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In this paper, the differences between mathematical tasks such as problem-solving tasks, investigative 
tasks, guided-discovery tasks, project work, real-life tasks, problem-posing tasks, open tasks and ill-
structured tasks will be contrasted. Such clarification is important because it can affect how and what 
teachers teach since the diverse types of tasks have different pedagogical uses, and it can also help 
researchers to define more clearly the tasks that they are investigating on. A framework to characterise 
the openness of mathematical tasks based on task variables such as the goal, the method, the answer, 
scaffolding and extension will be described. The tasks are then classified according to their teaching 
purpose: mathematically-rich tasks, such as analytical tasks and synthesis tasks, can provide students 
with opportunities to learn new mathematics and to develop mathematical processes such as problem-
solving strategies, analytical thinking, metacognition and creativity; and non-mathematically-rich tasks, 
such as procedural tasks, can only provide students with practice of procedures. Rich assessment tasks 
that teachers can use to assess students’ conceptual understanding, mathematical communication and 
thinking processes will also be discussed. The clarification of terminologies and the classification of 
mathematical tasks will help teachers to understand more about the purpose and characteristics of the 
diverse types of tasks so that they can choose appropriate tasks to develop the different facets of their 
students’ mental structures and to assess the various aspects of their learning. 

 
1. Introduction 
 
Some educators do not distinguish between mathematical investigation and problem solving 
but others emphasise the differences (Evans, 1987). Pirie (1987) claimed that no fruitful 
service will be performed by indulging in the ‘investigation’ versus ‘problem solving’ debate 
but Frobisher (1994) believed that this is a crucial issue that will affect how and what 
teachers teach their students. The Professional Standards for Teaching Mathematics (NCTM, 
1991) stated that it is the “central responsibility of teachers … to select and develop 
worthwhile tasks and materials that create opportunities for students to develop … 
mathematical understandings, competence, interests and dispositions” (p. 24). If a teacher 
does not know the differences between the types of mathematical tasks, how is he or she to 
use them to develop the various aspects of the students’ mental structures since different tasks 
are used to cultivate different types of skills and thinking? If a teacher refers to standard 
mathematics textbook tasks as ‘problems’ that the students should ‘solve’, then he or she may 
not realise that practising this type of tasks is not mathematical problem solving which is the 
central theme of many school curricula (e.g. Cockcroft, 1982; NCTM, 1980; Ministry of 
Education of Singapore, 1990). If a teacher thinks that ‘word problems’ are mathematical 
tasks with real-life contexts, then he or she may not search for genuine real-life tasks for the 
students to solve. Thus it is crucial that teachers understand the differences between these 
tasks, especially their teaching purpose, so that they can choose more suitable tasks for their 
students. This is also important for researchers because it is hard to research on different 
types of mathematical tasks if the latter are defined vaguely. Therefore, the main purpose of 
this paper is to provide a characterisation of the diverse types of mathematical tasks to help 
teachers in their choice of appropriate tasks for their students and to help researchers 
demarcate their area of research more clearly. 
 
This paper will begin with a discussion of what a mathematical problem is (Section 2) and 
then the differences between various terminologies such as between problems and exercises, 
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between problems and investigative tasks, between problem solving and problem posing, 
between investigation and guided discovery learning, between investigation and project work, 
between academic and real-life tasks, between open-ended and open tasks, and between ill-
structured and well-structured tasks will be contrasted (Sections 3 to 10). A framework to 
characterise the different types of openness of mathematical tasks will be developed in 
Section 9. All these clarifications will lead to a classification of mathematical tasks according 
to their purpose for different types of learning and assessment (Sections 11 to 12). The paper 
will then conclude with a discussion of some implications for the teaching and learning of 
mathematics (Section 13). 
 
2. What exactly is a mathematical problem? 
 
Many teachers use the word ‘problems’ to describe the tasks in a mathematics textbook but 
are these really problems? In this section, what exactly constitutes a mathematical problem 
will be clarified. It will begin with Henderson’s and Pingry’s (1953) three necessary 
conditions for a situation to be a problem for a particular individual: 
 

“1. The individual has a clearly defined goal of which he is consciously aware and 
whose attainment he desires. 

 2. Blocking of the path toward the goal occurs, and the individual’s fixed 
patterns of behavior or habitual responses are not sufficient for removing the 
block. 

 3. Deliberation takes place. The individual becomes aware of the problem, 
defines it more or less clearly, identifies various possible hypotheses 
(solutions), and tests these for feasibility.” (p. 230) 

 
There are three criteria in the first condition. The first criterion is a clearly defined goal which 
will be discussed later in Section 4. The second criterion is that the person must be 
consciously aware of the goal. The third criterion is that the person must desire the attainment 
of the goal. Lester (1980) interpreted the word ‘desires’ to mean that the person must “be 
interested in resolving the situation” (p. 30). So what if a person is not interested? In the 
classroom, if an indifferent student refuses to try the tasks set by the teacher (i.e. both the first 
and third conditions are not satisfied), then these tasks are not problems to the student. But 
what if an uninterested student attempts the tasks (i.e. the third condition is satisfied but the 
first condition seems not to be satisfied) because he or she may feel that this is part and parcel 
of schooling or the teacher may have encouraged or coerced the student to do the work? If 
this student is unable to solve the tasks, are they still problems to him or her? This has a 
serious pedagogical implication. If these tasks are not problems to the student, then the 
teacher does not have to do anything to help the student. But from the perspective of the 
student, these tasks are still problems because he or she has a problem solving them. Thus it 
would seem that interest on the part of the person is not a criterion to determine whether a 
situation is a problem to him or her. According to Cambridge Dictionaries Online 
(Cambridge University Press, 2007), the word ‘desires’ means ‘wants’ and a person may 
want something out of necessity or responsibility rather than out of interest. Another meaning 
of ‘wants’ is ‘needs’ (ibid.). In the classroom, an uninterested student may want or need to 
solve the tasks, be it willingly or unwillingly, and so if we interpret the word ‘desires’ as 
‘wants’ or ‘needs’ in Henderson’s and Pingry’s (1953) first condition, then a situation will 
still be a problem to a person if he or she wants or needs to attain the goal but is unable to do 
so. In fact, Reys, Lindquist, Lambdin, Smith and Suydam (2004) defined a problem as “a 
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situation in which a person wants [emphasis mine] something and does not know 
immediately what to do to get it” (p. 115). 
 
The second condition is that the person must “be unable to proceed directly to a solution” 
(Lester, 1980, p. 30). Reys et al. (2004) believed that this difficulty must require “some 
creative effort and higher-level thinking” (p. 115) to resolve. Schoenfeld (1985) also 
emphasised that the “difficulty should be an intellectual impasse rather than a computational 
one” (p. 74). He gave the example that inverting a 27 × 27 matrix would be a tedious task for 
him but inverting a matrix was not a problem to him. So tediousness in applying a 
computational procedure is not a factor in determining whether a situation is a problem. But 
what if a student does not know how to invert a 27 × 27 matrix? Students may have learnt 
how to invert a 2 × 2 matrix but not many of them are aware of how to invert a square matrix 
of higher dimensions. So the problem can still be a procedural one. But if it is just a routine 
practice of procedural tasks commonly found in textbooks, then these tasks may not pose a 
problem to the student (see Section 3). 
 
The third condition is that the person must “make a deliberate attempt to find a solution” 
(Lester, 1980, p. 30). What happens if the person does not attempt the task? For example, in 
real life, if a person tries to run away from his or her problem instead of trying to resolve it, 
does it mean that the situation is no longer a problem to the person? Isn’t it like sweeping a 
problem under a carpet and pretending that the problem is not there, but is the problem really 
not there? Imagine an ostrich which buries its head into the ground when it senses danger. As 
long as the ostrich does not see the source of the danger, is the danger still a problem to the 
bird? What is worse is that the danger may even cause the ostrich its life. There are two 
different perspectives here. From the viewpoint of the person or the ostrich, the situation is 
not a problem to the person or the ostrich. But from another viewpoint, the problem is still 
there. Which perspective you take depends on the situation itself. If the situation is serious, 
then taking the first viewpoint may not be so helpful to the person although it may so happen 
that the situation just resolves by itself after some time. If the situation does not concern the 
person, then taking the second viewpoint may not be so helpful. For example, there are many 
questions on physics that I cannot answer. Taking the second viewpoint that these questions 
are problems to me will mean that I have a lot of problems in my life and I may feel so 
burdened by them when these questions do not actually concern me. Thus whichever 
perspective you take depends on whether the situation concerns you or how serious it is. In 
the classroom, if a student does not attempt the tasks set by the teacher, then from the first 
viewpoint, these tasks are not problems to the student. But is this perspective helpful to the 
student? 
 
We have been looking at what constitutes a problem from the viewpoint of the student. Let us 
look at it from the perspective of a teacher. When a teacher designs or chooses a task for his 
or her class, the teacher will usually target the task difficulty at the level of the average 
students in the class. But if the average students are not interested in doing any work at all, 
then the task will not be a problem to these students and so does it mean that the teacher can 
set a very difficult task since it will pose no problem to these students? From the viewpoint of 
the teacher, in deciding whether a task is suitable for the class, it may be more useful to just 
use Henderson’s and Pingry’s (1953) second condition that a task is a problem to a person if 
he or she is unable to proceed directly to a solution. Whether the students want to do the task 
or actually make an attempt on it should not be a factor when deciding whether the task will 
be a problem to the average students in the class. Of course, if the students do not want to do 
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the task, then it will still be a concern for the teacher but it will be an entirely different 
problem for the teacher. 
 
In this paper, mathematical problems will be viewed from a pedagogical perspective and so a 
mathematical task is defined to be a problem to a student if he or she is unable to proceed 
directly to a solution. Whether the student is interested to solve it or actually makes an 
attempt on it will not affect the teacher’s viewpoint that this is a problem to the student. From 
this perspective, we will discuss whether standard mathematics textbook tasks are really 
problems or just exercises. 
 
3. Problems or Exercises? 
 
Consider a typical textbook task: 
 

Task 1: Standard Textbook Task 
Find the midpoint of a line segment joining the points (4, −4) and (−2, 4). 

 
This task may just be a routine practice of procedural skills that students have learnt earlier in 
the class and so they may know immediately what to do to solve it. However, this may be a 
problem to students who have not been taught the procedure or to low-ability students who 
have just learnt the procedure but do not know how to apply it properly. But with enough 
practice, this task can become a routine exercise to the students. Moreover, the purpose of 
this type of tasks is to “provide students with practice in using standard mathematical 
procedures (for example, computational algorithms, algebraic manipulations, and use of 
formulas” (Lester, 1980, p. 31). Some researchers called this type of tasks “routine problems” 
(Orton & Frobisher, 1996, p. 27) but these tasks may not be problems to a student. Moreover, 
for a student who does not practise these ‘routine’ tasks found in the textbook, then these 
tasks are not ‘routine’ to him or her. So we may want to distinguish between ‘routine tasks’ 
as ‘routine’ in the sense that they are commonly found in textbooks for the main purpose of 
‘routine’ practice of procedures, or ‘routine’ with respect to a student. It may be more helpful 
if we use the term ‘familiar or unfamiliar tasks’ when we want to indicate whether the tasks 
are familiar or unfamiliar to a student. But it may be fine to use the term ‘routine practice’ 
since this implies that it is ‘routine’ to the student practising it. 
 
Let us contrast Task 1 with another task: 
 

Task 2(a): Last Digit 
Find the last digit of 32007. 

 
The main purpose of this task is for the solver to make use of some problem-solving 
strategies, such as looking for patterns, to solve it. For a student who has been exposed to 
such tasks before, this task may no longer be a problem to him or her. However, this task is 
inherently different from the first task in that it requires some problem-solving strategies and 
not just a direct application of a procedure. 
 
Since both types of tasks may or may not be problems to a student, the phrase ‘mathematical 
task’ will be used as the more general term in this paper. For example, the Professional 
Standards for Teaching Mathematics (NCTM, 1991) used the phrase ‘mathematical tasks’ 
instead of ‘mathematical problems’ (see, for example, p. 25) and Schoenfeld (1985) wrote, 
“… being a ‘problem’ is not a property inherent in a mathematical task [emphasis mine]” (p. 
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74). So whether a task is a problem depends on the individual. In this paper, the first type of 
mathematical tasks will be called ‘procedural tasks’ since they involve practising on 
procedures, and the second type ‘problem-solving tasks’ since they require the use of some 
problem-solving strategies to solve. But the phrase ‘problem-solving tasks’ can be misleading 
because the term ‘problem-solving’ suggests that the task is a problem to the person when it 
may not be so. Nevertheless, this phrase will still be used to emphasise the problem-solving 
strategies involved in this type of tasks, even if they may not pose a problem to some people. 
 
Sometimes, the term ‘problem’ may still be used when referring to a task in this paper. When 
such term is used, it implies that the task is a problem to the particular person. The phrase 
‘solving a problem’ may also be used instead of ‘solving a task’ because if the task is not a 
problem to the person, then there is really no need for him or her to solve it. But what about 
procedural tasks that are not problems to a student? Teachers usually tell their students to 
‘solve’ such ‘problems’ although the term ‘practise procedural tasks’ may be more 
appropriate, especially if such tasks are not problems to the students and their main purpose is 
for them to practise procedures learnt in the class earlier. 
 
As with many classifications, one problem is that there are always grey areas. For example, 
consider the following task: 
 

Task 3: Standard Textbook Task 
A(4, −4), B(9, 6), C(−2, 4) and D are the vertices of a rhombus. Find the 
coordinates of D. 

 
Students who see this task for the first time may not know how to solve it. They may try to 
use the formula for the distance between two points or the formula for the gradient of a line 
segment but these approaches will involve the tedious process of solving two simultaneous 
equations which may not be linear. Other ‘less tedious’ methods of solution require some 
creative effort and higher-level thinking on the part of the students: find the midpoint of AC 

which is also the midpoint of BD; or using position vectors, ⇒=
⎯→⎯⎯→⎯

BACD  
⎯→⎯⎯→⎯⎯→⎯⎯→⎯

−=− OBOAOCOD  
⎯→⎯⎯→⎯⎯→⎯⎯→⎯

+−=⇒ OCOBOAOD . On one hand, this task is not a direct 
application of a procedure but it requires some higher-level thinking. On the other hand, with 
some practice, this task can become a routine exercise and this is in fact a standard Singapore 
mathematics textbook task (e.g. Teh & Loh, 2007). We may argue either way or we may just 
say that this task falls in the grey area between procedural and problem-solving tasks. 
 
Therefore, in this paper, whenever mathematical tasks are classified into two or more classes, 
it is assumed that there may be grey areas and that there may be overlaps. For example, 
“there is little doubt that a great deal of overlap exists between problems and investigations” 
(Frobisher, 1994, p. 152) which will be discussed in the next section. 
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4. Problems or Investigative Tasks? 
 
We return to the first criterion in Henderson’s and Pingry’s (1953) first condition of what a 
problem is: a clearly defined goal (see Section 2). Consider Task 2(a) above and the 
following task: 
 

Task 2(b): Investigate Powers of 3 
Investigate powers of 3. 

 
In Task 2(a), the goal is clearly defined: find the last digit. In Task 2(b), the goal is ill-
defined: investigate, but investigate what? A student may pose any problem to investigate 
(Cai & Cifarelli, 2005) or they can just search for some underlying patterns (Height, 1989). 
Orton and Frobisher (1996) claimed that “very few mathematics educators would classify 
explorations of this kind as problems” (p. 27) because these tasks have no clear goals. In 
some countries (e.g. the United Kingdom), Task 2(b) is called a mathematical investigation, 
but in other countries (e.g. the United States of America), it is called an open problem (ibid.). 
However, the term ‘open problem’ is an oxymoron: if a problem must have a well-defined 
goal and not an open goal, then an investigation is not a problem. But when faced with an 
investigation which a student does not know what to do, then is not the task still a problem to 
the student? So if we relax Henderson’s and Pingry’s (1953) first criterion to include an ill-
defined or open goal, then an investigative task can be viewed as an ‘open problem’ to the 
person who does not know how to solve it. Since whether a task is a problem depends on the 
individual, the term ‘open tasks’ will be used instead of ‘open problems’. However, Task 2(b) 
will be called an ‘investigative task’ because not all open tasks are investigative ones (see 
Sections 5 and 9). 
 
The Cambridge Dictionaries Online (Cambridge University Press, 2007) defined the word 
‘investigate’ as ‘examine a crime, problem, statement, etc. carefully, especially to discover 
the truth’. Bastow, Hughes, Kissane and Mortlock (1991) defined a mathematical 
investigation as the “systematic exploration of open situations that have mathematical 
features” (p. 1). Other authors stressed that “investigations, by their very nature, demand an 
open-minded, multifaceted approach” (Lee & Miller, 1997, p. 6). Thus an investigative task 
is an open task where the goal is open and students can set their own specific goals to 
investigate anything they want (Orton & Frobisher, 1996). 
 
Some educators do not differentiate between an investigative task and an investigation. For 
example, Orton and Frobisher (1996) compared the differences between problems and 
investigations while Evans (1987) contrasted problem solving and investigation. But there is 
a difference between problems and problem solving. A problem refers to a situation that is 
problematic to a person, and in the classroom, this usually involves a given task, while 
problem solving refers to the process of solving the problem. If problem solving is viewed as 
an activity, then it includes both the problem and the process of solving it. Similarly, there is 
a difference between an investigative task and the process of doing an investigation (Ernest, 
1991). But the process of doing an investigation can be called simply as an ‘investigation’. So 
if investigation is viewed as an activity, then it will include both the investigative task and the 
process of investigation. However, in mathematics education, there has been a shift in the 
meaning of the word ‘investigation’ to refer to the investigative task itself (ibid.). In this 
paper, the context will decide whether the term ‘investigation’ refers to the investigative task, 
or the process of investigation, or both. 
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Another main difference between investigative and problem-solving tasks is how the task is 
phrased. If we rephrase the problem-solving Task 2(a) by making the goal more open, such as 
to use the word ‘investigate’ as in Task 2(b), then we have changed a problem-solving task 
into an investigative task but it will widen the scope of the original problem-solving task 
because a student can investigate anything in Task 2(b). Some educators (e.g. Mason, Burton 
& Stacey, 1985; Schoenfeld, 1985) prefer to start with a problem-solving task like Task 2(a) 
and extend the problem to find some other patterns, such as a pattern in the last two digits or 
the sum of all the digits of the powers of 3. Then it is “nearly always possible to restate [a 
problem-solving task with its extension] in order to make it into an … investigation” 
(Frobisher, 1994, p. 158) without changing much of the scope. The difference is that starting 
from Task 2(a) restricts the scope of the investigation at the beginning but it provides more 
scaffolding for the students than starting from Task 2(b). Moreover, initial findings of a 
research study that I have conducted reveal that, when given Task 2(b), some students did not 
look for patterns in the last digit, which is the goal of Task 2(a), but that they went to find 
some other patterns instead. Therefore, rephrasing a problem-solving task with its extension 
as an investigative task may change the original goal of the problem-solving task because 
some students may set completely different goals to investigate when given the investigative 
task. Frobisher (1994) believed that “a distinction should be made between [problem-solving 
tasks] which lead to investigations, and … investigations which have their own separate 
existence” (p. 158). 
 
From the discussion above, there are at least three main differences between investigative and 
problem-solving tasks: 
(i) Investigative tasks have more open goals than problem-solving tasks. 
(ii) Investigative tasks lead to investigation which is a divergent activity since different 

students can set different goals to pursue but problem-solving tasks lead to “problem 
solving [which] is a convergent activity” (Evans, 1987, p. 27) since there is only one 
goal to achieve, although problem solving can be extended (see Section 9.5) and thus 
divergent if we consider its extension. 

(iii) Investigative tasks involve both problem posing and problem solving but problem-
solving tasks involve mostly problem solving. 

The third difference will be elaborated in the next section. 
 
5. Problem Solving or Problem Posing? 
 
Another main difference between problem-solving and investigative tasks is that the latter 
involves both problem posing and problem solving. When given an investigative task like 
Task 2(b), the students have to pose their own problems to solve. But when faced with a 
problem-solving task like Task 2(a), the students just need to solve the problem although the 
students can still extend the problem by posing more problems if they want to. However, they 
can choose not to, and so this type of problem posing is not implicit in problem-solving tasks 
but they are essential in investigate tasks. 
 
Problem “posing can occur before, during, or after the solution of a problem” (Silver, 1994, 
p. 19). In investigative tasks, problem posing occurs first at the beginning: students need to 
pose their own problems to solve. Problem posing can also occur when students try to solve 
the problems they pose, just like in problem-solving tasks. This type of problem posing is a 
problem-solving strategy when a difficult problem is reformulated as another related problem 
which can be solved more easily, or as a smaller related problem to solve first before 
extending to the original problem. Problem posing can also occur after the solution of a 
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problem to generate more problems to solve: this can occur at the end of a problem-solving 
task or during the middle of an investigative task after the students have solved some 
problems that they have posed. 
 
The purpose of all the above examples of problem posing is to generate problems to solve, 
whether they are related or new problems (Brown & Walter, 2005). But there is another type 
of problem posing where the purpose is to develop or assess students’ creativity (Silver, 
1994). For example, consider the following task: 
 

Task 4: Problem Posing 
You are given an equation like this: 5x − 2 = 33. Write a problem … that will 
lead to the formation of the above equation and then solve the equation to 
answer your own problem. Let your creativity flows! (Teh, Loh, Yeo & 
Chow, 2007, p. 60) 

 
In this task, the main purpose is not to pose a problem to solve but to be creative and pose an 
original, interesting and complex ‘word problem’ although there is still some analytical 
thinking involved because the student must ensure that the story matches the equation, and 
higher marks will usually be awarded to a story that is more complex (Getzels & Jackson, 
1962; Yeap, 2002). In Bloom Taxonomy (Bloom, Engelhart, Furst, Hill & Krathwohl, 1956), 
one of the six educational objectives is ‘synthesis’ which includes the ability to write a story 
or an essay, or to compose a poem or a song. This type of tasks used to be outside the domain 
of mathematics, but in recent years, there appear mathematical tasks such as mathematical 
journal writing (Waywood, 1992), composing mathematical poems or songs and writing 
‘word problems’ or stories that contain mathematical elements (Teh et al., 2007). Bloom et al. 
(1956) believed that synthesis is “the category in the cognitive domain which most clearly 
provides for creative behavior on the part of the learner … [although] this is not completely 
free creative expression since generally the student is expected to work within the limits set 
by particular problems” (p. 162). In this paper, the term ‘problem-posing tasks’ will be used 
to describe this type of tasks where the main purpose is to pose an original, interesting and 
complex task rather than to pose a problem to solve. Problem-posing tasks are another 
example of open tasks and so we cannot equate open tasks with investigative tasks only (see 
Section 4). 
 
6. Mathematical Investigation or Guided Discovery Learning? 
 
In this section, another confusion about mathematical investigation will be dealt with. Some 
teachers associate mathematical investigation with guided discovery learning (Jaworski, 
1994). In guided discovery learning, students are guided to explore some mathematical ideas 
in order to discover a formula, a procedure or some mathematical fact which the teacher has 
in mind (Bruner, 1961). For example, students may explore angles at the circumference and 
angles at the centre of a circle subtended by the same arc and discover a relation between 
these two. But is this an investigation? Ernest (1991) described problem solving as “trail-
blazing to a desired location” (p. 285) and investigation as the exploration of an unknown 
land where “the journey, not the destination, is the goal” (Pirie, 1987, p. 2). Similarly, 
Jaworski (1994) believed that guided discovery learning is more of a trail-blazing to a desired 
location which the teacher has in mind and so it is different from mathematical investigation. 
In fact, Ernest (1991) contrasted the difference among three inquiry methods for teaching 
mathematics, namely, problem solving, guided discovery and investigative approaches, thus 
implying that these three terms are not exactly the same. 
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An important pedagogical question will then be, “How do we integrate the content of a 
school mathematics curriculum into an investigative approach to mathematics teaching 
because by introducing the content, there is a desired outcome but mathematical investigation 
has no fixed destination?” One suggestion is to make the guided-discovery task more open. 
Instead of focusing on the relation between an angle at the circumference and an angle at the 
centre of a circle subtended by the same arc, we may open up the task by letting students 
investigate angles at the circumference and angles at the centre of a circle subtended by any 
arc. Then students may discover not just one relation but many relations, for example, angle 
at centre = twice angle at circumference, angle in semicircle = 90°, angles in the same 
segment are equal, and angles in opposite segments are supplementary. Moreover, some 
students may make other surprising discoveries that teachers do not foresee and thus are 
unprepared for. This investigative approach is similar to the open-ended approach proposed 
by Becker and Shimada (1997) in Japan which will be described later in Section 9.1. 
 
To summarise this section, there are at least three main differences between an investigative 
approach to mathematics teaching and guided discovery learning: 
(i) An investigative approach uses more open tasks than guided discovery learning. 
(ii) An investigative approach provides less guidance than guided discovery learning. 

This is only at the beginning stage. How much to guide during an investigative 
approach depends on the judgment of the teacher based on his or her experience. If 
there is too much guidance, then it is the teacher who is doing the investigation 
(Lerman, 1989). If there is too little guidance, then the students may lose interest 
when they are stuck for too long (Tanner, 1989; Teong, 2002). 

(iii) An investigative approach permits other unexpected discoveries but guided-discovery 
tasks are not open enough to allow such discoveries which are usually not encouraged 
as well. 

 
We may also want to clarify what the term ‘exploration’ means. Some researchers (e.g. Cai & 
Cifarelli, 2005; Orton & Frobisher, 1996) use it to mean ‘investigation’ or something very 
similar to it, while others (e.g. Brown, 1996) use it to include both investigative and problem-
solving tasks. The word ‘exploration’ can also mean ‘exploration of mathematics in the 
guided discovery approach’ (Yeo, Hon & Cheng, 2006). Since guided discovery learning is 
different from mathematical investigation, it may be misleading to say that the students are 
being guided to ‘investigate’ some mathematical concepts. So we may say that they are 
exploring mathematics which can also be problematic if one subscribes to the view that an 
exploration is very similar to an investigation. In this paper, the word ‘exploration’ will not 
be restricted to any one meaning but the context will suggest in which sense it is used. 
 
7. Project Work, Investigational Tasks or Practical Tasks? 
 
In this section, the confusion between mathematical investigation and project work 
(Cockcroft, 1982) will be dealt with. With the publication of the Cockcroft Report (ibid.), 
extended coursework or project work was introduced into the Mathematics GCSE (General 
Certificate in Secondary Education) in the United Kingdom (Jaworski, 1994). This generally 
fell into two categories: investigational and practical tasks. Wolf (1990) explained that 
investigational tasks are explorations of more abstract contexts but practical tasks involve 
more ‘real’ situations. For example, Task 2(b) is an investigational task but Task 5(a) below 
is a practical task. 
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Task 5(a): Design Playground 
Design a playground for the school. 

 
The problem with some of these practical tasks is that they may not be purely investigative 
tasks. For example, in Task 5(a), doing some investigation is not enough: the designer needs 
to be creative to come up with a good design. So we may want to distinguish between purely 
investigative tasks (e.g. Task 2(b)) and tasks that involve some form of investigation. 
Moreover, this type of practical tasks is usually multi-disciplinary, unlike investigational 
tasks. So we may also want to differentiate between mathematical investigative tasks (e.g. 
Task 2(b)) and interdisciplinary investigative tasks. Another important distinction is that 
some investigative tasks can be solved purely by thinking without any research (e.g. Task 
2(b)) while others can only be solved with some form of research. The latter are usually the 
more real-life or practical type (e.g. Task 5(a)) where it may not be possible to provide 
enough information in the task statement to solve it (see Section 9.4). 
 
Thus project work is not the same as investigation (Cockcroft, 1982). Shorter investigation is 
usually not suitable for project work while longer investigation can be used as project work 
but they can also be used as normal investigative tasks: the difference is that for project work, 
the students usually have to do a portfolio and give a formal presentation, but these are not 
required for an investigative task done in class or over a couple of days. Project work may 
also not be pure investigation but they can involve creative elements as in the practical tasks 
described earlier. The distinction made between investigational and practical tasks in project 
work highlights the difference between academic and real-life tasks which will be discussed 
in more details in the next section. 
 
8. Academic, Semi-Real or Real-Life Tasks? 
 
Many textbook tasks refer to mathematics only. These are the ‘pure mathematics’ or 
‘academic’ tasks with no context at all (Skovsmose, 2002). An example is procedural tasks 
such as Task 1 above. Some students may find it meaningless to practise pure mathematics 
problems because these problems are not relevant to them. Therefore, some educators have 
tried to inject some reality into school mathematics problems by providing some kind of 
storyline (Masingila, 2002). Skovsmose (2002) called this kind of storyline a reference to a 
semi-reality: “not a reality that we actually observe, but a reality constructed by, for instance, 
an author of a mathematical textbook” (p. 119). Christiansen (1997) called this ‘virtual 
reality’ (p. 20) as opposed to ‘real-life’ reality. An example of a semi-real problem is the 
following ‘word problem’: 
 

Task 6: Word Problem 
“This is the sign in a lift at an official block: 

 

 

 

In the morning rush, 269 people want to go up in this lift. How many times 
must it go up?” (Cooper, 2001, p. 246) 

 

This lift can carry up to 

14 people 
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‘Word problems’ (notice inverted commas are used because they may not be problems to 
some students) share the same characteristic as pure mathematics or academic procedural 
tasks: the skills needed to solve the ‘word problems’ will already have been taught and 
practised (Frobisher, 1994; Moschkovich, 2002a). But the context is supposed to make ‘word 
problems’ more meaningful to the students than pure mathematics problems. However, in 
Task 6, a student can still ask the teacher whether the lift must always be full or whether 
some people will go up the stairs instead (Cooper, 2001). These are valid questions for a real 
context but students who consider these alternatives will usually be penalised (Skovsmose, 
2002). Therefore, some educators (e.g. Kastberg, D’Ambrosio, McDermott & Saada, 2005) 
questioned the limitations of ‘clean’ contexts which they believed are not useful in 
developing solution strategies. But research literature on mathematics practice in everyday 
situations within cultures supports the fact that meaningfulness, rather than realism or 
usefulness, is the key to effective classroom instruction (Carraher & Schliemann, 2002). 
Therefore, “there is still a role for such [word] problems in a student’s experience” (Orton & 
Frobisher, 1996, p. 24). 
 
When someone uses the term ‘real problems’ or ‘real-life problems’, we must be clear what 
the person is referring to. Sometimes, the phrase ‘real problems’ may be used to mean 
genuine problems and if a student does not know how to find the last digit of 32007, then this 
is a genuine problem to the student (see Section 2) although this is a pure mathematics task. 
At other times, we may use ‘real problems’ to refer to real-life or authentic tasks. But real-life 
or authentic tasks can also have different meanings. For example, a teacher can use real-life 
data such as actual recent unemployment figures and ask questions about the increase or 
decrease of employment at different periods of time and for different countries (Frankenstein, 
1989). Real-life tasks can also refer to ‘applied mathematics’ used in the workplace or the 
‘real world’, for example, in architecture or engineering. Some educators (e.g. Moschkovich, 
2002b) tried to bring this workplace mathematics into the classroom but this type of tasks 
may still not be real within the students’ realm of experiences (Skovsmose, 2002). So another 
interpretation of real-life tasks is that they must be real to the students. Frobisher (1994) gave 
the example of organising an actual field trip. This task is only meaningful to the students if 
they are actually going for the field trip. Organising a hypothetical field trip will be at best a 
semi-reality. But the problem with such real-life tasks is that they cannot be written down in a 
textbook for students to use successfully because they will not be real to every student if the 
task does not arise from the student’s own experience (Orton & Frobisher, 1996). However, 
letting students play mathematical-rich games, which can be written down in a textbook, is 
very real for them (van Oers, 1996) because the outcome, whether they win or lose, matters 
to them (Ainley, 1988, 1990). Examples of such games include Nim (Civil, 2002) and the 
Tower of Hanoi (Yeo, 2007b) where students can develop mathematical processes such as 
looking for patterns, inductive reasoning and generalisation (Yeo, 2007a). 
 
Usually, real-life tasks are more open in nature and they entail some sort of investigation or 
research, but academic tasks such as the investigative Task 2(b) can also be very open in 
nature. So what does it mean when we say that a task is open? Exactly which aspect of the 
task is open? This will be discussed in the next section. 
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9. Open-Ended or Open Tasks? 
 
A closed task is a task where the goal and the answer are closed: the goal is specified in the 
task statement and there is only one correct answer (Becker & Shimada, 1997). This includes 
procedural tasks found commonly in textbooks whose main purpose is for students to practise 
procedural skills (Lester, 1980) but many educators (e.g. Schoenfeld, 1988) believed that 
these skills are of limited use in new situations. Thus there is a growing support for other 
types of mathematical tasks such as open-ended and open tasks (Frobisher, 1994). Some 
researchers (e.g. Boaler, 1998) use the term ‘open-ended’ and ‘open’ interchangeably while 
others distinguish between them (e.g. Orton & Frobisher, 1996). In this section, the openness 
of a task will be discussed with reference to the following task variables: the goal, the answer, 
the method, scaffolding and extension. 
 
9.1 Open or Ill-Defined Answer? 
 
Becker and Shimada (1997) described one type of tasks where there are multiple correct 
answers. This does not mean that the task has multiple answers (Chow, 2004). For example, 
solving a quadratic equation may produce two ‘answers’ or solutions but this is the only 
correct answer because if only one solution is given when there are two solutions, then the 
answer will be wrong. Becker and Shimada (1997) gave the following example of a task with 
multiple correct answers: 
 

Task 7: Open-Ended Task 
“A transparent flask in the shape of a right rectangular prism is partially filled 
with water. When the flask is placed on a table and tilted, with one edge of its 
base being fixed, several geometric shapes of various sizes are formed by the 
cuboid’s faces and the surface of the water. The shapes and sizes may vary 
according to the degree of tilt or inclination. Try to discover as many invariant 
relations (rules) concerning these shapes and sizes as possible. Write down all 
your findings.” (p. 10). 

 
In this task, there is more than one correct answer and so the answer is open. Since the ‘end’ 
of the problem is the answer, Becker and Shimada (1997) called these “open-ended 
problems” (p. 1). We may also say that the answer is ill-defined because there is no way to 
specify all the correct answers. If a task has only one correct answer (e.g. Task 2(a)), then we 
can specify it and so the answer is well-defined. Therefore, in Task 7, the answer is ill-
defined because it is open. 
 
There is another meaning to an open answer. Can we judge the design of the playground in 
Task 5(a) by saying that it is correct or wrong? Of course, if we design a physical fitness park 
instead of a playground, then we may say that the answer is ‘wrong’ or invalid. But there is 
no such thing as the ‘correct’ answer and so the answer is not well-defined. Even if there are 
some specifications, e.g. Task 5(b) below, there is still plenty of scope for the designer to be 
creative and to come up with various designs. 
 

Task 5(b): Design Playground with Some Given Specifications 
Design a playground for the school. The playground must be 20 m by 20 m 
and it must contain at least one slide and two swings. The budget is $10 000. 
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So it is possible to have multiple valid answers or ‘end products’ and so the answer is open. 
In this case, the task is open because it is ill-defined, unlike Task 7 which is ill-defined 
because it is open. This is a subtle difference between ‘ill-defined’ and ‘open’: either one of 
them can be the cause and the other the effect. Problem-posing tasks (e.g. Task 4) are another 
type of mathematical tasks where there are multiple valid answers. Since there is no such 
thing as the correct answer, then we have to use a scoring rubric to evaluate or assess the 
answer which will be described later in Section 12. 
 
Therefore, there are at least two meanings when we say that the answer is open. An open 
answer may mean that there are multiple correct answers or that there are multiple valid 
answers because there is no such thing as the correct answer. Another viewpoint is to call the 
first type ‘open answer’ and the second type ‘ill-defined answer’. In this paper, the context 
will decide whether the term ‘open answer’ is used to refer to the first type or to both, but the 
term ‘ill-defined answer’ will always refer to the second type. There is also a difference in the 
variety of the answer. In Task 7, there can be many different types of answers, but in Task 
5(a), there is only one type of answer, namely a playground design, although there can be 
many variations within this one type. This subtle difference will affect the goal of the task 
which will be discussed next. 
 
9.2 Open or Ill-Defined Goal? 
 
Orton and Frobisher (1996) defined “a ‘problem’ … to be ‘open’ when no goal is specified” 
(p. 32), for example, investigative tasks like Task 2(b). But ‘investigate’ is still a goal, albeit 
a vague general goal, and so a student can choose any specific goal to investigate. Thus we 
may say that the goal is open. It may be tempting to think that the goal is open because there 
is more than one goal, just like an open answer has multiple correct or valid answers. 
However, if a task specifies a few goals, then this task has multiple goals but the goal is still 
closed because a student cannot choose his or her own goal. Therefore, a task has an open 
goal if there are no specific goals and a student can choose any goal to investigate. This 
implies that there exist multiple specific goals for a student to choose because if a task has 
only one specific goal, then the goal cannot be open. But what happens if we rephrase Task 
2(b) as follows? 
 

Task 2(c): Find Patterns in Powers of 3 
Find as many patterns as possible about the powers of 3. 

 
Task 2(c) is still an investigative task but the general goal is now well-defined because a 
student will be clear that the goal of the task is to find as many patterns as possible. But there 
is still a sense that something is open. First, the answer is open because there are multiple 
correct answers. This also serves to illustrate that the “goal and [the] answer are not … the 
same” (Orton & Frobisher, 1996, p. 26): although there are multiple correct answers, there is 
only one general goal. Secondly, a student can still choose different specific goals to pursue 
because there are multiple correct answers. For example, he or she may wish to find whether 
there is a pattern in the last digit, or in the last two digits, or in the sum of all the digits of the 
powers of 3. Thus there are no specific goals in the task and so the goal is open. Therefore, 
Task 2(c) has a well-defined but open goal. The ‘open-ended’ Task 7 is another example of a 
task with a well-defined but open goal. This shows that the terms ‘ill-defined’ and ‘open’ 
have different meanings (see Section 9.1 also). However, there is still the sense that Task 2(c) 
is less open than Task 2(b) because the goal in Task 2(c) is more defined and so the student 
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will be clearer about the goal. This suggests that openness is a continuum: there are different 
degrees of openness. 
 
In Task 2(c), the goal is open because there are multiple correct answers. If there is only one 
correct answer, e.g. Task 2(a), then the goal cannot be open. However, an open answer does 
not always result in an open goal. For example, in Task 5(a), the goal is well-defined because 
if you design anything else other than a playground, then it is not the goal of this task. But 
there is only one specific goal: design a playground. So Task 5(a) has a well-defined and 
closed goal although the answer, like Task 2(c), is still open. The difference is that there are 
at least two types of open answer (see Section 9.1). In Task 2(c), there are multiple correct 
answers and this results in an open goal because a student can pursue different goals to reach 
different answers. However, in Task 5(a), there is no such thing as the correct answer but 
there is still only one type of answer, namely a playground design, although there can be 
many variations within this one type. A designer can pursue different paths that will lead to 
different designs but all these paths will lead towards the same goal, i.e. the design of a 
playground, and so the goal is closed. As you may have observed, many confusions can arise 
if we do not distinguish between the two types of open answer and between the terms ‘ill-
defined’ and ‘open’. 
 
9.3 Open or Ill-Defined Method? 
 
A task can also be open when the method of solution is open. Becker and Shimada (1997) 
described open-ended problems where “students are asked to focus on and develop different 
methods, ways, or approaches to getting an answer to a given problem and not on finding the 
answer to the problem” (p. 1). Frobisher (1994) attributed “the openness [of problem-solving 
tasks] to the method of solution, not to the solution” (p. 158). For example, consider this 
problem-solving task: 
 

Task 8: Handshake Problem 
At a workshop, each of the 14 participants shakes hand once with each of the 
other participants. Find the total number of handshakes. 

 
There are at least four different problem-solving strategies to solve this task: (i) use logical 
deduction to reason that the answer is 13 + 12 + 11 + … + 1; (ii) simplify the problem by 
starting with a smaller number of participants and trying to find a pattern; (iii) draw a 
diagram; and (iv) restate the problem as a combinatorics problem because every different pair 
of participants will give rise to one distinct handshake and so the answer is 14C2. So the 
method is open. But consider another typical textbook task: 
 

Task 9: Solve Quadratic Equation 
Solve the quadratic equation x2 + 2x − 3 = 0. 

 
There are at least four methods of solution: (i) trial and error, (ii) factorisation, (iii) 
completing the square and (iv) quadratic formula. So do we really want to call this a task with 
an open method? First, this task has essentially one efficient method to solve: by factorisation. 
The other methods are either too long or not foolproof. Secondly, these methods are more 
procedural than the problem-solving strategies used to solve Task 8. In Task 8, although 
some methods may be longer than others, they are generally considered useful problem-
solving strategies that stimulate mathematical thinking (Orton & Frobisher, 1996) and it does 
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not really matter which one the students use, unlike Task 9 which has essentially one efficient 
method. So we may not want to consider Task 9 as a task with an open method. 
 
Therefore, when a task has an open method, not only must there be multiple methods of 
solution but these methods must involve more problem-solving strategies than procedures. 
Some researchers call this type of tasks ‘open-middle tasks’ because the method, which is at 
the ‘middle’ of the problem solving process, is open (Sheffield, Meissner and Foong, 2004). 
However, if a student just solves Task 8 using only one method, then the method is closed to 
the student. So Task 8 does not have the sense that it is open unless the student is encouraged 
to find as many different methods as possible to solve the problem. But if that is the case, 
won’t the answer include the different methods and so what is open is no longer the method 
but the answer? Technically, this may be true, but we may want to differentiate between this 
type of open-middle tasks and those open-ended tasks discussed in Section 9.1. 
 
What about investigative tasks, like Task 2(b), where there are multiple correct answers? On 
one hand, we may say that there are multiple methods of solution because it is usually not 
possible to use only one method to generate all the correct answers. But on the other hand, for 
each correct answer, there may be only one method of solution and so is the method still 
open? (Even if there are multiple methods of solutions for each answer, just like the problem-
solving tasks described above, it also depends on whether the student chooses to find other 
alternative methods.) Therefore, whether the method is open for investigative tasks depends 
on which perspective we are looking from. But there is really no need to decide whether 
investigative tasks have a closed or open method because investigative tasks are already open 
in their goal and in their answer. 
 
There is another meaning of an open method. In Tasks 4 and 5(a), there is no such thing as 
the correct answer. As a result, there is no method that will guarantee the answer 
(Frederiksen, 1984; Kilpatrick, 1987; Simon, 1973). This is a common problem with 
mathematical tasks that have some elements of creativity, for example, problem-posing tasks 
and designing tasks. You cannot help the student by providing him or her a method that will 
definitely lead to the answer. Compare this with problem-solving tasks like Task 8. Although 
there are multiple methods of solution, you can guide the student by teaching him or her a 
particular method that will surely lead to the answer. Therefore, for tasks with multiple valid 
answers, especially those that involve creativity, the method is open because there is no well-
defined method that will guarantee the answer. Thus we may say that the method is ill-
defined. This is an inherent property of the task, unlike problem-solving tasks with an open 
method but depending on whether the student wanting to find alternative methods. 
 
Therefore, there are at least two meanings when we say that the method is open. An open 
method may mean that there are multiple methods of solutions, or that there is no well-
defined method that will guarantee the answer. Another viewpoint is to call the first type 
‘open method’ and the second type ‘ill-defined method’. In this paper, the context will decide 
whether the term ‘open method’ is used to refer to the first type or to both, but the term ‘ill-
defined method’ will always refer to the second type. Sometimes, we may also structure the 
method of solution into the task statement to guide students to solve the problem. This is 
called scaffolding which will be discussed next. 
 
9.4 Scaffolding 
 
Let us consider the following problem-solving task: 
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Task 10: Make Box with Biggest Volume 
Make an open box using a given vanguard sheet so that it has the biggest 
possible volume. 

 
There is the sense that something is open in this task. But it cannot be the goal because the 
goal is well-defined and closed: make an open box. It also cannot be the answer because there 
is only one correct answer. Unlike Tasks 4 and 5(a), this task has a method that will 
guarantee a solution. There may also be multiple methods of solution, but unlike Task 8 
above, there is still the sense that something else is open. Students who see this task for the 
first time may not know how to begin: the task is too big or complex and there is no 
scaffolding in the task statement. But it does not mean that every task with no scaffolding is 
open. For example, consider the following tasks: 
 

Task 11(a): Unguided Word Problem 
The product of three consecutive even natural numbers is 260 times their sum. 
Find the three numbers. 
 
Task 11(b): Guided Word Problem 
x − 2, x and x + 2 are three consecutive even natural numbers whose product is 
260 times their sum. 
(i) Form an equation in x and show that it simplifies to x3 − 784x = 0. 
(ii) Solve the equation and hence find the three numbers. 

 
Task 11(b) has some scaffolding and it is not open. Task 11(a) does not have any scaffolding 
but it is still not open. The difference between Tasks 10 and 11(a) is that Task 10 is a more 
complex problem than Task 11(a). So it seems that a more complex task with no scaffolding 
is more open than a simpler task without any scaffolding. Therefore, a task can be open if it is 
complex enough and there is no scaffolding. Now, what does it mean by ‘complex enough’? 
Again, complexity is a continuum. At both ends, many educators may agree that the tasks are 
either very simple or very complex. The problem always lies in the middle and so there will 
always be grey areas. This type of scaffolding is not an inherent property of the task but a 
property of the task statement because the task (e.g. Task 10) can always be rephrased to 
include more guidance as to how to solve it. Thus this type of scaffolding refers more to 
providing guidance in terms of the method of solution. 
 
There is another type of scaffolding. In Task 5(b), the guidance is in terms of providing more 
information on the design of the playground, thus making Task 5(b) less open than Task 5(a). 
But this depends on the type of answer. If the answer is closed, then you really do not have a 
choice to decide how much information to give because if insufficient information is given, 
then it will make the task insolvable rather than more open. For example, consider the 
following tasks in coordinate geometry: 
 

Task 12(a): A(4, −4), B(9, 6), C and D are the vertices of a parallelogram. 
Find the coordinates of D. 

Task 12(b): Find the coordinates of a point P that is equidistant from the 
points (1, 0) and (0, 1). 

Task 12(c): Find a general form for the coordinates of a point P that is 
equidistant from the points (1, 0) and (0, 1). 
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Task 12(a) does not have sufficient information given in the task statement to solve it: the 
point D can be any point in the Cartesian plane. Task 12(b) also does not have enough given 
information to solve it but it is slightly different. If we want, we can still find some kind of an 
answer for P although it is not unique: P is any point that lies on the line y = x and its 
coordinates are (x, x) where x is any real number. This means that the goal of the task is 
poorly stated. If Task 12(b) is rephrased as in Task 12(c), then the goal is clearly stated and 
there is enough given information to solve it. Does this mean that Tasks 12(a) and 12(b) are 
tasks that do not have sufficient information to solve them? Yes, but this is the result of poor 
problem posing. Therefore, you have no choice but to provide all the necessary information 
to solve a task whose answer is closed if you do not want to end up with a poorly-set task that 
cannot be solved. 
 
However, when a task has an ill-defined answer, it may not be possible to supply all the 
information necessary to solve it (e.g. Task 5(a)). Then you can choose how much 
information to give. If you give more information, such as in Task 5(b), then the task will be 
less open than Task 5(a). In real life, no one will provide you all the necessary information to 
solve a problem. It may also not be practical to do so because, for example, in Task 5(b), it 
depends on what the designer prefers and so it is impossible to decide what the boundary of 
the necessary information to solve the task is (Simon, 1978). The designer will have to do 
some research to gather all the necessary information, such the size and cost of a slide or a 
swing etc., according to what he or she wants. So this second type of scaffolding refers more 
to providing guidance in terms of the amount of information given in the task statement but it 
depends on the nature of the task, unlike the first type of scaffolding. If it is inherently 
impossible to supply all the information necessary to solve it, then we may say that the task is 
open. Compare this with problem-solving tasks, such as Tasks 2(a), and investigative tasks, 
such as Task 7. In these tasks, not much information is given but it is enough for a student to 
solve them without further information or research. 
 
9.5 Extension 
 
Orton and Frobisher (1996) described another type of open-ended tasks. They have used the 
term ‘process problems’ to refer to mathematical tasks that concentrate “on the mathematics 
itself and on the mathematical thinking processes for arriving at the solution” (p. 29). These 
‘process problems’ are similar to problem-solving tasks described in this paper. Orton and 
Frobisher called these ‘open-ended problems’ because there is no end to these tasks: we can 
always extend the task by asking  “What if …?” For example, for Task 2(a), we can ask, 
“What if the index is 2008? 2009? n?” or “What if the base is 2? 4? 5? n?” Although the 
original task has a closed goal and answer, the inherent nature of problem-solving tasks 
allows us to generate more problems to solve, and in this sense, these tasks have ‘no end’ or 
an ‘open end’. But again, it depends on the student. If the student does not know that the task 
can be extended, or that he or she is expected to extend the task, or if the student chooses not 
to, then the task is closed to him or her. But if the student is encouraged to extend the task, 
will this extension become another task with an open goal and an open answer, just like an 
investigative task? Moreover, investigative tasks can also be extended and so this type of 
open-endedness is not unique to problem-solving tasks only. 
 
9.6 Framework Characterising Openness of Mathematical Tasks 
 
To summarise Section 9, when we talk about open-ended or open tasks, we must be clear 
whether we are referring to the goal being open, or the method being open, or the answer 
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being open, or whether there is no scaffolding so that the task is open, or whether the task can 
be extended and so the ‘end’ is open. It is also helpful to distinguish between the two types of 
open answer, the two types of open method and the two types of scaffolding, and between the 
terms ‘open’ and ‘ill-defined’. We have also observed that investigative tasks are not the only 
type of open tasks, but problem-posing tasks and practical tasks, which are not exactly 
investigative tasks (see Section 7), are also open. Table 1 (see next page) shows a framework 
characterising the openness of a mathematical task based on the various task variables and a 
few representative tasks to illustrate how the framework works. Some cells are left empty 
because it is not important to consider these variables when deciding whether a task is open. 
For example, an investigative task is already open in the goal and in the answer, and so it is 
not necessary to discuss whether the method is open or closed because it can be both, 
depending on which perspective you look from (see Section 9.3). The framework is never 
meant to be exhaustive: it may be possible for a problem to be open in other aspects which 
have not been examined in this paper. 
 
Based on the framework in Table 1, it may be helpful to distinguish among three types of 
openness: 
 
(i) Openness that depends on the student. Problem-solving tasks are open in the sense 

that they have multiple methods of solution and that they can be extended. But this 
depends on the student: if he or she does not do it, then the student will not be 
penalised. 

 
(ii) Openness that is inherent in the task. Investigative tasks have an open goal and an 

open answer although the goal can be ill-defined (e.g. Task 2(b)) or well-defined (e.g. 
Task 2(c)). If a student gives only one answer when there are multiple correct 
answers, then he or she will be penalised, unlike the student in (i). So an open answer, 
where there are multiple correct answers, is an inherent property of the task. Tasks 
that have multiple valid answers are also open because both the method and the 
answer are ill-defined and thus open. It is also inherently impossible to provide all the 
necessary information in the task statement to solve many real-life or practical tasks 
and so these tasks are also open although you can still provide some scaffolding by 
giving more information in the task statement. 

 
(iii) Openness that depends on the structure of the task statement. If a task is complex 

enough and there is no scaffolding provided in the task statement with regard to how 
to solve it, then the task is open. This is not an inherent property of the task because 
you can always rephrase the task statement to provide more guidance. 

 
The second and third types of openness highlight the difference between the inherent 
properties of a task (which will be called the nature of the task) and how the task statement is 
phrased or structured (which will be called the structure of the task statement). In literature, 
some researchers (e.g. Simon, 1973, 1978) discussed the task structure when they wrote 
about well-structured and ill-structured tasks, and about structured and unstructured tasks. Do 
these terms mean the same thing as the structure of the task statement? This issue will be 
discussed next. 
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Table 1: A Framework Characterising Task Openness (with Some Examples) 
 

Examples of Mathematical Tasks to Illustrate Framework 

Framework Task 8 
(handshake 
problem) 

Task 2(b) 
(investigate 
powers of 3) 

Task 2(c) 
(patterns in 
powers of 3) 

Task 5(a) 
(design 

playground) 

Task 10 
(make box 

with biggest 
volume) 

Type of 
Task             Task 
Variables 

Problem-
solving Task 

Investigative 
Task 

Investigative 
Task 

Practical 
Task 

Problem-
solving Task 

Ill-
defined? 

Well-defined Ill-defined Well-defined Well-defined Well-defined Goal 

Open? Closed Open Open: many 
goals 
(affected by 
open 
answer) 

Closed: only 
one goal 
(affected by 
ill-defined 
answer) 

Closed 

Ill-
defined? 

   Ill-defined: 
no method to 
guarantee 
answer; so 
method is 
open 

 Method 

Open? Open: 
multiple 
methods of 
solution 

    

Guidance 
to solve 
it? 

    No guidance 
to solve it, 
and it is also 
complex 
enough: so 
task is open  

Scaffold
-ing 

Possible 
to 
provide 
enough 
info to 
solve it? 

   Not possible 
to provide 
enough info 
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10. Ill-Structured or Well-Structured Tasks? 
 
Simon (1978) defined ‘ill-structured problems’ as those that satisfy all the following three 
criteria: 
   

“1. The criterion that determines whether the goal has been attained is both more 
complex and less definite. 

 2. The information needed to solve the problem is not entirely contained in the 
problem instructions, and indeed, the boundaries of the relevant information are 
themselves very vague. 

 3. There is no simple ‘legal move generator’ for finding all of the alternative 
possibilities at each step.” (p. 286) 

 
Simon gave an example of real-life tasks: design a house. But which aspect of the task is ill-
structured? If we look at this from the perspective of the task variables in Section 9, then we 
will see that Simon’s first criterion is the result of an ill-defined or open answer (see Section 
9.1). When there is no correct answer, how do we define criteria to determine whether we 
have finished the task? For example, in Task 5(a), when can you say that you have finished 
designing the playground? You may have finished the task for now but you may decide to 
change some features later on. Similarly, for an investigative task where there are multiple 
correct answers, you will not know when you have found all the answers. So there is no 
definite criterion to decide whether the goal has been attained because the answer is open or 
ill-defined. Simon’s second criterion is that it is not possible to provide enough information 
in the task statement to solve it, which is especially true for real-life or practical tasks that 
have an ill-defined answer, e.g. Task 5(a) again (see Section 9.4). Simon’s third criterion is 
that there is no sure method that will lead to the answer and this may be the result of an ill-
defined or an open answer (see Section 9.3). Therefore, if a task has an ill-defined answer, 
then it is ill-structured because it will satisfy all the three criteria. 
 
But what about investigative tasks, such as Task 2(b), that have an open answer? They satisfy 
the first and the third criteria but not necessarily the second. If we allow varying degrees of 
ill-structuredness since Simon recognised that there is no sharp division between well-
structured and ill-structured tasks, then investigative tasks can still be considered ill-
structured. So it seems that Simon’s idea of the structure of a task has more to do with the 
nature of the task than how the task statement is structured. 
 
Frederiksen (1984) interpreted Simon’s (1978) ill-structured problems as those that “lack a 
clear formulation, a procedure that guarantees a correct solution, and criteria for evaluating 
solutions” (p. 367). The first criterion, lacking a clear formulation, seems to deal with how 
the task statement is phrased. This may include an ill-defined or open goal in the task 
statement (e.g. investigative tasks) or insufficient information given in the task statement to 
solve the task (which is the same as Simon’s second criterion). It may also refer to little or no 
scaffolding provided in the task statement when the task is complex enough (e.g. Task 10 in 
Section 9.4). Evidence from what Frederiksen discussed in his paper suggests that he will not 
regard Task 11(a), where there is no scaffolding, as an ill-structured task. Frederiksen’s 
second criterion is similar to Simon’s third criterion which have been discussed earlier. 
Frederiksen’s third criterion seems to be the same as Simon’s first criterion. For example, in 
practical tasks such as Task 5(a), there are no criteria for “testing the correctness of a 
solution” (Frederiksen, 1984, p. 367) and so you do not know when the goal has been 
attained. But there is a subtle difference between both interpretations. This becomes evident 



 21

when we look at investigative tasks: you will not know when you have found all the answers 
(i.e. it satisfies Simon’s first criterion) but you can still test the correctness of a solution (i.e. 
it fails Frederiksen’s third criterion). It seems that Frederiksen’s idea of the structure of a task 
includes the structure of the task statement (first criterion) but these two terms, i.e. ‘structure 
of the task’ and ‘structure of the task statement’, are not exactly the same because his second 
and third criteria have nothing to do with how the task statement is structured. 
 
To add to the confusion, some educators use the phrase ‘structured questions’ to describe 
mathematical tasks that have scaffolding or guiding part-questions in the task statement 
(Ministry of Education of Singapore, 2004). For example, Task 11(b) is a structured task 
because it is guided. Interestingly, the Ministry of Education of Singapore did not refer to 
Task 11(a) as an unstructured task but as a ‘long-answer question’. However, according to 
both Simon’s (1978) and Frederiksen’s (1984) criteria, these two tasks are well-structured. So 
there is a difference between the terms ‘well-structured’ and ‘structured’. The Ministry of 
Education of Singapore (2004) used the word ‘structured’ to refer to the first type of 
scaffolding (see Section 9.4) and so, in this sense, the task structure refers to how the task 
statement is phrased. But it is not that simple because Frederiksen (1984) used the word 
‘structured’ in a different sense. He created a category called “structured problems requiring 
productive thinking” (p. 367) which are similar to his ‘well-structured problems’ except that 
the method of solution must be generated by the problem solver. In other words, procedural 
tasks are an example of Frederiksen’s well-structured problems, and problem-solving tasks 
are an example of Frederiksen’s structured problems requiring productive thinking. 
 
To summarise this section, it seems that there are at least two different meanings when we 
talk about the structure of a task. The first one refers to the nature of a task: whether the 
answer is ill-defined or open, which may affect whether the method is ill-defined and whether 
it is possible to provide enough information to solve it. The second one refers to how the task 
statement is structured or phrased. However, both the nature of a task and how the task 
statement is structured are closely linked together. For example, Task 2(b) is an investigative 
task and this affects how the goal in the task statement is phrased: investigate. If we were to 
rephrase the goal as in Task 2(a), then this not only restricts the scope of the task but it also 
changes the nature of the task from an investigative to a problem-solving task. But there may 
be some leeway as to how to rephrase the goal without changing its nature. For example, 
Task 2(b) can be rephrased as Task 2(c) without changing its nature as an investigative task 
although sometimes it may change its scope because not all investigative tasks are about 
finding patterns. Therefore, the nature of a task determines, to a certain extent, how the task 
statement is phrased. On the other hand, how the task statement is structured may affect the 
nature of the task. 
 
11. Mathematically-Rich Tasks 
 
After the attempt to clarify various terminologies in the previous sections, we realise that 
there are still grey areas and different interpretations. But now we have a framework to 
clarify which aspect or variable the person is referring to when he or she talks about open or 
ill-structured tasks. Although it may be useful to be clear about whether a task is open or ill-
structured, these characteristics are not as important to a teacher as the teaching purpose of 
the task because the teacher will need some useful criteria to choose appropriate tasks for 
different types of learning and assessment. (There is a difference between the teaching 
purpose and the goal of a task. For example, the goal of Task 1 is to find the midpoint but the 
teaching purpose of Task 1 is to let students practise on procedural skills.) For example, 
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procedural tasks are useful for students to practise some procedures after they have been 
taught in class (Lester, 1980). These tasks are important to a certain extent because there is a 
need for students to be proficient in some basic skills (Cockcroft, 1982; NCTM, 1980). But 
these skills are not helpful in unfamiliar situations (Schoenfeld, 1988). So there is a growing 
support for problem-solving and investigative tasks that help students develop problem-
solving strategies which, hopefully, can be applied to new situations (Arcavi, 2002). 
 
These tasks help students develop mathematical processes that are generally more analytical, 
although the thinking involved in producing a plan to solve a problem may be more creative 
than analytical, and this is classified in the ‘synthesis’ category of the Bloom Taxonomy 
(Bloom et al., 1956) which includes the “ability to integrate results of an investigation into an 
effective plan or solution to solve a problem” (p. 170). But the main purpose of these tasks is 
to develop students’ analytical thinking and so the term ‘analytical tasks’ will be used to 
describe them in this paper. However, there are certain tasks that specifically develop 
students’ creativity or ability to synthesise, for example, problem-posing tasks and 
composing of mathematical poems (see Section 5). So the term ‘synthesis tasks’ will be used 
to describe these tasks where the main purpose is to develop students’ creativity. 
 
This type of tasks are rich in mathematics in the sense that students can develop rich 
mathematical processes or learn new mathematics such as concepts, formulae and 
procedures. Although some researchers (e.g. Orton & Frobisher, 1996) claimed that the 
answer is not as important as the method of solution, others believed that students should also 
learn the content that they have discovered during problem solving or investigation because 
this content will become part of the resources needed to solve other similar or new problems. 
For example, Schoenfeld (1985) believed resources, which include mathematical knowledge 
or content, are necessary to help students solve problems: without them, the students have 
nothing to think. Bell (1983) also advocated picking out key mathematical concepts and skills 
from mathematical investigation for further development and practice. 
 
Therefore, mathematically-rich tasks are defined as mathematical tasks that provide a student 
with the opportunity to learn new mathematical content such as concepts and procedures, or 
develop mathematical processes such as analytical skills, creativity and metacognition. These 
include problem-solving, investigative and synthesis tasks. Non-mathematically-rich tasks 
include procedural tasks and ‘word problems’ which a student practises what he or she has 
been taught earlier by the teacher, rather than learning new mathematics from doing the tasks. 
“Practice of [procedural tasks and ‘word problems’] is not an appropriate method for the 
development of new [emphasis mine] knowledge and its contribution to mathematics 
learning [emphasis mine] is minimal.” (Orton & Frobisher, 1996, p. 27) The phrase 
‘mathematically-rich’ is borrowed from educators who called this type of mathematically-
rich tasks “rich mathematical activities” (e.g. Neyland, 1994, p. 106) and researchers who 
described using “mathematically rich games” (e.g. Civil, 2002, p. 49) to provide students 
opportunities to learn mathematics. Others refer to this simply as “mathematical activity” 
(e.g. Bell, 1983, p. 587; Love, 1988, p. 249). Figure 1 on the next page shows a classification 
of mathematical tasks according to their teaching purpose. 
 
The classification in Figure 1 is never meant to be comprehensive. As in many classifications, 
there are always grey areas. For example, some practical tasks, such as Task 5(a), develop 
both students’ analytical and creative skills and so it is not appropriate to classify them under 
‘analytical tasks’ or ‘synthesis tasks’. Moreover, Figure 1 does not contain all the 
mathematical tasks. For example, some assessment tasks are missing from the classification 
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because the tasks in Figure 1 are classified according to their learning or practice purpose and 
not according to their assessment purpose although there are certainly overlaps between the 
tasks in the above classification and assessment tasks which will be discussed next. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. A Classification of Mathematical Tasks According to Teaching Purpose 
 
 
12. Rich Assessment Tasks 
 
Some assessment tasks are very similar to the mathematical tasks in Figure 1 that students 
use in their learning or practice. For example, tasks that assess students’ procedural skills are 
usually the same as the procedural tasks that these students use in practice. Tasks that assess 
students’ problem-solving skills are also very similar to the problem-solving tasks used to 
develop their problem-solving strategies. A teacher can also use the same type of 
investigative tasks to assess a student’s ability to investigate although some researchers 
cautioned that this may lead to stereotyping certain mathematical processes as a set of 
procedures to be learnt by students “as a device for tackling the investigations rather than 
seen as part of being more generally mathematical” (Jaworski, 1994, p. 7). Although 
synthesis tasks can be used to develop students’ creativity, these tasks need to be assessed 
using a scoring rubric because there is no such thing as the correct answer. Becker and 
Shimada (1997) proposed a rubric based on three criteria: mathematical knowledge, strategic 
knowledge and mathematical communication. Teh et al. (2007) used different rubrics for 
different types of tasks. These include assessing both the processes and the product, or 
assessing the three elements of creativity: fluency (production of many ideas), flexibility 
(production of different categories of ideas) and originality (Pope 2005; Torrance, 1984). 
However, there are certain tasks that are not included in Figure 1. For example, consider this 
task: 
 

Task 13: Explain Geometrical Meaning 
Solve the simultaneous equations 72 =+ yx  and 14 22 =+− yxx . Explain 
clearly the geometrical meaning of your answer. 
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problem-solving tasks, 
guided-discovery tasks 

Mathematical Tasks 
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The second part of this task attempts to assess students’ conceptual understanding of what it 
means by solving simultaneous equations graphically. This is not a procedural task and it is 
also not a mathematically-rich task because the purpose is not for learning new knowledge 
but to assess their existing understanding. 
 
Another example of an assessment task not included in Figure 1 is journal writing. Waywood 
(1992) described three types of journal writing: recount, summary and dialogue. In the 
recount mode, students report what they have observed in their lessons. In the summary 
mode, students summarise what they have learnt during their lessons. In the dialogue mode, 
students discuss what they have learnt. Waywood also described how to assess students’ 
journal writing using a scoring rubric. However, teachers can also use journal writing as a 
formative assessment where they learn more about their students’ learning difficulties from 
their journals and then take steps to remedy the situation (Miller, 1992). This type of journal 
writing should not be graded, or else the students may pretend that they know everything. 
Journal writing can also help students learn how to communicate mathematically when they 
try to explain what they have learnt. This may also help them to clarify their own 
understanding (Stempien & Borasi, 1985). 
 
Therefore, some assessment tasks are very different from the mathematical tasks in Figure 1 
that students used in their learning or practice. We may also want to distinguish between 
assessment tasks that are rich and those that are not so rich. In this paper, the term ‘rich 
assessment tasks’ will be used to refer to tasks that attempt to assess students’ conceptual 
understanding, mathematical communication and thinking processes, rather than direct 
application of procedural skills or the mere regurgitation of facts. 
 
13. Implications for Teaching and Learning 
 
The classification according to purpose helps teachers to see that practising procedural tasks 
and solving ‘word problems’ are just two of the many different types of mathematical tasks. 
Some educators believe that there is a place for practising basic skills (Cockcroft, 1982; 
NCTM 1980) and these procedural skills form part of the resources that Schoenfeld (1985) 
believed are necessary to solve problems. However, school mathematics should not 
concentrate on just practising these basic skills (Burton, 1984; Lampert, 1990). There are 
many kinds of mathematically-rich tasks that help students to learn new mathematics or to 
develop mathematical processes which some educators (e.g. Moschkovich, 2002a; 
Schoenfeld, 1988) believed are useful and essential for students to solve unfamiliar 
mathematical and real-life problems. The classification above suggests to teachers what are 
the appropriate tasks to choose if they want to focus on developing students’ analytical skills, 
or if they want their students to be creative, or both. The discussions on the various 
characteristics of the tasks help teachers to further refine their needs, for example, whether to 
make mathematics more realistic by using more real-life tasks, or whether to narrow the 
scope of investigation for weaker students by using the less open problem-solving and 
guided- discovery tasks than the more open investigative tasks. Teachers can also choose 
various types of rich assessment tasks if they want to assess their students’ understanding, 
mathematical communication and thinking processes. 
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