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Abstract: Over the past two-plus decades there have been numerous publications 
asserting the virtues of information technology in mathematics teaching and learning. 
Despite these claims a broad look at technology supported mathematics classroom 
practice suggests that implementation is not always smooth and results may not 
match intentions. This article, using the context of Canadian mathematics 
classrooms, explores the consequences of mandated ICT use, unanticipated outcomes 
when calculators and mathematics software are employed, opportunities for 
expanding student experience, shifting images of mathematics, and the university’s 
role as a model for ICT use in mathematics research and education and in the 
preparation of future teachers. 

 
Introduction 

I have suggested that the absence of a suitable technology has been a 
principle cause of the past stagnation of thinking about education. The 
emergence first of large computers and now of the microcomputer has 
removed this cause of stagnation. (Papert, 1980, p. 186)  
 

In the two-and-a-half decades since the publishing of Papert’s Mindstorms: Children, 
Computers, and Powerful Ideas, computers have become a common physical 
presence in the classrooms of the developed world (OECD Directorate for 
Education, 2004; Mullis, Martin, Gonzalez, & Chrostowski, 2004). The initial 
excitement, and in some cases trepidation, that met their arrival appears to have 
subsided. The computer’s slide into the background of schooling and the relatively 
high comfort level with respect to information technology felt by mathematics 
education researchers has resulted in a recent academic literature that focuses on 
small case studies of information technology use. Not surprisingly, these projects, 
involving enthusiastic researchers and teachers and careful programming, yield 
mainly positive results. Present critiques of computer use in mathematics teaching 
and learning come from economists and policy analysts (Angrist & Lavy, 2002; 
Fuchs & Wößmann, 2005) and not from the mathematics education community.  
 
When data gathering shifts from counting computers to reporting actual usage in 
mathematics lessons a somewhat different picture emerges. Information technology 
has become pervasive in our daily lives, but computer and calculator use in 
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mathematics lessons is much less frequent (Mullis et al., 2004). The impact of 
computers has not reached the levels imagined in the early 1980s. Papert, along with 
his prediction, provided a caveat.  
 

The computer by itself cannot change the existing institutional assumptions that 
separate scientist from educator, technologist from humanist. Nor can it change 
assumptions about whether science for the people is a matter of packaging and 
delivery or a proper area of serious research. To do any of these things will 
require deliberate action of a kind that could, in principle, have happened in the 
past, before computers existed. But it did not happen. (Papert, 1980, p. 189)  

 
It would appear that Papert provided an appropriate warning. Significant 
assumptions and issues concerning technology and mathematics teaching and 
learning continue to remain open for examination.  
 
Wishing to ground discussion on real classroom experience, in this paper the 
conversation concerning selected issues is initiated by looking at examples of student 
use of computers and graphing calculators in the learning of mathematics. Each 
example surfaces one or more issues which are then isolated and explored.  
 

Persuasion versus Compulsion 
Over the past two decades, professional associations for mathematics teachers have 
issued documents recommending the use of computers and calculators in teaching 
and learning. In some cases official curriculum documents produced by ministries or 
departments of education have weakly echoed this call: “Alternative strategies for 
teaching and learning mathematics using the computer should be explored” (Ontario 
Ministry of Education, 1985, p. 20). Recently a number of state agencies responsible 
for education have issued curriculum guidelines that are more directive concerning 
the use of information technology (Mullis et al., 2004). For instance, Ontario’s new 
mathematics curriculum for Grades 9 and 10 (Ontario Ministry of Education, 1999) 
contains 76 references to the classroom application of information technology, 
including many that make it clear that computer and calculator utilities must be 
employed. For example, in Grade 10, students are to “determine some properties of 
similar triangles (e.g., the correspondence and equality of angles, the ratio of 
corresponding sides) through investigation, using dynamic geometry software” 
(Ontario Ministry of Education, 1999, p. 31). Thus it appears that a change from 
“recommending exploration” to “must be employed” has occurred. In Ontario these 
curriculum demands have been accompanied by increased support in the form of 
funding for the purchase of graphing calculators and provincial licenses for computer 
software. Further, teachers are definitely making increased efforts to employ 
technology (Lock, 2001). But, given the compulsory adoption requirements, do the 
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increased funding and teachers’ increased efforts always lead to productive 
classroom experiences?  
 

Pursuing the Doable: Meeting the challenges  
Teachers clearly need support to understand the potential impact of technology in 
their classrooms and how to go beyond rather trivial applications to meet curriculum 
dictates. Once an official curriculum demands the use of information technology 
there arises a need to provide support sufficient to ensure that all teachers can and 
will take the necessary implementation steps. This can lead to “cookbook” style 
directions for teachers and students with accompanying truncated learning 
opportunities.  
 
In Ontario, Grade 10 students, while studying quadratic functions, are expected to 
“collect data that may be represented by quadratic functions, from secondary sources 
(e.g., the Internet, Statistics Canada) ... fit the equation of a quadratic function to a 
scatter plot ... and compare the results with the equation of a curve of best fit 
produced by using graphing calculators or graphing software” (Ontario Ministry of 
Education, 1999, p. 26). The Fathom software1 (Key Curriculum Press, 2002), 
provided for all schools in the province, makes this task relatively simple and the 
instructional resource, Parabola Power (Professional Development Center, Key 
Curriculum Press, 2001), provides teachers and students with detailed instructions. 
Students are directed to capture the data for 1983-1999 youth crime using the 
Statistics Canada E-Stat facility and to produce a scatter plot (Figure 1). 
 
The scatter plot does have a somewhat parabolic pattern and the activity instructions 
continue with: “The number of youth crimes goes up and comes back down in a 
roughly symmetrical way. One way to quantify this variation is to fit a parabola 
through the points” (Professional Development Center, Key Curriculum Press, 2001, 
p. 3). Following this advice students plot and adjust a parabola and find the quadratic 
function of best fit. But, why a quadratic model? Is there an underlying reason to 
postulate a second order relationship between year and the number of youth crimes? 
The activity instructions do not raise such questions. Students are not asked to 
explore and critique this model. Posing the simple question, "What was the state of 
youth crime prior to 1983?", leads to an obvious problem. Expanding the Year and 
Number of Charges limits of the graphing window shows that prior to 1978 the 
number of youth crimes should have been negative (Figure 2). Similarly, in about 
2007 a negative number of youth crimes can be predicted. What interpretation is to 
be given to negative counts of crime?  
                                                 
1For readers not familiar with the software noted in this paper, the reference section provides 
bibliographic details including URLs from which additional information or evaluation versions may be 
obtained. 
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Figure1. Youth Crime versus Year Scatter plot 

 

 
Figure 2. Youth Crime versus Year Parabolic Model 
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Adopting Technology: Not Always a Simple Step  
Teachers are encouraged to allow students to use calculators whenever the focus of 
study is problem solving rather than arithmetic skills. “The computational capacity 
of technological tools extends the range of problems accessible to students and also 
enables them to execute routine procedures quickly and accurately, thus allowing 
more time for conceptualizing and modeling” (National Council of Teachers of 
Mathematics, 2000, p. 25). The foregoing is true, but calculator use can also raise 
issues that require time-consuming detours. 
 
Present primary-grade instruction in arithmetic emphasizes the inverse nature of the 
pairs of operations: addition and subtraction, and multiplication and division. 
Students know that the operations  

3 + 10000 - 10000 and  

773 ×÷  

must both yield answers of 3, and on a calculator such as the TI-83 Plus these results 
hold.  

 
 

But, if these operations are combined as shown on the image of the calculator screen 
below an unanticipated result occurs.  
 

 
 

Calculators can record only a finite number of decimal places and thus values such 

as 
7
3  can not be stored exactly. The floating point arithmetic employed by 

calculators introduces rounding errors that produce the results above.  
 
In most applications such slightly inaccurate answers pose few problems, but when 
first observed by pupils’ questions that should not be ignored arise. At some point 
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the class needs to investigate the calculator’s decimal representation and accuracy 
and discuss the source of errors.  

 
Experimental Mathematics  
Benoit Mandelbrot (1992), one of the founders of the new mathematics of fractal 
geometry, called for an experimental approach to mathematics. He argued that, with 
the aid of computers, mathematicians should be exploring and testing new theories 
rather than focusing on carefully constructed rigorous proofs. In Mandelbrot's view, 
the "compulsive housecleaning" of formal work should give way to more exciting 
and constructive "house building". Students generally appreciate this point of view. 
Establishing results via repeated testing appears to be easier than constructing proofs, 
but such an approach can be problematic. An example provided by Muller (1989) 
illustrates this point.  
 
When students are asked to determine the limit of the sequence recursively defined 
by  

tn + 2 = 111 - 
1 n n1 n tt

3000
t

1130
++

+  with t0 = 
2

11  and t1 = 
11
61

 
there are two possible approaches: develop a closed form for the sequence and take 
the limit, or calculate a large number of terms of the sequence and look for a trend. 
With computer algebra systems the second approach is relatively easy. If the first 40 
terms of the sequence are generated employing the RECURRENCE utility in Derive 
(Texas Instruments, 2002) along with ‘Simplify’ using 20 decimal place accuracy, 
the follow output is obtained.  
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The results certainly provide evidence that the limit of the sequence is 100. If the 
calculation accuracy is increased to 100 digits these last terms are seen to be 
marginally different from 100.  
 

 
 

But, when one continues to evaluate terms with this accuracy, the value 100 re-
appears at t116. Such an experiment in Derive or other computer algebra system is 
likely to convince students that the limit is in fact 100. Switching to ‘exact’ 
calculation mode, where rational fractions rather than decimals are employed, gives a 
different picture. If the calculations are allowed to run for many hours the terms can 
be seen to be converging on 6. In fact, it can be shown by mathematical induction 
that the sequence can be expressed in closed form by 
 

tn = nn

n

65
65 11 n 

+

+ ++
 

 
and 6 is the limit of this expression.  
 
Technology supported experimental mathematics can hold traps, and when the 
underlying mathematical processes are hidden from view these may be missed.  
Students and teachers need to be aware of these potential events and treat displayed 
results with some skepticism.  
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Building on Strange Events  
Although inaccurate or questionable results obtained from calculators and computers 
can sometimes lead students astray, they can also, when noted, be starting points for 
productive mathematical explorations. When completing TI Interactive! (Texas 
Instruments, 2003) supported activities exploring the graphs of power [y = ] and 
exponential [y = ] functions, some class members decided to combine these 
expressions and graph y = . The resulting curve seemed to be in conflict with some 
of the observations made earlier (Figure 3).  

ax
xa

xx

 

 
Figure 3. TI Interactive! graph of y = 

 
xx

 
Students had noted that they could not obtain a curve for y =  since there were 
infinitely many values of x for which the expression was undefined, but here it 
appears that there is a point plotted for x = -1/2. In fact, there are two points plotted, 
one vertically above the other, which contradicts the definition of a function. 
Fortunately the pupils conducting this investigation recognized the potential 
problems and their questions initiated a new class exploration - How is TI 
Interactive! generating the plotted points and is the approach correct?  

x)2/1(−

 
Checking TI Interactive! calculations confirmed that in fact the software did know 

that (-½)
(-½)

 is not a real number, and zooming in on the graph for the domain -0.75 
to 0 showed that the curve was plotted as discontinuous (Figure 4). This led to a 
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Figure 4.  

 
discussion concerning the sizes of the sets of negative x-values for which the y-value 
is undefined, positive, or negative - a natural first look at issues concerning the 
cardinality of infinite sets. Looking at the distributions of these sets along the 
negative x axis suggested that it might not be strictly correct to show the curve as a 
collection of distinct points. Checking with some other computer algebra systems 
and graphing utilities showed that most plotted no points for y =  for x<0. On the 
other hand, GrafEQ (Pedagoguery Software, 2004) gives a plot that shows two 
smooth continuous branches in the second and third quadrants and the software 
developers claim that this is a solution superior to that generated by other graphing 
packages (Pedagoguery Software, 2005). Such “confusion” is not really problematic 
for it makes clear to students that mathematics is not a collection of well defined 
truths - debates still exist.  

xx

 
Mathematics software that supports exploration can be described as empty 
technology (Zucchermaglio, 1993) in that it does not contain course content nor 
provide instruction. But, such tools are not neutral with respect to the discipline. 
They do paint particular pictures of mathematics as a subject.  
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Changing Images of Proof  
As well as expanding the range of mathematical applications, computers are altering 
the nature of the discipline itself. The computer's ability to rapidly test many 
examples of a conjecture challenges the strength of deductive proof as the sole 
arbiter of mathematical 'truth' (Horgan, 1993). This certainly appears to be the case 
when dynamic geometry software [Cabri Geometry (Laborde & Bellemain, 2004), 
the Geometer’s Sketchpad (Key Curriculum Press, 2001)] is employed during the 
study of Euclidean geometry, the traditional location of pupils’ introduction to 
formal deductive reasoning.  

 
Dynamic geometry software provides the ability to grab and drag geometric objects 
while maintaining constructed geometric relationships. This presents teachers and 
students with a powerful tool for exploring, discovering, and demonstrating 
geometric principles. Students, if asked to construct a triangle and the three 
perpendicular bisectors of the sides, will observe that the bisectors are concurrent. 
Grabbing and dragging the vertices to create a range of triangles will go on to show 
that this concurrency is always present.  
 

 
 

An important geometric property has been discovered, but problems arise when the 
teacher now asks students to prove that the perpendicular bisectors of the sides of a 
triangle always pass through a single point. The class already knows that this is true 
for all triangles. They have observed it for an infinite number of examples as they 
moved the triangle’s vertices. Why is there any need to construct a deductive proof?  
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On the other hand, technology supported geometry investigations that leave 
questions open can motivate the study of traditional proof methods. In a recent study 
(Roulet, Mackrell, Taylor, & Farahani, 2004), students in a senior Geometry and 
Discrete Mathematics course (Ontario Ministry of Education, 2000) employed The 
Geometer’s Sketchpad to explore the question, “How many different triangles can 
you make by joining only the vertex points of a polygon?”. A regular polygon 
construction tool, provided for the class, and The Geometer’s Sketchpad transform 
utilities helped student pairs to categorize triangles and organize their data for 
particular polygons. But, technology, in the form of dynamic geometry software, 
could provide no further support in this exploration. Individual polygon cases could 
be adjusted, but there was no way to dynamically move from an n-gon to (n+1)-gon.  
 
In addition to The Geometer’s Sketchpad the project employed Elluminate Live!, 
web-based software that supports desktop sharing. Student pairs, when 
demonstrating their work and sharing conjectures, could display their constructions 
on the screens of all computers in the room.  Beyond this, if any other students had 
suggestions to offer, control could be passed to them so that they could manipulate 
the original sketch. With this visual communication channel in place, the potential 
for collaborative learning was greatly increased. Patterns in the triangle counts and 
conjectures for the number in the general n-gon case were shared.  
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Complexities in the sketches and problems with counting led to a variety of 
conjectured patterns and general formulas. Sharing of these results along with 
reasons in support of individual hypotheses highlighted the conflicting views and 
produced the uncertainty that can motivate efforts to construct a proof (Hadas, 
Hershkowitz, & Schwarz, 2000). Some pairs of students, seeking to strengthen their 
arguments, resorted to careful checking of previous cases and production of 
additional data. Others, without teacher prompting, decided to explore a general case 
and worked on the construction of a proof. For this they reached back to the discrete 
mathematics section of the course and developed a sophisticated proof by 
mathematical induction.  
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Mathematics, Pedagogy and Technology: Balance in Teacher Education  
Beginning secondary school mathematics teachers need technology supported 
teaching and learning experiences, but these are difficult to provide within the 
limited time available in teacher education programs. In Canada most faculties of 
education include a sampling of technology applications within their mathematics 
instructional methods course, possibly augmented by an optional course dealing with 
information technology and education in general.  
 
The issue of classroom use of information technology is connected to all other 
aspects of curriculum: course content, student learning activities, teacher planning, 
and classroom management. Workshops that focus on accessing software and 
calculator features do not provide models of effective classroom applications.  
Working through typical secondary school technology supported activities is a step 
in the right direction, but still does not provide new mathematics teachers with 
authentic investigation experiences. There is a need for mathematical exploration 
activities that present challenges to beginning mathematics teachers and at the same 
time illustrate and address parallel curriculum issues. Queen's University has for 
some years run a "problem of the week" activity for mathematics teacher candidates. 
Recently the Problem-of-the-Week committee has been posing questions that invite 
technology application and, increasingly, participants have been submitting problem 
solutions in the form of electronic output from computer software presently available 
in Ontario schools. Hopefully, through these technology-supported investigations, 
teacher candidates will develop the skills and more importantly the inclination to 
bring computers and calculators into their future classrooms.  
 
One major exception to the blended ‘curriculum methods - technology applications’ 
approach occurs at l’Université du Québec à Montréal (UQAM), where students 
preparing to be secondary school mathematics teachers take four full-semester 
courses focusing on information technology applications in their subject. Here 
beginning teachers explore the features of mathematical tools such as graphing 
calculators, spreadsheets, graphing utilities, dynamic geometry software, statistics 
packages, and computer algebra systems. The focus is on both the software functions 
and the roles such resources can play in students’ learning. In addition, the teacher 
candidates learn how to employ information technology tools to aid them in the 
development of materials for student use. Activities involve the production of 
mathematical text using word processors, 3D dynamic graphics to illustrate 
mathematical concepts, a web site for student support, and utilities programmed in 
BASIC. Here the opportunities to explore and learn about information technology 
are significantly greater than in most other teacher preparation programs. Other 
faculties may wish to consider something parallel to the UQAM program and can 
obtain additional information from the web site for the Baccalauréat en enseignement 
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secondaire, Faculté des sciences de l'éducation, UQAM. (http://www.regis.uqam.ca 
/prod/owa/pkg_wpub.affiche_prog_desc?P_prog=7951).  
 
Arithmetic and Algebra Skills: University Expectations and Models  
Discussions concerning the balance between procedural and conceptual knowledge 
in mathematics have been on-going since at least the 1970s when Skemp (1976) 
made the distinction between relational and instrumental understanding. More 
recently, the controversy has subsided, with new research showing the mutual 
support and value of the two forms of knowing (Hiebert, 1986). Today, with the 
increasing use of information technology, in particular graphing calculators and 
computer algebra systems at the secondary school level, a new aspect has been added 
to the debate. There are now calls from tertiary education levels for the maintenance 
of traditional paper-and-pencil skills (Herget, Heugl, Kutzler & Lehmann, 2000).  
 
Further, university faculties are sending out mixed messages concerning their 
acceptance of information tools in the teaching and learning of mathematics. Some 
(Schramm, 1998) eagerly embrace the new tools in their teaching and do not fear the 
loss of manual skills. They support parallel technology-supported teaching and 
learning in the schools. Others (Klein, 1999) suggest that, even in the presence of 
information technology tools, students should be required to learn and demonstrate 
traditional pencil-and-paper skills. They argue that one can not fully understand 
mathematical operations without having performed them by hand. This inconsistency 
in messages from the tertiary level presents problems for school teachers 
conscientiously attempting to prepare their students for future education and careers.  
 
In Ontario, new curriculum guidelines (Ontario Ministry of Education, 1999, 2000) 
state that, "The development of sophisticated yet easily used calculators and 
computers is changing the role of procedure and technique in mathematics" (p. 3, 5). 
Students in graduation-year, university-preparation courses are required to use 
graphing calculators. One year later, some of these students are enrolled in first year 
university programs where they meet course outlines stating, "You may use only 
non-programmable, non-graphing calculators for the tests and the final examination. 
We reserve the right to disallow any calculator" (Carleton University, School of 
Mathematics and Statistics, 2004). Secondary school teachers, knowing that their 
students will meet such restrictions, are reluctant to make technology a core aspect of 
their programs.  
 
Other institutions deliver messages that are more encouraging. Visitors to the web-
site maintained by the University of Western Ontario, Department of Applied 
Mathematics read that "Computers play an important role in the research activity of 
the Department" (2004) and are informed that high powered Hewlett Packard 
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calculators with computer algebra systems are required for completion of course 
work. University faculty who value the use of technology in mathematics study need 
to ensure that their views are known at the high school level and must encourage 
their university colleagues to acknowledge the ICT experience and skills of newly 
arrived undergraduate students.  
 

Looking to the Future 
With the growing presence of computers in students’ lives outside the school and the 
increasing application of information technology in pupils’ future careers we can 
expect mounting pressures to employ technology in our mathematics classrooms.  
Research conducted within carefully crafted pilot programs shows that ICT 
applications hold significant potential for increasing student understanding.  But, we 
need to keep in mind that ICT use also presents traps and problems. Each 
implementation needs to be considered carefully. 
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