Title and Speaker

Enhancing Mathematical Reasoning at Secondary School Level

Wong Khoon Yoong Mathematics and Mathematics Education Academic Group National Institute of Education / NTU <kywong@nie.edu.sg>

Overview

- 1. What is "mathematical reasoning" and its importance: 6 reasons.
- 2. Intuitive-experimental justification; proof.
- 3. 4 aspects of mathematical reasoning:
 - a) Patterns with explanation.
 - b) Definitions, accurate.
 - c) Cover all cases.
 - d) Correct sequence of results.
- 4. Teaching strategies: Cognitive and Disposition.

Wong Khoon Yoong (June 2006)

1

3

Wong Khoon Yoong (June 2006)

What is Mathematics Reasoning?

- 1. When learning new mathematics:
 - a) Why is (....) true? Why is (....) false?
 - b) Intuitive-experimental justification, logical inference, deduction, proof.
- 2. When solving problems:

State known formulae or principles for intermediate steps.

- 3. Used by educators, psychologists:
 - *a) Thinking:* e.g., proportional reasoning, algebraic reasoning, visual reasoning.
 - b) Problem solving, decision making.

Mathematical Reasoning & Thinking Skills

- 1. Mathematical reasoning refers to the ability to analyse mathematical situations and construct logical arguments. (MOE, 2007, p. 5).
- 2. Thinking skills are skills that can be used in a thinking process, such as classifying, comparing, sequencing, analysing parts and wholes, identifying patterns and relationships, induction, deduction and spatial visualisation. (MOE, 2007, p. 5).

Mathematical Reasoning: NCTM

 People who reason and think analytically tend to note patterns, structure, or regularities in both real-world situations and symbolic objects; they ask if those patterns are accidental or if they occur for a reason; and they conjecture and prove.

(NCTM, 2000, p. 56).

5

7

 Mathematics is a study of patterns; need to justify why the patterns work.

Wong Khoon Yoong (June 2006)

Why is Reasoning Important #1

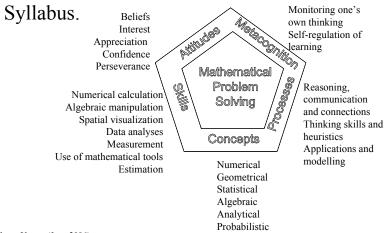
 Mathematics reasoning is part of the 4th R! Mr Tharman Shanmugaratnam STU *Philosophy in Schools Conference* (17 April, 2006, Straits Times, 18 April 2006, H7)

Schools need to teach one more 'R'—reasoning

Wong Khoon Yoong (June 2006)

Why is Reasoning Important #2

2. Process component of the Mathematics



Why is Reasoning Important #3

- Rubric of SAIL (Strategies for Active and Independent Learning). Secondary Mathematics:
 - 1. Approach and Reasoning.
 - 2. Solution.
 - 3. Connections.
 - 4. Mathematical language and representation.
 - 5. Overall presentation.

Why is Reasoning Important #4

- 4. Essence of mathematics, at all levels, primary to tertiary.
- 5. If you forget the rule, can work it out from first principles.
- 6. Disposition: Habit of mathematical mind (MOE, 2007, p. 5); confidence in own thinking/ability; I can make sense of mathematics, I can reason things out, not "just get answer"; an inquiry mindset, etc.

Why is Reasoning Important #5

An encounter:

- A trainee taught Sine Rule, no justification or proof, only worked examples.
- Me: Why didn't you show the proof?
- Trainee: I don't know the proof. My teacher did not teach it.
- Me: But you are a math major. Could you prove it yourself?
- Trainee: Don't know.

Wong Khoon Yoong (June 2006)

Recall!

Wong Khoon Yoong (June 2006)

- Recall the importance of teaching "mathematical reasoning".
- Which reason appeal to you most?

Overview

- 1. What is "mathematical reasoning" and its importance: 6 reasons.
- 2. Intuitive-experimental justification; proof.
- 3. 4 aspects of mathematical reasoning:
 - a) Patterns with explanation.
 - b) Definitions, accurate.
 - c) Cover all cases.
 - d) Correct sequence of results.
- 4. Teaching strategies: Cognitive and Disposition.

Intuitive-Experimental Justification

- Main purpose: Enough evidence to convince oneself or others than something is true/false.
- Intuitive-experimental Justification: O-level Elementary Math; not rigorous, but adequate for most students; should be in most topics.
 - Variety of specific examples.
 - Enactive: Activities with manipulative, applets, GSP, spreadsheet.
 - Patterns with explanation.
 - Visual illustrations ("visual proofs").

Wong Khoon Yoong (June 2006)

Key Ideas in Reasoning

- 1. True statement: Apply to *every* relevant case; citing a few cases is NOT proof.
- 2. False statement: Only one case (counter-example) is required; more cases may be given for teaching purpose.
- 3. Conjectures with intuitive-experimental justification.
- ? Not included in Syllabus:
 - Truth values and logical statements (*implication*, *contrapositive*, *converse*, *inverse*).
 - Different methods of proof.
 - Axiomatic proof.

Proof

- Main purpose: Deductive thinking.
 - Chains of statements, based on accepted/proved previous statements.
 - Axiomatic proof (not required).
- More rigorous, difficult for many students.
- Additional Math (p. 19): Proofs in plane geometry.
- van Hieles' Theory: Recognition → Analysis
 → Ordering → Deduction → Rigour.

Wong Khoon Yoong (June 2006)

Authority

- In secondary schools, some results have to be accepted; justifications/proofs too difficult.
- ✤ Teachers should know the proofs.
- π is irrational.
- $\sqrt{2}$ is irrational. (maybe?).
- Irrational numbers have non-terminating or non-recurring decimals.
- Converse of Pythagoras Theorem.

13

Sum of Exterior Angles of a Convex Polygon is 360°: Justification

- 1. Construct a triangle, a pentagon, etc. and measure in each case. Close to 360°.
- 2. Cut out exterior angles and assemble.
- 3. GSP.

Wong Khoon Yoong (June 2006)

- 4. Walk around a polygon (kinaesthetic).
- 5. The diagram a "visual proof"?

If ab = 0, then a = 0 or b = 0

- Textbooks do not give justification/proof.
- Intuitive-experimental Justification:
 - 1. Test a variety of values.
 - 2. Area of rectangle; GSP. ab=0
- Proof:
 - If $a \neq 0$, then divide by $a. b = \frac{0}{a} = 0$.
 - Same if $b \neq 0$.
- Discuss: If ab = c, where $c \neq 0$, then a = c or b = c. GSP activity.

Sum of Exterior Angles of a Convex Polygon is 360° : Proof

- Apply to specific, simple polygons, say, triangle, quadrilateral, pentagon.
- Exterior angle = 180° interior angle; apply sum of interior angles.
- Note the sequence: interior angle \rightarrow exterior angle.
- Students go over the proof for different polygons.
- Generalise to *n*-gon.

Wong Khoon Yoong (June 2006)

Overview

- 1. What is "mathematical reasoning" and its importance: 6 reasons.
- 2. Intuitive-experimental justification; proof.
- 3. 4 aspects of mathematical reasoning:
 - a) Patterns with explanation.
 - b) Definitions, accurate.
 - c) Cover all cases.
 - d) Correct sequence of results.
- 4. Teaching strategies: Cognitive and Disposition.

17

Patterns Require Explanation

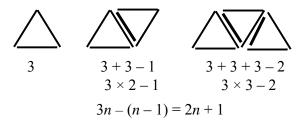
- Pattern \rightarrow Formula \rightarrow Explanation (structural) \rightarrow Predict and validate.
- Algebraic pattern:

- Tabulate, pattern, and write a formula.
- How many sticks are needed for the 1000th case?
- Explain the formula; should be included. 1 + 2n

Look back: Extend the logic to squares, pentagons, etc. 1 + kn21 Wong Khoon Yoong (June 2006)

Patterns: Different Ways

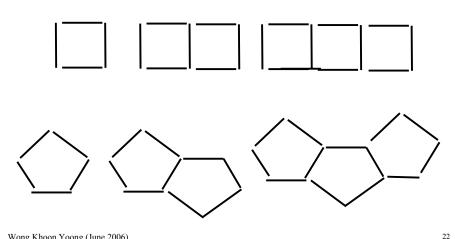
• Other ways to justify the formula? 1 + 2n



• Promote creativity with alternatives.

Patterns: Extension

• 1 + kn



Wong Khoon Yoong (June 2006)

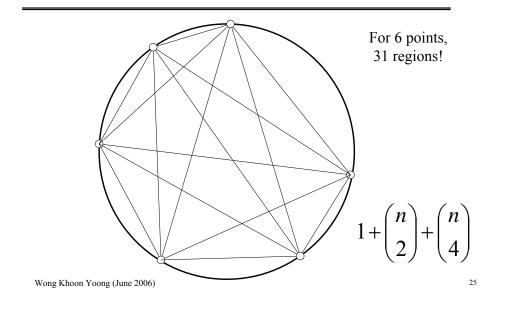
How Many Regions? #1

• Without reason, pattern may break down.

1, 2, 4, 8, 16, ...

- What is the next number?
- Take any two points on a circle. Join them with a chord This divides the circle into two regions.
- Repeat this process with 3, 4, 5, 6, and 7 points. In each case, find the greatest number of regions formed inside the circle.

How Many Regions? #2



Definitions or Properties?

1. Adjacent angles on a straight line = 180° .

- 2. $\pi = \frac{\text{circumference}}{\text{diameter}}$
- 3. $180^\circ = \pi$ radians.
- 4. 1 is not a prime number.
- 5. $p(H) = \frac{1}{2}$ for a fair coin.
- Cannot prove definitions; discuss rationale.

Wong Khoon Yoong (June 2006)

Definition Crucial for Proof

- Some terms do not have universally accepted definitions; no "world authority"!
- Inconsistent definitions.
 - Is an equilateral triangle isosceles? No?
 - Euclid, Definition 20: An equilateral triangle is that which has its three sides equal, and isosceles triangle which has two of its sides alone equal, ... [Artmann, p. 18].
 - Primary textbooks: An isosceles triangle has two equal sides. [meaning *at least two?*]
 - Everyday language: I have two brothers. [only two]

Squares and Rectangles

- Euclid: Definition 22: Used "oblong" for "rectangle"; so a square is NOT a rectangle.
- Modern usage: Be *inclusive*:
 - A square is a rectangle.
 - An equilateral triangle is isosceles.
- How do you show that a square is a rectangle? By properties and by GSP. square

Use More Precise Definitions

- 1. A quadratic expression in *x* is one in which the highest power of *x* is 2. *Is this clear enough?*
- 2. Teh & Looi: The general form of a quadratic polynomial is $ax^2 + bx + c$, where *a*, *b* and *c* are real numbers and $a \neq 0$.
 - Is x^2 a quadratic polynomial?
- 3. Teh & Looi: A polynomial is an algebraic expression that contains more than two terms, especially the sum of terms containing different integral powers of the same variable(s).
 - Is x^2 a quadratic polynomial?

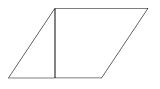
Definitions: A Personal Proposal

- 1. Primary level: Use an inclusive and more precise definition; "one" versus "at least one".
- 2. Secondary level: Continue with primary school definition; explore alternative definitions (reasoning). Discuss rationale why certain definitions are more prevalent than others.

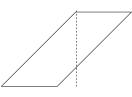
Wong Khoon Yoong (June 2006)

Cover all cases: Area of Parallelogram #1

• Standard justification:



• Tip "falls" outside base?



Wong Khoon Yoong (June 2006)

29

Cover all cases: Area of Parallelogram #2



Prove Pythagoras Theorem

 $sin^{2}A + cos^{2}A = 1 \quad (*)$ $(a/c)^{2} + (b/c)^{2} = 1$ $a^{2} + b^{2} = c^{2}$

c

h

a

Your response:

- 1. Simple and easy to understand.
- 2. Need to know trigonometry; difficult for students.
- 3. Need Pythagoras Theorem to prove (*).
- 4. I will teach this proof.

Wong Khoon Yoong (June 2006)

Overview

- 1. What is "mathematical reasoning" and its importance: 6 reasons.
- 2. Intuitive-experimental justification; proof.
- 3. 4 aspects of mathematical reasoning:
 - a) Patterns with explanation.
 - b) Definitions, accurate.
 - c) Cover all cases.
 - d) Correct sequence of results.
- 4. Teaching strategies: Cognitive and Disposition.

Wong Khoon Yoong (June 2006)

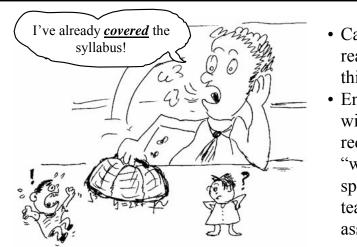
Teaching: Uncertainties

• Unresolved:

skill \rightarrow reasoning reasoning \rightarrow skill

- Each step makes sense, but the whole proof is puzzling.
- Not easy to see the needed constructions in geometry proofs, insight or mystery!?
- Too difficult for my class! Just learn the rule!!
- No time to justify/prove; just teach the rule.

No Time: Rush to Cover Syllabus?



- Can they reason things out?
 Enough time
- Enough time with content reduction, "white space", and teaching assistants?

33

Some Teaching Ideas

- 1. Include intuitive-experimental justification for most topics to enable *all* pupils to practise reasoning.
- 2. Start with pupils' reasoning; explain, discuss, train students to listen to one other's reasoning, challenge, convince others, conclude.
- 3. Students write about their thinking process.
- 4. Disposition: Students learn from your disposition; model habit to reason things out.
- 5. Students ask questions and look for alternatives.

Wong Khoon Yoong (June 2006)

Conjecture: Example

- 1. Find conjecture and justify; individual or group.
- 2. Example:
 - 1. Take a natural number and find its square.
 - 2. Take its preceding number and find its square.
 - 3. Conjecture?

Students Ask Questions

- 1. Why Questions:
 - Does this rule always work? Sometimes? Why?
 - Why does this method work here?
 - I agree/disagree with ... because ...
 - If ... then ... because ...
- 2. Alternatives:
 - Do you (classmates) have a different answer? Explain your reasoning. Why do you think so?
 - What happens if? [conjecture]
- 3. Make into laminated cards.
- 4. Internalise these questions as "private talk".

Wong Khoon Yoong (June 2006)

Conclusion: Only Teachers Can Deliver

- ✓ Only you, the teachers, can deliver a successful program on Reasoning.
- MME inservice modules to help you. Enrol now!
 - *Creativity in Teaching Mathematics*: Mr Lee Ngan Hoe (Jun 2006).
 - *Mathematical Thinking for Upper Secondary Teachers*: A/P Lim-Teo Suat Khoh (Jul 2006).
 - *Pathways to Reasoning*: A/P Berinderjeet Kaur (Sep 2006).

Thank You!

37

References

- Abramsky, J. (Ed.). (2002). Reasoning, explanation and proof in school mathematics and their place in the intended curriculum: Proceedings of the QCA International seminar 4-6 October 2001. London: Qualifications and Curriculum Authority. (QA11Qca)
- Artmann, B. (1999). Euclid: The creation of mathematics. New York: Springer.
- Balacheff, N. (1988). Aspects of proof in pupils' practice of school mathematics. In D. Pimm (Ed.), *Mathematics, teachers, and children* (pp. 216-230). London: Hodder & Stoughton.
- Schifter, D. (2001). Learning to see the invisible: What skills and knowledge are needed to engage with students' mathematical ideas? In T. Wood, B. S. Nelson & J. Warfield (Eds.), *Beyond classical pedagogy: Teaching elementary school mathematics* (pp. 109-134). Mahwah, NJ: Lawrence Erlbaum Associates.
- Steen, L. A. (1999). Twenty questions about mathematical reasoning. In L. V. Stiff & F. R. Curcio (Eds.), *Developing mathematical reasoning in grades K-12: 1999 Yearbook* (pp. 270-285). Reston, VA: National Council of Teachers of Mathematics.
- Tall, D. (1999). The cognitive development of proof: Is mathematical proof for all or for some? In Z. Usiskin (Ed.), *Developments in school mathematics education around the world, Vol, 4* (pp. 117-136). Reston, VA: National Council of Teachers of Mathematics.
- Watson, A., & Mason, J.(1998). *Questions and prompts for mathematical thinking*. Derby: Association of Teachers of Mathematics.

Wong Khoon Yoong (June 2006)