
Chapter 7 

Solving Mathematical Problems by 
Investigation 

Joseph B. W. YEO          YEAP Ban Har 

Most educators would think of heuristics when it comes to solving 
closed mathematical problems, while many researchers believe that 
mathematical investigation must be open and is different from 
problem solving. In this chapter, we discuss the relationship 
between problem solving and investigation by differentiating 
investigation as a task, as a process and as an activity, and we show 
how the process of investigation can occur in problem solving if we 
view mathematical investigation as a process consisting of 
specialising, conjecturing, justifying and generalising. By looking at 
two examples of closed mathematical tasks, we examine how 
investigation can help teachers and students to solve these problems 
when they are stuck and how it can aid them to develop a more 
rigorous proof for their conjectures. We also deliberate whether 
induction is proof and how heuristics are related to investigation. 
Finally, we consider the implications of the idea of solving 
mathematical problems by investigation on teaching. 

1  Introduction 

The use of problem-solving heuristics or strategies to solve mathematical 
problems was popularised by Pólya (1957) in his book How to solve it 
(first edition in 1945). Few educators would talk about solving 
mathematical problems by investigation. In fact, many educators (e.g., 
HMI, 1985; Lee & Miller, 1997) believe that mathematical investigation 
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must be open and that it must involve problem posing. Thus the idea of 
solving closed mathematical problems by investigation is a contradictory 
notion. Although many educators (e.g., Evans, 1987; Orton & Frobisher, 
1996) have observed that there are overlaps between problem solving 
and investigation, they usually ended up separating them as distinct 
processes: problem solving is convergent while investigation is divergent 
(HMI, 1985). Some educators (e.g., Pirie, 1987) have even claimed that 
it is not fruitful to discuss the similarities and differences between them, 
but we agree with Frobisher (1994) that this is a crucial issue that may 
affect how and what teachers teach their students. Therefore, the main 
purposes of this chapter are to clarify the relationship between problem 
solving and investigation, to illustrate how investigation can help 
teachers and students to solve two closed mathematical problems when 
they are stuck, and to discuss how they can make use of investigation to 
develop a more rigorous proof for their conjectures. 

We begin by examining what constitutes a problem to a particular 
person, whether problems must be closed or whether they can be open, 
and how investigation is related to problems. Subsequently, we discuss 
the relationship between investigation and problem solving by first 
separating investigation into investigative tasks, investigation as a 
process and investigation as an activity, and then characterising the 
process of mathematical investigation as involving the four core thinking 
processes of specialising, conjecturing, justifying and generalising. We 
argue that investigation as a process can occur when solving closed 
mathematical problems and we examine how investigation can aid 
teachers and students to solve these problems when they are stuck by 
looking at two closed mathematical tasks. In particular, we observe how 
investigation can help them to develop a more rigorous proof for their 
conjectures. Then we deliberate whether induction is proof by looking at 
the different meanings of the terms ‘induction’, ‘inductive observation’ 
and ‘inductive reasoning’, and we consider how investigation is related 
to problem-solving heuristics after establishing that investigation is a 
means to solve closed problems. The chapter ends with some 
implications for teaching. 
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2  Relationship between Problem Solving and Investigation 

Whether a situation is a problem or not depends on the particular 
individual (Henderson & Pingry, 1953). If the person is “unable to 
proceed directly to a solution” (Lester, 1980, p. 30), then the situation is 
a problem to him or her. Reys, Lindquist, Lambdin, Smith, and Suydam 
(2004) believed that this difficulty must require “some creative effort and 
higher-level thinking” (p. 115) to resolve. Thus most textbook 
‘problems’ are actually not problems to many students partly because 
they know how to ‘solve’ them and partly because the main purpose of 
these ‘problems’ is to practise students in the procedural skills that have 
been taught in class earlier (Moschkovich, 2002). Therefore, it may be a 
better idea to use the term ‘mathematical task’ instead of ‘mathematical 
problem’ when we are referring to the task itself. For example, the 
Professional Standards for Teaching Mathematics (NCTM, 1991) used 
the phrase ‘mathematical tasks’ instead of ‘mathematical problems’ (see, 
e.g., p. 25) and Schoenfeld (1985) wrote, “… being a ‘problem’ is not a 
property inherent in a mathematical task [emphasis mine]” (p. 74). 
However, we do use the terms ‘mathematical problems’ and ‘problem 
solving’ in this chapter, but whenever such terms are used, it implies that 
the task is a problem to the person because if otherwise, then there is no 
need to solve the task. 

One of the contentious issues among educators concerns the closure 
or openness of mathematical problems. Henderson and Pingry (1953) 
believed that a problem must have a clearly defined goal, and Orton and 
Frobisher (1996) claimed that very few mathematics educators would 
classify mathematical investigations as problems because they were of 
the opinion that investigations must have an open and ill-defined goal. 
But we agree with Evans (1987) that if a student does not know what to 
do when faced with an investigation, then the investigation is still a 
problem to the student. Orton and Frobisher (1996) also observed that 
educators in some countries, e.g., the United States of America, would 
call investigations ‘open problems’. But this phrase is an oxymoron if 
one holds on to the view that problems must be closed. Nevertheless, this 
suggests that many educators seem to separate mathematical problems 
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from investigations in that the former must be closed while the latter 
must be open. 

Others (e.g., Cai & Cifarelli, 2005; Frobisher, 1994) have suggested 
that investigation should involve both problem posing and problem 
solving. Although many educators have claimed that there are overlaps 
between problem solving and investigation, they still ended up separating 
them. For example, HMI (1985) stipulated that there is no clear 
distinction between problem solving and investigation but it still ended 
up separating problem solving as a convergent activity from 
investigation as a divergent activity partly because the writers believed 
that investigation should involve problem posing as well (Evans, 1987). 

However, school teachers are often not so clear about the 
differences between problem solving and investigation. Some of them 
even feel that their students are doing some sort of investigation when 
solving certain types of closed problems (personal communication). For 
example, consider the following mathematical task which is closed: 

 
Task 1: Handshakes 
At a workshop, each of the 70 participants shakes hand once with 
each of the other participants. Find the total number of handshakes. 
 
If students do not know how to solve this task, then this task is a 

problem to them. Some teachers believe that these students can begin by 
investigating what happens if there are fewer numbers of participants, 
which may help the students to solve the original problem. But there 
seems to be very little literature on this subject of solving a closed 
problem by investigation. However, a thorough search has revealed a few 
writings. For example, in the synthesis class in Bloom’s taxonomy of 
educational objectives in the cognitive domain, Bloom, Engelhart, Furst, 
Hill, and Krathwohl (1956) wrote about the “ability to integrate the 
results of an investigation [emphasis mine] into an effective plan or 
solution to solve a problem [emphasis mine]”. The Curriculum and 
Evaluation Standards for School Mathematics stipulated that “our ideas 
about problem situations and learning are reflected in the verbs we use to 
describe student actions (e.g., to investigate, to formulate, to find, to 
verify) throughout the Standards” (NCTM, 1989, p. 10), thus suggesting 
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that the Standards do recognise investigation as a means of dealing with 
problem situations. 

Yeo and Yeap (2009) tried to reconcile the differences between the 
view that mathematical investigation must be open and the view that 
investigation can occur when solving closed problems. The conflict 
appears to arise from the different uses of the same term ‘investigation’. 
Just as Christiansen and Walther (1986) distinguished between a task and 
an activity, Yeo and Yeap (2009) differentiated between investigation as 
a task, as a process and as an activity. They called the following an open 
investigative task, rather than the ambiguous phrase ‘mathematical 
investigation’: 

 
Task 2: Polite Numbers 
Polite numbers are natural numbers that can be expressed as the 
sum of two or more consecutive natural numbers. For example, 

  9 = 2 + 3 + 4 = 4 + 5, 
11 = 5 + 6, 
18 = 3 + 4 + 5 + 6. 

Investigate. 
 
When students attempt this type of open investigative tasks, they are 

engaged in an activity, which is consistent with Christiansen’s and 
Walther’s (1986) definitions of a task and an activity. Yeo and Yeap 
(2009) called this an open investigative activity which involves both 
problem posing and problem solving: students need to pose their own 
problems to solve (Cai & Cifarelli, 2005). However, Yeo and Yeap 
(2009) observed that when students pose a problem to solve, they have 
not started investigating yet. This led them to separate investigation as a 
process from investigation as an activity involving an open investigative 
task. 

An analogy is Pólya’s (1957) four stages of problem solving for 
closed problems. During the first stage, the problem solver should try to 
understand the problem. But the person has not started solving the 
problem yet. The actual problem-solving process begins during the 
second stage when the person tries to devise a plan to solve the problem 
and it continues into the third stage when the person carries out the plan. 
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After solving the problem, the person should look back, which is the 
fourth stage. Therefore, the actual problem-solving process occurs in the 
second and third stages although problem solving should involve the first 
and fourth stages also: what the person should do before and after 
problem solving. 

Similarly, when students attempt an open investigative task, they 
should first try to understand the task and then pose a problem to solve. 
However, this is before the actual process of investigation. After the 
investigation, the students should look back and pose more problems to 
solve. Therefore, there is a difference between the process of 
investigation and an open investigative activity: the former does not 
involve problem posing but the latter includes problem posing. From this 
point onwards, the term ‘investigation’ will be used in this chapter to 
refer to the process while the activity will be called an ‘open 
investigative activity’. This distinction is important because we would 
like to argue that investigation can occur when solving closed problems. 
But first, we need to characterise what investigation is. 

Yeo and Yeap (2009) observed that when students investigate 
during an open investigative activity, they usually start by examining 
specific examples or special cases which Mason, Burton, and Stacey 
(1985) called specialising. The purpose is to search for any underlying 
pattern or mathematical structure (Frobisher, 1994). Along the way, the 
students will formulate conjectures and test them (Bastow, Hughes, 
Kissane, & Mortlock, 1991). If a conjecture is proven or justified, then 
generalisation has occurred (Height, 1989). Thus investigation involves 
the four mathematical thinking processes of specialising, conjecturing, 
justifying and generalising, which Mason et al. (1985) applied to 
problem solving involving closed problems. Therefore, mathematical 
investigation can occur not only in open investigative activities but also 
in closed problem solving. But if investigation must involve problem 
posing, then investigation cannot happen when solving closed problems. 
This is why the separation of problem posing in open investigative 
activities from the process of investigation is very important. 

Hence, if we view investigation as a process involving specialising, 
conjecturing, justifying and generalising, then we can solve closed 
mathematical problems by investigation when we are stuck. 
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3  Solving Mathematical Problems by Investigation 

In this section, we will illustrate how investigation can help teachers and 
students to solve two closed mathematical problems when they are stuck, 
and how the result of an investigation can be used to develop a more 
formal or rigorous proof for their conjectures. Furthermore, we deliberate 
two important issues: whether induction is proof and how heuristics are 
related to investigation. Let us start by looking at the following task: 
 

Task 3: Series 

Find the value of 
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This task was given to a group of in-service primary school teachers 

during a workshop at Mathematics Teachers Conference 2008 in 
Singapore. All of them had not seen this question before and they did not 
know how to solve it immediately, so this was a problem to them. Most 
of them were stuck: they did not even know how to begin. After some 
pondering, some of them tried to evaluate the denominators of all the 
fractions but it led to nowhere. So the first author guided them to 
investigate some specific examples by starting with smaller sums, i.e., 
what is the sum of the first two fractions, the sum of the first three 
fractions, etc., to see if there is any pattern: 
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Some teachers were able to observe that 
n

n
Sn ++++
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sum of the numbers in the denominator can be found easily as 
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Unfortunately, most of the teachers thought that this was the 
answer. Some of them knew that this was only a conjecture because the 
observed pattern might not be true but they forgot to test the conjecture, 
while most of them did not even realise that this was only a conjecture. 
This is probably due to how they were taught number patterns in schools 
when they were students themselves, and now they are teaching their 
students the same thing: there is always a unique answer for the missing 
term in a sequence. For example, in the following sequence, what is the 
next term? 

 
1, 4, 7, ____ 

 
Most of the teachers were taught that the answer must be 10 and so 

it is unique. However, the missing term is only 10 if the sequence is an 
arithmetic progression, in which case, the general term is Tn = 3n − 2. In 
theory, the next term can be any number. For example, the fourth term 
for the above sequence can be 16 if the general term is 
Tn = n3 − 6n2 + 14n − 8 (the reader can check that T1 = 1, T2 = 4, T3 = 7 
and T4 = 16 using this formula). If you want the missing term in the 
above sequence to be any number, e.g., 22, all you need to do is to form 
and solve four simultaneous equations with four unknowns, and a 
polynomial with four parameters is of degree 3, i.e., the cubic 
polynomial Tn = an3 + bn2 + cn + d. So the four equations are: 
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Solving the equations simultaneously, we obtain a = 2, b = −12, 
c = 25 and d = −14. So Tn = 2n3 − 12n2 + 25n − 14 (the reader can check 
that T1 = 1, T2 = 4, T3 = 7 and T4 = 22 using this formula). However, the 
coefficients may not always be ‘nice’ integral values or the simultaneous 
equations may have no solutions. For the latter, you can always try 
another polynomial that has more parameters, e.g., a polynomial of 
degree 4, and sooner or later, you will find a suitable polynomial. You 
can even try non-polynomials like a sine function. 

Therefore, there is no unique answer for the missing term of a 
sequence. The answer that we want when we set this type of question is 
‘the most likely number’ and what this means is that we prefer the 
formula for the general term to be less complicated. Thus the more terms 
we give for a sequence, the pattern should become more obvious and 
most of us may agree on one ‘most likely number’. For example, ‘the 
most likely number’ for the missing term in the above sequence is 10 but 
some people may disagree. So, to avoid ambiguity, if we increase the 
number of given terms as shown below, then fewer people would 
disagree that ‘the most likely number’ for the missing term in the 
following sequence is 10, although it can still be any other number if we 
settle for a complicated formula for the general term, such as a 
polynomial of degree 6. 

 
1, 4, 7, ____, 13, 16, 19 

 
However, we cannot go for ‘the most likely number’ if the sequence 

has a context and is linked to some underlying pattern. For example, if 
we just consider the following sequence, then ‘the most likely number’ is 
32 because the general term Tn = 2n−1 is less complicated than a formula 
such as Tn = nC4 + n−1C2 + nC1. 

 
1, 2, 4, 8, 16, ____ 

 
But if this sequence has a context and is linked to some underlying 

pattern, then we cannot just assume that the missing term is 32. For 
example, consider the following circle: 
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Figure 1. Circle with five points 
 

There are five arbitrary points on the circumference of the circle, 
and each point is connected to every other point by a chord such that no 
three chords interest at the same point inside the circle. The chords divide 
the circle into regions. In this case, when n = 5 (where n is the number of 
points on the circumference of the circle), there are 16 regions inside the 
circle. If we consider the case when n = 1, 2, 3, 4, 5, … , then the total 
number of regions inside the circle, Tn, will form the following sequence: 

 
1, 2, 4, 8, 16, … 

 
If n = 6, what will be the total number of regions? The teachers in 

the workshop predicted that there would be 32 regions although a few of 
them suspected that this might not be the answer, or else the first author 
would not be giving them this counter example. Then the teachers 
counted the total number of regions for the following circle manually: 

 
 
 
 
 
 
 
 
 
 

Figure 2. Circle with six points 
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When they found out that there were only 31 regions in the circle in 
Figure 2, some of them thought that they had counted wrongly and so 
they recounted the number of regions, while others realised that it was 
possible to have a sequence as follows: 

 
1, 2, 4, 8, 16, 31, … 

 
However, some of them concluded that the above sequence has no 

pattern. The first author reiterated that there is still a pattern in the above 
sequence, but the underlying pattern is not Tn = 2n−1 which is the ‘more 
obvious’ observed pattern in the sequence 1, 2, 4, 8, 16, … In fact, there 
is even a formula for the total number of regions: Tn = nC4 + n−1C2 + nC1 
(the reader can check that T1 = 1, T2 = 2, T3 = 4, T4 = 8, T5 = 16 and T6 = 
31 using this formula). 

Let us return to the observed pattern in Task 3. The teachers finally 
realised that this was only a conjecture and they needed to test it. At first, 
no one was able to prove or refute it. After some time, a teacher managed 
to develop a rigorous proof. In fact, this teacher did not even solve the 
problem by investigation: she did not follow the hint of the first author 
above but she did the following on her own: 
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All the other teachers were very impressed that this teacher was able 
to devise such a proof1. The first author asked the teacher how she 
managed to think of Line #3 and Line #5 which were the key steps in her 
proof, but she herself could not explain how and why she did it this way. 
All the other teachers agreed that they themselves would never have 
thought of this type of rigorous proofs that seem to come out of nowhere, 
which agrees with what Lakatos (1976) wrote when he observed that “it 
seems impossible that anyone should ever have guessed them” (p. 142). 

There is a more elegant but similar proof: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Similarly, most people would never have thought of finding half the sum 
in this second proof. But how did the originator of this proof know what 
to do? The person most likely had to do some investigation first. 

                                                 
1  Actually, there is more to the (first) proof than is shown here. There must be good 

reasons to believe that the patterns in Lines #3 and #5 will continue. We will leave it to 
the reader to find the reasons. 
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However, what might have helped in the investigation were some prior 
mathematical knowledge and skills which the person might have relied 
upon, which Schoenfeld (1985) called resources which were necessary 
for effective problem solving. For example, the person might have 
known the method of differences (which is the key step of the proof: see 
Line #5 of the second proof), and he or she might also be familiar with 

expressing ( )1
1 
+nn

  as 
1

11 
+

−
nn

. The person might also have recalled 

that the numbers 1, 3, 6, 10, … , which appear in the denominators of the 
original series, are triangular numbers, and that the general term for 

triangular numbers is ( )1
2
1

+= nnTn , which is one step away from 

getting ( ) 1
11 

1
1 

+
−=

+ nnnn
. These might have helped the person to think 

of starting with half the sum after some investigation. But if anyone does 
not have all these resources at his or her disposal, then the person may 
have to do more investigation to discover these first, or perhaps the 
person can conjure the first proof provided by the teacher above (this 
teacher has admitted that she knows the method of differences) and then 
refine it later to become a more elegant proof like the second one. 

To summarise, this example (Task 3) illustrates the two main 
approaches to solve a closed mathematical problem: by investigation or 
by ‘other means’ (which is rigorous proof in this case), and that very few 
teachers were able to solve it using a rigorous proof directly. 

Let us look at another example: the Handshakes task in the previous 
section (see Task 1). The first author has given this task to primary and 
secondary school students, and pre-service and in-service teachers. Some 
of the teachers and students have seen this question before, and they were 
able to give the answer almost immediately, so this task was not a 
problem to them. For those who saw this for the first time and were 
unable to solve it immediately, this was a problem to them. After a while, 
the teachers and the better students were able to solve it by ‘other 
means’, which in this case is simple deductive reasoning: since the first 
participant must shake hand with the other 69 participants, the second 
participant must shake hand with the remaining 68 participants and so 
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forth, then the total number of handshakes is 69 + 68 + 67 + … + 1. 
Some high-ability students can even use a combinatorics argument that 
the total number of handshakes is equal to the total number of different 
pairs of participants, i.e., 70C2, because every different pair of participants 
will give rise to one distinct handshake. This type of deductive proofs, 
unlike the formal proofs for Task 3, is within the grasp of many teachers 
and students. 

But for the weaker ones who were unable to reason it in this way, 
many of them tried to solve the problem by drawing a diagram for 
smaller numbers of participants (see Figure 3 where n is the number of 
participants and Tn is the total number of handshakes) in order to observe 
some patterns so as to generalise to 70 participants. This is specialising 
in order to form a conjecture towards a generalisation, which are 
essentially the core processes in a mathematical investigation. 

 
 

      n = 1       n = 2            n = 3               n = 4                       n = 5 
 
 

 
 
 
 
 

     T1 = 0     T2 = 1           T3 = 3             T4 = 6                     T5 = 10 
 

Figure 3. Handshakes task 
 
 
Many of them were able to observe from their diagrams that the 

total number of handshakes for n participants is 0, 1, 3, 6, 10, … for 
n = 1, 2, 3, 4, 5, … respectively. However, most of them were unable to 
find a formula for the general term of this sequence. But they were able 
to observe this pattern: 
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0,       1,       3,       6,      10,    … 
 
                                 +1      +2      +3      +4 
 
Using this pattern as a scaffold, the first author guided the teachers 

and students by asking them how to obtain T4 from T2. This enabled most 
of them to observe that T4 = 1 + 2 + 3. Similarly, to obtain T5 from T2, 
most of the teachers and students were able to see that T4 = 1 + 2 + 3 + 4. 
Therefore, they were able to observe that T70 = 1 + 2 + 3 + … + 69, 
which is the total number of handshakes for 70 participants. 
Unfortunately, most of them, including the teachers and the better 
students, thought that this was the answer, without realising that this was 
only a conjecture to be proven or refuted. If the conjecture is wrong, you 
can refute it by using a counter example. But if the conjecture is correct, 
then do you really need a formal or rigorous proof to prove it? Some 
educators (e.g., Holding, 1991; Tall, 1991) believe in using rigorous 
proofs while others (e.g., Mason et al., 1985) support justification using 
the underlying mathematical structure. We shall illustrate these two 
approaches of justification using the Handshakes task. 

The first author began by asking the teachers and students whether 
there was any reason to believe that the observed pattern would continue. 
Not a single person was able to find a reason. So the first author guided 
them with this question: if you go from T4 = 1 + 2 + 3 to T5, what 
happens? Some of them were able to observe that if you add the fifth 
participant to T4, then the fifth participant must shake hand with each of 
the four participants, so there are four additional handshakes and thus 
T5  = 1 + 2 + 3 + 4. Using the same argument, if you add the sixth 
participant to T5, then the sixth participant must shake hand with each of 
the five participants, so there are five additional handshakes and thus 
T6 = 1 + 2 + 3 + 4 + 5. Therefore, this is a good reason to believe that the 
observed pattern will continue in this manner because this argument can 
always be applied from Tn to Tn+1. But this is not a proof. However, 
Mason et al. (1985) believed that this type of argument using the 
underlying mathematical structure is good enough for school students. 

The next question is how to guide these teachers and students to 
construct a more rigorous proof for their conjecture from their 
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investigation. From the underlying mathematical structure discovered in 
the above investigation (i.e., if you add one participant to n participants, 
then the new participant must shake hand with the n participants, thus 
resulting in n additional handshakes and so the total number of 
handshakes for Tn+1 is 1 + 2 + 3 + … + n), a few teachers and students 
were able to realise that they could use the same argument in the reverse 
manner: start from the first participant, and he or she has to shake hands 
with all the other 69 participants; then the second participant has only 68 
participants to shake hand with, and so forth; thus the total number of 
handshakes for T70 is 69 + 68 + 67 + … + 1. In this way, the teachers and 
students have managed to use their investigation to develop a more 
rigorous proof for their conjecture. This agrees with what Pólya (1957) 
believed when he wrote that “we need heuristic reasoning when we 
construct a strict proof as we need scaffolding when we erect a building” 
(p. 113). According to Pólya, heuristic reasoning is based on induction or 
analogy, but both induction and analogy involve specialising in order to 
discover the underlying mathematical structure. Therefore, Pólya’s idea 
of heuristic reasoning is very similar to the concept of the process of 
investigation outlined in the previous section. 

One major issue to deliberate in this section is whether induction is 
proof. Yeo and Yeap (2009) believed that the problem lies in the 
different meanings of the terms ‘induction’, ‘inductive observation’ and 
‘inductive reasoning’. If students observe a pattern when specialising, the 
pattern is only a conjecture and Lampert (1990) called this ‘inductive 
observation’. But if students use the underlying mathematical structure 
(Mason et al., 1985) to argue that the observed pattern will always 
continue, then it involves rather rigorous reasoning and so this can be 
called ‘inductive reasoning’ (Yeo & Yeap, 2009). Thus there is a big 
difference between inductive observation and inductive reasoning: 
inductive observation is definitely not a proof but inductive reasoning is 
considered a proof by some educators (e.g., Mason et al., 1985). 
Unfortunately, some educators (e.g., Holding, 1991) have used the 
phrase ‘inductive reasoning’ to mean ‘inductive observation’. The same 
goes for the word ‘induction’: it can mean either ‘inductive observation’ 
or ‘inductive reasoning’ or both. For example, Pólya’s (1957) idea of 
induction is inductive observation only. Therefore, whether induction is 
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proof or not depends on which meaning you attach to the term 
‘induction’. In this chapter, the term ‘induction’ is used to include both 
inductive observation and inductive reasoning. 

Another main issue to discuss in this section is the relationship 
between heuristics and investigation as a means to solve closed 
mathematical problems. Literature abounds with problem-solving 
heuristics (see, e.g., Pólya, 1957; Schoenfeld, 1985) but very few of them 
mention the use of investigation to solve closed problems, probably 
because few educators have ever characterised the process of 
investigation. Now that we have observed that investigation involves the 
four core processes of specialising, conjecturing, justifying and 
generalising, we can compare investigation with heuristics. Any heuristic 
that makes use of specialising can be considered an investigation (Yeo & 
Yeap, 2009). For example, if students use the heuristic of systematic 
listing or the heuristic of drawing a diagram for some specific cases, then 
it involves specialising and so this can be viewed as an investigation 
from another perspective. But if students use a deductive argument 
directly, then this is not an investigation. It does not mean that students 
cannot use deductive reasoning during an investigation. For example, 
students can use a deductive argument when proving a conjecture that is 
formulated during their investigation. 

4  Conclusion and Implications 

Differentiating between investigation as a task, as a process and as an 
activity has helped to separate problem posing from the process of 
investigation. This is important because if investigation entails both 
problem posing and problem solving, then investigation cannot happen 
during problem solving. Characterising the process of investigation as 
involving specialising, conjecturing, justifying and generalising, it 
becomes clear that investigation can also occur when solving closed 
mathematical problems. This agrees with what some teachers believe 
when they ask their students to investigate to solve a closed problem but 
most of them have no idea what investigation actually involves. If 
teachers have a vague idea of what investigation entails, then they may 
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not be able to teach their students how to investigate properly (Frobisher, 
1994). Therefore, the implication of defining the process of investigation 
more clearly in this chapter is to help teachers understand more fully 
what investigation means and how to help their students to investigate 
more effectively by focusing on each of the core thinking processes of 
specialising, conjecturing, justifying and generalising. 

Another implication for teaching is how to make use of the results 
of an investigation as a scaffold to construct a more rigorous proof for a 
conjecture (Pólya, 1957) instead of conjuring a formal proof out of 
nowhere (Lakatos, 1976). 
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