Unpacking Big Idea about Proportionality

Connecting Ratio, Rate, Proportion and Variation

Dr Joseph B. W. Yeo
josephbw.yeo@nie.edu.sg
http://math.nie.edu.sg/bwjyeo

Secondary Maths Syllabus for 2020

- Eight Clusters of Big Ideas: Invariance, Functions, Diagrams, Notations, Proportionality, Measures, Models, Equivalence
- "Big ideas highlighted in the syllabus are not meant to be authoritative or comprehensive."
- Four Recurring Themes of Nature of Maths:
- Properties and Relationships
- Operations and Algorithms
- Representations and Communications
- Abstractions and Applications

Nature of Mathematics

"Mathematics is the study of the properties, relationships, operations, algorithms, and applications of numbers and spaces at the very basic levels, and of abstract objects and concepts at the more advanced levels. Mathematical objects and concepts, and related knowledge and methods, are products of insight, logical reasoning and creative thinking, and are often inspired by problems that seek solutions. Abstractions are what make mathematics a powerful tool for solving problems. Mathematics provides within itself a language for representing and communicating the ideas and results of the discipline."

Big Ideas

- Big ideas could be about one or more themes, e.g. Proportionality is about Properties and Relationships; while Equivalence is about Properties and Relationships, and Operations and Algorithms.
- "Big ideas express ideas that are central to mathematics. They bring coherence and connect ideas from different strands and levels."

Proportionality

- Unpacking big idea about proportionality: connecting ratio, rate, proportion and variation
- For a teacher, content knowledge is as important as pedagogical content knowledge (Ball, Thames \& Phelps, 2008; Shulman 1986)
- So that we do not teach wrong things (difficult for students to un-learn)
- As a teacher, we should also know more than what our students need to learn so that we can address their questions that may be beyond syllabus
- But we have to decide when and what to tell our students

Ball, D. L., Thames, M. H., \& Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59, 389-407.
Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4-14.

Why proportionality?

- Essential basis of math knowledge (Lesh, Post \& Behr, 1988)
- One of the most commonly applied mathematics in the real world (Lanius \& Williams, 2003)
- "Proportional reasoning is at the core of so many important concepts in mathematics and science, including similarity, relative growth and size, dilations, scaling, pi, constant rate of change, slope, rates, percent, trig ratios, probability, relative frequency, density, and direct and inverse variations." (Heinz \& Sterba-Boatwright, 2008, p. 528)

[^0]
Why proportionality?

- Research has found that many students and even adults have difficulties in reasoning proportionally (Behr, Harel, Post \& Lesh, 1992; Staples \& Truxaw, 2012)
- Comparative situation: 30 boys and 10 girls in a class
- "How many more boys are there than girls?" (absolute / additive)
- "How many times is the number of boys more than the number of girls?" (relative / multiplicative)
- Students tend to see comparative situations in absolute (additive) rather than relative (multiplicative) terms, partly because it is easier to see ' 20 more boys' than ' 3 times as many boys as girls'

Behr, M., Harel, G., Post, T., \& Lesh, R. (1992). Rational number, ratio, and proportion. In D. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 296-333). New York: McMillan.
Staples, M. E., \& Truxaw, M. P. (2012). An initial framework for the language of higher-order thinking mathematics practices. Mathematics Education Research Journal, 24, 257-281.

Why proportionality?

- Another gap: many students are unable to distinguish "between and among concepts of decimal, percent, ratio, proportion, and proportional reasoning" (Ojose, 2015, p. 111)
- May be because of the way topics are sequenced by teachers during instruction without presenting the opportunity for students to see the big picture and the interconnectedness among the various mathematical concepts (ibid.)
- So the question is how are ratio, rate and proportion related? (survey)

Ratio (Primary 5)

- All 3 P5 textbooks give some examples of ratios (without any definition)

Ratio (Secondary 1)

- Both Sec 1 textbooks give a more formal definition of ratio

Ratios Involving Rational Numbers

At the primary level, we have learnt to use a ratio to compare two similar quantities
a and b.

The ratio of a to b is denoted by $a: b$ which can also be represented by $\frac{a}{b}$, where $b \neq 0$.

::: Recap (Concept of Ratio)

In primary school, we have learnt how to solve problems involving ratios. We shall have a quick revision. A ratio is used to compare two or more quantities of the same kind which are measured in the same unit.

The ratio of a is to b, where a and b represent two quantities of the same kind, and $b \neq 0$, is written as $a: b$.

Ratio: Same kind?

- Both Sec 1 textbook definitions of ratio: Ratio is used to compare two or more quantities of the same kind (or similar quantities)
- No. of boys : no. of girls = $3: 2$
- This is a ratio because we are comparing numbers (same kind), not because boys and girls are human beings
- x boys and y girls: x and y are numbers
- If quantities of same kind are just numbers, they have no units

Ratio: Same kind?

- If quantities of same kind are measurements, must they have the same units? Can we write a map scale as $1 \mathrm{~cm}: 100 \mathrm{~m}$?
- Ratio notation $a: b$ has no units, so map scale is $1: 10000$
- Does this mean if two measurements have different units (e.g. 1 cm and 100 m), it is not a ratio?
- May be helpful to distinguish between concept of ratio, and ratio notation $a: b$
- If two measurements have same type of units (that can be converted from one to the other), we can still use ratio to compare, but if we write it using ratio notation, it must not have units

Ratio: Same kind (Summary)

- Ratio is used to compare two or more quantities of the same kind, which refer to either
(i) numbers or
(ii) measurements with same type of units (that can be converted from one to the other, e.g. cm and metres; not cm and grams)
- Ratio notation $a: b$ has no units

Ratio Notation

- Usual textbook definition of ratio notation: $a: b$, where $b \neq 0$
- Why $b \neq 0$ is because $a: b$ can be written as $\frac{a}{b}$
- Can $a=0$?
- E.g. no. of boys : no. of girls $=0: 40$
- No. of girls : no. of boys $=40: 0$?
- Is $0: 40$ the same as $0: 20$ or $0: 1$?
- If a quantity is 0 , not meaningful to use ratio as a basis of comparison with another quantity: we just say that the quantity is 0

Ratio Notation

- Usual textbook definition of ratio notation: $a: b$, where $b \neq 0$
- Can a or b be negative?
- Most (if not all) scalar quantities in real world are non-negative
- Ideal gas law: $P V=n R T$, where T is absolute temperature (measured in Kelvin), so $T \geq 0$
- Any textbook questions: $a, b>0$
- Proposed definition of ratio notation: $a: b$, where $a, b>0$

Rate (Secondary 1)

- Both Sec 1 textbooks also define rate but they do it differently

Rate: Per unit of another quantity?

- Most textbook definitions of rate: Rate is (usually) expressed as one quantity per unit of another quantity
- The textbook that includes the word 'usually' does not give any exceptions. But can you think of some exceptions?
- E.g. an item costs $\$ 2$ per 100 grams, or a smartphone plan costs $\$ 10$ per 2 gigabytes of data
- Rate can be expressed as one quantity per n units of another quantity, where n is some 'nice' number
- Is this idea of rate comprehensive enough?

What kind of rates is this?

- 2016 O-level Exam Paper 2 on Problem in Real-World Contexts

For Letters, Postcards, Printed Papers and Packets/Packages		
Weight Step Up To	Standard Mail	Non-Standard Mail
Regular		
20 g	\$0.30	\$0.60
40 g	\$0.37	
Large		
100 g	\$0.60	\$0.90
250 g	\$0.90	\$1.15
500 g	\$1.15	\$1.70
1 kg	\$2.55	
2 kg	\$3.35	

Rate: Different Kinds?

- One Sec 1 textbook definition of rate: Rate is used to compare two quantities of different kinds
- The other textbook did not say different kinds but examples given all compare quantities of different kinds
- Can rates be used to compare two quantities of the same kind?
- Unemployment rate = no. of unemployed people divided by no. of working people, and then expressed as a percentage
- Singapore's unemployment rate in $2018=2.1 \%$, i.e. 2.1 unemployed people per 100 working people, or 21 unemployed people per 1000 working people
- Rate of change of circumference of circle with respect to its radius
- Therefore, rate can be used to compare two quantities of the same kind or of different kinds

Is an exchange rate a constant rate?

- What is not constant is how an exchange rate changes with time: rate of change of exchange rate with time is not constant
- But an exchange rate is a constant rate at a given period time (e.g. at money changer)
- US\$1 = S\$1.37
- US\$2 = $\mathrm{S} \$ 2.74$ (rate is still the same: US\$1 = S $\$ 1.37$)
- US\$0.50 = S\$0.685 (rate is still the same: US\$1 = S\$1.37)
- "Is an exchange rate constant?" is vague because it can mean:
- "Is an exchange rate constant with respect to time?"
- "Is an exchange rate a constant rate?"

Ratio vs. Rate

- Ratio is a way of comparing two or more quantities of the same kind. The quantities can be numbers (of objects) or measurements. The ratio notation $a: b$, where $a, b>0$, has no units.
- Rate is a way of comparing how one quantity changes with another quantity. The quantities can be of the same kind or of different kinds. It is either a non-step rate or a step rate.
- How are ratio and rate related?
- Some overseas textbooks (e.g. Cathcart, Pothier, Vance \& Bezuk, 2016; Van de Walle, Karp \& Bay-Williams, 2010): a rate is a ratio
- But they will not use ratio notation $a: b$ (no units) for rates
- Local textbooks: clear distinction between ratio and rate, but are they related?

Cathcart, W. G., Pothier, Y. M., Vance, J. H., \& Bezuk, N. S. (2006). Learning mathematics in elementary and middle schools (4 ${ }^{\text {th }}$ ed.). Upper Saddle River, NJ: Pearson.
Van de Walle, J. A., Karp, K. S., \& Bay-Williams, J. M. (2010). Elementary \& middle school mathematics (7 ${ }^{\text {th }}$ ed.). Boston, MA: Pearson.

Ratio vs. Rate

- Singapore's unemployment rate in $2018=2.1 \%$, i.e. 2.1 unemployed people per 100 working people, or 21 unemployed people per 1000 working people
- Rate (comparing quantities of same kind) can be expressed as a ratio 21 : 1000
- Math Snacks: Bad Date (Video): https://www.youtube.com/watch?v=BZ1M01YBKhk
- Ratio of woman's no. of words to man's no. of words was $25: 175$ or $1: 7$
- The woman made this statement, "For every word I spoke, he spoke 7 words."
- Rate: "He spoke 7 words per word that I spoke."
- Ratio (of 2 quantities) can be converted to a rate
- Can you always do that? How about no. of boys to no. of girls in a class is $2: 1$? Can you say that there are 2 boys per girl? Does that make sense to you?

List of countries by sex ratio

From Wikipedia, the free encyclopedia
The human sex ratio is the number of males for each female in a population. This is a list of sex ratios by country or region.

Country/region *	at birth (CIA estimate, 2016) ${ }^{[1]}$	$0-14$ years	$\begin{aligned} & 15-24 \\ & \text { years } \end{aligned}$		$\begin{aligned} & 55-64 \\ & \text { years } \end{aligned}$	${\underset{\text { over }}{65}}^{-}$	total \uparrow	at birth (WDB estimate, $2012)^{[5]}$
- World	1.09	1.07	1.07	1.02	0.95	0.805	1.015	1.07
IVafghanistan	1.05	1.03	1.04	1.04	0.97	0.86	1.03	1.07
- 4 Albania	1.10	1.12	1.07	0.91	0.98	0.89	0.98	1.07
${ }^{\text {c- }}$ Singapore	1.07	1.05	0.97	0.95	1.00	0.83	0.96	1.07

- Singapore: 1.07 males per female
- Writing ratio as rate makes it easier to compare across different groups (or countries)

Proportion: Different Meanings

proportion noun (IMPORTANCE)

$[\mathrm{U}]$ used in a number of phrases to mean importance and seriousness:
You have to keep a sense of proportion (= the ability to understand what is important and what is not).
I think a certain amount of worry about work is very natural, but you've got got to keep it in proportion (= judge correctly its seriousness).

proportion noun (SIZE)

[C or U] the correct or most attractive relationship between the size of different parts of the same thing or between one thing and another:Your legs are very much in proportion to (= the right size for) the rest of your body.
His feet seem very small in proportion to his body.
My head was much nearer the camera than the rest of me so I'm all out of proportion.

Proportion: Different Meanings

proportion noun (AMOUNT)

* C1 $[\mathrm{C},+$ sing/pl verb] the number or amount of a group or part of something when compared to the whole:

Children make up a large proportion of the world's population.
A higher proportion of men are willing to share household responsibilities than used to be the case.
The report shows that poor families spend a larger proportion of their income on food.

- Proportion can refer to a part-whole ratio

Proportion as Part-Whole Ratio

- Which class has a higher proportion of boys?

Class	A	B	C
Boy to Girl Ratio	$3: 2$	$5: 2$	$3: 1$
Boy per girl (Rate)	1.5	2.5	3

- Previously, we have used rates to help us compare
- But actually, proportion of boys in Class $\mathrm{A}=\frac{3}{5}$ or 60% (part-whole ratio)
- This more mathematical idea of proportion (part-whole ratio) is still different from direct (or inverse) proportion (relationship between two quantities)

Proportionality

- Proportionality refers to direct and inverse proportions
- Library fines for one book:

- As x is doubled, y is doubled; as x is halved, y is halved; etc.
- Concept of direct proportion: as x is multiplied by n, y is also multiplied by n (n can be 0.5 etc.)

Direct and Inverse Proportions (Summary)

- Two related ideas of direct proportion:
- (Direct) Proportional Reasoning: As one quantity (or variable) is multiplied by n, the other quantity (or variable) is also multiplied by n
- Equality of two ratios: $\frac{y_{2}}{y_{1}}=\frac{x_{2}}{x_{1}}$
- Two related ideas of inverse proportion:
- (Inverse) Proportional Reasoning: As one quantity (or variable) is multiplied by n, the other quantity (or variable) is divided by n (or multiplied by $\frac{1}{n}$)
- Equality of two ratios: $\frac{y_{2}}{y_{1}}=\frac{x_{1}}{x_{2}}$ (e.g. if $\frac{x_{2}}{x_{1}}=2$, then $\frac{y_{2}}{y_{1}}=\frac{1}{2}$)

Direct Proportion

No. of days (x)	$\mathbf{1}$	2	3	4	5	6	7	8
Fine $(y$ cents $)$	15	30	45	60	75	90	105	120
Rate $\frac{y}{x}$ (cents/day)	15	15	15	15	15	15	15	15

- $\frac{y}{x}=\boldsymbol{k}$, where k is a non-zero constant - $\boldsymbol{y}=\boldsymbol{k} \boldsymbol{x}$, where $k \neq 0$
- $\frac{y_{2}}{x_{2}}=\frac{y_{1}}{x_{1}}$ (equality of 2 rates) can be obtained from $\frac{y_{2}}{y_{1}}=\frac{x_{2}}{x_{1}}$ (equality of 2 ratios) by some manipulations
- But the rate is a constant: $\frac{y_{1}}{x_{1}}=\frac{y_{2}}{x_{2}}=\frac{y_{3}}{x_{3}}=\ldots$ (equality of rates)
- Unlike ratio, which is not a constant, e.g. $\frac{y_{2}}{y_{1}}=\frac{x_{2}}{x_{1}}=2$, or $\frac{y_{2}}{y_{1}}=\frac{x_{2}}{x_{1}}=3$, etc.

Inverse Proportion

- $x y=k$, where k is a non-zero constant

$$
y=\frac{k}{x}, \text { where } k \neq 0
$$

- $\frac{y_{2}}{x_{1}}=\frac{y_{1}}{x_{2}}$ (equality of 2 rates) can be obtained from $\frac{y_{2}}{y_{1}}=\frac{x_{1}}{x_{2}}$ (equality of 2 ratios) by some manipulations
- But unlike direct proportion, for inverse proportion, the rate is not a constant; what is constant is the product of the two quantities (or variables)
- Direct proportion:
- Equality of two ratios $\frac{y_{2}}{y_{1}}=\frac{x_{2}}{x_{1}}$, or equality of (two or more) rates $\frac{y_{2}}{x_{2}}=\frac{y_{1}}{x_{1}}$, or rate $\frac{y}{x}$ is constant
- Inverse proportion:
- Equality of two ratios $\frac{y_{2}}{y_{1}}=\frac{x_{1}}{x_{2}}$, or equality of two rates $\frac{y_{2}}{x_{1}}=\frac{y_{1}}{x_{2}}$, or product $x y$ is a constant

Direct and Inverse Variations

- 2001 syllabus: If y varies directly as x (we write $y \propto x$), then $y=k x$, where $k \neq 0$. If y varies inversely as x (we write $y \propto \frac{1}{x}$), then $y=\frac{k}{x}$, where $k \neq 0$.
- 2007 syllabus: Variations were combined with proportions (equations remain but symbol \propto removed)
- For proportions, textbooks always deal with positive quantities x and y (although they can be 0), so constant of proportionality $k>0$
- For variations, textbooks also deal with positive quantities x and y, and so $k>0$
- But definitions for variations remain: $k \neq 0$
- What if $k<0$? What will it affect?

Direct Variation

- For $y=3 x$, as x is doubled from 1 to $2, y$ is doubled from 3 to 6
- For $y=-3 x$, as x is doubled from 1 to $2, y$ is doubled from -3 to -6 , but y decreases!
- Is this inverse proportion?
- But proportional decrease means as x is doubled, y is halved
- If $k<0$ for direct variation, as x increases, y decreases but not proportionally (unlike inverse proportion)
- For original concept of direct proportion (as x increases, y increases proportionally) to work, $k>0$
- During extension to $k<0$ in direct variation, something still works (e.g. as x is doubled, y is doubled), but others no longer work (as x increases, y decreases)

Extension of Concepts in Mathematics

- In mathematics, when a concept is extended, the original idea (or some parts of it) may no longer work
- E.g. original idea of a^{n} applies for positive integer n : a multiplied by itself n times
- What if $n=0$ or -2 ? What does it mean for a to multiply by itself 0 or -2 times?
- a multiplied by itself 0 times is not 0 , but $a^{0}=1$ (if $\left.a \neq 0\right)$
- Similarly, in extending proportions (where $k>0$) to variations (where $k \neq 0$), some parts of the original idea may not work
- Nevertheless, although current Sec 2 textbooks on direct and inverse proportions state that $k \neq 0$, all examples and questions only deal with $k>0$ (and all quantities are positive also)

Proportionality in the real world

- "Although most people are probably unaware of the mathematical definition of proportions [i.e. the equality of two ratios], they do use them in familiar situations." (Tourniaire \& Pulos, 1985, p. 181)
- How people use proportions is via the idea of proportional reasoning
- Mickey saves $\$ 72$ in 18 days. He saves the same amount each day. How many days will Mickey take to save $\$ 160$? (Primary 5 Textbook, 2017, p. 74)

$$
\begin{aligned}
\$ 72 & \rightarrow 18 \text { days } \\
\$ 1 & \rightarrow \frac{18}{72} \text { day } \\
\$ 160 & \rightarrow \frac{18}{72} \times 160 \text { days }
\end{aligned}
$$

- Unitary method makes use of proportional reasoning
- Not natural to use equality of two ratios or form equation $y=k x$ to solve

Proportionality in the real world

- Proportion is in Sec 2 syllabus, so what can we do in Sec 1?
- A shopping centre charges 'per minute parking', i.e. a fixed amount is charged per minute of parking. Ivy pays $\$ 6$ for parking her car in the shopping centre for 2.5 hours. On another occasion, she parks her car for 1 hour 45 minutes. How much does she have to pay for the parking?
- Method 1: Find rate of parking $=\frac{\$ 6}{2.5 \mathrm{~h}}=\$ 2.40$ per hour
- Method 2: 2.5 hours of parking cost $\$ 6$

1 hour of parking costs $\frac{\$ 6}{2.5}$
1.75 hours of parking cost $\frac{\$ 6}{2.5} \times 1.75=\$ 4.20$

- Direct proportional reasoning can be used in Sec 1 chapter on constant rate

Proportionality in the real world

- Does that mean that when the relationship between two variables is a constant rate, then the two variables are directly proportional to each other?
- Counter example: $y=2 x+3$
- Rate $=2$ (constant), but this is not direct proportion because, e.g. when x is doubled from $x=1$ to $x=2, \mathrm{y}$ is not doubled from $y=5$ to $y=7$
- Direct proportion: $y=k x$, i.e. y-intercept $=0$ (straight line graph must pass through origin)
- May be too much to tell Sec 1 students this, but must we always form the equation or draw the graph to check that it passes through origin?
- Easier to just check that when $x=0, y=0$
- Situation with constant rate and both quantities $=\mathbf{0}$ at same time: this is direct proportion

Recognising Proportional Situations

- Many students fail to distinguish proportional situations from absolute comparison situations, so need to teach them how to recognise proportional situations (Behr, Harel, Post \& Lesh,1992; Van Dooren, De Bock, Hessels, Janssens, \& Verschaffel, 2005), e.g. constant rate and both quantities $=0$ at same time
- But after teaching them, some may go to the other extreme: is this a proportional situation?

If 30 musicians take 30 minutes to
play Beethoven's Fifth Symphony,
how long does it take 60 musicians to play the same symphony?

Proportionality in the real world

- Similar triangles: lengths of corresponding sides are proportional (video on application of similar triangles in hospitals can be found here: $\mathrm{http}: / /$ math.nie.edu.sg/bwjyeo/videos)
- Statistical graphs (e.g. bar chart, pie chart): length of bar or size of sector proportional to frequency

Conclusion for Lecture

- Connections among concepts of ratio, rate, proportion and variation
- Proportionality is common in maths and in real life: most people may not use equality of ratios or form equations to solve proportional problems, but they actually use proportional reasoning (via Unitary Method) to solve

Quotation by William Arthur Ward

- The mediocre teacher tells.
- The good teacher explains.
- The superior teacher demonstrates.
- The great teacher inspires.

[^0]: Heinz, K., \& Sterba-Boatwright, B. (2008). The when and why of using proportions. Mathematics Teacher, 101, 528-533.
 Lanius, C. S., \& Williams, S. E. (2003). Proportionality: A unifying theme for the middle grades. Mathematics Teaching in the Middle School, 8, 392-396.
 Lesh, R., Post, T., \& Behr, M. (1988). Proportional reasoning. In J. Hiebert \& M. Behr (Eds.), Number concepts and operations in the middle grades (pp. 93-118). Hillsdale, NJ: Erlbaum.

