MATHEMATICS TEACHERS CONFERENCE 2017: 1st June @NTU/NIE

Mathematics Instruction: Goals, Tasks & Activities

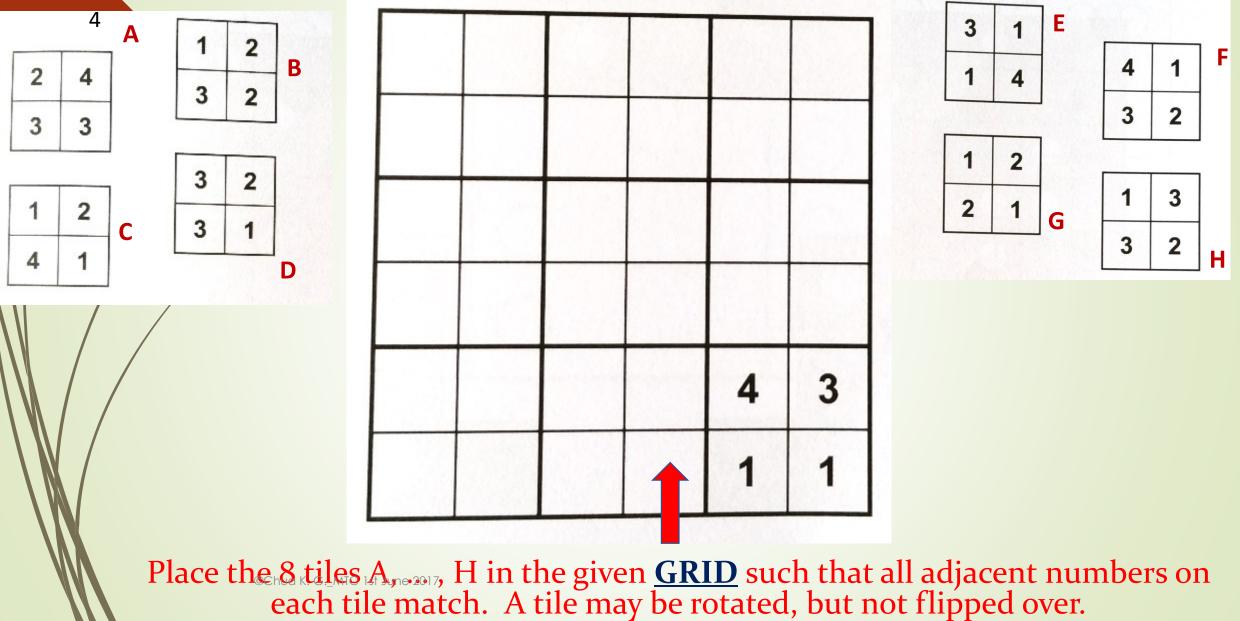
Designing Rich Mathematics Activities for Conceptual and Relational Understanding

Ms Chua Kwee Gek (Singapore)

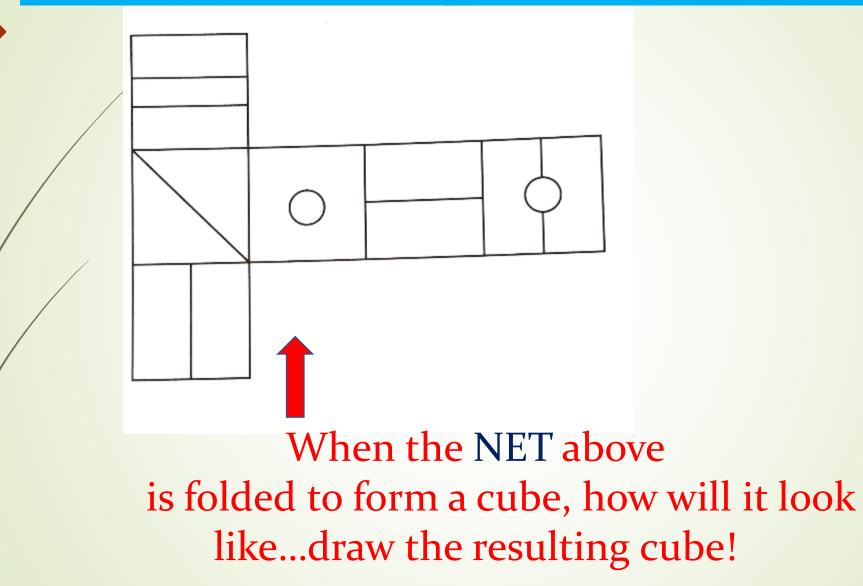
Lateral Thinking to boost your Brainpower for Mathematics

Whole Brain Puzzle:

Which letter was originally in the bottom right corner?

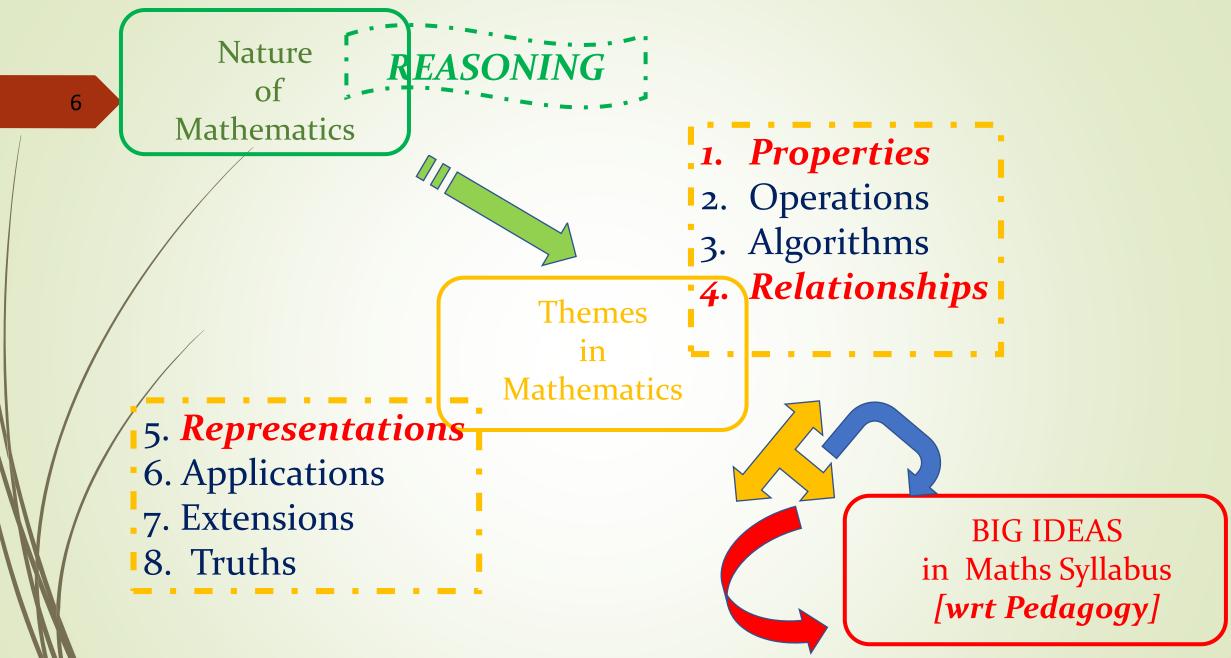

Which symbol has been removed?

Which symbol has changed from black to white?


©Chua K. G._MTC 1st June 2017

3

Left Brain Puzzle: <u>Analytical</u>



Right Brain Puzzle: <u>Creative</u>

©Chua K. G._MTC 1st June 2017

5

©Chua K. G._MTC 1st June 2017

E.G. Tay, Sharing@ AME annual meeting 29th May 2017

Designing Rich Mathematics Activities for Conceptual and Relational Understanding

Conceptual knowledge: an integrated and functional grasp of mathematical ideas

Kilpatrick (2011)

Conceptual knowledge: rich in relationships and can be thought of as a connected web of knowledge

Hiebert (1986)

©Chua K. G._MTC 1st June 2017

translate teaching to learning

=> "ensure" conceptual & relational understanding

Rich Assessment Tasks/ Activities

- Connect naturally with what has been taught/learnt
- Address a range of outcomes in one task/activity
- Engage the learners

9

- Provide a measure of choice or "openness" using different methods/approaches
- Are worthwhile for learners' learning
- Are time efficient and manageable
- Represent authentically the ways the knowledge and skills will be used in the future

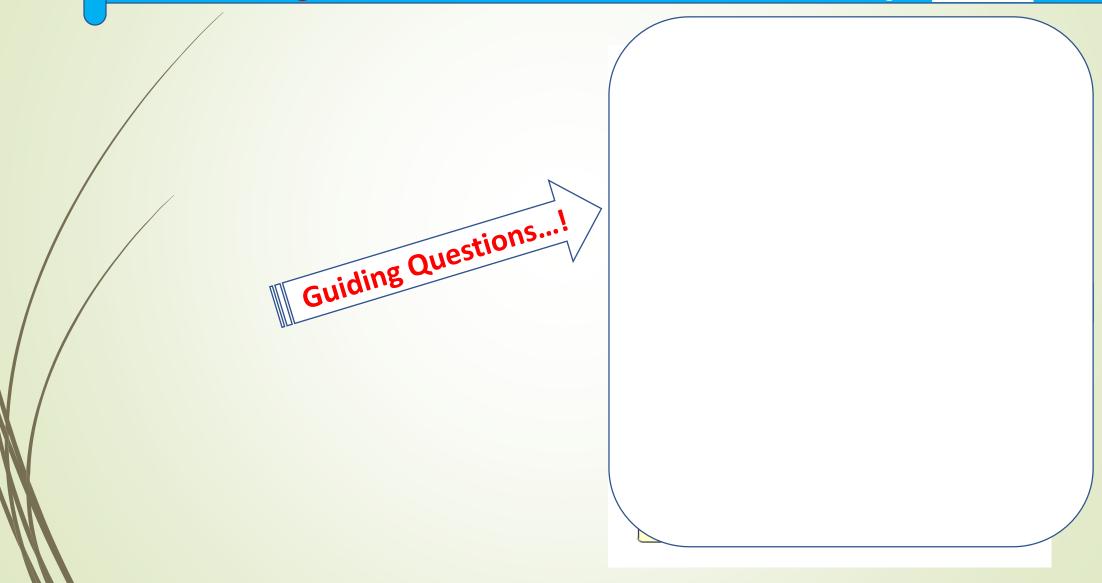
©Chua K. G._MTC 1st June 2017

A. Downtown, R. Knight, D. Clarke & G. Lewis (2006)

Topic I: Percent {Sense making & Reasoning}

Let's Recal/Reflect!:

% Reasoning - Proportional Reasoning


```
*A special ratio
```

```
>>
proportion of a part to a whole
of 100 and the units used in the
part and whole must be the
same.
```

1. Which is a better buy? 2. Support your answer with Guiding Questions...! some mathematical calculations. 3.Explain briefly. **Promotion A: Promotion B:** Chicken or Sausage Set **Chicken or Potatoes Combo**

Discounts:

Does higher discount amount means better buy? Why?

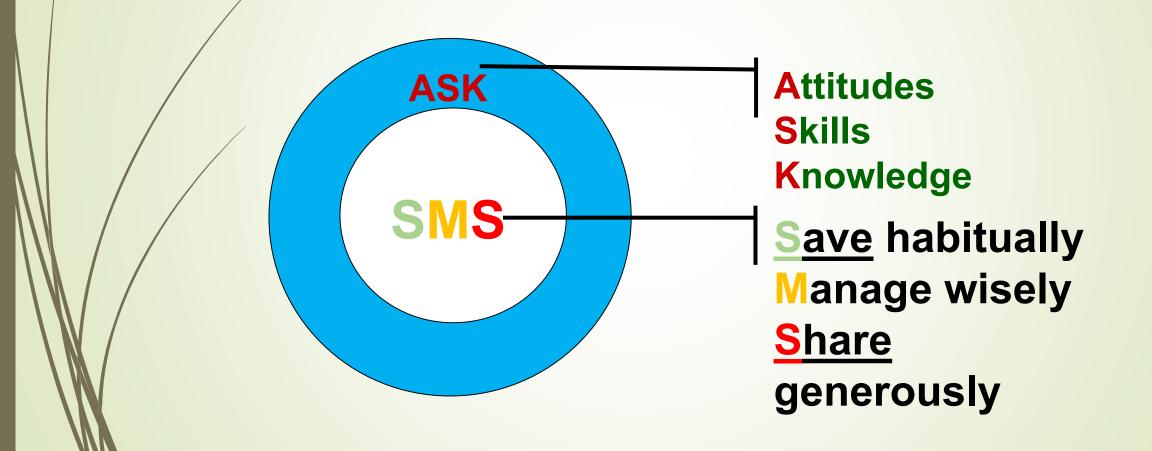
LET'S REFLECT!

*More discount (savings) is not useful to decide which is a better buy.

Reason: the <u>base is different</u> *Hence, we need to compute <u>% discount</u>

LET'S REFLECT!

What can we do with the savings from the discounted buy?



was defined in the UK by Noctor, Stoney and Stradling (1992) as the ability to make

and to take

regarding the <u>use</u> and <u>management</u> of money

Koh, N.K. (2011) Financial Literacy Curriculum Framework, Technical Report

2016 GCE °D° Item : Manage wisely

P2_Q2c 4016_old syllabus

2016 GCE '0' Item : Manage wisely

P1_Q12 4048_new syllabus

2016 GCE 'NA' Item: Manage wisely

P2_Q10 4045_new syllabus

Authentic Context

 How do you calculate the service charges?
 How do you calculate the GST?
 Remarks: GST is calculated based on sum of sub-total and SVC

Discounts:

Which item is the best buy? Show your working to support your choice

Β

D

Include the value of freebie in your computation!

Which item is the best buy? {kettle, camera & notebook} Show your working to support your choice.

Let's focus on Sense making and % Reasoning!

Examine the concluding statements from given scenario

Justify each given concluding statement with correct % reasoning and sense making

Refute each given concluding streament with % reasoning and sense making

K. G._MIC Ist June 201

24

Teo, (2015)

S. W. Teo , (2016)

Tuition

Advertisement

Effective Tuition Centre

Special Revision package

Tuition fee per hour					
Subject Level	Chinese	English	Mathematics		
Upper Secondary	\$30	\$40	\$50		
Lower Secondary	\$20	\$30	\$40		

Sign up for a revision package of 15 hours or ©Chua K. G._MIC 1st June 2017

S. W. Teo, (2016)

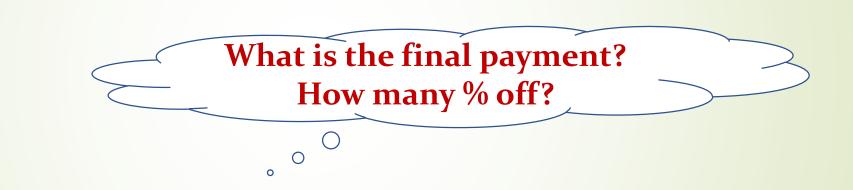
Tuition: Concluding statements of

26 Ann Betty If I sign up for 30-hour revision packages as 2 sets of 15-hour revision packages. I will enjoy 20% discount off the total tuition fee. Betty If I sign up for 30-hour revision packages as 2 sets of 15-hour revision packages. I will enjoy 10% discount off the total tuition fee.

©Chua K. G._MTC 1st June 2017

Category	Specific problem [TIMSS 2007]	% performance	
Ratio task with context ⁷ that is familiar to students in Singapore	On a school trip, there was 1 teacher for every 12 students. If 108 students went on the trip, how many teachers were on the trip? (A) 7 (B) 8 (C) 9 (D) 10	Singapore (95%) International (79%)	
A special ratio (per cent) task with context that could be less familiar to students in Singapore	The total cost of the journey for all the students must be 500 zeds or less. There are 30 students in the class Here are the costs for round trip ticket visiting each tow <u>Acton or Camford</u> Student Rate 25 zeds $\frac{1}{3}$ off for groups of 25 or more students Which towns can they afford to visit?	Singapore (40%) International (8%)	
	Show your work.	Foy & Olson , (2009)	

Context Distance...


Influences the students' performance

Changes the motivating tool

Task context engagement and sequence is also important.

©Chua K. G._MTC 1st June 2017

Stacking Discount: A growing trend...

Reasons for not making sense of the mathematical statements in real life:

Suspending sense making while solving mathematical problems

Forming imperfect concept image leading to misconceptions

Not coping with task complexity

Being unfamiliar with the terminology of the task context.

©Chua K. G._MTC 1st June 2017

S. W. Teo (2016)

Topic II: Geometry {concept & properties of polygons}

Shape memory Game

Show 2D shapes for 6 minutes Remove the shapes Ask students to *classify the shapes *justify their classifications Mathematical Content: visualization & properties

32

Paper Folding Activities: Exploring properties of polygons

- Begin with a sheet of A4 paper
- What is the important concept commonly used in this activity? -
- Regular triangle
 Regular quadrilateral
 Regular pentagon
 Regular hexagon
 Rhombus & parallelogram
- Rectangle
- Trapezium

©Chua K. G._MTC 1st June 2017

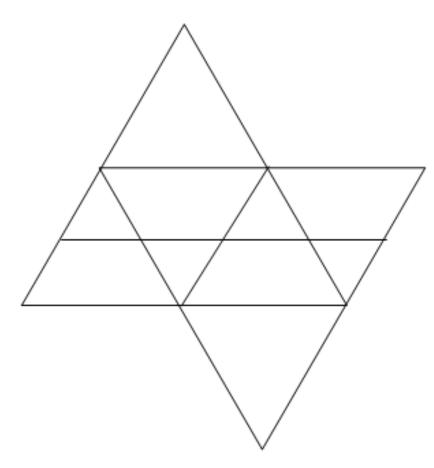
Polygon (special name)	No of Sides	No. of Diagonals	Nature of Diagonals	No. of equal Sides	No. of equal Angles	Sum of int. Angles	Special Remarks
Regular triangle							
Regular quadrilateral							
Regular pentagon							
Regular hexagon							
Rhombus							
Parallelogram							
Trapezium							
Rectangle							
Kite	©Chua K	. GMTC 1st June 2017					

35What will my quadrilateral look like?

quadrilateral has perpendicular diagonals but it is neither a square nor rhombus.

©Chua K. G._MTC 1st June 2017

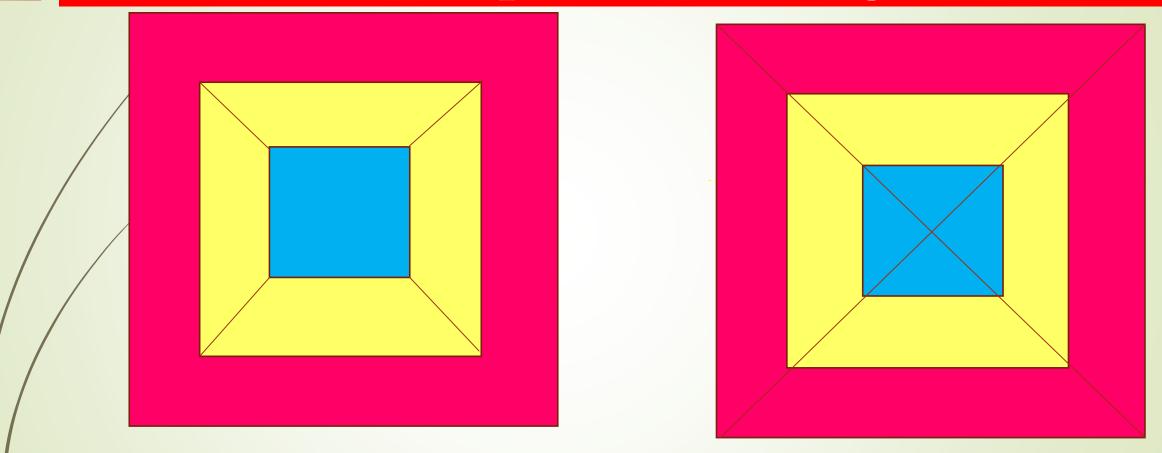
Find the area of the trapezium if the ratio of the longer side to the shorter side to the perpendicular height between them is 3: 2 : 1.


Given that the longer side is 3x + 3, where x = 3.

32% of a Sec 3 ID students could not solve this problem ...

An Activity on Spatial Visualisation

How many trapezia, parallelograms and triangles can you find in this diagram?



	Polygon	Trapezium	Parallelogram	Triangle
©Chu	a K. GMIC 1st June 2017 Number			

37

Using the figure below: design a task related to a topic in Geometry

38

Find an example in a real life context similar to the above figure!