 860, 6008, 
etc. [Non-trivial; false] 

 
Conjecture 5: A positive integer is either a happy or a sad number. [Non-trivial; true] 
 
Conjecture 6: There are more sad numbers than happy numbers. [Non-trivial] 
 
Conjecture 7: There are infinitely many happy numbers. Similarly, there are infinitely 

many sad numbers. [Non-trivial; true] 
 
Conjecture 8: The sum of two happy numbers is always happy. Similarly, the sum of 

two sad numbers is always sad. [Non-trivial; false] 
 
Conjecture 9: The product of two happy numbers is always happy. Similarly, the 

product of two sad numbers is always sad. [Non-trivial; false] 
 
Stage 5: Justifying (J) 
 
 The following shows how to prove or refute the above conjectures. Secondary 2 students 

are not expected to produce the more difficult proofs, such as the one for Conjecture 5. 
 

Conjecture 1: This is clearly true but we can still use a simple argument. Suppose a 
number in a zapping sequence is happy. Then the sequence will 
terminate at the number 1. Thus all the numbers in this sequence will be 
happy. A similar argument applies for sad numbers. 

 
Conjecture 2: The following shows two different kinds of justification. 
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Non-Proof Argument: 
 
The rearrangement of the digits of a number does not matter in 
determining whether the number is happy or sad because the sum of the 
squares of digits does not depend on the order of the digits. 
 
Formal Proof:  
 
Let the digits of a number x be a1, a2, a3, … an, where ai is the i-th digit 
of the term. Then the next term in the zapping sequence will be: 
 

a1
2 + a2

2 + a3
2 + … + an

2. 
 
Consider another number y with the same digits as x but arranged in a 
different order. Then the next term in the sequence will still be equal to: 

 
a1

2 + a2
2 + a3

2 + … + an
2. 

 
Thus if the next term a1

2 + a2
2 + a3

2 + … + an
2 is happy or sad, then 

Conjecture 1 (which is a proven result) will imply that both x and y will 
be happy or sad respectively. 
Therefore, the rearrangement of the digits of a number does not matter in 
determining whether the number is happy or sad. 
 

Conjecture 3: The insertion or removal of any number of zeros anywhere in a number 
does not affect whether the number is happy or sad because the squares 
of zeros, which will still be zeros, will not affect the sum of the squares 
of the digits. Students can use a formal proof to justify this conjecture, 
which will be similar to the formal proof for Conjecture 2. 
 

Conjecture 4: This conjecture is false. A counter example is 68 and 5555. Both 
numbers will give the same number 100 in the next zap. 

 
Conjecture 5: If a number n has m digits, then the next term in the zapping sequence 

will be at most 92 × m, i.e. 81m. 
If m ≥ 4, then n ≥ 10m–1 > 81m (to prove that 10m–1 > 81m for m ≥ 4, we 
can show that the function y = 10x–1  81x is strictly increasing for x ≥ 4 

by showing that 0
dx

dy
 for x ≥ 4). 

This means that if a term of a zapping sequence has at least 4 digits, the 
next term will be strictly less than this term, i.e. the sequence is strictly 
decreasing until it reaches a term that has less than 4 digits. 
 
Now consider a 3-digit number. The largest sum of the squares of the 
digits is 81 × 3 = 243, which occurs for the number 999. This means that 
if n is a 3-digit number, the next term will be less than or equal to 243. 
Now consider a 3-digit number less than or equal to 243. The largest 
sum of the squares of the digits is 163, which occurs for the number 199. 
This means that if n is a 3-digit number less than or equal to 243, the 
next term will be less than or equal to 163. 
Now consider a 3-digit number less than or equal to 163. The largest 
sum of the squares of the digits is 107, which occurs for the number 159. 
This means that if n is a 3-digit number less than or equal to 163, the 
next term will be less than or equal to 107. 
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Now consider a 3-digit number less than or equal to 107. The largest 
sum of the squares of the digits is 50, which occurs for the number 107. 
This means that if n is a 3-digit number less than or equal to 107, the 
next term will be less than or equal to 50. 
The above shows that if a term of a zapping sequence has 3 digits, the 
next term will be less than this term, i.e. the sequence is strictly 
decreasing until it reaches a term that has less than 3 digits. In other 
words, no matter what the starting number is, the zapping sequence is 
strictly decreasing until it drops below 100. 
Although a two-digit number may produce a three-digit number in the 
next term, from the above argument, the three-digit number will start 
decreasing to a two-digit number again. 
 

Now, using exhaustive listing, a number that is less than 100 will either 
end up with the number 1, or go into the same loop described in Stage 4. 
Hence, a positive integer is either a happy or a sad number. 
 

Conjecture 6: Although there are more sad numbers than happy numbers in the first 
100 positive integers (by exhaustive listing), I do not know how to prove 
or refute this conjecture. This is a good example to illustrate that it is not 
possible for the teacher to know everything in mathematical 
investigation. 

 
Conjecture 7: There are infinitely many happy numbers because zeros can be inserted 

anywhere in any happy number, and the resulting numbers will still be 
happy. A similar argument applies for sad numbers. 

 
Conjecture 8: This conjecture is false. Counter examples: The sum of the two happy 

numbers, 7 and 10, is 17, which is sad32; while the sum of the two sad 
numbers, 3 and 4, is 7, which is happy. (On the other hand, the sum of 
two happy numbers is not always sad, e.g. 10 + 13 = 23, which are all 
happy numbers; while the sum of two sad numbers is not always happy, 
e.g. 2 + 3 = 5, which are all sad numbers.) 

 
Conjecture 9: This conjecture is false. Counter examples: The product of the two happy 

numbers, 7 and 23, is 161, which is sad; while the product of the two sad 
numbers, 2 and 5, is 10, which is happy. (On the other hand, the product 
of two happy numbers is not always sad, e.g. 7  10 = 70, which are all 
happy numbers; while the product of two sad numbers is not always 
happy, e.g. 2  3 = 6, which are all sad numbers.) 

 
Stage 6: Generalising (G) 
 
 Conjectures 1-3,5-7 will lead to a generalisation if they are proven. Conjectures 4, 8 and 9 

are not general results because they are false. 
 
Stage 7: Checking (R) 
 
 Students need to check: 

 all calculations for repeating the process are correct; 
 the arguments used in the proving of conjectures are sound. 

                                                 
32  For ease of reference, happy numbers less than or equal to 100 are: 1, 7, 10, 13, 19, 23, 28, 31, 32, 

44, 49, 68, 70, 79, 82, 86, 91, 94, 97, 100. 
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 Students have three possibilities to choose from at this juncture: 
 they can search for more patterns without extending the task, e.g. if they have found 

and justified Conjecture 1, they can search for more patterns; or they could pose the 
specific problems listed in Stage 2 (go to Stage 2); 

 they can extend the task by changing the given (go to Stage 8); 
 they can stop, i.e. finish the investigation. 

 
Stage 8: Extension (E) 
 
 Students are not expected to extend the task within the 30 minutes given for the test 

because there are many underlying patterns to observe, although some students may 
extend the task. Moreover, extension of a Type A task usually ends up with a completely 
new task with entirely different patterns. 

 The following shows a list of possible extensions for longer investigation: 
 Find the difference (instead of the sum) of the squares of the digits of a number. 
 Find the product of the squares of the digits of a number. 
 Find the sum of the cubes of the digits of a number. 
 Find the sum of the n-th powers of the digits of a number. 
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Task Analysis for Pretest Task 2 (Toast) 
 
 
 
 
 
 
 
 
 
 
Stage 1: Understanding the Task (U) 
 
 Students should highlight key words such as the number of slices to be toasted, the 

number of slices the grill can hold, and all the given timings. 
 Possible mistakes or problems in understanding the task: 

 need to subscribe to the assumption that the actions, such as putting in, turning over, 
and taking out, can be performed on two slices at the same time since a person has 
two hands (this is called the First or Usual Interpretation) 

 if the students think that only one action can be performed at a time, they need to take 
into account that the first slice will have been toasted for 5 seconds by the time the 
second slice is put inside, etc. (this is called the Second or Alternative Interpretation) 

 unless the students mention that the grill will be turned on only after the second slice 
is put inside the grill, and the grill will be turned off after toasting the two slices 
before taking out the first slice, etc., with the assumption that the time taken to turn 
the grill on or off is negligible (this is called the Third or Possible Interpretation) 

 a common mistake for performing one action at a time is to ignore the fact that the 
first slice will have been toasted for 5 seconds by the time the second slice is put 
inside the grill (this is called the Fourth or Wrong Interpretation), unless there is 
mention of switching the grill on or off as in the Third Interpretation. 

 
Stage 2: Problem Posing (P) 
 
 Students need to pose specific problems to solve. The following shows a list of possible 

specific problems, which have been classified as trivial or non-trivial (the classification 
has passed the inter-coder reliability test as discussed in Section 5.4). P4 is the intended 
problem (see Section 2.2.3b for a brief explanation of intended problems). 
 
 Problem 1 (P1): Find how to toast the three slices of bread. [Trivial] 

 
 Problem 2 (P2): Find the time taken to toast the three slices of bread. [Trivial] 

 
 Problem 3 (P3): Find a few methods to toast the three slices of bread. [Non-Trivial] 

 
 Problem 4 (P4): Find the shortest time to toast the three slices of bread. [Non-Trivial; 

Intended Problem] 
 
Stage 3: Specialising and Using Other Heuristics (S/H) 
 
 Students should use other heuristics, such as reasoning, to solve the problems posed in 

Stage 2. They should consider various methods to toast the bread, which will give a 
different total toasting time depending on which interpretation that is used (see Stage 1), 
although the steps for the various methods are essentially the same. The timings shown 
below for the various methods are for the First or Usual Interpretation. 

Pretest Investigative Task 2: Toast 
 
Three slices of bread are to be toasted under a grill. The grill can hold exactly two 
slices. Only one side of each slice is toasted at a time. It takes 30 seconds to toast one 
side of a slice of bread, 5 seconds to put a slice in or to take a slice out, and 3 seconds 
to turn a slice over. Investigate. 
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 Toasting Method A (Usual Method): Put two slices in, turn them over and then take 
them out before putting in the last slice. 
 

Action Time Taken 
Put in the first two slices 5 s 
Toast one side of the first two slices 30 s 
Turn over the first two slices 3 s 
Toast the other side of the first two slices 30 s 
Take out the first two slices 5 s 
Put in the third slice 5 s 
Toast one side of the third slice 30 s 
Turn over the third slice 3 s 
Toast the other side of the third slice 30 s 
Take out the third slice 5 s 
Total Toasting Time 146 s 

 
 Toasting Method B (Shortest Method): Put two slices in; turn one slice over but take 

out the other slice to put the third slice in33; then take out the first slice that is toasted 
on both sides and put in the second slice that is toasted on one side, and turn over the 
third slice. This method will give the shortest toasting time: 113 seconds. 
 

Concurrent Action Time Taken Concurrent Action Time Taken 
Put in Slice 1 5 s Put in Slice 2 5 s 
Toast Slice 1 Side X 30 s Toast Slice 2 Side X 30 s 
Turn over Slice 1 3 s Take out Slice 2 5 s 
Toast Slice 1 Side Y 30 s Put in Slice 3 5 s 
Take out Slice 1 5 s Toast Slice 3 Side X 30 s 
Put in Slice 2 5 s Turn over Slice 3 3 s 
Toast Slice 2 Side Y 30 s Toast Slice 3 Side Y 30 s 
Take out Slice 2 5 s Take out Slice 3 5 s 
Total Toasting Time 113 s Total Toasting Time 113 s 

 
 Toasting Method C (Longest Method)34: Toast one slice at a time. 

 

Action Time Taken 
Put in the first slice 5 s 
Toast one side of the first slice 30 s 
Turn over the first slice 3 s 
Toast the other side of the first slice 30 s 
Take out the first slice 5 s 
Put in the second slice 5 s 
Toast one side of the second slice 30 s 
Turn over the second slice 3 s 
Toast the other side of the second slice 30 s 
Take out the second slice 5 s 
Put in the third slice 5 s 
Toast one side of the third slice 30 s 
Turn over the third slice 3 s 
Toast the other side of the third slice 30 s 
Take out the third slice 5 s 
Total Toasting Time 219 s 

                                                 
33  It is assumed that it is possible to turn a slice (which takes only 3 s) and start toasting, when the 

other slice is being taken out and the third slice put in (which takes a total of 10 s). Even if this 
assumption is not valid, meaning that the third slice has to be put in before the turned over slice can 
start toasting, Toasting Method B will still give the least total toasting time at 120 s. 

34  This is the longest method if no time is wasted doing nothing at all. Some students in the present 
study actually used Toasting Method C. 



 
 

494

Stage 4: Conjecturing (C) 
 
 Students can solve Problems 1-3 using either Toasting Method A, B or C without forming 

any conjecture. 
 Students need to form a conjecture for Problem 4 that Toasting Method B will give the 

shortest toasting time. This conjecture is non-trivial. 
 
Stage 5: Justifying (J) 
 
 For Problem 4, students need to justify the conjecture that Toasting Method B will give 

the shortest toasting time. They can use a non-proof argument: 
 

Proof of Conjecture that Toasting Method B will give the shortest toasting time 
 

At the start, there is a need to put in both slices so that no space in the grill will be wasted 
toasting nothing. In other words, Toasting Method C will waste the toasting space. 
After both slices are toasted on one side, there are only 3 possibilities: 
 
(i)  turn both slices over (Toasting Method A) 
(ii)  turn one slice over and take out the other slice (Toasting Method B) 
(iii) take out both slices. 
 
Possibility (iii) will take a longer toasting time than Possibility (i), which uses Toasting 
Method A, because the two slices need to be put back into the grill again. 
Comparing the total toasting time for Possibility (i) using Toasting Method A, and for 
Possibility (ii) using Toasting Method B, it can be shown that Method B will give the 
shortest toasting time at 113 seconds. 

 
Stage 6: Generalising (G) 
 
 The solutions of Problems 1-4 are not general results. Generalisation can take place later 

if the students extend the task to generalise (see Stage 8). 
 
Stage 7: Checking (R) 
 
 Students need to check: 

 all calculations of the time taken are correct; 
 the argument used in the proving of the conjecture is sound. 

 Students have three possibilities to choose from at this juncture: 
 they can pose more problems to solve without extending the task, e.g. if they have 

posed only Problem 1, they can now pose Problem 2, 3 or 4 to solve (go to Stage 2) 
 they can extend the task by changing the given (go to Stage 8) 
 they can stop, i.e. finish the investigation, although for a Type B task like this task, 

they are expected to extend to generalise. 
 
Stage 8: Extension (E) 
 
 Students need to extend the task by changing the given in order to generalise. The 

following shows a list of possible problems to extend, which have been classified as 
trivial or non-trivial (the classification has passed the inter-coder reliability test as 
discussed in Section 5.4). Both E1 and E2 are the intended extensions, where E2 is at a 
higher level of generalisation than E1. 

 



 
 

495

 Extension 1 (E1): Find the shortest time needed to toast n slices if the grill can hold 
exactly two slices. [Non-trivial; Intended Extension] 

 
 Extension 2 (E2): Find the shortest time needed to toast n slices if the grill can hold 

exactly m slices. [Non-Trivial; Intended Extension] 
 
 Students can also extend the tasks by changing other variables, such as the timings given 

in the task statement. However, changing the timings will affect Toasting Method A and 
Toasting Method B if the time taken to turn a slice over is more than the total time taken 
to take out a slice and to put in another slice, but this is not realistic. 

 
Stage 3: Specialising and Using Other Heuristics (S/H) 
 
Since students are expected to extend this task by changing the given, then the task analysis 
will continue for another cycle to include some other outcomes. 
 
 Students should go back to Stage 3 to specialise by trying different values for n and / or m 

in order to find a general formula for the shortest toasting time. But for each case of n 
and / or m that they investigate, they still have to use other heuristics to find a toasting 
method that will produce the shortest toasting time. 

 Students may think that they should still use Toasting Method B to produce the shortest 
toasting time for the general case since Method B is the shortest method for toasting 3 
slices of bread. But this really depends on the values of n and m. 

 The following shows the solution for E1 using the First or Usual Interpretation (students 
are not expected to solve E2 within the 30 minutes for the test). 

 
Solution for E1: 

 
Redefine Toasting Method A for toasting two slices of bread only: 
 put in both slices 
 toast one side of both slices 
 turn over both slices 
 toast the other side of both slices 
 take out both slices. 

Therefore, the shortest time needed to toast two slices is 73 s. 
 

Toasting Method B remains the same for toasting three slices of bread, where the shortest 
toasting time is 113 s. 
 
There are two methods to toast n slices of bread in a grill that can hold exactly two slices. 
 
First Method: 

 
 If n is even, toast two slices at a time using Toasting Method A repeatedly, so total 

toasting time = n
2

73
 seconds. 

 If n is odd and n ≠ 1, toast the first three slices using Toasting Method B, and then the 
remaining even number of slices using Toasting Method A repeatedly for two slices 

at a time, so total toasting time =  
2

7

2

73
3

2

73
113  nn . 

 If n = 1, toast using Toasting Method A but applied to one slice only, so total toasting 
time = 73 s (which is the same as n = 2). 
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Second Method (more complicated but will give same timing as First Method): 
 
 If n is even, or if n = 1 or 3, the Second Method is the same as the First Method. 
 If n is odd and n ≥ 5, the Second Method is different. 

 
The following will illustrate the difference between the First Method and the Second 
Method for n = 5 (see shaded slices): 
 
Legend: The 5 slices of bread are numbered 1 to 5. Each slice has two sides: Side X and 

Side Y. So Slice 1X represents Slice 1 Side X will be toasted. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The rationale for the Second Method is at the third stage of toasting where there is another 
possibility: instead of putting in Slice 2 and toasting its second side, put in a totally 
untoasted slice (Slice 4) to toast. This method also minimises the time, but as it turns out, 
both the First Method and the Second Method will give the same total toasting time of 
186 s for n = 5, although the timing for each stage of toasting may be different. Similarly, 
the students can examine other odd values of n and observe that both methods are 
fundamentally the same. 

 
Stage 4: Conjecturing (C) 
 
 For E1 (find shortest time to toast n slices), students are expected to formulate a 

conjecture that the First (or Second) Method will give the shortest toasting time. This 
conjecture is non-trivial. The timings are from Stage 3 First Method above. 
 

 If n is even, shortest toasting time = n
2

73
 seconds. 

 If n is odd and n ≠ 1, shortest toasting time = 
2

7

2

73
n  seconds. 

 If n = 1, shortest toasting time = 73 seconds. 
 
Stage 5: Justifying (J) 
 
 For E1, students need to justify the conjecture formulated in the previous stage. They can 

use a non-proof argument. It is easier to use the First Method than the Second Method 
since the First Method is a straight forward combination of Method A and Method B. 

1X

First Method 

2X

1Y 3X

2Y 3Y

4X 5X

4Y 5Y

Method B 

Method A 

1X

Second Method 

2X 

1Y 3X 

4X 3Y 

4Y 5X 

2Y 5Y 
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Proof of Conjecture that First Method will give the shortest toasting time 
 

As proven earlier, Toasting Method B will give the shortest time to toast 3 slices of bread. 
Using a similar argument, Toasting Method A will give the shortest time to toast 2 slices. 
Therefore, if n is even, a repeated usage of Method A to toast 2 slices at a time will give 

the shortest toasting time of n
2

73
 seconds. 

If n is odd and n ≠ 1, using Method B will give the shortest time to toast the first three 
slices. Then what remains is an even number of slices. So by applying Method A 

repeatedly, we will also get the shortest toasting time, which is 
2

7

2

73
n  seconds. 

If n = 1, there is no way to toast it other than to apply Method A for one slice only, so this 
will also give the shortest toasting time, which is 73 seconds. 

 
Stage 6: Generalising (G) 
 
 The solution for E1 is a general result, thus generalisation will take place if the students 

can solve this extension correctly. The second level of generalisation can be obtained by 
solving LE2. Another level of generalisation can also be obtained by generalising the 
timings given in the task statement. 

 
Stage 7: Checking (R) 
 
 Students need to check: 

 all calculations of the time taken are correct; 
 the argument used in the proving of the conjecture is sound. 

 Students have two possibilities to choose from at this juncture: 
 they can pose more problems to extend the task by changing the given (go to Stage 8); 
 they can stop, i.e. finish the investigation. 
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Task Analysis for Posttest Task 1 (Kaprekar Sequences35) 
 
 
 
 
 
 
 
 
Stage 1: Understanding the Task (U) 
 
 Students should try an example to make sense of the task. For example: 

 
                     28  

 28 + 2 + 8 = 38 
 38 + 3 + 8 = 49 
 49 + 4 + 9 = 62 
 

 Possible mistakes or problems in understanding the task: 
 misinterpret the ‘new number’ in the task statement to mean ‘choosing a completely 

new number’, and thus does not repeat the process for the new number; 
 does not know how to find the sum of the digits for a one-digit number. 

 
Stage 2: Problem Posing (P) 
 
 Students should pose the general problem of searching for any pattern. 
 Students could also pose specific problems to investigate. The following shows a list of 

trivial and non-trivial problems. The classification of a problem as trivial or non-trivial 
has been subjected to an inter-coder reliability test in Section 5.4. 

 Some trivial problems: 
 Is there any pattern in consecutive new numbers (i.e. consecutive terms of the 

sequence)? 
 Is there any pattern in the differences between consecutive new numbers (which are 

the same as the sums of digits of consecutive new numbers)? 
 Is there any pattern in the last digit of consecutive new numbers? 

 Some non-trivial problems: 
 Is there a general formula to obtain the next term of the sequence? 
 Are there numbers that will never appear as the second or subsequent terms of any 

Kaprekar sequence (these are called self numbers)? 
 Can a number appear in two Kaprekar sequences that start with a different self 

number? 
 Is there any pattern in consecutive self numbers? 
 Is there a general formula for self numbers? 
 Are there infinitely many self numbers? 
 

Stage 3: Specialising (S) 
 
 Students should try examples systematically to search for patterns, instead of using other 

heuristics. 

                                                 
35  The term ‘Kaprekar Sequences’ will be used in this thesis for ease of discussion, but the students in 

the present study were not expected to know the term or other technical terms such as ‘self number’. 
In fact, the heading for this task in the posttest was ‘Add Sum of Digits to Number’. 

Posttest Investigative Task 1: Add Sum of Digits to Number 
 
Choose any number. Add the sum of its digits to the number itself to obtain a new 
number. Repeat this process for the new number and so forth. Investigate. 
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 Students should discover two shortcuts when specialising: 
 if a number appears in a Kaprekar sequence, there is no need to use that number as a 

starting number to investigate, e.g. if the student has found the Kaprekar sequence 20, 
22, 26, 34, ... , there is no need to investigate what will happen if the starting number 
is 22, 26 or 34, because all these numbers will belong to the same sequence36; 

 if a number in a Kaprekar sequence appears in another Kaprekar sequence, then the 
two sequences can be merged at that number to investigate together. 

 
 For ease of discussion in Stage 4 onwards, the following shows the first seven Kaprekar 

sequences that start with a self number. There are two types of Kaprekar sequences: Type 
1 (all terms divisible by 3 or 9) and Type 2 (all terms not divisible by 3 or 9). Type 1 
sequences are further divided into Type 1a (all terms divisible by 3 but not by 9) and 
Type 1b (all terms divisible by 9). 

 
 Kaprekar Sequence 1 (Type 2): 1, 2, 4, 8, 16, 23, 28, 38, 49, 62, 70, 77, 91, 101, 103, 

107, 115, 122, 127, 137, 148, 161, 169, 185, 199, 218, ... 
 

 Kaprekar Sequence 2  (Type 1a): 3, 6, 12, 15, 21, 24, 30, 33, 39, 51, 57, 69, 84, 96, 
111, 114, 120, 123, 129, 141, 147, 159, 174, 186, 201, 204, 210, ... 

 
 Kaprekar Sequence 3 (Type 2): 5, 10, 11, 13, 17, 25, 32, 37, 47, 58, 71, 79, 95, 109, 

119, 130, 134, 142, 149, 163, 173, 184, 197, 214, ... 
 

 Kaprekar Sequence 4 (Type 2): 7, 14, 19, 29, 40, 44, 52, 59, 73, 83, 94, 107 [same 
number as 16th term of Kaprekar Sequence 1] 

 
 Kaprekar Sequence 5  (Type 1b): 9, 18, 27, 36, 45, 54, 63, 72, 81, 90, 99, 117, 126, 

135, 144, 153, 162, 171, 180, 189, 207, 216, ... 
 

 Kaprekar Sequence 6 (Type 2): 20, 22, 26, 34, 41, 46, 56, 67, 80, 88, 104, 109 [same 
number as 14th term of Kaprekar Sequence 3] 

 
 Kaprekar Sequence 7 (Type 2): 31, 35, 43, 50, 55, 65, 76, 89, 106, 113, 118, 128, 

139, 152, 160, 167, 181, 191, 202, 206, 214 [same number as 24th term of Kaprekar 
Sequence 3] 

 
Stage 4: Conjecturing (C) 
 
 For ease of discussion in this thesis, the following shows six types of patterns. 

 
 Type 1a ‘Multiples’ Pattern: In a Type 1a sequence, all the terms, all the differences 

between consecutive terms, and all consecutive sums of digits, are divisible by 3 but 
not by 9. 
 

 Type 1b ‘Multiples’ Pattern: In a Type 1b sequence, all the terms, all the differences 
between consecutive terms, and all consecutive sums of digits, are divisible by 9. 
 

 Type 2 ‘Multiples’ Pattern: In a Type 2 sequence, all the terms, all the differences 
between consecutive terms, and all consecutive sums of digits, are not divisible by 3 
or 9. 

 

                                                 
36  The reader may think that this is obvious, but it was not obvious to some students in this study. 
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 Type 1a ‘Digital Roots’ Pattern: The digital roots 37  of the differences between 
consecutive terms of a Type 1a sequence will repeat with a period of 2, i.e. they will 
alternate between 3 and 6. 
 

 Type 1b ‘Digital Roots’ Pattern: The digital roots of the differences between 
consecutive terms of a Type 1b sequence will always be equal to 9. 

 
 Type 2 ‘Digital Roots’ Pattern: The digital roots of the differences between 

consecutive terms of a Type 2 sequence will repeat with a period of 6, i.e. they will 
alternate among 1, 2, 4, 8, 7 and 5 in this order. To illustrate this for Kaprekar 
Sequence 1 (Type 2) in Stage 3 above, the first 24 differences between consecutive 
terms are listed below and the number in [ ] is the digital root of the difference 
between consecutive terms, e.g. 13[4] means that the digital root of 13 is 4. 
 
  1 [1],   2 [2],   4 [4], 8 [8],   7 [7],   5 [5], 
10 [1], 11 [2], 13 [4], 8 [8],   7 [7], 14 [5], 
10 [1],   2 [2],   4 [4], 8 [8],   7 [7],   5 [5], 
10 [1], 11 [2], 13 [4], 8 [8], 16 [7], 14 [5]... 

 
 The following shows a list of trivial and non-trivial conjectures. The classification of a 

conjecture as trivial or non-trivial has been subjected to an inter-coder reliability test in 
Section 5.4. Conjectures 1, 3-5 are trivial while Conjectures 2, 6-9 are non-trivial. 
Conjectures 1-7 and 9 are true. I do not know whether Conjecture 8 is true or false. This 
is a good example to illustrate that it is not possible for the teacher to know everything in 
mathematical investigation. 
 
Conjecture 1: Every Kaprekar sequence is an increasing sequence, so the terms in each 

sequence will not repeat themselves (i.e. the sequence will not terminate 
or go into a cycle like the Happy and Sad Numbers in Pretest Task 1 
respectively), e.g. 28, 38, 49, 62, … [Trivial; true] 

 
Conjecture 2: Some numbers will never appear as the second or subsequent terms in 

any Kaprekar sequence, e.g. 1, 3, 5, 7, 9, 20, 31, 42, 53, 64, 75, 86, 97, 
108, 110, 121, 132, 143, … (these are called self numbers and they will 
only appear as the first term in one unique Kaprekar sequence: see the 
seven sequences in Stage 3 above). [Non-trivial; true] 

 
Conjecture 3: All one-digit odd numbers are self numbers (see the first five sequences 

in Stage 3 above). [Trivial; true] 
 
Conjecture 4: Difference between consecutive one-digit self numbers is always 2 (see 

the first 5 sequences in Stage 3 above). [Trivial; true] 
 
Conjecture 5: Difference between the last one-digit self number 9 and the first two-

digit self number 20, and difference between consecutive two-digit self 
numbers38 (i.e. 20, 31, 42, 53, 64, 75, 86, 97) is always 11. [Trivial; true] 

 
Conjecture 6: A 1-digit or a 2-digit number in a Kaprekar sequence will never appear 

in another Kaprekar sequence with a different self number, but a 3-digit 
number can appear in two Kaprekar sequences with different self 
numbers. [Non-trivial; true] 

                                                 
37 The digital root of a number is found by adding the digits of the number continuously until a 1-digit 

number is obtained, e.g. 339  3 + 3 + 9 = 15  1 + 5 = 6 means that the digital root of 339 is 6. 
38 The pattern for consecutive three-digit self numbers is more complicated. 
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Conjecture 7: If the starting number of a Kaprekar sequence is a multiple of 3 or 9, 
then all its terms are also multiples of 3 or 9 respectively (see Kaprekar 
Sequences 2 and 5, which is a Type 1a and a Type 1b sequence 
respectively, in Stage 3 above). If the starting number is not a multiple of 
3 or 9, then all the terms in the Kaprekar sequence are also not multiples 
of 3 or 9 respectively (see Kaprekar Sequence 1, which is a Type 2 
sequence, in Stage 3 above). [Non-trivial; true] 

 
Conjecture 8: If the starting number of a Kaprekar sequence is a multiple of 3 but not a 

multiple of 9, the digital roots of the differences between consecutive 
terms will repeat with a period of 2, i.e. they will alternate between 3 and 
6. If the starting number is a multiple of 9, then the digital roots of the 
differences between consecutive terms of the Kaprekar sequence will 
always be equal to 9. If the starting number is not a multiple of 3 or 9, 
then the digital roots of the differences between consecutive terms of the 
Kaprekar sequence will repeat with a period of 6, i.e. they will alternate 
among 1, 2, 4, 8, 7 and 5 in this order. [Non-trivial] 

 
Conjecture 9: There are infinitely many self numbers. [Non-trivial; true] 

 
Stage 5: Justifying (J) 
 
 The following shows how to prove or refute the above conjectures. Secondary 2 students 

are not expected to produce the more difficult proofs, such as the formal proof for 
Conjecture 6 and the proof for Conjecture 9. 

 
Conjecture 1: The first term of a Kaprekar sequence cannot be 0, or else, every term in 

the sequence will just be equal to 0. If the first term is negative, there is a 
slight complication, which can be investigated at a later stage. So assume 
that the first term is positive for a Kaprekar sequence, which is the usual 
definition. The following shows two proofs. 
 
Non-Proof Argument: 
 
Since the digits of the first term in a Kaprekar sequence are always non-
negative and at least one of the digits is always positive (namely, the first 
digit), then the sum of the digits of a term will always be positive. 
Therefore, the next term, which is the preceding term plus the sum of its 
digits, will always be greater than the preceding term, so every Kaprekar 
sequence is an increasing sequence. 
 
Formal Proof:  
 
Let the first term in a Kaprekar sequence be x and its digits be a1, a2, a3, 
… an, where ai is the i-th digit of the term. 
Then a1 > 0 and ai ≥ 0 for all i ≥ 2. 
Thus the next term x + a1 + a2 + a3 + … + an is always greater than x 
since a1 > 0 and ai ≥ 0 for all i ≥ 2. 
Therefore, the next term will always be greater than the preceding term, 
so every Kaprekar sequence is an increasing sequence. 

 
Conjecture 2: By systematic listing of Kaprekar sequences beginning with 1 to 10, it 

could be shown that there are self numbers like 1, 3, 5, 7 and 9 which 
will never appear as the second or subsequent terms in any Kaprekar 
sequence since it is an increasing sequence. 
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Conjecture 3: Starting with 1 as a self number, all other one-digit terms will always be 
even because odd (one-digit number) + odd (sum of digits of the one-
digit number) = even; and then even (one-digit number) + even (sum of 
digits of the one-digit number) = even. 
Therefore, 3 will have to be a self number, and similarly for all the odd 
one-digit numbers. Hence, these numbers will never appear as the second 
or subsequent terms in any Kaprekar sequence. 

 
Conjecture 4: By exhaustive listing, the difference between consecutive one-digit self 

numbers 1, 3, 5, 7, 9 is always 2. 
 
Conjecture 5: By exhaustive listing, the difference between the last one-digit self 

number 9 and the first two-digit self number 20; and the difference 
between consecutive two-digit self numbers (i.e. 20, 31, 42, 53, 64, 75, 
86, 97) is always 11. 

 
Conjecture 6: By exhaustive listing, a 1-digit or a 2-digit number in a Kaprekar 

sequence will never appear in another Kaprekar sequence with a 
different self number. By using a counter example, a 3-digit number can 
appear in two Kaprekar sequences with different self numbers, e.g. 107 
(see Kaprekar Sequences 1 and 4 in Stage 3 above). 
 
Formal Proof (beyond most Secondary 2 students): 

 
Suppose Tn is the first 1-digit (or 2-digit) number in a Kaprekar sequence 
that is also equal to Km in another Kaprekar sequence with a different 
self number. 
Then the term before Tn, i.e. Tn-1, will not be equal to the term before Km, 
i.e. Km-1, or else it will contradict that Tn is the first 1-digit (or 2-digit) 
number to be equal to Km in another sequence. 
In other words, we need to prove that if Tn-1 ≠ Km-1, then Tn will never be 
equal to Km. 
Suppose Tn-1 ≠ Km-1. Then there are three cases. 
 
Case 1: Suppose Tn-1 and Km-1 are both 1-digit numbers. 

Then Tn = Tn-1 + Tn-1 = 2Tn-1 and Km = Km-1 + Km-1 = 2Km-1. 
If Tn-1 ≠ Km-1, then 2Tn-1 ≠ 2Km-1, so Tn ≠ Km. 

 
Case 2: Suppose Tn-1 and Km-1 are both 2-digit numbers. 

Let the tens digit and ones digit of Tn-1 be x2 and x1 respectively. 
Then Tn-1 = 10x2 + x1 and so Tn = Tn-1 + x2 + x1 = 11x2 + 2x1. 
Similarly, Km-1 = 10y2 + y1 and Km = 11y2 + 2y1, where y2 and 
y1 are the tens digit and ones digit of  Km-1 respectively. 
If Tn = Km, 11x2 + 2x1 = 11y2 + 2y1, i.e. 11(x2  y2) = 2(y1  x1). 
Since y1  x1 < 10, then y1  x1 does not divide 11. 
Thus the equation has no solution, unless x2  y2 = y1  x1 = 0. 
But this will mean x2  y2 and x1 = y1, i.e. Tn-1 = Km-1, a 
contradiction. Therefore, if Tn-1 ≠ Km-1, then Tn ≠ Km. 

 
Case 3: Suppose Tn-1 is a 1-digit number and Km-1 is a 2-digit number 

(or vice versa). 
Then Tn-1 = x1 and Tn = 2x1, where x1 is the ones digit of Tn-1; 
and Km-1 = 10y2 + y1 and Km = 11y2 + 2y1, where y2 and y1 are 
the tens digit and ones digit of  Km-1 respectively. 
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If Tn = Km, then 2x1 = 11y2 + 2y1, i.e.   2(x1  y1) = 11y2. 
Since x1  y1 < 10, then x1  y1 does not divide 11. 
Thus the equation has no solution, unless x1  y1 = y2 = 0. 
But this will mean that Km-1 is now a 1-digit number, and that 
Tn-1  x1  y1 = Km-1, a contradiction. 
Therefore, if Tn-1 ≠ Km-1, then Tn ≠ Km. 

 
Hence, a 1-digit or a 2-digit number in a Kaprekar sequence will never 
appear in another Kaprekar sequence with a different self number. 
We will now illustrate why the proof does not work for a 3-digit number 
by considering only one case. 
 
Case 4: Suppose Tn-1 is a 2-digit number and Km-1 is a 3-digit number 

(or vice versa). 
Then Tn-1 = 10x2 + x1 and Tn = 11x2 + 2x1, where x2 and x1 are 
the tens digit and ones digit of Tn-1 respectively; and 
Km-1 = 100y3 + 10y2 + y1 and Km = 101y3 + 11y2 + 2y1, where y3, 
y2 and y1 are the hundreds digit, tens digit and ones digit of Km-1 
respectively. 
If Tn = Km, then 11x2 + 2x1 = 101y3 + 11y2 + 2y1 
  i.e.             101y3 = 11(x2 y2) + 2(x1 y1). 
Unlike the equation in Cases 1-3, this equation can be satisfied 
if, e.g. x2 = 9,x1 = 4, y3 = 1, y2 = 0 and y1 = 3. 
In other words, if Tn-1 = 94 and Km-1 = 103, then Tn = Km = 107. 
Of course, there are other solutions for the equation. 

 
Conjecture 7: If a number is a multiple of 3 or 9, then the sum of its digits is also a 

multiple of 3 or 9 respectively (the proof of this statement may be 
beyond the ability of most Secondary 2 students). Moreover, the sum of 
two multiples of 3 or 9 is also a multiple of 3 or 9 respectively. 
Therefore, if the starting number is a multiple of 3 or 9, then all the terms 
in the Kaprekar sequence are also multiples of 3 or 9 respectively. 
If a number is not a multiple of 3 or 9, then the sum of its digits is also 
not a multiple of 3 or 9 respectively. Moreover, the sum of two non-
multiples of 3 or 9 is also a non-multiple of 3 or 9 respectively. 
Therefore, if the starting number is not a multiple of 3 or 9, all the terms 
in the Kaprekar sequence are also not multiples of 3 or 9 respectively. 

 
Conjecture 8: I do not know how to prove or refute this conjecture. This is a good 

example to illustrate that it is not possible for the teacher to know 
everything in mathematical investigation. 

 
Conjecture 9: (Beyond the ability of Secondary 2 students to prove) 

The following is a recurrence formula to generate some self numbers: 
 

  8108 1
1  


k

k
k CC , where C1 = 9 (Wikipedia, 2012). 

 
The existence of such a recurrence formula suggests that there are 
infinitely many self numbers. Of course, one needs to prove that the 
recurrence formula works, which is beyond me. This is another good 
example to illustrate that it is not possible for the teacher to know 
everything in mathematical investigation. 
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Stage 6: Generalising (G) 
 
 Conjectures 2-5 are not general results while Conjectures 1,6-9 will lead to a 

generalisation if they are proven. 
 
Stage 7: Checking (R) 
 
 Students need to check: 

 all calculations for repeating the process are correct; 
 the arguments used in the proving of conjectures are sound. 

 Students have three possibilities to choose from at this juncture: 
 they can search for more patterns without extending the task, e.g. if they have found 

and justified Conjecture 1, they can search for more patterns; or they could pose the 
specific problems listed in Stage 2 (go to Stage 2); 

 they can extend the task by changing the given (go to Stage 8); 
 they can stop, i.e. finish the investigation. 

 
Stage 8: Extension (E) 
 
 Students are not expected to extend the task within the 30 minutes given for the test 

because there are many underlying patterns to observe, although some students may 
extend the task. Moreover, extension of a Type A task usually ends up with a completely 
new task with entirely different patterns. 

 The following shows a list of possible extensions for longer investigation: 
 Add the product of its digits to the number. 
 Add the sum of the squares of its digits to the number. 
 Multiply the number by the sum of its digits. 
 Multiply the number by the product of its digits. 
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Task Analysis for Posttest Task 2 (Sausage) 
 
 
 
 
 
 
 
 
Stage 1: Understanding the Task (U) 
 
 Students should highlight key words such as ‘identical’ and ‘equally’. 
 Possible mistakes or problems in understanding the task: 

 need to subscribe to the assumption that it is possible to cut a sausage into three or 
more equal parts despite its rounded ends (or else the problem cannot be solved); 

 need to subscribe to the hidden assumption that it does not matter whether a person 
gets a rounded end or a middle portion with no rounded ends (or else the problem 
cannot be solved). 

 
Stage 2: Problem Posing (P) 
 
 Students need to pose specific problems to solve. The following shows a list of possible 

specific problems, which have been classified as trivial or non-trivial (the classification 
has passed the inter-coder reliability test as discussed in Section 5.4). P5 is the intended 
problem (see Section 2.2.3b for a brief explanation of intended problems). 
 
 Problem 1 (P1): Find how to cut the 12 identical sausages to share them equally 

among the 18 people. [Trivial] 
 

 Problem 2 (P2): Find the amount of sausages each person will receive when the 12 
identical sausages are shared equally among the 18 people. [Trivial] 
 

 Problem 3 (P3): Find the number of cuts needed to share the 12 identical sausages 
equally among the 18 people. [Non-Trivial] 
 

 Problem 4 (P4): Find a few methods to cut the 12 identical sausages to share them 
equally among the 18 people. [Non-Trivial] 
 

 Problem 5 (P5): Find the least number of cuts needed to share the 12 identical 
sausages equally among the 18 people. [Non-Trivial; Intended Problem] 

 
Stage 3: Specialising and Using Other Heuristics (S/H) 
 
 Students should use other heuristics, such as reasoning, to solve the problems posed in 

Stage 2. They should consider various methods to cut the sausages as shown below: 
 
 Cutting Method A (Usual Method): Cut each of the 12 sausages into three equal parts. 

Then each person gets two parts. Total number of cuts = 12 × 2 = 24. 
 

 Cutting Method B (Shortest Method): Cut each sausage once at the 2/3-mark to divide 
it into two parts: 2/3 and 1/3 of a sausage respectively. Then each person either gets 
1 × 2/3 of a sausage, or 2 × 1/3 of a sausage. Total number of cuts = 12. 
 

Posttest Investigative Task 2: Sausages 
 
I need to cut 12 identical sausages so that I can share them equally among 18 people. 
Investigate. 
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 Cutting Method C (Long Method)39: Cut each sausage into 18 equal parts. Then each 
person receives one part from each of the 12 sausages, i.e. a total of 12 parts. Total 
number of cuts = 12 × 18 = 216. 

 
Stage 4: Conjecturing (C) 
 
 Students can solve Problems 1-4 using either Cutting Method A, B or C without forming 

any conjecture. 
 Students need to form a conjecture for Problem 5 that Cutting Method B will give the 

least number of cuts. This conjecture is non-trivial. 
 
Stage 5: Justifying (J) 
 
 For Problem 5, students need to justify the conjecture that Cutting Method B will give the 

least number of cuts. They can use a non-proof argument: 
 

Proof of Conjecture that Cutting Method B will give the least number of cuts 
 

To share 12 identical sausages equally among 18 people, each person will receive 2/3 of a 
sausage. This means that there is a need to make at least one cut for each sausage to get 
2/3 of a sausage. Since Method B requires exactly one cut for each sausage, then the 
minimum number of cuts for each sausage is 1, and the least number of cuts for the 12 
sausages will be 12. Therefore, Method B will give the least number of cuts. 
 

Stage 6: Generalising (G) 
 
 The solutions of Problems 1-5 are not general results. Generalisation can take place later 

if the students extend the task to generalise (see Stage 8). 
 
Stage 7: Checking (R) 
 
 Students need to check: 

 the numbers of cuts are counted correctly 
 the argument used in the proving of the conjecture is sound. 

 Students have three possibilities to choose from at this juncture: 
 they can pose more problems to solve without extending the task, e.g. if they have 

posed only Problem 1, they can now pose Problem 2, 3, 4 or 5 to solve (go to Stage 2) 
 they can extend the task by changing the given (go to Stage 8) 
 they can stop, i.e. finish the investigation, although for a Type B task like this task, 

they are expected to extend to generalise. 
 
Stage 8: Extension (E) 
 
 Students need to extend the task by changing the given in order to generalise. The 

following shows a list of possible problems to extend, which have been classified as 
trivial or non-trivial (the classification has passed the inter-coder reliability test as 
discussed in Section 5.4). E2 is the intended extension. 
 

                                                 
39  There is no longest cutting method because the number of parts each of the 12 sausages can be cut, 

so that they can be shared equally among 18 people, can be any multiple of 18, although there is a 
practical limit as to how small a sausage can be cut. Some students in the present study actually used 
Cutting Method C. 
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 Extension 1 (E1): Find the amount of sausages that each person will receive when n 
identical sausages are shared equally among m people. [Trivial] 
 

 Extension 2 (E2): Find the least number of cuts needed to share n identical sausages 
equally among m people. [Non-Trivial; Intended Extension] 

 
 Students can also extend the task by changing other variables, such as the size and shape 

of the sausages (if it makes any difference), and the context of the task. 
 
Stage 3: Specialising and Using Other Heuristics (S/H) 
 
Since students are expected to extend this task by changing the given, then the task analysis 
will continue for another cycle to include some other outcomes. 
 
 Students should go back to Stage 3 to specialise or use other heuristics, such as reasoning, 

to solve the extension posed in Stage 8. 
 For E1, it can be solved by reasoning that the amount of sausages that each person will 

receive is n / m when n identical sausages are shared equally among m people. 
 For E2, students should specialise by trying different values for n and m in order to find a 

general formula for the least number of cuts needed to share n identical sausages equally 
among m people. But for each case of n and m that they investigate, they still have to use 
other heuristics to find a cutting method that will produce the least number of cuts. 

 The following tables show the least number of cuts for two cases only:  
 n = 12 sausages with different values for m people 
 m = 18 people with different values for n sausages. 
The amount of sausages that each person will receive is also given because it helps to 
find the least number of cuts. The method used to cut the sausages to give the least 
number of cuts is not necessarily any of the three cutting methods (A, B and C) described 
earlier, but it depends on the values of n and m. 

 
n = 12 sausages     m = 18 people 

 

m 
Amount of Sausage 

Per Person 
Least No. 
of Cuts  n 

Amount of Sausage 
Per Person

Least No. 
of Cuts

1 
1

12
 = 12 0  1 

18

1
 17 

2 
2

12
 = 6 0  2 

18

2
 = 

9

1
 16 

3 
3

12
 = 4 0  3 

18

3
 = 

6

1
 15 

4 
4

12
 = 3 0  4 

18

4
 = 

9

2
 16 

5 
5

12
 = 

5

2
2  4  5 

18

5
 17 

6 
6

12
 = 2 0  6 

18

6
 = 

3

1
 12 

7 
7

12
 = 

7

5
1  6  7 

18

17
 17 

8 
8

12
 = 

2

3
 = 

2

1
1  4  8 

18

8
 = 

9

4
 16 

9 
9

12
 = 

3

4
 = 

3

1
1  6  9 

18

9
 = 

2

1
 9 
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m 
Amount of Sausage 

Per Person 
Least No. 
of Cuts  n 

Amount of Sausage 
Per Person 

Least No. 
of Cuts 

10 
10

12
 = 

5

6
 = 

5

1
1  8  10 

18

10
 = 

9

5
 16 

11 
11

12
 = 

11

1
1  10  11 

18

11
 17 

12 
12

12
 = 1 0  12 

18

12
 = 

3

2
 12 

13 
13

12
 12  13 

18

13
 17 

14 
14

12
 = 

7

6
 12  14 

18

14
 = 

9

7
 16 

15 
15

12
 = 

5

4
 12  15 

18

15
 = 

6

5
 15 

16 
16

12
 = 

4

3
 12  16 

18

16
 = 

9

8
 16 

17 
17

12
 16  17 

18

17
 17 

18 
18

12
 = 

3

2
 12  18 

18

18
 = 1 0 

19 
19

12
 18  19 

18

19
 = 

18

1
1  17 

20 
20

12
 = 

5

3
 16  20 

18

20
 = 

9

10
 = 

9

1
1  16 

21 
21

12
 = 

7

4
 18  21 

18

21
 = 

6

7
 = 

6

1
1  15 

22 
22

12
 = 

11

6
 20  22 

18

22
 = 

9

11
 = 

9

2
1  16 

23 
23

12
 22  23 

18

23
 = 

18

5
1  17 

24 
24

12
 = 

2

1
 12  24 

18

24
 = 

3

4
 = 

3

1
1  12 

 
 
Stage 4: Conjecturing (C) 
 
 For E1, the result (i.e. the amount of sausages that each person will receive is n / m when 

n identical sausages are shared equally among m people) is trivial. 
 For E2, students are expected to search for patterns in the examples that they had 

generated, but they are not really expected to formulate a conjecture on the formula for 
the least number of cuts because the pattern is not easy to discover: 
 

m – HCF(m, n), 
 
where m is the number of people and n is the number of sausages40. This conjecture is 
non-trivial. 

 

                                                 
40  One student in the present study (S9) was able to formulate this conjecture just by observing patterns 

in his two examples, so it was not impossible to do so. 
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Stage 5: Justifying (J) 
 
 For E1, the result (i.e. the amount of sausages that each person will receive is n / m when 

n identical sausages are shared equally among m people) is clearly true, and so there is no 
need to prove it. 

 For E2, students are not expected to justify the conjecture formulated in the previous 
stage as the proof is beyond them. Nevertheless, a formal proof is shown below. 
However, it is still possible for students to think of the main idea behind this proof41, 
although they will not be able to prove that the cuts will not coincide with the gaps 
between the sausages in Case 2a below. 

 
Proof of General Formula for Least Number of Cuts 
 
Case 1: n  m 
 
If the no. of sausages, n, is greater than or equal to the no. of people, m, then 
 

n = qm + r, for some positive integer q and non-negative integer r < m. 
 
This means that we can give q whole sausages to each of the m people, with a remainder 
of r sausages. 
If r = 0 (i.e. n is a multiple of m), then we are done, i.e. there is no need to cut and so the 
least no. of cuts = 0. 
If 0 < r < m, then we go to Case 2, where the no. of sausages is less than the no. of people. 
 
Case 2: n < m 
 
If the no. of sausages, n, is less than the no. of people, m, there are 2 scenarios. 
 
Case 2a: n < m and HCF(n,m) = 1 
 
We are going to prove that the least number of cuts in this case is m  1, where m is the 
no. of people. The basis of the proof is this: if one sausage is shared among m people, 
then the least number of cuts is m  1. 
If there are n sausages, arrange the sausages in a row as shown below. 
 
 
 
 
 
 
 
 
 
 
If we treat the row of sausages as one sausage, then the least no. of cuts is m  1, provided 
that the cuts do not coincide with the gaps between the sausages. If a cut coincides with a 
gap, this means that there will be one cut less, as there is no need to cut at the gap in the 
first place. So we are going to prove that the cuts will not coincide with the gaps. 
 
 

                                                 
41  The main idea behind the two examples of the same student (S9) was similar to the main idea behind 

the proof, although he was not able to prove the conjecture. 

gap gap gap 

cut cut cut cut cut cut 
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If we treat the row of sausages as one sausage, then 

the gaps will be at the 
n

1
-mark, the 

n

2
-mark, the 

n

3
-mark,…, the 

n

n 1
-mark, and 

the cuts will be at the 
m

1
-mark, the 

m

2
-mark, the 

m

3
-mark,…, the 

m

m 1
-mark. 

 
Suppose there is a cut that coincides with a gap. 

Then 
n

b

m

a
  for some integers a and b, where 1  a  m  1 and 1  b  n  1. 

 an = mb. 
Since HCF(n,m) = 1, i.e. n and m are relatively prime, then 
 

a = pm and b = qn for some positive integers p and q, 
 
i.e. a must be a multiple of m, and b must be a multiple of n. 
But these will contradict 1  a  m  1 and 1  b  n  1. 
Therefore, the cuts will not coincide with the gaps between the sausages, and so the least 
no. of cuts is m  1. 
 
Case 2b: n < m and HCF(n,m) > 1 
 
Let HCF(n,m) = h > 1. 

Consider sharing 
h

n
 identical sausages equally among 

h

m
 people. 

Since HCF(
h

n
,

h

m
) = 1, then least no. of cuts = 1

h

m
 (from Case 2a). 

Therefore, to share n identical sausages equally among m people, 
 

least no. of cuts = 





  1

h

m
h  

  = m  h 
  = m  HCF(n,m) [proven] 

 
Note: If HCF(n,m) = 1, then we have Case 2a: least no. of cuts = m  1. 

If n is a multiple of m (Case 1), then HCF(n,m) = m, and so the least no. of cuts is 
m  HCF(n,m) = m  m = 0. 

 
Stage 6: Generalising (G) 
 
 The solutions for both E1 and E2 are general results, thus generalisation will take place if 

the students can solve these extensions correctly. 
 
Stage 7: Checking (R) 
 
 Students need to check: 

 the number of cuts for each example is counted correctly; 
 the cutting method will indeed give the least number of cuts for each example; 
 the formula for the least number of cuts will work for some other examples; 
 the argument used in the proving of the conjecture is sound. 

 Students have two possibilities to choose from at this juncture: 
 they can pose more problems to extend the task by changing the given (go to Stage 8); 
 they can stop, i.e. finish the investigation. 
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APPENDIX F: INSTRUCTIONS FOR THINKING ALOUD 
 
This appendix contains the instructions for thinking aloud, which were adapted from Foong 
(1990) with some modifications. These instructions were read to the students just before they 
practised thinking aloud during the first thinking-aloud practice session. During subsequent 
thinking-aloud practice sessions, the students were also reminded of some important points. 
 
1. The purpose of the individual test, which will be conducted next week, is to find out how and 

what you investigate, and this includes what you are thinking as you investigate. But how can I 
know what you are thinking unless you tell me? So you need to say aloud what you are thinking 
as you do the investigation. This is called ‘thinking aloud’. 

 
2. You need to practise thinking aloud now so that you will be comfortable doing so during the 

test. This is what you need to do. 
 
3. When you investigate, say aloud what is exactly on your mind. Sometimes, when you are 

working alone, do you talk to yourself by saying aloud what you are thinking? So just imagine 
you are alone now and talk to yourself. 

 
4. I will give a demonstration first and then I will explain some pointers when you talk aloud. 

[Give a short demo using Task 2.] 
 
5. This is what you can say aloud: 

 your thoughts, 
 your feelings, 
 your decisions, 
 your analyses, 
 your conclusions, 
 questions you ask yourself, 
 any mental operations such as addition, subtraction, etc., 
 whatever you don’t understand. 

 
6. If you are stuck, it is ok. Just say aloud that you are stuck. But don’t just stop there. Try to think 

what to do next and say it aloud. 
 
7. If your working leads you nowhere, it is ok. Just say aloud and write down that you want to try 

something else. Do not erase or cancel your previous working. That is why you need to write 
down that you want to try something else, so that I know what you are doing. 

 
8. If you visualise some picture mentally, you need to describe the picture. Other than this, do not 

describe or summarise what you are thinking. You need to say aloud the exact words that come 
into your mind as you are thinking. 

 
9. When you read, you need to read it aloud because this is part of your thoughts. 
 
10. When you write, you need to say aloud what you are writing. However, if you are thinking of 

something else while you are writing, continue to write but say aloud what you are thinking. 
[Give a short demo.] 

 
11. I am just interested to find out what you are thinking. So keep on talking. Do not pause for more 

than 3 seconds. 
 
12. You must also speak loudly and clearly so that I can hear what you say. Do not mumble to 

yourself. 
 
13. You really have to think aloud during the test. If you are uncomfortable doing so during the test, 

it will definitely affect your test. So you must practise thinking aloud today. 
 
14. Is there any question before we begin? 
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APPENDIX G: INSTRUCTIONS FOR INVIGILATOR DURING 
PRETEST AND POSTTEST 

 
This appendix contains instructions for the invigilator for the pretest and the posttest, as well 
as the exact instructions to be read to the student just before the test. 
 
Instructions for the Invigilator 
 
1. Each student is to do two tasks. Each task takes 30 minutes. Give out one task at a time and 

collect back after 30 minutes. 
 
2. Please ensure that the student uses a dark-coloured ball-point pen to write and that he or she 

does not use liquid paper to erase any working (see para. 4h on next page). 
 
3. Please check occasionally the position of the student’s answer script to ensure that the video 

cam can capture what the student is writing. At the same time, check that the video cam is still 
in RECORD MODE (the researcher will show you how). Otherwise, sit at the back of the 
classroom and do not stand too near the student all the time, or else it may affect the student’s 
performance. 

 
4. (a) If the student remains quiet for more than 3 seconds, please remind him or her, 

“Please speak out what is on your mind.” 
(b) If the student talks too softly, please remind him or her, “Please speak louder.” 
(c) If the student mumbles, please remind him or her, “Please talk clearly. Do not 

mumble.” 
It is OK if your voice is recorded. 

 
5. If the student finishes the task or the test before the time is up, do not allow him or her to start 

a new task or to leave. Please tell him or her, “Please investigate some more.” Please do not 
give hints to the student or help him or her in any way. 

 
[Please turn over] 
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Instructions to be read to the student 
 
Please read the following to the student at the start of the test. Use the exact words. Do not rephrase. 
 
1. The test consists of two tasks. You have exactly 30 minutes to do each task. The test will last 

one hour. You will need a calculator. Do you have one? 
 
2. In order for the video camera to capture what you are writing: 

(a) You must put the paper that you are writing at this position [invigilator to indicate 
position to student]. 

(b) Do not cover up what you are writing. 
(c) Sit up straight. Do not bend your head, or else it will block the video camera. 
(d) You must write bigger and clearly; do not scribble. 

 
3. Show all your rough working and final solution in the question paper and writing paper 

attached behind. You can write on both sides. Write in order: if you write all over the place, 
we will not know where to read first. 

 
4. You need to think aloud for the test. 

(a) Please speak loudly and clearly so that your voice can be captured by the video 
camera. Do not mumble. 

(b) Say aloud what you are thinking or feeling at each moment. Keep on talking. Do not 
pause for more than 3 seconds. 

(c) If you visualise some picture mentally, describe the picture. Other than this, do not 
describe or summarise what you are thinking. You need to say aloud the exact words 
that come into your mind as you are thinking. 

(d) When you read, read it aloud. 
(e) When you write, say aloud what you are writing. However, if you are thinking of 

something else while you are writing, continue to write but say aloud what you are 
thinking. 

(f) If you are stuck, it is ok. Just say aloud that you are stuck. But don’t just stop there. 
Try to think what to do next and say it aloud. 

(g) If your working leads you nowhere, it is ok. Just say aloud and write down that you 
want to try something else. Do not erase or cancel your previous working. That is 
why you need to write down that you want to try something else, so that we know 
what you are doing. 

(h) If your working is wrong, cancel it neatly with a line across and then write your new 
working beside or below. Do not erase the wrong working. 

(i) You must still write down your findings instead of just saying it loud. 
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APPENDIX H: CHECKLIST ON INVESTIGATION PROCESSES 
 
This appendix shows the checklist of investigation processes given to the students during the 
posttest to refer to. 
 
1. Understand the Task 

 Read the task statement carefully 
 Try to understand the task by re-reading or rephrasing task statement 
 Highlight key information by underlining or circling main points 
 Visualise information by drawing diagram 
 Try to understand the task by trying some examples 
 
Monitor your own thinking: 
 Do I understand all the given information in the task? 
 Do I interpret the task correctly? 

 
2. Pose Problem 

 Pose the general problem of searching for any pattern 
 Pose a specific problem that ‘naturally follows’ from task 
 Pose a specific problem to generalise 
 Use association to pose a problem 
 Use analogy to pose a problem 
 
Monitor your own thinking: 
 What does the task require me to do? What is there to investigate? 
 Is the goal or problem feasible or worth pursuing? Why? (E.g. It is a problem that 

‘naturally follows’ the task. I can generalise to find a formula. The problem is 
interesting to me. The problem should be within my ability to solve.) 

 
3. Attack the Problem 

 Search for patterns by choosing systematic examples to investigate 
 Draw diagram 
 Guess and check 
 Use reasoning 
 Use algebra 
 Pose an easier problem or simplify the problem (e.g. use smaller numbers) 
 
Monitor your own thinking: 
 What method or strategy can I use to solve the problem? What have I learnt 

before that I can apply? 
 Is the plan or strategy worth pursuing? Why? (E.g. It is a reasonable plan. It 

seems to work.) 
 
Monitor progress every five minutes: 
 Am I going on the right track? How do I know? (E.g. The plan seems to be 

working. I don’t know: maybe I will try for another 5 minutes.) 
 I am going nowhere. Should I abandon the plan and think of a new approach, or 

should I try for another 5 minutes and see how it goes? Should I change to pursue 
another goal or problem first? Why? 
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4. Formulate and Test Conjectures 
 Formulate a conjecture by searching for patterns 
 Formulate a conjecture by using reasoning 
 Refute or disprove a conjecture by looking for counter examples 
 Prove a conjecture by using a non-proof argument 
 Prove a conjecture by using a formal proof (e.g. algebra) 
 
Monitor your own thinking: 
 Is my conjecture always true? Why? 
 Is there a reason to believe that the pattern will always continue? 
 Can I come up with a more rigorous proof? 

 
5. Look Back 

 Check the whole solution 
 Check answer to see if it is correct (e.g. by substituting answer back into the task) 
 
Monitor your own thinking: 
 Is my answer logical, sensible or reasonable? 
 Is my method of solution efficient? 
 Is there a better method of solution? Is there another method of solution? 
 Is the alternative method of solution efficient? Is it better than the previous 

method? In what ways is it better or worse?  
 Can I apply the result (e.g. answer, formula) learnt in this task to some other tasks 

that I have seen or solved before? 
 Can I apply the method of solution learnt in this task to some other tasks that I 

have seen or solved before? 
 
6. Extension 

 Extend specific problems solved but still within scope of original task  
 Extend original task by changing the given 

 
Monitor your own thinking: 
 Can I extend the specific problem solved to generalise? Are there other ways to 

extend the specific problem solved? 
 Can I extend the original task by changing some given information? 
 Is the extension feasible or worth pursuing? Why? (E.g. It is an extension that 

‘naturally follows’ the task. I can generalise to find a formula. The extension is 
interesting to me. The extension should be within my ability to solve.) 
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APPENDIX I: SAMPLE CODED TRANSCRIPT FOR POSTTEST 
TASK 1 (KAPREKAR) 

 
This appendix shows a coded transcript from S5 for Posttest Task 1 (Kaprekar) that is used as 
a sample in Chapter 4. 
 
Legends: 
 Pause for 3 s or less is indicated by the three dots: … 
 Student’s actions and transcriber’s comments are in square brackets. 
 Different episodes are separated by a double line. 

 

Line Time Transcript 
Stage 
Code 

Bhvr 
Code 

Remarks 

01 
(p.1) 

00:00 Choose any number. Add the sum of its digits to 
the number itself to obtain a new number. 
Repeat this process for the new number and so 
forth. Investigate.  

U FR Answer Script 
Page 1 

02 00:11 [Teacher tells her to speak louder] X XO  
03 00:12 Choose any number. Add the sum of its digits to 

the number itself to obtain a new number. 
Repeat this process for the new number and so 
forth. Investigate. 

U RR  

04 00:23 So ... now I must, uh, try some examples first ...  U DP  
05 00:28 For example, I choose 12 [write 12]. U TE1 Example 1 

(random): p. 1 
column 1 in 
answer script 

06 00:31 Add the sum of digits. The question says choose 
any number. 

U RR  

07 00:35 [Underline: any number]  U HI  
08 00:36 So add the sum of its ... add the sum  U RR  
09 00:38 [Underline: sum] U HI  
10 00:39  of its digits.  U RR  
11 00:40 [Underline: digits] U HI  
12 00:41 So 12 [continue writing] = 1 + 2 = 3 [stop 

writing]. 
U TE1  

13 00:45 Add the sum of its digits to the number itself to 
obtain a new number. 

U RR  

14 00:50 So I must add the sum of its digits to the 
number. 

U RT  

15 00:55  is [continue writing] 12 + 3 = 15 [stop 
writing]. 

U TE1  

16 00:58 So to obtain a new number  U RR  
17 01:00 The new number is 15. U TE1  
18 01:02 Repeat this process. U RR  
19 01:03 [Underline: Repeat this process] … U HI  
20 01:06 That means [write 15 + and then cancel +] I 

must try 15. 15 [write =, then cancel = and write 
:] 15 is [continue writing] 1 + 5 = 6; then 15 + 6 
is 21; 21 is … 2 … 2 + 1 = 3; so 3 add, added, 3 
is being added to 21; 21 + 3 = 24; 24 is, the two 
digits are 2 and 4, so 2 + 4 = 6; 24 + 6 = … 30 
… uh, 30, so … 30 is … 3 + 0 = 3 … 

U TE1  

21 01:54 24 + [stop writing] … Twenty  … 24. U EM1 Minor Error 1:  
Should be 30, 
not 24 

22 02:00 Repeat this process for the new number and so U RR  
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Line Time Transcript 
Stage 
Code 

Bhvr 
Code 

Remarks 

forth … Add the sum of its digits to the number 
itself. 

23 02:08 So now is … um, 30 [cancel 24 +]. U ED1 Discover 
Minor Error 1 

24 02:11 So is [continue writing] 30 + 3 = 33; 33 is 3 + 3 
= 6; so use 6 to plus 33 is 39 [stop writing] 39  

S TE1 Transition 
from TE to 
understand 
task (U) to TE 
to specialize 
(S) implied 
from Line 28 
that she had 
not found a 
pattern 

25 02:26 [Teacher tells her to speak louder] X XO  
26 02:27 39, 39 is, um, the two digits are 3 and 9; 3 and 9 

equal to 12; so add 12 to 39 equal to 51; so 51 is 
… uh, 5 + 1 = 6.  

S TE1  

27 02:46 51 + 6 is 56 [stop writing] … S EM2 Major Error 2: 
Should be 57, 
not 56 (stuck 
for quite long 
without 
finding pattern 
as 56 is not 
divisible by 3) 

28 02:51 So I never find the pattern yet … C SP  
29 02:54 So … so … I think I go … I think I go nowhere 

… [write the word nowhere at the bottom of 
Example 1]. 

C MP  

30 03:02 So I try another number ... uh, example is 23, 
right.  

S DP  

31 03:06 [Start writing] 23 is, the two digits are 2 and 3 
equal to 5; 23 + 5 = 28; 28 is 2 + 8 = … 10; then, 
uh, 28 + 10 = 39, 38 ... 38 is 3 +, 3 + 8 = 11; use 
11 to plus 38 equal to 49; 49 is, uh, 4 + 9 = 13; 
49 + 13 = 62; 62 is 6 + 2 = 8; use 8 to plus 62 is 
equal to 70; 70, the two digits are 7 and 0, uh, 
equal to 7. 

S TE2 Example 2 
(random): p. 1 
column 2 in 
answer script 

32 04:03 77 + 7 = 84. S EM3 Major Error 3: 
Should be 70 
+ 7, not 77 + 7 
(created 
numbers that 
are divisible 
by 3 when 
they should 
not be, which 
confused her) 

33 04:08 84 is … 84, the two digits are 8 and 4, so is 
equal to 12; 84 + 12 = 96; 96 are 9 + 6 = 15; use 
96 + 15 = 111 [stop writing] … 

S TE2  

34 04:33 So … now … uh … now the digits are from two 
digits to three digits … so … um  

C MA Aware she 
first obtain 3-
digit number, 
think it is 
wrong, re-read 
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Line Time Transcript 
Stage 
Code 

Bhvr 
Code 

Remarks 

task in next 
line, but find 
nothing wrong 

35 04:45 Repeat this process for the new number and so 
forth ... Repeat this process. 

C RR  

36 04:50 Now the  this number [start circling 28, 38, 49 
until 111] is what I obtain ... is 28, 38, 49 … 62 
... uh, 70, 84, 96 ... um, 111 [stop circling] ... So 
is ... no ... no … pattern ... 

C SP  

37 05:14 Add the sum of its digits to the number itself to 
obtain a new number. The question says add the 
sum of its digits to the number itself ... to obtain 
a new number. 

C RR  

38 05:28 Yes, I think I am, I am in the ... right way.  C MP  
39 05:31 But … now I can’t find the pattern yet. C SP  
40 05:35 So what should I do is to ... what I should do is 

to ... um ...  
X XH  

41 05:42 What I should do is to try ... uh, continue to try 
the numbers. 

S DP  

42 05:48 [Continue writing] 111 is ... the three digits are 1 
+ 1 + 1 = 3; so 111 + 3 = 114; 114, the three 
digits are 1 + 1 + 4 = 6 … so use 6 to plus 114 is 
120 [stop writing] ... 1 ... 120 is [write: 120  
and continue writing] 1 + 2 + 0 = 3; 1 ... 120 + 3 
= 123 [stop writing] ... 

S TE2 Continue 
Example 2: p. 
1 column 2 in 
answer script 

43 06:27 123 … But ... I can’t find the pattern ... C SP  
44 06:34 So ... investigate ... what? X XH  
45 06:37 [Read from given checklist] Understand the task 

first [stop reading]. 
X XC  

46 06:39 This I understand already. X MP  
47 06:41 [Continue to read from checklist] Then set goal 

or pose problem. Decide to search for patterns. 
Pose a problem that naturally follows from task 
[stop reading]. 

X XC  

48 06:50 I want to find the ... I want to find ... P PT  
49 06:54 My task is … [Start writing: Task: Find pattern] 

My task is to find, uh ... find the pattern for these 
numbers ... yes, find the pattern [stop writing] 
Find pattern … [continue writing: for these 
numbers] for … uh, for these numbers [stop 
writing]. 

P PP0 Posed General 
Problem: 
Search for any 
pattern (p. 1 
column 3 in 
answer script) 

50 07:11 But until now I can’t find the pattern yet. So ... X MP  
51 07:16 [Read from given checklist] Search for patterns 

by choosing systematic examples to investigate. 
Check, guess and check. Draw diagram [stop 
reading] 

X XC  

52 07:24 Of course cannot draw. X MF  
53 07:26 So I use ... um ... I find the … sum of digits first. P PP1 Specific 

Problem 1 
(trivial): Look 
for pattern in 
sums of digits 

54 07:32  is [start underlining the following sums of 
digits in Example 2] 5, 10, 11 [stop underlining] 
... uh ... [point pen at following numbers] 5, 10, 
11 [continue underlining] 13, 8, 7, 12, 15, 3, 6 
… 3 [stop underlining] ... but ... um ... 

C SP Refer to 
Example 2 
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Line Time Transcript 
Stage 
Code 

Bhvr 
Code 

Remarks 

55 07:51 To obtain a new number. Repeat this process for 
the new number and so forth ... To obtain a new 
number  

C RR  

56 07:59 I obtain already. Uh ... but ... now my task is to 
find a pattern for these numbers [underline the 
task in p. 1] ... 

C MP  

57 08:07 So what I should try is ... now I find ... now I 
find ...  

X XH  

58 08:16 What’s the pattern for these numbers? ... Is it uh 
... um ...? This one cannot [point pen at the new 
numbers 38, 49 and 62 in Example 2] this one 
cannot ... So ... um ...  

C SP Refer to 
Example 2 

59 08:29 [Point pen at following sums of digits in 
Example 1 starting from the last 6 in 51  5 + 1 
= 6] 6, 12, 6, 3 ... 6 ... 3 ... 6, 3 [this is the first 3 
in 12 + 1 + 2 = 3]. [Point pen at the first two 
sums again] 3, 6 [stop pointing] ... um, this one 
is 3 [circle first 3] ... um ... [start underlining 
following numbers starting from first 3] 3, 6, 3, 
6, 3, 6 ... um ... 12, 6 [stop underlining] ... 12, 6 
[cancel the word: nowhere] ... so ... [point pen at 
last two sums] 12, 6 [stop pointing]. 

C OP1 Refer to 
Example 1 to 
observe 
Pattern 1 (non-
trivial / 
correct): Sums 
of digits 
divisible by 3 
(implied from 
Line 61 when 
she rejected 
this pattern) 

60 08:57 So I now try 56 [should be 57: previous Error 2] 
... [Start writing: 56  5 + 6 = 11] 56 is 5 + 6. 

S TE1 Continue 
Example 1 

61 09:03 So cannot, 11 [should be 12: result of previous 
Error 2] [stop writing]. 11 cannot be divided by 
3 ... But others can be divided by 3 ... 

C RP1 Reject Pattern 
1 wrongly 
(based on 
Major Error 2 
but pattern is 
actually 
correct) 

62 09:10 So ... um ... you see this one is ... 28 [point to 
first 28 in Example 2] 28, um ... [point to the 
following sums of digits in Example 2] 5 ... 5, 
10, 11 [stop pointing] ... no pattern what ... But 
... so  

C SP Refer to 
Example 2 

63 09:29 [Read from given checklist] Attack the problem 
is search for patterns by choosing systematic 
examples to investigate. Draw diagram [stop 
reading]. 

X XC  

64 09:39 Draw diagram cannot. So guess and check also 
cannot.  

X MF Counted  as 
1×MF in Lines 
64, 67, 69 
since this is 
same instance 

65 09:41 [Continue reading from checklist] Use deductive 
or logical reasoning. Use formal proof [stop 
reading]. 

X XC  

66 09:47 Formal proof also cannot. For this problem, 
formal proof also cannot. 

X MF  

67 09:54 [Continue reading from checklist] Pose, pose an 
easier problem or simplify the problem. Pose an 
easier problem or simplify the problem [stop 
reading]. 

X XC  

68 10:03 This is ... uh, an easier problem already. So ... uh X MF  
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Line Time Transcript 
Stage 
Code 

Bhvr 
Code 

Remarks 

 
69 10:09 [Continue reading from checklist] Pose a related 

problem [stop reading].  
X XC  

70 10:11 Now what I want to find is a pattern for these 
numbers ...  

P PT  

71 10:15 Hmm, pattern for these numbers is ... P XH  
72 10:19 To obtain a new number. Repeat this process for 

the new number. 
P RR  

73 10:23 So I try ... I try the difference between these 
numbers. 

P PP2 Specific 
Problem 2 
(trivial): Look 
for pattern in 
difference 
between 
consecutive 
sums of digits 

74 10:29 [Draw an arc between consecutive sums of digits 
in Example 1, starting from 12 = 1 + 2 = 3 and 
15: 1 + 5 = 6, and write corresponding 
difference]  is 3, 3, 3, 3, 3 and ... this is 6, then 
6, then 5 [stop drawing and writing] ... 

C SP Refer to 
Example 1 

75 10:43 Eh, this is … C MA The number 5 
in previous 
line does not 
fit pattern: 
cause her to 
spot Error 2 

76 10:46 57 [change 56 to 57]. [10:48] 5 + 7 [amend 6 to 
7] = 12 [amend 11 to 12]. So is 6 [amend 5 to 6] 
… 

C ED2 Key Moment 
1: Discover 
Major Error 2 

77 10:52 Ok [start writing] 56 … uh ... 57 + 12 = … 69; 
69 is ... 15 [stop writing].  

S TE1 Continue 
Example 1 

78 11:06 15 also can be divided by 3, but the difference 
between 6 and 15 is 9.  

C SP  

79 11:11 Then I ... use [continue writing] 57 + 15 = … 72 
[stop writing] 

S TE1  

80 11:20  also can be divided by 3 ... This ... the ... but 
is it always the same?  

C OP1 Back to 
Pattern 1 

81 11:28 I try ... I continue to try this one.  C DP  
82 11:32 This one I find [draw a line below Example 1] I 

 I think that the sum of digits can be divided 
by ... can be divided by 3 [write below Example 
1: divided by] ... 

C OP1 Still Pattern 1 

83 11:44 But I try another, another number first.  C DP  
84 11:47 23 [Example 2 starting number] is 2 + 3, 5 ... 28 

... 28 … but ... um ... 
C SP Refer to 

Example 2 
85 11:55 This one ... of course cannot lah. C RP1 Reject Pattern 

1 again 
86 11:57 Then ... 49 is ... 49 is 4 + 9 = 13. So ... um ... 49 

+ 13 = 62. No pattern. 
C SP Refer to 

Example 2 
87 12:16 I try … another number. S DP  
88 12:19 Choose any number ... S RR  
89 12:22 Now is two-digit number. I still try two-digit 

number. This one [refer to Example 2 which 
now has three-digit numbers] ... this one [draw a 
line below Example 2 and put a cross] ... I don’t 
calculate yet. 

S DP  
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Line Time Transcript 
Stage 
Code 

Bhvr 
Code 

Remarks 

90 12:30 So I try ... um, 3 ... I try [start writing] 36 ... 36 is 
3 + 6 = 9; so 36 + 9 = 45 [stop writing]. 

S TE3 Example 3 
(purposeful 
choice of 2-
digit number): 
p. 1 column 3 

91 12:48 45 can be divided by 3.  C OP2a Pattern 2a 
(non-trivial / 
correct): Each 
term of the 
sequence is 
divisible by 3 
(true if starting 
number is 
divisible by 3) 

92 12:50 So [continue writing] 4 + [stop writing] ... so 4 + 
... um [continue writing] 5 = 9; 45 + 9 = 54 [stop 
writing]. 

S TE3  

93 13:01 These numbers … can be divided by 9. C OP3 Pattern 3 (non-
trivial / 
correct): Each 
term of the 
sequence is 
divisible by 9 
(true if starting 
number is 
divisible by 9) 

94 13:06 [Continue writing] 5 + 4 = 9; 54 + 9 = 63; 6 + 3 
= 9 [stop writing] … 

S TE3  

95 13:18 I find that all the … sums of the digits [underline 
all these sums] are 9 ... 

C OP3 Still Pattern 3 
because she is 
still looking at 
the terms (see 
Lines 97, 99 
and 102) 

96 13:25 So [continue writing] 63 + 9 = 72 [stop writing]. S TE3  
97 13:29 72 can be divided by 9  C OP3 Still Pattern 3 
98 13:31  is [continue writing] 7 + 2 = 9; 72 + 9 = 81 

[stop writing and underline the previous 9]. 
S TE3  

99 13:39 These also can be divided by 9 ... It’s 9 itself.  C OP3 Still Pattern 3 
100 13:44 So [continue writing] 81 is, um ... 8 + 1 = 9; 81 

+ 9 = ... 81 + 9 = 90 [stop writing]. 
S TE3  

101 13:56 Also can be divided by 9 [draw a line below 
Example 3] ... 

C SP  

102 14:00 So ... now this one can be [start writing below 
Example 3:  divided by 9] divided by ... divided 
by 9 [stop writing] ... 

C OP3 Still Pattern 3 

103 14:10 Now I try ... now I should try ... another number 
...  

S DP  

104 14:18 Example is ... 3 ... um ... 4 ... no, is ... X XH  
105 14:26 84 ... 84 is ... [point pen at 12 in following 

statement] 84 is 8 + 4 = 12, so [point pen at 
following numbers] 96, um, 15 ... 111 and 3 and 
114 and 6 and ... 6 and 120 and 3 and 123 [stop 
pointing ] ... 

C SP Refer to 
Example 2 

106 14:50 So start ... start from here [draw a line after 70 
 7 + 0 = 7 and a vertical line all the way to the 
last statement in Example 2] ... start from 70 + 7 

C OP2b Pattern 2b 
(non-trivial / 
wrong): Terms 
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Line Time Transcript 
Stage 
Code 

Bhvr 
Code 

Remarks 

... the rest are ... all can be divided by 3 [write 
beside vertical line: divided by 3]. So ... my 
thinking is that ... um ... um, my thinking is that 
whatever which number it is ... so, um ... if 
continue to use this method to calculate, finally 
the number can be divided by 3 ... 

of sequence 
divisible by 3 
eventually 
(found this 
pattern as a 
result of her 
Major Error 3) 

107 
(p.2) 

15:27 So I, I try ... I try another number is ... I try 
another number. [Turn to new p. 2] ... I try … 
another example [write: Example:] ... My 
example is that ... use ... 

S DP Answer Script 
Page 2 

108 15:50 [Start writing] 47 is 4 + 7 = 11; 47 + 11 = 58 
[she reads as 59]; 58 [she reads as 59] is 5 + 8 = 
13; and fifty, fifty, 5 + 8 = 13; 58 + 13 is ... 71; 7 
+ 1 = 8; then 71 + 8 = 79; 7 + 9 = 16; 79 + 16 = 
... 95 ... 9 + 5 = 14. 

S TE4 Example 4 
(purposeful 
choice of 2-
digit number): 
p. 2 top part 
column 1 

109 16:32 So 79 + 14 = 93.  S EM4 Major Error 4: 
Should be 95, 
not 79 
(confuse her 
as sum of 
digits 12 in 
next line is 
divisible by 3 
when it should 
not) 

110 16:36 9 + 3 = 12 [stop writing]. S TE4  
111 16:40 Oh, now, now the 12 can be divided by 3. So 9 + 

3 = 12 ... 12 ... use ... um ... 
C SP  

112 16:52 [Start writing] 79 + ... 12 = 91; 9 + 1 = 10; so 91 
+ 10 = ... 91 + 10 is 101 ... 1, 0, 101 is 1 + 1 = 2; 
101 + 2 = 103; 1 + 3 = 4; 103 + 4 is 107 ... 1 + 7 
is 8; so ... so now is ... um, 107 + 8 is 115 [stop 
writing]. 

S TE4 Continue 
Example 4 
(same Error 4: 
should be 93 + 
12, not 79 + 
12) 

113 
(p.1) 

17:43 These cannot be divided by 3. But just now [turn 
back to p. 1] the number is ... 23 [Example 2 
starting number]; 23 can be ... twenty ... 

C SP Refer to 
Example 4 and 
Example 2 

114 17:53 Oh no, this one is wrong. C RP2b Reject Pattern 
2b 

115 17:55 70 ... [point pen at following working] 28... 28 is 
2 + 8 = 10, so 28 + 10 is 38 [she reads as 39] 
[stop pointing pen] ... But ... here [use pen to 
circle first half of Example 2] I can’t find a 
pattern. 

C SP Refer to 
Example 2 

116 
(p.2) 

18:15 [Turn back to p. 2] So my ... so my findings is 
that [write: Finds:] ... if the original number [flip 
to look at p. 1] can be divided by 3, then ... then 
the ... rest also can be divided by 3 ... But is it 
always true? ... 

C OP2c Pattern 2c 
(non-trivial / 
correct): based 
on Example 3 
and modified 
from Pattern 
2: If starting 
number is 
divisible by 3, 
each term of 
sequence is 
divisible by 3 
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Line Time Transcript 
Stage 
Code 

Bhvr 
Code 

Remarks 

117 
(p.1) 

18:39 I continue to [turn to p. 1] try this example. Um 
[continue writing for Example 3] 9 + 0 is 9; 90 + 
9 = 99; 9 + 9 = 18. 

S TE3 Continue 
Example 3 

118 18:53 So 90 + 18 is 108 [stop writing]. S EM5 Minor Error 5: 
Should be 99, 
not 90 (but 
numbers still 
divisible by 9, 
so does not 
affect pattern) 

119 18:59 Yes, this can be divided by ... 9. C OP3 Back to 
Pattern 3 

120 
(p.2) 

19:03 So ... if ... if the  [Turn to p. 2] One of my 
findings is that ... [continue writing after the 
word: Finds:] if the original number can be 
divided by 3 … or 9, if the original number can 
be divided [she writes dived instead of divided] 
by 3 or 9, by 3 or 9 ... then the, then the new 
numbers obtained also can be divided by 3 or 9, 
also can be divided by 3 or 9 [stop writing]. 

C FC1 Conjecture 1 
(non-trivial / 
correct): 
combination 
of Patterns 2c 
and 3: If 
starting 
number is 
divisible by 3 
or 9, each term 
of sequence is 
divisible by 3 
or 9 
respectively 
(p. 2 top part 
column 2) 

121 20:04 But what if ... it’s ... 6? P PP3/
OP4 

Specific 
Problem 3 
(non-trivial) 
with Pattern 4 
(trivial / 
wrong): If 
starting 
number is 
divisible by 6, 
will each term 
of sequence be 
divisible by 6? 

122 20:08 [Flip to p. 1] I try 6 [flip back to p. 2] ... For 6 
[write: 6:] is ... 6 [write another 6] itself, no, no, 
it’s 12 [cancel 6 and write 12] ... 12 is ... [start 
writing] 1 + 2 [she reads as 3] ... eh, equal to 3; 
12 + 3 = 15 [stop writing]. 

S TE5 Example 5 
(purposeful 
choice of 
number 
divisible by 
6): p. 2 bottom 
part column 1 

123 20:32 15 cannot be divided by 6. C RP4 Solve Specific 
Problem 3: 
Reject Pattern 
4 

124 20:35 So ... if it is 3 or 9, the new numbers obtained 
also can be divided by 3 or 9 ... 

X XR Re-read 
Conjecture 1 
but miss out 
some words 

125 20:43 Then what if the sum of the digits is 2? [she 
thinks that sum of digits is divisible by 2 means 

P PP4/
OP5 

Specific 
Problem 4 
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Line Time Transcript 
Stage 
Code 

Bhvr 
Code 

Remarks 

number is divisible by 2 (just like divisibility 
tests for 3 and 9), which is why she tried 11 
below] 

(non-trivial) 
with Pattern 5 
(trivial / 
wrong): If sum 
of digits of 
starting 
number is 2, 
will each term 
of sequence be 
divisible by 2? 

126 20:47 I try 11 ... [Start writing] 11 is 1 + 1 = 2; then, 
um, 11 + 2 = ... 13; 13 is ... 1 + 3 = ... 1 +, 1 + 3 
= 4. 

S TE6 Example 6 
(purposeful 
choice of 
number whose 
sum of digits 
is 2): p. 2 
bottom part 
column 2 

127 21:06 11 + 4 = ... 15 [stop writing]. S EM6 Minor Error 6: 
Should be 13 
+ 4, not 11 + 4 
(pattern not 
true anyway) 

128 21:12 My finding is that all the numbers obtained is 
odd number [write: odd number] odd number. 

C OP6 Pattern 6 
(trivial / 
wrong): if 
starting 
number is odd, 
each term of 
the sequence 
will be odd 
(no longer 
Specific 
Problem 4) 

129 21:21 What if I try 20?  S DP Decide to try 
even number 
to see if it 
works like 
OP6 

130 21:23 [Write 20 and continue writing] is … 2 + 0 = 2; 
20 + 2 [stop writing] ... 20 + 2 = ... 22 [write: = 
22]. 

S TE7 Example 7 
(purposeful 
choice of even 
number): p. 2 
bottom part 
column 3 

131 21:35 So if the start number is … odd number, then the 
final number also be odd number ... If the … 
start number is even number [write: even 
number] even number, the rest will be even 
number ...  

C FC2 Conjecture 2 
(trivial / 
wrong): if 
starting 
number is odd 
or even, each 
term of the 
sequence will 
be odd or even 

132 21:53 But can I prove my, this finding? ... If … Can I 
use algebra to try … this example? ...  

J TP  

133 22:02 Hmm, the two digits are a and b [write: ab ] ... a J AL  
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Line Time Transcript 
Stage 
Code 

Bhvr 
Code 

Remarks 

and b, so now I use ab  + a + b ... so ab  
[continue writing] + a + b = ... 11a + 2b [stop 
writing] ... 

134 22:25 Here what I want is that ... a + ... a + ... b = ... 
no, a + ... 

J TP  

135 22:38 Oh, cannot use algebra [cancel her algebra 
working]. 

J AL Fail to use 
algebra to 
justify 

136 22:41 So my finding is this ... I … I can ... X XH  
137 22:44 [Refer to given checklist] … [Read from 

checklist] Look back. Devise and test 
conjectures ... Look back. Check the whole 
solution. Check answer to see if it is correct by 
substituting answer back into the task [stop 
reading] ... 

X XC  

138 23:04 So ... my finding, this is my finding one [cancel 
her algebra working again] ... I find that if the 
[start writing] if the original number is even, is 
an odd number, is an odd number, all the 
number [she did not write the word ‘numbers’] 
obtained will be odd number, all the number 
obtained will be odd [she did not write the word 
‘odd’] number. Same as for even numbers, even 
numbers [stop writing] 

X XW Write down 
Conjecture 2 
which she 
verbalised in 
Line 131 

139 23:54 Because the [rewrite 11 in Example 6 properly] 
... odd, odd number ... odd number is ... odd 
number is ... um ... 

J XH Refer to 
Example 6 

140 24:09 I try 21 [write: 21  2 + 1 = 3] is 3, right? Then 
[start writing] 21 + 3 = 24 [stop writing]; 2 + ... 
4 = 6; then 21 ... 24 + 6 = 30. 

J TE8 Example 8 
(purposeful 
choice of odd 
number): p. 2 
bottom part 
column 2 
(above E.g. 6) 

141 24:28 So this one is not working [cancel Conjecture 2], 
cannot ... 

J RC2 Refute 
Conjecture 2 

142 24:34 So if the original number can be divided by 3 or 
9, the new numbers obtained also can be divided 
by 3 or 9 ...  

J XR Re-read 
Conjecture 1 

143 24:44 This ... this can be proofed [sic] [start writing] 
this can be proofed [sic] ... that [stop writing] 
Once a two-number [sic: two-digit number] can 
be divided by 3, the sum of its digits must be 
divided by 3. So the sum of its digits can be 
divided by 3, then I add to them ... uh, odd 
number, the original number. So it increase, it 
increase ... um ... it increase ... 3 times a number. 

J RE Key Moment 
2: Discover 
proof for 
Conjecture 1 

144 25:23 So this number can be divided by 3 ... J JC1 Proven First 
Part of 
Conjecture 1 
correctly 

145 25:27 This can be proofed [sic] [cancel: that] [continue 
writing] from ... If a number can be divided by 3, 
can be, if a number can be divided by 3, then the 
... then the ... then [cancel: the] its digits, its 
[cancel: di] its sum of digits, must be, must be 
divided by 3, must be divided by 3 ... If add, if 

J XW Write proof 
that has 
already been 
verbalised 
above 
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Line Time Transcript 
Stage 
Code 

Bhvr 
Code 

Remarks 

add a number which is, which is a product of 3, 
if add a number which is a product of 3 [she did 
not write the number 3] to a number can be 
divided by 3, to a number that can be divided by 
3, then this new number [cancel: these] then this 
[write: is] [continue writing] new number 
obtained, new number obtained, surely can be 
divided by 3, can be divided by 3.  

146 27:12 Same, same for, for numbers that can be divided 
by 9, divided by 9 [stop writing]. 

J RE  

147 27:34 So this is my [write a line to separate the proof 
from Examples 6-8 at bottom part of p. 2] this is 
my finding ... 

G JC1/ 
SG 

Proven 
Second Part of 
Conjecture 1, 
leading to 
Generalisation

148 27:41 Now, it says [read from given checklist] Look 
back ... Check the whole solution. Check answer 
to see if it is correct ... Check the whole solution 
[stop reading]. 

R XC  

149 
 
 

(p.1) 

27:52 I check the number is ... um, can be divided by 3 
... Yes, these, all numbers [mostly likely only 
Examples 5 and 8] can be divided by 3 ... The 
rest is [flip to p. 1] 12, 12, the numbers, the new 
numbers obtained from 12 also can be divided 
by 3. 

R CW Refer to 
Examples 5 
and 8 
 
Refer to 
Example 1 

150 28:11 [Pause 5 s] X XP  
151 
(p.2) 

28:16 That means ... [flip back to p. 2] to find the [flip 
to p. 1] to find the pattern for these numbers ... 
[flip back to p. 2] so except for 3 and 9, the rest I 
can’t find the pattern ... The ... odd number and 
even number is not counted [cancel Examples 6 
and 7] as they are not working. 

R MR Review if 
solution 
satisfies goal 
(Counted as 
1×MR in 
Lines 151 and 
153 since this 
is same 
instance) 

152 28:43 [Pause 5 s] X XP  
153 28:48 So this is my … whole solution. R MR Solution has 

satisfied goal 
154 28:53 [Read from given checklist] Extend specific 

problems solved but still within the scope of the 
original task [stop reading] ... 

R XC  

155 29:03 You mean the ... original task means ... the task 
[sic: should be goal] is to find the pattern. Now I 
find the pattern for numbers that can be divided 
by 3 and 9 ...  

R MR Counted as 
1×MR in 
Lines 155 and 
157 since this 
is same 
instance 

156 29:14 What the pattern for the rest is ... 4 ... 4 + 7 
[from Example 4] ... 11 ... As for the numbers 
that ... 12 [point pen at 12] ... 79 + 12 is [use 
calculator for the first time in this task] 91 [stop 
using calculator]. 91 cannot be divided by 9 ... 

R CW Briefly check 
solution that 
the rest has no 
pattern 

157 29:44 So this is the ... answer, this is the investigation 
for ... the numbers that can be divided by 3 ... or 
... 3 or 9. [Time’s up at 29:57] 

R MR Solution has 
satisfied goal 

 
Total time = 29:57 
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APPENDIX J: SAMPLE ANSWER SCRIPT FOR POSTTEST 
TASK 1 (KAPREKAR) 

 
This appendix shows an answer script from S5 for Posttest Task 1 (Kaprekar Sequences) that 
is used as a sample in Chapter 4. For ease of reference, the problems, examples, conjectures 
and pages are numbered as shown. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Example 1 Example 2 Example 3 

Page 1 

General 
Problem 

Calculation Mistakes 

This was 5 originally 
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Page 2 

Example 4 

Example 5 

Example 6 
Example 7 

Example 8 

Conjecture 1 

Conjecture 2 

Failed Proof of Conjecture 2 

Proof of Conjecture 1 
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APPENDIX K: INTER-CODER RELIABILITY TEST FOR 
QUALITY OF PROBLEMS POSED 

 
This appendix shows the inter-coder reliability test for the quality of problems posed for the 
two pretest tasks and the two posttest tasks. Table K1 shows a sample of a list of problems for 
Pretest Task 1 given to two coders to classify whether each problem was trivial or non-trivial 
by ticking the appropriate column. The problems were obtained from the task analysis in 
Appendix E. 
 

Table K1  Sample List of Problems Given to Coders 
 
Tick whether the following problems are trivial or non-trivial. A problem does not need to be 
solvable. 

 

No. Problems Posed Trivial Non-trivial 

1. General Problem: Is there any pattern?   

2. 
Is there any pattern in consecutive new numbers (i.e. 
consecutive terms of the sequence)? 

  

3. 
Is there any pattern in the differences between consecutive 
new numbers? 

  

4. 
Is there any pattern in the last digit of consecutive new 
numbers? 

  

5. 
Is there a general formula to obtain the next term of the 
sequence? 

  

6. 
Is there a general formula for a happy number or a sad 
number42? 

  

7. Are there more happy numbers than sad numbers?   

8. Are there infinitely many happy numbers and sad numbers?   

9. Is the sum of two happy numbers happy or sad?   

10. Is the product of two happy numbers happy or sad?   

 
 
 

                                                 
42  Students were not expected to know the terms ‘happy number’ and ‘sad number’, but the terms will 

be used here for ease of discussion. 
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Table K2 to Table K5 show the detailed results of the inter-coder reliability test for Pretest 
Task 1, Pretest Task 2, Posttest Task 1 and Posttest Task 2 respectively, which was discussed 
in detail in Section 5.4. 
 
 
Table K2 Inter-Coder Reliability Test for Quality of Problems for Pretest Task 1 

 
No. Problems Posed Researcher Coder 1 Coder 2 

1. General Problem: Is there any pattern? Trivial Trivial Trivial 

2. 
Is there any pattern in consecutive new numbers (i.e. 
consecutive terms of the sequence)? 

Trivial Trivial Trivial 

3. 
Is there any pattern in the differences between 
consecutive new numbers? 

Trivial Trivial Trivial 

4. 
Is there any pattern in the last digit of consecutive new 
numbers? 

Trivial Trivial Trivial 

5. 
Is there a general formula to obtain the next term of the 
sequence? 

Non-trivial Non-trivial Non-trivial 

6. 
Is there a general formula for a happy number or a sad 
number? 

Non-trivial Non-trivial Non-trivial 

7. Are there more happy numbers than sad numbers? Non-trivial Non-trivial Non-trivial 

8. 
Are there infinitely many happy numbers and sad 
numbers? 

Non-trivial Non-trivial Trivial 

9. Is the sum of two happy numbers happy or sad? Non-trivial Trivial Non-trivial 

10. Is the product of two happy numbers happy or sad? Non-trivial Trivial Non-trivial 

No. of Agreements between Researcher and Coder 8 9 

Percentage of Agreements between Researcher and Coder 80% 90% 

Average Percentage of Agreements between Researcher and Coders 85% 

 
 
Table K3 Inter-Coder Reliability Test for Quality of Problems for Pretest Task 2 

 
No. Problems Posed Researcher Coder 1 Coder 2 

1. Find how to toast the three slices of bread. Trivial Trivial Trivial 

2. Find the time taken to toast the three slices of bread. Trivial Trivial Trivial 

3. Find a few methods to toast the three slices of bread. Non-trivial Trivial Non-trivial 

4. Find the shortest time to toast the three slices of bread. Non-trivial Trivial Non-trivial 

5. 
Find the shortest time needed to toast n slices if the grill 
can hold exactly two slices. 

Non-trivial Non-trivial Non-trivial 

6. 
Find the shortest time needed to toast n slices if the grill 
can hold exactly m slices. 

Non-trivial Non-trivial Non-trivial 

7. 

Find the shortest time needed to toast n slices if the grill 
can hold exactly two slices, and it takes a seconds to 
toast one side of a slice of bread, b seconds to put a slice 
in or to take a slice out, and c seconds to turn a slice 
over. 

Non-trivial Non-trivial Non-trivial 

8. 

Find the shortest time needed to toast n slices if the grill 
can hold exactly m slices, and it takes a seconds to toast 
one side of a slice of bread, b seconds to put a slice in or 
to take a slice out, and c seconds to turn a slice over. 

Non-trivial Non-trivial Non-trivial 

No. of Agreements between Researcher and Coder 6 8 

Percentage of Agreements between Researcher and Coder 75% 100% 

Average Percentage of Agreements between Researcher and Coders 87.5% 
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Table K4  Inter-Coder Reliability Test for Quality of Problems for Posttest   
Task 1 

 
No. Problems Posed Researcher Coder 1 Coder 2 

1. General Problem: Is there any pattern? Trivial Trivial Trivial 

2. 
Is there any pattern in consecutive new numbers (i.e. 
consecutive terms of the sequence)? 

Trivial Trivial Trivial 

3. 
Is there any pattern in the difference between 
consecutive new numbers (which is the same as the 
sums of digits of consecutive new numbers)? 

Trivial Trivial Trivial 

4. 
Is there any pattern in the last digit of consecutive new 
numbers? 

Trivial Trivial Trivial 

5. 
Is there a general formula to obtain the next term of the 
sequence? 

Non-trivial Non-trivial Non-trivial 

6. 
Are there numbers that will never appear as the second 
or subsequent terms of any Kaprekar sequence (these 
are called self numbers43)? 

Non-trivial Non-trivial Non-trivial 

7. 
Can a number appear in two Kaprekar sequences that 
start with a different self number? 

Non-trivial Non-trivial Non-trivial 

8. Is there any pattern in consecutive self numbers? Non-trivial Trivial Non-trivial 

9. Is there a general formula for self numbers? Non-trivial Non-trivial Non-trivial 

10. Are there infinitely many self numbers? Non-trivial Non-trivial Trivial 

No. of Agreements between Researcher and Coder 9 9 

Percentage of Agreements between Researcher and Coder 90% 90% 

Average Percentage of Agreements between Researcher and Coders 90% 

 
 

Table K5  Inter-Coder Reliability Test for Quality of Problems for Posttest   
Task 2 

 
No. Problems Posed Researcher Coder 1 Coder 2 

1. 
Find how to cut the 12 identical sausages to share them 
equally among the 18 people. 

Trivial Trivial Trivial 

2. Find the amount of sausages each person will receive. Trivial Trivial Trivial 

3. 
Find the number of cuts needed to share the 12 identical 
sausages equally among the 18 people.

Non-trivial Non-trivial Trivial 

4. 
Find a few methods to cut the 12 identical sausages to 
share them equally among the 18 people. 

Non-trivial Non-trivial Trivial 

5. 
Find the least number of cuts needed to share the 12 
identical sausages equally among the 18 people. 

Non-trivial Non-trivial Non-trivial 

6. 
Find the amount of sausages that each person will 
receive when n identical sausages are shared equally 
among m people 

Trivial Trivial Trivial 

7. 
Find the least number of cuts needed to share n identical 
sausages equally among m people. 

Non-trivial Non-trivial Non-trivial 

No. of Agreements between Researcher and Coder 7 5 

Percentage of Agreements between Researcher and Coder 100% 71.4% 

Average Percentage of Agreements between Researcher and Coders 85.7% 

 
 

                                                 
43  Students were not expected to know the term ‘self numbers’, but the term will be used here for ease 

of discussion. 
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APPENDIX L: INTER-CODER RELIABILITY TEST FOR 
QUALITY OF CONJECTURES FORMULATED 

 
This appendix shows the inter-coder reliability test for conjectures formulated for the two 
pretest tasks and the two posttest tasks. Table L1 shows a sample of a list of conjectures for 
Pretest Task 1 given to two coders to classify whether each conjecture was trivial or non-
trivial by ticking the appropriate column. The conjectures were obtained from the task 
analysis in Appendix E. 
 

Table L1  Sample List of Conjectures Given to Coders 
 
Tick whether the following conjectures are trivial or non-trivial. A conjecture that is false can 
be non-trivial as well. 

 

No. Conjecture Formulated Trivial Non-trivial 

1. 

If a number in a zapping sequence is happy or sad44, then all 
the numbers in the same sequence are also happy or sad 
respectively, e.g. 28  68  100  1, so all the numbers, 
28, 68, 100 and 1, are happy numbers. 

  

2. 
The rearrangement of the digits of a number does not matter 
in determining whether the number is happy or sad, e.g. 28 
and 82 are both happy. 

  

3. 
The insertion or removal of any number of zeros anywhere 
in a number does not affect whether the number is happy or 
sad, e.g. 47, 407 and 7040 are all sad. 

  

4. 

When two zapping sequences first merge at the same 
number, the preceding terms before this number in the two 
sequences will be different numbers but with the same 
unique combination, i.e. the difference in the preceding 
terms will just be rearrangements of the digits and/or 
insertion of zeros anywhere in the terms. For example, if 
two zapping sequences merge at the same number 100, then 
the preceding terms will be one of these numbers: 68, 86, 
608, 680, 806, 860, 6008, etc. [False]

  

5. A positive integer is either a happy or a sad number.   

6. There are more sad numbers than happy numbers.   

7. 
There are infinitely many happy numbers. Similarly, there 
are infinitely many sad numbers. 

  

8. 
The sum of two happy numbers is always happy. Similarly, 
the sum of two sad numbers is always sad. [False] 

  

9. 
The product of two happy numbers is always happy. 
Similarly, the product of two sad numbers is always sad. 
[False] 

  

                                                 
44  Students were not expected to know the terms ‘zapping sequence’, ‘happy number’ and ‘sad 

number’, but the terms will be used in this thesis for ease of discussion. 
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Table L2 to Table L5 show the detailed results of the inter-coder reliability tests for Pretest 
Task 1, Pretest Task 2, Posttest Task 1 and Posttest Task 2 respectively, which was discussed 
in detail in Section 5.4. 
 

Table L2  Inter-Coder Reliability Test for Quality of Conjectures for Pretest 
Task 1 

 

No. Conjecture Formulated Researcher Coder 1 Coder 2 

1. If a number in a zapping sequence is happy or sad, then all 
the numbers in the same sequence are also happy or sad 
respectively, e.g. 28  68  100  1, so all the numbers, 
28, 68, 100 and 1, are happy numbers. 

Trivial Trivial Trivial 

2. The rearrangement of the digits of a number does not 
matter in determining whether the number is happy or sad, 
e.g. 28 and 82 are both happy. 

Trivial Trivial Trivial 

3. The insertion or removal of any number of zeros anywhere 
in a number does not affect whether the number is happy or 
sad, e.g. 47, 407 and 7040 are all sad.

Trivial Trivial Trivial 

4. When two zapping sequences first merge at the same 
number, the preceding terms before this number in the two 
sequences will be different numbers but with the same 
unique combination, i.e. the difference in the preceding 
terms will just be rearrangements of the digits and/or 
insertion of zeros anywhere in the terms. For example, if 
two zapping sequences merge at the same number 100, then 
the preceding terms will be one of these numbers: 68, 86, 
608, 680, 806, 860, 6008, etc. [False] 

Non-trivial Non-trivial Non-trivial 

5. A positive integer is either a happy or a sad number. Non-trivial Non-trivial Non-trivial 

6. There are more sad numbers than happy numbers. Non-trivial Non-trivial Non-trivial 

7. There are infinitely many happy numbers. Similarly, there 
are infinitely many sad numbers. 

Non-trivial Non-trivial Trivial 

8. The sum of two happy numbers is always happy. Similarly, 
the sum of two sad numbers is always sad. [False] 

Non-trivial Trivial Non-trivial 

9. The product of two happy numbers is always happy. 
Similarly, the product of two sad numbers is always sad. 
[False] 

Non-trivial Trivial Non-trivial 

No. of Agreements between Researcher and Coder 7 8 

Percentage of Agreements between Researcher and Coder 77.8% 88.9% 

Average Percentage of Agreements between Researcher and Coders 83.3% 

 
Table L3  Inter-Coder Reliability Test for Quality of Conjectures for Pretest 

Task 2 
 

No. Conjecture Formulated Researcher Coder 1 Coder 2 

1. Shortest time to toast the three slices of bread (by using 
Toasting Method B) = 113 s 

Non-trivial Trivial Non-trivial 

*2. Shortest time to toast the three slices of bread (by using 
Toasting Method A) = 146 s [false] 

Trivial Trivial Trivial 

3. Shortest time needed to toast n slices if the grill can hold 
exactly two slices 

        
n

2

73
 seconds if n is even 

=     
2

7

2

73
n seconds if n is odd and n ≠ 1 

        73 seconds if n = 1 

Non-trivial Non-trivial Non-trivial 

No. of Agreements between Researcher and Coder 2 3 

Percentage of Agreements between Researcher and Coder 66.7% 100% 

Average Percentage of Agreements between Researcher and Coders 83.3% 
 

*  This conjecture was not in the task analysis in Appendix E, but was formulated by the students in this study. 
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Table L4  Inter-Coder Reliability Test for Quality of Conjectures for Posttest 
Task 1 

 
No. Conjecture Formulated Researcher Coder 1 Coder 2 

1. Every Kaprekar45 sequence is an increasing sequence, so 
the terms in each sequence will not repeat themselves, e.g. 
28, 38, 49, 62, … 

Trivial Trivial Trivial 

2. Some numbers will never appear as the second or 
subsequent terms in any Kaprekar sequence, e.g. 1, 3, 5, 7, 
9, 20, 31, 42, 53, 64, 75, 86, 97, 108, 110, … (these are 
called self numbers and they will only appear as the first 
term in one unique Kaprekar sequence). 

Non-trivial Trivial Non-trivial 

3. All one-digit odd numbers are self numbers. Trivial Trivial Trivial 

4. Difference between consecutive one-digit self numbers is 
always 2. 

Trivial Trivial Trivial 

5. Difference between the last one-digit self number 9 and 
first two-digit self number 20; and difference between 
consecutive two-digit self numbers (i.e. 20, 31, 42, 53, 64, 
75, 86, 97) is always 11. 

Trivial Trivial Trivial 

6. A 1-digit or a 2-digit no. in a Kaprekar sequence will never 
appear in another Kaprekar sequence with a different self 
number, but a 3-digit number can appear in two Kaprekar 
sequences with different self numbers, e.g. 107. 

Non-trivial Non-trivial Non-trivial 

7. If a self number is a multiple of 3 or 9, then all the terms in 
the Kaprekar sequence are also multiples of 3 or 9 
respectively. 

Non-trivial Non-trivial Non-trivial 

8. If a self number is not a multiple of 3 or 9, then the sums of 
the digits of the differences between consecutive terms of 
the Kaprekar sequence repeat themselves (i.e. 1, 2, 4, 8, 7, 
5) with a period of 6. 

Non-trivial Non-trivial Non-trivial 

9. There are infinitely many self numbers. Non-trivial Trivial Non-trivial 

No. of Agreements between Researcher and Coder 7 9 

Percentage of Agreements between Researcher and Coder 77.8% 100% 

Average Percentage of Agreements between Researcher and Coders 88.9% 

 

                                                 
45  Students were not expected to know the term ‘Kaprekar’, but it will be used in this thesis for ease of 

discussion. Similarly for other terms such as ‘self numbers’. 
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Table L5  Inter-Coder Reliability Test for Quality of Conjectures for Posttest 
Task 2 

 
No. Conjecture Formulated Researcher Coder 1 Coder 2 

1. 

Amount of sausage each person will get =

People of No.

Sausages of No.  Trivial Trivial Trivial 

2. Least number of cuts to share 12 identical sausages equally 
among 18 people (by using Cutting Method B) = 12 

Non-trivial Non-trivial Non-trivial 

*3. Least number of cuts to share 12 identical sausages equally 
among 18 people (by using Cutting Method A) = 24 
[False] 

Trivial Trivial Trivial 

*4. Least number of cuts to share 12n identical sausages 
equally among 18 people = 12n [False] 

Trivial Trivial Trivial 

5. Least number of cuts to share n identical sausages equally 
among m people = m  HCF(m,n). 

Non-trivial Non-trivial Non-trivial 

*6. It is always possible to share n identical sausages equally 
among m people with no remainder. 

Trivial Trivial Trivial 

*7. It is always possible to share n identical sausages equally 
among m people by dividing each sausage into 

 
n

mn,LCM
 equal parts. 

Non-trivial Non-trivial Trivial 

*8. It is always possible to share 6n identical sausages equally 

among 6n + 6 people by cutting each sausage at the 
1

1

n
-

mark. 

Non-trivial Trivial Non-trivial 

No. of Agreements between Researcher and Coder 7 7 

Percentage of Agreements between Researcher and Coder 87.5% 87.5% 

Average Percentage of Agreements between Researcher and Coders 87.5% 
 

*  These conjectures were not in the task analysis in Appendix E, but they were formulated by the students in the 
present study. 
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APPENDIX M: SUMMARY TABLES OF PROCESSES AND 
OUTCOMES FOR PRETEST 

 
This appendix shows the Summary Table of Processes and Outcomes (TPO) for Pretest Task 
1 (Happy) and Pretest Task 2 (Toast) obtained by examining the thinking-aloud protocols and 
answer scripts of the 10 students in the present study. The explanations of the codes were 
given in the Final Coding Scheme in Section 4.6.2, and the findings based on these data were 
discussed in Section 8.3. 
 
N1. Pretest Task 1 (Happy) 
 
(a)  Understanding the Task (Stage 1) 
 
Table M1.1 shows a summary of the understanding processes engaged by the 10 students and 
the types of outcomes for Pretest Task 1. The ‘Total’ column shows the total frequency for 
RR, RT, HI and MU (excluding TE) for each student. 
 

Table M1.1  Understanding Processes and Outcomes for Happy Task 
 

 
Processes Outcomes 

TE RR RT HI MU Total Understood Misinterpreted 
S1 1 5*    5  Did not recover 
S2 1     0  Recovered after 2 min 
S3 2 5+8=13* 0+1=1 0+1=1  15  Did not recover 
S4 1 1 3   4   
S5 1 3 1  1 5   
S6 1 5    5  Did not recover 
S7 5 7 2   9  Did not recover 
S8 1 1    1  Did not recover 
S9 1     0  Did not recover 
S10 2 1    1  Recovered after 9 min 

Total 16 36 7 1 1 45 2 
8 misinterpreted; 

2 recovered  
 

* S3 engaged in RR for 5 + 8 = 13 times means that RR happened 5 times in the first episode and 8 times in the 
second episode; 5  RR for S1 means that this process happened 5 times in the first episode. 

 
 

(b)  Problem Posing and Extension (Stages 2 and 8) 
 
Table M1.2 shows a summary of the problem-posing processes engaged by the 10 students 
and the types of outcomes for Pretest Task 1. Since 7 students (S2-S7,S10) did not pose any 
specific problem, they were excluded from the table. All the students did not pose the general 
problem of searching for any pattern, but they just went ahead to search for patterns after 
understanding the task, except for S1 who started with a non-trivial problem (i.e. S1 did not 
search for any pattern). All the students also did not extend the task by changing the given. 
No student analysed the feasibility of their goal (MG). 
 

Table M1.2  Problem-Posing Processes and Outcomes for Happy Task 
 

 

Processes Outcomes 
Refer to following to think of problem to pose 

MG 
General 
Problem 

Specific Problem Task 
Statement 

Current 
Working 

Previous 
Result 

Given  
Checklist 

S1 1  1 non-trivial 
S8  1     2 trivial 
S9  1     1 non-trivial 

Total 1 2 0 0 0 0 2 trivial; 2 non-trivial 
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(c)  Specialising (Stage 3) 
 
Table M1.3 shows a summary of the specialising processes engaged by the 10 students and 
the types of outcomes for Pretest Task 1. Since all the students used the random example(s) 
generated for understanding the task to search for patterns as well, these examples were also 
included in the table for specialising. But examples used to test conjectures (E.g. 6,8,9 for S1; 
E.g.13-14 for S5; E.g. 5 for S8) in the justifying stage were excluded. The examples generated 
were considered representative if the students were able to generate at least one sequence that 
belongs to happy numbers and at least one sequence that belongs to sad numbers. None of the 
students used other heuristics for this task. No student analysed the feasibility of their plan 
(MF) in this stage, so this metacognitive process was omitted from the table. 
 

Table M1.3  Specialising Processes and Outcomes for Happy Task 
 

 
Processes Outcomes 

Specialising 
MA 

Total No. 
of E.g. 

Rep. 
E.g. 

Not Rep. 
E.g. Random Purposeful Systematic 

S1 6 (E.g. 1-5,7)    6 NA* 
S2 6 (E.g. 1-6)   3 6   (sad nos.) 
S3 2 (E.g. 1-2) 4 (E.g. 3-6)   6 NA* 
S4 6 (E.g. 1,3,4,7-9) 3 (E.g. 2,5,6)   9   
S5 10 (E.g. 1-4,7-12) 4 (E.g. 5,6,15,16)  2 14   
S6 3 (E.g. 1,3,5) 3 (E.g. 2,4,6)   6 NA* 
S7 7 (E.g. 1-7)    7 NA* 
S8 7 (E.g. 1-4,6-8)    7 NA* 
S9 1 (E.g. 1)    1 NA* 
S10 18 (E.g. 1-13,15-19) 1 (E.g. 14)  2 19   

Total 66 (81%) 15 (19%) 0 7 81 3 1 
 

*  6 students misinterpreted the task so badly (e.g. took square root instead of squaring, or did not repeat the 
process) that the patterns, if any, were no longer the same as the original task. As a result, the examples could not 
be classified as representative because either there was no known pattern or only one type of examples. 

 
 
(d)  Conjecturing (Stage 4) 
 
Table M1.4a shows a summary of the types of patterns and conjectures produced by the 10 
students for Pretest Task 1. Other types of patterns refer to patterns not related to the original 
task which students discovered because they had misinterpreted the task. Each number in 
brackets indicates the number of correct patterns or conjectures, e.g. 4(3) trivial patterns for 
S3 indicates that S3 had observed 4 trivial patterns, out of which 3 of them were correct. 
 

Table M1.4a  Patterns and Conjectures for Happy Task 
 

 

Related to Original Task Other Types of Patterns 
Total 
No. of 
Patt. 

Total 
No. of 
Conj. 

Patterns Conjectures Patterns Conjectures 
non-

trivial 
trivial 

non-
trivial 

trivial 
non-

trivial 
trivial 

non-
trivial 

trivial 

S1      1  3 1 3 
S2 1(1)  1      1(1) 1 
S3      4(3)   4(3) 0 
S4 2(2) 2(2)  4(4) 0 
S5 2(2) 2(2) 1(1)      4(4) 1(1) 
S6      1   1 0 
S7      1   1 0 
S8      2(2)  2(2) 2(2) 2(2) 
S9      1(1)  2(1) 1(1) 2(1) 

S10 3(2) 1(1)       4(3) 0 
Total 8(7) 5(5) 2(1) 0 0 10(6) 0 7(3) 23(18) 9(4) 
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Table M1.4b shows a summary of the conjecturing processes engaged by the 10 students and 
the types of outcomes for Pretest Task 1. Each number in brackets indicates the number of 
correct patterns or conjectures. No student analysed the feasibility of their plan (MF) in this 
stage, so this metacognitive process was omitted from the table. Although 2 students (S1,S9) 
exhibited metacognitive awareness (MA) in this stage, it was not included in this table 
because it would be analysed in the checking stage (see Table M1.6) since it involved the 
students sensing something amiss and checking their working. 
 

Table M1.4b  Conjecturing Processes and Outcomes for Happy Task 
 

 
Specialising Outcomes Conjecturing Processes 

Conjecturing Outcomes 
related to Original Task 

No. of 
E.g. 

Rep. E.g. 
Searched for patterns in Observed 

Patterns 
Formulated 
Conjectures Terms Diff. b/w Terms Others 

S1 6 NA*    NA* 
S2 6 Sad nos. only    1(1) 1 
S3 6 NA*    NA* 
S4 9     4(4)  
S5 14   4(4) 1(1) 
S6 6 NA*    NA* 
S7 7 NA*    NA* 
S8 7 NA*    NA* 
S9 1 NA*    NA* 

S10 19     4(3)  
Total 81 3 rep. 5 5 3 13(12) 2(1) 

 

*  6 students misinterpreted the task so badly (e.g. took square root instead of squaring, or did not repeat the 
process) that the patterns, if any, were no longer the same as the original task. As a result, the examples could not 
be classified as representative because either there was no known pattern or only one type of examples. 

 
(e)  Justifying and Generalising (Stages 5 and 6) 
 
Table M1.5 shows a summary of the justifying processes engaged by the 10 students and the 
types of outcomes for Pretest Task 1. No student exhibited any metacognitive behaviour (MF 
or MA) in these stages, so these processes were omitted from the table. Since 5 students did 
not formulate any conjecture to justify, they were excluded from the table. 
 

Table M1.5  Justifying / Generalising Processes and Outcomes for Happy Task 
 

 Conjecture 
Justifying Processes 

Justifying and Generalising 
Outcomes Naïve 

Testing 
Non-proof 
Argument 

Formal 
Proof 

S1 

Wrong Trivial Conjecture 1    Tried but failed to justify 

Wrong Trivial Conjecture 2    
Wrongly accepted conjecture as 

true based on naïve testing 
Wrong Trivial Conjecture 3    Test ended during naïve testing 

S2 
Wrong Non-Trivial 

Conjecture 1 
   Tried but failed to justify 

S5 
Correct Non-trivial 

Conjecture 1 
   

Wrongly accepted conjecture as 
true based on naïve testing 

S8 
Correct Trivial Conjecture 1    

Wrongly accepted conjecture as 
true based on naïve testing 

Correct Trivial Conjecture 2    
Wrongly accepted conjecture as 

true without testing 

S9 
Correct Trivial Conjecture 1    

Wrongly accepted conjecture as 
true based on naïve testing 

Wrong Trivial Conjecture 2    
Refuted conjecture based on 

naïve testing 
Total 9 6 1 1 0 proven; 0 generalisation* 

 

*  There was no generalisation for all the conjectures either because the conjecture was wrong or it was not proven. 
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(f)  Checking (Stage 7) 
 
Table M1.6 shows a summary of the monitoring and checking processes engaged by the 10 
students and the types of outcomes for Pretest Task 1. The time indicated in brackets for 
‘Errors Discovered’ refers to the time interval between making the major mistake and 
discovering the mistake. No time is indicated for the discovery of a minor error because the 
discovery time is not an important factor when the error is minor. 
 

Table M1.6  Monitoring / Checking Processes and Outcomes for Happy Task 
 

 

Processes Outcomes 
Check Working 

MP MR MA Errors Made Errors Discovered Most 
Parts 

Some 
Parts 

Glance 
Briefly 

Total 

S1 1   1 2 1 2 2 minor 2 minor 

S2    0 0 0 0 
1 major +  

4 minor = 5 
1 major (6 min 

later) + 1 minor = 2 

S3  1  1 1 0 0 
2 major +  

6 minor = 8 
6 minor 

S4 2 2  4 4 1 0 
1 major +  

1 minor = 2 
1 minor 

S5    0 0 2 0 
1 major +  

4 minor = 5
1 minor 

S6    0 2 0 0 
1 major +  

3 minor = 4 
2 minor 

S7    0 11 0 0 1 minor 1 minor 
S8    0 4 0 0 0 0 

S9  4 1 5 6 1 2 
4 major +  

6 minor = 10 
2 major (6 min 

later) + 6 minor = 8 
S10  1  1 1 0 0 1 minor 0 

Total 3 8 1 12 31 5 4 
10 major + 

28 minor = 38  
3 major +  

20 minor = 23 

 
N2. Pretest Task 2 (Toast) 
 
(a)  Understanding the Task (Stage 1) 
 
Table M2.1 shows a summary of the understanding processes engaged by the 10 students and 
the types of outcomes for Pretest Task 2. The ‘Total’ column shows the total frequency for 
RR, RT, HI and MU for each student. 
 

Table M2.1  Understanding Processes and Outcomes for Toast Task 
 

 
Processes Outcomes 

RR RT HI VI MU Total Understood Misinterpreted 
S1 1* 1 3   5  Did not recover 
S2 0+1=1   0+1=1 0+1=1 3   
S3 0+3=3* 0+2=2    5  Did not recover 
S4      0  Did not recover 
S5 4   1 2 7  Recovered after 4 min 
S6 2 1  2 2 7   
S7 1   1  2  Did not recover 
S8     1 1   
S9  2  1 2 5  Recovered after 3 min 
S10 2+2=4  0+1=1  1+2=3 8  Recovered after 7 min 

Total 16 6 4 6 11 43 3 
7 misinterpreted; 

3 recovered  
 

* S3 engaged in RR for 0 + 3 = 3 times means that RR happened 0 times in the first episode and 3 times in the 
second episode; 1  RR for S1 means that this process happened one time in the first episode. 
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(b)  Problem Posing and Extension (Stages 2 and 8) 
 
During the task analysis of Pretest Task 2 in Appendix E, some problems that students could 
pose were identified and classified as trivial or non-trivial. These were reproduced below. 
Problem 4 was the intended problem for this task. The solutions of these problems were not 
general results. 
 

 Problem 1 (P1): Find how to toast the three slices of bread. [Trivial] 
 Problem 2 (P2): Find the time taken to toast the three slices of bread. [Trivial] 
 Problem 3 (P3): Find a few methods to toast the three slices of bread. [Non-Trivial] 
 Problem 4 (P4): Find the shortest time to toast the three slices of bread. [Non-Trivial; 

Intended Problem] 
 
Table M2.2a shows a summary of the types of problems posed by the 10 students. 
 

Table M2.2a  Problems Posed for Toast Task 
 

 
P1 

(trivial) 
P2 

(trivial) 

P3 
(non-

trivial) 

P4 
(non-

trivial) 

Other 
Trivial 
Prob. 

Other 
Non-

Trivial 
Prob. 

Total 
No. of 
Trivial 
Prob. 

Total No. 
of Non-
Trivial 
Prob. 

Total 
No. of 
Prob. 

S1     1  2 1 3 
S2     1  1 1 2 
S3  *   1  2 1 3 
S4       0 1 1 
S5       0 1 1 
S6  *     1 1 2 
S7       1 0 1 
S8       1 1 2 
S9       0 1 1 
S10       0 1 1 

Total 0 5 1 8 3 0 8 9 17 
 

* Did not pose problem explicitly 
 
 
Table M2.2b shows a summary of the problem-posing processes engaged by the 10 students 
and the types of outcomes for Pretest Task 2. If the students struggled to pose the problem 
eventually, it was denoted by ‘E’; if they posed the problem naturally without struggling, it 
was denoted by ‘N’. 
 

Table M2.2b  Problem-Posing Processes and Outcomes for Toast Task 
 

 

Processes Outcomes 
Refer to following to think of problem 

MG P1 P2 P3 P4 
Other 
Trivial 
Prob. 

Other Non-
Trivial 
Prob. Task 

Current 
Working 

Previous 
Result 

S1 1 1 1   N  N 1N  
S2 2       E 1N  
S3 2  1   N*  E 1N  
S4 1       N   
S5 1       N   
S6 2     E*  E   
S7 1     N     
S8 1  1   N N    
S9 1       N   
S10 1  N   

Total 13 1 3 0 0 5 1 8 3 0 
 

* Did not pose problem explicitly 
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During the task analysis of Pretest Task 2 in Appendix E, some extensions that students could 
pose were identified and classified as trivial or non-trivial. These were reproduced below. 
Both extensions were the intended extensions and for the purpose of generalising. 
 

 Extension 1 (E1): Find the shortest time needed to toast n slices if the grill can hold 
exactly two slices. [Non-trivial; Intended Extension] 

 
 Extension 2 (E2): Find the shortest time needed to toast n slices if the grill can hold 

exactly m slices. [Non-Trivial; Intended Extension] 
 
Table M2.2c shows a summary of the types of extensions posed by the 10 students. Since 6 
students did not extend the task, they were excluded from the table. 
 

Table M2.2c  Extensions for Toast Task 
 

 
E1 

(non-
trivial) 

E2 
(non-

trivial) 

Other Extensions 
to generalise 

Other Extensions 
but not to generalise 

Total No. of Extensions 

Trivial 
Non-

Trivial 
Trivial 

Non-
Trivial 

Trivial 
Non-

Trivial 
All 

S3     2  2 0 2 
S4       0 1 1 
S7    1 1  1 1 2 
S9     2  2 1 3 

Total 2 0 0 1 5 0 5 3 8 

 
 
Table M2.2d shows a summary of the extension processes engaged by the 10 students and the 
types of outcomes for Pretest Task 2. Since 6 students did not extend the task, they were 
excluded from the table. If the students struggled to pose the problem eventually, it was 
denoted by ‘E’; if they posed the problem naturally without struggling, it was denoted by ‘N’. 
 

Table M2.2d  Extension Processes and Outcomes for Toast Task 
 

 

Processes Outcomes 

Refer to following to think of extension 
MG E1 E2 

Other 
Extensions 

to generalise 

Other 
Extensions 
but not to 
generalise 

Task 
Current 
Working 

Previous 
Result 

S3   2     2N 
S4   1  N    
S7 1  1    1E 1E 
S9 1  2  E   2E 

Total 2 0 6 0 2 0 1 5 

 
 
 
(c)  Specialising and Using Other Heuristics (Stage 3) 
 
Table M2.3a shows a summary of the processes for using other heuristics engaged by the 10 
students and the types of outcomes for the original task for Pretest Task 2. No student used 
algebra to solve the problems posed for this task, so this process was omitted from the table. 
The explanations of what constituted ‘effective reasoning’, ‘quite effective reasoning’ and 
‘ineffective reasoning’ were given in Section 8.2.1. Although 3 other students (S5,S7,S10) 
exhibited metacognitive awareness (MA) in this stage, it was not included in this table 
because it would be analysed in the checking stage (see Table M2.6) since it involved the 
students sensing something amiss and checking their working. 
 



 
 

542

Table M2.3a  Using Other Heuristics for Toast Task 
 

 
Processes Outcomes 

Effective 
Reasoning 

VI MF MA 
Toasting Methods 

A B C Others Total 
S1 No       1 3 
S2 No       1 2 
S3 No       1 1 
S4 Yes 1 1 1     2 
S5 Quite 5 1    2 
S6 No        2 
S7 No 6       1 
S8 Quite 1      2 4 
S9 No  2     2 4 
S10 Quite 4      1 3 

Total 1 Yes, 3 Quite 17 4 1 9 4 3 8 24 

 
 
Table M2.3b shows a summary of the processes for using other heuristics engaged by the 10 
students and the types of outcomes for the extension of Pretest Task 2. Since 6 students did 
not extend the task, they were omitted from the table. The omitted students did not exhibit 
any metacognitive behaviour (MF or MA) in this stage. 
 

Table M2.3b  Using Other Heuristics for Extension of Toast Task 
 

 
Processes Outcomes 

Effective 
Reasoning 

VI MF MA 
Toasting Methods 

A B C Others Total 
S3 No        1 
S4 Yes 2       1 
S7 No 10       1 
S9 No 3  1     1 

Total 1 Yes, 3 No 15 0 1 3 1 0 0 4 

 
 
(d)  Conjecturing (Stage 4) 
 
Table M2.4a shows a summary of the conjecturing processes engaged by the 10 students and 
the types of outcomes for the original task for Pretest Task 2. The conjectures were classified 
as trivial or non-trivial based on the task analysis in Appendix E. No student exhibited the 
metacognitive behaviours, MF and MA, in this stage. Although 8 students (S1-S6, S9,S10) 
had posed the problem of finding the least number of cuts and so their cutting method was 
only a conjecture to be proven or refuted, one of them (S6) did not pursue the problem, and 3 
of them (S2,S5,S10) did not finish solving the problem. Thus only 4 students were included in 
the table because they had solved this problem that led to a conjecture. The remaining 2 
students (S7,S8) did not pose this problem and so there was no conjecture. 
 

Table M2.4a Conjecturing Processes and Outcomes for Toast Task 
 

 
Processes Outcomes 
Reasoning Conjecture Trivial or non-trivial? Correct or wrong? 

S1 Ineffective Conjecture 1 Non-trivial Wrong (use Toasting Method A) 
S3 Ineffective Conjecture 1 Non-trivial Wrong (use Toasting Method A) 
S4 Effective Conjecture 1 Non-trivial Correct (use Toasting Method B) 
S9 Ineffective Conjecture 1 Non-trivial Wrong (use Toasting Method A) 

Total 1 effective 4 conjectures 4 non-trivial 1 correct; 3 wrong 
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Table M2.4b shows a summary of the conjecturing processes engaged by the 10 students and 
the types of outcomes for the extension of Pretest Task 2. The conjectures were classified as 
trivial or non-trivial based on the task analysis in Appendix E. Since 6 students (S1,S2,S5,S6, 
S8,S10) did not extend the task, they were omitted from the table. One more student (S7) was 
excluded because she did not finish solving the extension and so there was no conjecture. 
 
Table M2.4b  Conjecturing Processes and Outcomes for Extension of Toast Task 

 
 Processes Outcomes 
 MF MA Conjecture Trivial or non-trivial? Correct or wrong? 

S3   
Conjecture 2 Non-trivial Both wrong because his toasting method 

will not give least toasting time Conjecture 3 Non-trivial 

S4   
Conjecture 2 Trivial 

Correct: last digit of time taken, in 
seconds, to toast n slices repeats 

Conjecture 3 Non-trivial 
Correct because Toasting Method B will 
give least toasting time 

S9   

Conjecture 2 Non-trivial Both wrong because Toasting Method A 
will not give least toasting time Conjecture 3 Non-trivial 

Conjecture 4 Trivial 
Correct: repeating pattern in toasting time 
from odd no. of slices to even no. 

Total 0 0 7 conjectures 
2 trivial; 

5 non-trivial 
3 correct; 4 wrong 

 
 
(e)  Justifying and Generalising (Stages 5 and 6) 
 
Table M2.5a shows a summary of the justifying processes engaged by the 10 students and the 
types of justifying and generalising outcomes for the original task for Pretest Task 2. None of 
the students exhibited any metacognitive behaviour (MF or MA) in these stages, so these 
processes were omitted from the table. Only 4 students were shown in the table because they 
were the only ones who had formulated conjectures for the original task to justify. 
 

Table M2.5a  Justifying / Generalising Processes and Outcomes for Toast Task 
 

 Conjecture 
Justifying Processes 

Justifying and Generalising 
Outcomes Naïve 

Testing 
Non-proof 
Argument 

Formal 
Proof 

S1 
Wrong Non-trivial 

Conjecture 1 
   

Wrongly accepted conjecture as 
true without testing 

S3 
Wrong Non-trivial 

Conjecture 1 
   

Wrongly accepted conjecture as 
true without testing 

S4 
Correct Non-trivial 

Conjecture 1    
Wrongly accepted conjecture as 

true without testing 

S9 
Wrong Non-trivial 

Conjecture 1    
Wrongly accepted conjecture as 

true without testing 
Total 1 correct; 3 wrong 0 0 0 0 proven; 0 generalisation* 

 

* There was no generalisation for all the conjectures because none of the conjectures were proven. 
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Table M2.5b shows a summary of the justifying processes engaged by the 10 students and the 
types of justifying and generalising outcomes for the extension of Pretest Task 2. None of the 
students exhibited any metacognitive behaviour (MF or MA) in these stages, so these 
processes were omitted from the table. Only 3 students were shown in the table because they 
were the only ones who had formulated conjectures for the extended task to justify. 
 
Table M2.5b  Justifying / Generalising Processes and Outcomes for Extension of 

Toast Task 
 

 Conjecture 
Justifying Processes 

Justifying and Generalising 
Outcomes Naïve 

Testing 
Non-proof 
Argument 

Formal 
Proof 

S3 

Wrong Non-trivial 
Conjecture 2 

   
Wrongly accepted conjecture as 

true without testing 
Wrong Non-trivial 

Conjecture 3    
Wrongly accepted conjecture as 

true without testing 

S4 

Correct Trivial 
Conjecture 2 

   Proven conjecture 
(generalisation) 

Correct Non-trivial 
Conjecture 3 

   
Wrongly accepted conjecture as 

true without testing 

S9 

Wrong Non-trivial 
Conjecture 2 

   
Wrongly accepted conjecture as 

true without testing 
Wrong Non-trivial 

Conjecture 3 
   

Wrongly accepted conjecture as 
true without testing 

Correct Trivial 
Conjecture 4 

   
Wrongly accepted conjecture as 

true without testing 
Total 3 correct; 4 wrong 0 1 0 1 proven; 1 generalisation* 

 

* There was no generalisation for all the conjectures except for the proven conjecture. 
 
 
(f)  Checking (Stage 7) 
 
Table M2.6 shows a summary of the monitoring and checking processes engaged by the 10 
students and the types of outcomes for Pretest Task 2. The time indicated in brackets for 
‘Errors Discovered’ refers to the time interval between making the major mistake and 
discovering the mistake. No time is indicated for the discovery of a minor error because the 
discovery time is not an important factor when the error is minor. 
 

Table M2.6  Monitoring / Checking Processes and Outcomes for Toast Task 
 

 

Processes Outcomes 
Check Working 

MP MR MA 
Errors 
Made 

Errors 
Discovered Most 

Parts 
Some 
Parts 

Glance 
Briefly 

Others Total 

S1  1  1 0 1 0 1 minor 1 minor
S2 2    2 0 0 0 1 minor 0 
S3 2 1   3 0 0 0 2 minor 2 minor 
S4  2  1 3 1 3 0 2 minor 1 minor 
S5  1   1 0 0 1 2 minor 2 minor 
S6     0 1 3 0 2 minor 2 minor 
S7  1   1 0 0 1 1 minor 1 minor 

S8     0 0 3 0 
5 major +  

1 minor = 6 
0 

S9  2 1  3 2 5 0 2 minor 1 minor 
S10  1   1 0 0 1 0 0 

Total 4 9 1 1 15 4 15 3 
5 major + 14 
minor = 19 

10 minor 

 
 


