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Abstract In this paper we present a case study of a U.S. elementary school 
curriculum, Investigations in Number, Data, and Space, for the way it provides 
students with informal and formal algebraic experiences. We find that mathematical 
change is the unifying big idea of the algebra strand, and that other big ideas are 
patterns and relationships, representation, and modeling. We also find that its 
primary goals are aligned with two of the four NCTM algebra goals: Understand 
Patterns, Relations, and Functions and Analyze Change in Various Contexts. 
Finally, we find that its approach to achieving its goals is to foster mental processes 
that constitute the algebraic habit of thinking known as Building Rules to Represent 
Functions. 
 

Introduction 
Recommendations for algebra reform in the United States include increased 
attention to the study of algebra in the elementary grades in order to prepare 
students for more-sophisticated work in algebra at the middle and high school levels 
(NCTM, 1989, 1992, 1997, 2000). However, curriculum materials at the elementary 
level in the United States have historically given little attention to the study of 
algebra, and only recently have curriculum developers, educational researchers, 
teachers, and policy makers begun to investigate the kinds of mathematical 
experiences elementary students need to prepare them for the formal study of 
algebra at the later grades (Carpenter, Franke, & Levi, 2003; Driscoll, 1999; Kaput, 
1998; Nemirovsky, Tierney, & Ogonowski, 1993; Noble, Nemirovsky, Wright, & 
Tierney, 2001; Tierney & Monk, in press). 
 
In light of these current recommendations and increased attention to the study of 
algebra in the elementary grades, the development of algebraic concepts is being 
incorporated as a significant strand of study into elementary mathematics programs 
used in the United States. In this paper we present a case study of one such 

                                                 
1  The preparation of this paper was supported by a grant from the National Science 
Foundation (ESI-0114768). Any opinions expressed herein are those of the authors and do 
not necessarily represent the views of the National Science Foundation. 
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elementary school curriculum, Investigations in Number, Data, and Space 
(hereafter, Investigations), for the way it provides students with informal and formal 
algebraic experiences. First, we provide an overview of the curriculum. Then we 
report our analysis of the goals of the curriculum. Next we discuss in detail how the 
big ideas of algebra are developed within each grade level and across the grades. 
Finally, we reflect upon the development of algebraic processes across the 
curriculum. 
 

An Overview of the Curriculum 
Investigations is one of three elementary school reform-mathematics curricula 
developed with funding from the U.S. National Science Foundation (NSF). It was 
developed at the TERC research and development center in Cambridge, 
Massachusetts during the 1990s. In all, NSF supported the development of 13 
reform-oriented comprehensive mathematics programs, three at the elementary 
school level, five at the middle school level, and five at the high school level. All 13 
programs were designed specifically to help reform mathematics instruction by 
implementing the recommendations of the Curriculum and Evaluation Standards 
for School Mathematics developed by the National Council of Teachers of 
Mathematics (NCTM) in 1989. Mathematics reform is evident in the four general, 
overarching goals of the Investigations curriculum. They are (1) to offer students 
meaningful mathematical problems; (2) to emphasize depth in mathematical 
thinking rather than superficial exposure to a series of fragmented topics; (3) to 
communicate mathematics content and pedagogy to teachers; and (4) to 
substantially expand the pool of mathematically literate students. These goals are 
clearly aimed at reforming mathematics instruction in the United States’ elementary 
schools. To achieve these goals, Investigations provides activities requiring all 
students to explore contextualized problems in depth; construct strategies and 
approaches based on knowledge and understanding of mathematical relationships; 
utilize a variety of tools (e.g., manipulatives, computers, calculators); and 
communicate mathematical reasoning through drawing, writing, and talking.  
 
Investigations provides a complete mathematics program for grades K–5. Although 
it is a complete program, it looks quite different from a traditional elementary 
mathematics program. The program does not include student textbooks at any 
grade. The curriculum is presented through a set of grade-level teacher resource 
books called curriculum units. Reproducible student sheets are provided in an 
appendix to each teacher-resource curriculum unit. Each unit of instruction provides 
resources that enable the teacher to engage students in three to eight weeks of 
mathematical work. The units are organized as a series of investigations, each 
composed of one or more 1-hour class sessions. The complete program comprises 
50 units, with the number of units at each grade level varying from six to eleven. 
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Investigations has an identifiable algebra strand. The Content Overview (Scott 
Foresman, undated) explicitly identifies six units that compose the “patterns, 
functions, and algebra” strand, (hereafter “algebra strand”). Each unit comprises 2-4 
investigations. There are a total of 19 investigations in the algebra strand across the 
six grade levels. These units are: 
• Kindergarten: Pattern Trains and Hopscotch Paths (Eston & Economopolous, 

1998) 
• Grade 1: Building Number Sense (Kliman & Russell, 1998) 
• Grade 2: Timelines and Rhythm Patterns (Wright, Nemirovsky, & Tierney, 1998) 
• Grade 3: Up and Down the Number Line (Tierney, Weinberg, & Nemirovsky, 

1998) 
• Grade 4: Changes Over Time (Tierney, Nemirovsky, & Weinberg, 1998) 
• Grade 5: Patterns of Change (Tierney, Nemirovsky, Noble, & Clements, 1998) 
 
Our examination of the Investigations curriculum focused on the six units that 
compose the algebra strand. Even though our analysis was based on a careful study 
of the six core algebra units, we also examined additional units as needed. The 
resulting case study is based on our analysis of three related dimensions of the 
curriculum’s algebra strand - its goals, its content coverage, and its process 
coverage. In it, we report on how thoroughly the development of each of these 
interrelated dimensions of the Investigations curriculum incorporates features 
widely recognized as important to the teaching and learning of algebra. 
 

Analysis of the Goals 
Our purpose in analyzing the goals of the algebra strand of Investigations was to 
determine how closely they cohere to the vision of K-6 algebra laid out in NCTM’s 
Principles and Standards for School Mathematics. The authors of Investigations do 
not specifically set mathematics learning goals for students and teachers to achieve. 
Instead, the authors introduce each investigation with a "Mathematical Emphasis” 
section comprising between 2 and 10 Mathematical Emphasis (ME) statements. For 
example, one of the ME statements that introduces Investigation 2 of the 
Kindergarten unit is “Predicting what comes next in a pattern,” and one of the ME 
statements that introduces Investigation 3 of the 5th-grade unit is “Connecting the 
slope in a graph with rate of change.” In all, the algebra strand has 108 such ME 
statements for the 19 investigations contained in the 6 units of the algebra strand. 
 
The purpose of these ME statements is to tell the teacher “…what is most important 
for students to learn about [italics added] during the investigation,” (Kliman & 
Russell, 1998, p. 1-19). Listing ME statements that describe the mathematics to be 
“learned about,” rather than listing goal statements that specify mathematics to be 
"learned," reflects the overall philosophy of the Investigations curriculum. It 
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conforms to the authors' long-term view of learning, namely that teachers should not 
expect all students to achieve scrupulously formulated learning goals within a 
predetermined time frame. The following excerpt aptly describes their view: 

Students gradually learn more and more about each idea over many years of 
schooling. Individual students will begin and end the unit with different levels 
of knowledge and skill, but all will gain greater knowledge of [the algebra 
concepts studied in this unit] and develop strategies for solving problems 
involving these ideas. (Eston & Economopoulos, 1998, p. 1-17). 

Although the Mathematical Emphasis statements are not, strictly speaking, goal 
statements, they are nonetheless significant indicators of the curriculum’s learning 
goals. Therefore, we used them to measure the level of coherence between the goals 
of the algebra strand of Investigations and the goals of the NCTM algebra standard. 
Since many ME statements appear to address more than one expectation of the 
algebra standard, we decided to use the four goal statements of the algebra standard 
as our framework of analysis rather than the finer-grained set of NCTM 
expectations. Operationally, we compared the ME statements in the algebra strand 
to the statements of the NCTM algebra expectations in order to identify the NCTM 
algebra goal, if any, that each statement primarily addresses. 

It should be indicated that some ME statements appear to address more than one 
goal. In these cases, rather than list multiple goals corresponding to each ME 
statement, we decided we would get a more-focused picture of the goals of the 
curriculum by choosing the goal that appears to be primarily addressed by the 
activities and contexts in the investigation.   

Table 1 provides a quantitative measure of the extent to which the content goals of 
the algebra strand align with the goals of the NCTM algebra standard. It shows that 
89/108 (82%) of the ME statements in the algebra strand address primarily NCTM 
Algebra standard goals. The remaining 19 statements do not have a primary focus to 
address goals of the Algebra Standard. Seventeen of the first-grade statements 
primarily address goals from the Number and Operations Standard, and two of the 
second-grade statements primarily address goals from the Measurement Standard. 

The table also gives a profile of the relative emphasis placed by Investigations on 
specific NCTM algebra goals and expectations at each grade level of the 
curriculum. The data imply that analyzing change in various contexts (Goal 4) is the 
most emphasized goal of Investigations’ algebra strand. In fact, more of the ME 
statements (40/108=37%) primarily address Goal 4 than any other NCTM algebra 
goal. Goal 4 clearly gives major impetus to the units of the grades 3, 4, and 5 
algebra strand. Ninety-two percent (12/13) of the third-grade ME statements 
principally address Goal 4, as do 83% (19/23) of the fourth-grade statements and 
47% (9/19) of the fifth-grade statements. 
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Table 1 
Count by grade level of the Mathematical Emphasis (ME) statements that 
primarily address the goals of the NCTM algebra standard  
Grade Level 
NCTM Algebra Standard Goal 

 
K 

 
1 

 
2 

 
3 

 
4 

 
5 

 
Total 

Goal 1: Understand Patterns, Relations and 
Functions 

21 1 4  1 10 37 
34% 

Goal 2: Represent and Analyze 
Mathematical Situations and 
Structures Using Algebraic 
Symbols 

  1  2  3 
3% 

Goal 3: Use Mathematical Models to 
Represent and Understand 
Quantitative Relationships 

 7  1 1  9 
8% 

Goal 4: Analyze Change in Various 
Contexts 

   12 19 9 40 
37% 

Does not  primarily address any of the 
Algebra Standard Goals 

 17 2    19 
18% 

Total 21 25 7 13 23 19 108 
 
Understanding patterns, relations, and functions (Goal 1) is also an important goal 
across the algebra strand.  In fact, 34% of the ME statements directly address Goal 
1. This goal is clearly a major impetus behind the grades K, 2, and 5 algebra units. 
One hundred percent (21/21) of the ME statements in the Kindergarten unit align 
principally with Goal 1, as do 57% (5/7) of the second-grade statements and 53% 
(10/19) of the fifth-grade statements. 
 
The other two goals of the NCTM Algebra standard do not appear to exert such 
strong influence on the Investigations curriculum. Data in Table 1 strongly intimate 
that learning to use algebraic symbols is simply not a goal of Investigations. NCTM 
Goal 2, “Represent and analyze mathematical situations and structures using 
algebraic symbols” is primarily addressed by only 3/108 (<3%) of the ME 
statements. Although elements of mathematical modeling are clearly present in the 
curriculum, modeling does not appear to be a primary goal of the curriculum since 
the number of Goal 3 ME statements (9) is small in comparison to number of Goal 1 
ME statements (37) or Goal 4 ME statements (40). 
 
In summary, based on Mathematical Emphasis statements, it appears that the major 
goals of the Investigations algebra strand are aligned with NCTM algebra Goals 1 
and 4, but not Goals 2 and 3. By way of confirmation that Goals 1 and 4 are major 
influences on the algebra strand, it is interesting to note that the title of the capstone 
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unit, “Patterns of Change,” clearly fuses the main concepts embodied in Goals 1 and 
4.  Furthermore, the 19 ME statements in this fifth-grade unit are evenly divided 
between those aligned with Goal 1 and those aligned with Goal 4. 

 
Analysis of Big Ideas: The Centrality of Change 

The goals of a curriculum are an important indicator of the concepts and procedures 
it intends to develop. However, to measure a curriculum’s potential effectiveness 
we need to analyze how the curriculum actually develops these concepts and 
procedures. Therefore, for the second part of our study we identified the "big ideas" 
of algebra that the developers chose to emphasize, and we traced how those big 
ideas are developed across the algebra strand.  

Investigations’ implementation guides (Russell, Tierney, Mokros, Goodrow, & 
Murray, 1997; Russell, Economopoulos, Murray, Mokros, & Goodrow, 1998) identify 
change as one of four main mathematics content areas in the Investigations 
curriculum along with number, data, and space. The authors justify the study of 
change as a major content emphasis because of its importance in everyday life and 
its importance as a foundation for further study in mathematics: 

Change is one of the most pervasive aspects of our lives. We are constantly 
experiencing the flow of time and the changes that occur over time—motion, 
growth, and temperature, for example. One of the driving forces of 
mathematics is to understand and predict change (Russell et al., 1997, p. 8).  

 
The authors also believe that the concept of change should be a qualitative unifying 
big idea in the algebra strand. 

Work in the Investigations curriculum emphasizes qualitative understanding of 
these ideas [of mathematical change] as students discuss the meaning of 
graphical and numerical patterns. The units strengthen the continuity between 
elementary school mathematics and “advanced” courses such as algebra and 
calculus by introducing important ideas about growth and change (ibid., p. 8).  

By recognizing the importance of studying change in the elementary curriculum, 
and by making it the centerpiece of its algebra strand, the curriculum serves at least 
two purposes. It not only helps students learn to deal with the abstract and largely 
neglected concept of change in everyday life, it also lays the foundation for 
advanced study of mathematics, for which change is a central and unifying concept 
(Steen, 1990). 

We analyzed the Investigations algebra strand for its emphasis on change and on 
seven other widely-accepted “big ideas” of algebra: variables, structure, 
proportional reasoning, patterns and relationships, equations and equation solving, 
representation, and modeling. Our analysis confirmed that the concept of change is 
the central big idea in the algebra strand.  Furthermore, we found that the big ideas 
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of patterns and relationships, representation, and modeling also receive extensive 
attention. We found not only that mathematical change unifies all the units in the 
algebra strand, but also that change is the impetus behind the development of the 
big ideas of patterns and relationships, representation, and modeling. The big ideas 
of variables, proportional reasoning, structure, and equations and equation solving, 
on the other hand, are given neither formal nor extensive treatment in the algebra 
strand. 

The following ordered list provides a snapshot of the change-related concepts that 
are developed across the algebra strand: repeating patterns, additive change, time, 
net change, change over time, growing patterns, and rate of change. The analysis 
that follows describes how the progression of these concepts across the algebra 
strand builds an increasingly formal and robust notion of the big idea of change and, 
in the process, establishes formal conceptions and connections to the other algebra 
big ideas of patterns and relationships, representation, and modeling. 

Repeating Patterns: Absence of Change 
The kindergarten unit, Pattern Trains and Hopscotch Paths, (Eston & 
Economopolous, 1998) is not overtly about change; it is overtly about patterns. To 
judge the content of the kindergarten unit outside the context of the entire 
curriculum might lead one to conclude that the kindergarten unit has little to do with 
change. This is because, somewhat paradoxically, the activities in kindergarten 
appear to be devoted mostly to helping students understand that the absence of 
change is a defining characteristic of patterns. Understanding that all patterns have 
an unchanging aspect is crucial to understanding the concept of pattern and change 
because mathematical change is neither random nor unpredictable. Indispensably in 
school mathematics, change has an unchanging component that makes it 
predictable. Because of this, students must learn to recognize the element of 
changelessness in any change they are studying.  

The study of patterns in the Investigations curriculum helps students learn to 
coordinate the competing ideas of change and absence of change. In the 
kindergarten unit, repeating patterns (a,b,a,b,a,b…), as opposed to growing patterns 
(4, 6, 8, 10, …), are the main object of study. The unchanging aspect of pattern is 
more overt in repeating patterns than it is in growing patterns. Furthermore, because 
the changing aspects of repeating patterns tend to be disregarded, or at least 
downplayed, in the kindergarten algebra unit, we conclude that the kindergarten 
algebra unit is designed specifically to help students understand the unchanging 
aspect of pattern. A description of the kindergarten activities is given below to 
illustrate how the activities are designed to keep the changeless nature of pattern 
consistently at the forefront of the students’ consciousness. 
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In the beginning of the kindergarten unit, students learn to look for repetition and 
regularity in the patterns they encounter. Students practice following their teacher's 
repeating pattern of body motions, they observe repeating patterns in children's 
literature, and they observe repeating patterns in an observation walk. They look for 
patterns in trains of colored interlocking cubes. Students are encouraged to look for 
repetition and regularity, and to compare their observations with one another. Based 
on their observations, they are also challenged to predict what comes next. At first 
the patterns are kept very simple. Teachers are encouraged to have students work 
with repeating patterns composed of two elements (e.g., ababab, abbabbabb) rather 
than three-element patterns which, they are warned, should be introduced only to 
the more advanced students. Students also construct "linear" patterns of their own 
with a variety of materials. (Here linear means the patterns are made with materials 
that are physically arranged in straight line "trains.") Students generate patterns by 
focusing on one of the attributes of a given material (e.g., its size, color, or shape). 
The ability to sort items by attributes is a related skill they practice and draw upon 
in these activities. 

Once the students can recognize the repetition in patterns, the students make and 
extend repeating patterns in a pocket chart by arranging color tiles in the top row of 
pockets. They predict the colors that come next when the first four tiles are showing 
but the other six tiles are hidden behind blank cards. Students analyze the repeating 
aspect of the pattern by breaking down the 2-color pattern trains into repeating units 
of 2-cube cars (chunks). They are encouraged to categorize various types of patterns 
made with different materials. For example, the pattern: red tile, yellow tile, red tile, 
yellow tile is the same type as the pattern: blue cube, white cube, blue cube, white 
cube, but different than the pattern: red tile, yellow tile, yellow tile, red tile, yellow 
tile, yellow tile.  

 
 

 
 

Figure 1. Hopscotch Pattern 

Until this point in the unit, students have created patterns of objects by varying only 
attributes like shape, color, or size (e.g., white cube, white cube, blue cube, white 
cube, white cube, blue cube, …). A hopscotch activity near the end of the unit 
expands the students' concept of pattern by showing that they can form patterns by 
varying the position of objects in two dimensions. Unlike the colored cubes and 
tiles, objects in the hopscotch activity are squares that are indistinguishable except 
for their positions relative to one another (see Figure 1). The students build life-size 
hopscotch patterns, play on them, and then represent them with paper squares glued 
on strips. 
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Figure 2. Students predict what color square should go in the last empty space. 

An activity called Pattern Borders provides a link between linear patterns and two-
dimensional patterns. Students make linear patterns that form rectangular borders. 
They focus on what happens to the pattern when it turns a corner. They also notice 
the relationship between the last color and first color placed in their border to 
determine whether or not their border makes a continuous pattern (see Figure 2). 
They also must predict what comes next and what is a hidden element further along.  

In summary, we can see how important attributes of repeating patterns are 
systematically varied to provide a stable initial concept of pattern. Students learn to 
recognize patterns made of various materials and configurations. They categorize a 
variety of patterns. They make patterns of their own using different materials. They 
vary either the attributes of the objects or their positions in space. They vary the 
number of elements in the pattern, identify the repeating unit, and predict the next 
element or an element further along. In short, the authors have carefully sequenced 
a host of activities specifically designed to help students construct a stable concept 
of pattern. Therefore, it is conspicuous that all but one of the patterns in the 
kindergarten unit are repeating patterns. A compelling explanation for this obvious 
omission of growing patterns is that the intent is to teach students about the 
unchanging aspect of mathematical change. Repeating patterns are especially well-
suited to do so, but growing patterns are not. 

Coordinating Change and the Absence of Change 
To fully understand pattern, students must be able to coordinate the unchanging 
aspect of pattern with the changing aspect of pattern. The final activity in the 
kindergarten unit provides students with a glimpse of growing patterns, a pattern 
type that will form an important part of their future study of patterns. It is the only 
activity in the unit that uses growing patterns, as opposed to repeating patterns. In 
this activity, students make staircase patterns out of interlocking cubes, record them 
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on grid paper, and analyze them. The students are asked to describe a (recursive) 
rule for how the staircase pattern grows (or shrinks). This activity forces students to 
focus on both the changing aspect of the pattern (each successive tower in the 
staircase is different in size) as well as the unchanging aspect of the pattern (the 
difference in size of successive towers is always 1 cube). The inclusion of a 
growing pattern at this point in the curriculum is noteworthy because growing 
patterns do not appear again until fifth grade, when they are used to study rate of 
change. 

In the first grade unit, Building Number Sense (Kliman & Russell, 1998), the 
curriculum returns students' attention back to repeating patterns. However, the 
activities are now designed to help students coordinate the unchanging aspect of 
repeating patterns with the changing aspect. Also, the activities in the first grade 
unit mark the first time students focus on how changes in one pattern relate to 
changes in another, an important aspect of mathematical change. This is because the 
study of function crucially involves overt attention to the way that change in one 
quantity produces change in another. 

In an activity called "Clapping Patterns," the students act out repeating clapping 
patterns and represent them using drawings, numbers, or objects. For example, 
students can represent the clap-clap-knees-knees pattern with interlocking cubes as 
blue-blue-white-white, blue-blue-white-white, … or on the Hundred Number Wall 
Chart (see Figure 3). In the hundred-chart representation the students insert 
transparent red markers on top of every third and fourth number for two or three 
rows. Then they discuss what they notice. 

 
1 2 3 4 5 6 7 8 9 10 

11 12 13 14 15 16 17 18 19 20 

21 22 23 24 25 26 27 28 29 30 

Figure 3. A representation of a clapping pattern on the hundred chart 

By representing a repeating pattern with both colors and numbers on the hundred 
chart the discussion of a repeating pattern can be orchestrated to highlight both the 
changing and unchanging aspects of pattern. When students predict which numbers 
beyond the fourth row should be highlighted in red, they have to mentally 
coordinate the unchanging aspect that every third and fourth number will be red 
(representing knees), with the changing aspect that the numbers themselves will be 
different. The use of the hundred-chart representation in this activity is significant 
because it helps students focus informally on the functional nature of patterns. By 
coordinating the changing and unchanging aspects of the pattern the students come 
to realize that, given a number (and thus its position on the chart), they can predict 
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whether it represents clap or knee. Conversely, they can discuss which numbers can 
possibly represent claps or knees. By way of contrast, the cube representation of the 
pattern does not emphasize the functional aspects of the pattern because all the 
white cubes, for example, look the same regardless of their position in the train.  

Additive Change 
Students' understanding of mathematical change should be grounded in their 
experiences with change in everyday situations. The challenge for educators is to 
help students learn to use mathematics to represent in a precise way the changes 
they experience every day. The authors of Investigations attempt to meet this 
challenge by posing everyday problem situations in which change is an underlying 
concept. In the second half of the first grade algebra unit the authors pose 
combining and separating problems, which can be solved using addition and 
subtraction. Without formally referring to the concept of change, first grade students 
learn to model and solve everyday problems in which they combine an original 
amount and a change amount. They also learn to solve everyday problems where 
they remove a change quantity from an original amount. Ultimately students need to 
realize that these change situations can be modeled and solved using the operations 
of addition and subtraction. However, during these early activities, the operations of 
addition and subtraction are not the focus of the unit.  Students devise their own 
methods of solving the problems based on an analysis of their semantic structures 
(combining or separating), rather than according to the arithmetic operation that can 
be used to solve them (addition or subtraction).  

As previously discussed, an overriding philosophy in Investigations is that it is 
essential to slowly build conceptual understanding based on student’s existing 
intuitive notions, and that it is counter-productive to teach conventional 
representations and procedures before a solid foundation of understanding is in 
place. The approach taken in the first grade unit clearly reflects this philosophy. In 
the unit, students are encouraged to develop their own models to solve problems 
involving additive change. For example, the following typical first-grade problem 
encourages students to reflect on their problem-solving strategies. 

 
Apples and Oranges 

I went to the store to buy some fruit. 
I bought 5 apples and 4 oranges.  
How many pieces of fruit did I buy? 
Don’t write only the answer. 
Show how you solved the problem. 
Use words, pictures, or numbers. (ibid., p. 209) 
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Because the problem statement tells students to “Use words, pictures, or numbers” 
to report how they solved the problem, the students do not feel obliged to model the 
problem with a number sentence. The result is that each student feels free to create a 
personally meaningful model they can use to solve the problem. This can be 
empowering for students because the models they develop tend to elicit valid 
problem solving strategies that are grounded in students’ prior experiences in 
similar real-life situations, rather than on misunderstood properties of addition and 
subtraction or mindless recall of addition and subtraction facts. Put another way, the 
models that students devise generally are based on the semantic structures of the 
problems, which students understand, rather than on the underlying mathematical 
structure of addition, which many do not yet understand. The intent is that over 
time, as students compare their strategies for solving these types of problems, they 
eventually will understand that combining problems and separating problems can be 
modeled with addition and subtraction sentences. 

One way that this philosophy is advanced in the curriculum is via “Teacher Notes” 
sprinkled throughout the algebra units. For example, one of the Teacher Notes in 
this first grade unit, suggests that the teachers should give their students the 
opportunity to develop their own strategies for solving these problems—strategies 
that generally fall into three categories: direct modeling, counting strategies, and 
numerical reasoning. Clearly, the ultimate goal of the curriculum is the formal 
development of the third of these, numerical reasoning. However, as the Note goes 
on to say, the use of numerical reasoning develops gradually over the elementary 
years:  

Many first graders will need to continue counting by 1's for most problems. As 
they build their understanding of number combinations and number 
relationships over the next year or two, as well as their ability to visualize the 
structure of a problem as a whole, they will begin developing more flexible 
strategies. (ibid., p. 135) 

Teachers are encouraged to devote considerable attention to helping students 
explain their problem solving strategies in writing and with pictures and diagrams. 
It is of special interest that, although equation notation (e.g., 4+3=7) is introduced in 
the first grade unit, the students are not required to use the notation themselves. The 
following excerpt from one of the Teacher Notes makes this clear: 

While first graders should become familiar with standard equation notation, it 
is not essential that they use it themselves at this level. By the end of second 
grade, students can be guided to use equation notation correctly, but first grade 
is too early to do that for most students. (ibid., p.124) 

This first grade unit does not formally introduce students to the concept of change. 
For example, none of the problems in the unit explicitly uses the word “change.” To 
keep the teachers mindful of the centrality of change in this unit and throughout the 
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algebra strand, in yet another Teacher Note, the authors discuss two different 
problem structures within each of the combining and separating categories: change 
unknown or outcome unknown. They hasten to add that, for the most part in the first 
grade curriculum, students work on just two problem types: combining with 
unknown outcomes and separating with unknown outcomes. Combining and 
separating problems with unknown change are, for all practical purposes, postponed 
until later in the curriculum. 

Time 
Time is an illusive concept for many students. Research has shown that students’ 
inability to conceptualize time as a quantity stands in the way of their ability to 
understand rates of change like speed (Thompson, 1994). The focus of the grade 2 
algebra unit, Timelines and Rhythm Patterns, (Wright, Nemirovsky, & Tierney, 1998) 
is the exploration of the mathematical aspects of time – sequence, duration, and 
cycles. Its purpose is to continue to lay the foundation for the mathematics of 
change, which is studied in increasingly explicit and formal ways in grades 3, 4, and 
5. 

The students begin their study of time by analyzing timelines. At first, the emphasis 
is on how timelines show sequences of time (left of, right of) rather than on how 
timelines show duration (length of). They create timelines of their lives in which the 
emphasis is on representing time by a scale with tick marks at one-year intervals, 
and on marking and finding places on the timelines corresponding to different life 
events, even if they are between the whole number tick marks. 

With respect to duration, an important concept to learn informally is that the length 
of a segment on the timeline is proportional to the length of the time it represents. 
To help reinforce this idea, students make a timeline for a special day. They are 
introduced to the convention of using a horizontal line to communicate in a visual 
way the length of time it takes to do an activity. The students also act out a timeline 
of a special day while the teacher counts the hours out loud at five-second intervals. 
For example the teacher says “6:00,” and the students in their seats act as if they’re 
sleeping. Five seconds later the teacher says “7:00,” and the students stand up and 
pretend they are getting dressed. In this way students not only learn to represent 
times of different duration using different-length segments, they also actually 
experience the relative sense of time that the segments represent. 

In the unit, students imitate rhythms and invent their own rhythm patterns, paying 
close attention to the way the pattern of the rhythms cycle over time. Students learn 
that keeping track of cycles is an aspect of measuring time that is related to 
repeating patterns. The activities are designed to help lay an intuitive foundation for 
symbolic representations in algebra. Students learn that written symbols can be used 
to represent rhythmic activity, including pauses, by reading and interpreting codes 
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and by eventually inventing their own ways to represent rhythm patterns. For 
example, they could use XX   •++        XX   •++ to represent the rhythm pattern: 
clap-clap (short pause) tap-stamp-stamp (long pause) clap-clap (short pause) tap-
stamp-stamp. In order to appreciate the need to standardize their use of symbols, the 
students agree upon a common set of symbols and test their understanding by 
playing a game called "Guess My Rhythms." In a culminating activity, students 
look at traditional notation that shows how people represent time in music. In order 
to learn important aspects of representation, students compare their own symbols to 
the conventional symbols used in the sheet music for a well-known song. They also 
use their own notation to represent the rhythm patterns for the song. 

The activities in this second-grade unit prepare students to eventually understand 
and represent the concept of speed, a difficult abstraction that requires the fusion of 
a stable concept of time with a stable concept of change of position. The unit is 
designed to establish the foundation for understanding and graphically representing 
the time aspect of speed apart from its change aspect. In third grade, however, 
students undertake a formal study of change that avoids explicit attention to the 
concept of time.  

Net Change 
Although change is the unifying big idea of the algebra strand in grades K, 1, and 2, 
the concept of change is only implicit in the activities of those grades, and the study 
of change is informal. Explicit and increasingly formal study of mathematical 
change begins in the third-grade unit, Up and Down the Number Line (Tierney, 
Weinberg, & Nemirovsky, 1998). This unit develops the concept of net 
mathematical change in conjunction with the introduction of positive and negative 
numbers. Rather than using the familiar approach of developing the algebraic 
concept of net change after students have learned addition and subtraction of 
integers, the authors take the opposite, less common approach. They use students’ 
intuitions about change in a concrete situation not only to develop formal notions of 
generalized change but also to develop intuitive notions about integers and their 
operations. 

In this third-grade unit, the concept of net change is introduced in a contextualized 
activity that examines changes in the position of a fantasy skyscraper’s elevator, 
which can go “up and up forever,” and “down and down forever.” Students label the 
floors above and below ground level (…,B3,B2,B1,0,1,2,3…) on a cutout 
skyscraper. Then, working in pairs, the students create a table of net changes in the 
following way. One student (the elevator operator) sticks post-it notes labeled 
“Start” and “End” on two floors of the skyscraper while the other student (the 
recorder) writes the starting and ending floor in the first two columns of a 3-column 
chart. Then the operator moves a counter from the starting to the ending floor while 
both students count the number of floors traveled. Finally, the recorder writes the 
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number of floors moved in the “net change” column.  Typically, the teacher needs 
to remind students that the numbers in the net change column must include a “+” or 
“–” to show both how many floors and in what direction they moved. 

Once students are able to find net change given a starting and an ending floor, the 
unit provides a variety of activities that broaden and strengthen the basic concept of 
net change. For example, in one task students find the net change that results from 
as many as 30 individual changes. By developing strategies for combining large 
numbers of changes, students learn important properties of net change. One strategy 
for computing net change is to rearrange and combine opposite changes to reduce 
the number of changes that must be forward- or backwards-counted (or added or 
subtracted). The use of this strategy teaches students at least two important 
properties of change: (1) net change is the same regardless of the order in which the 
individual changes are combined, and (2) positive change cancels (undoes) negative 
change. 

In another activity, special “change” buttons on the skyscraper elevator are 
introduced as a vehicle to get students to find missing changes. In this activity, 
students are asked to figure out a sequence of change buttons to press in order to 
stop at 3 or 4 or 5 particular floors before ending up at a specific final destination 
floor. Other problems (see the third example, below) ask students to find the starting 
floor when they know the ending floor and the sequence of change buttons pushed 
to get there.  

The highlight of the unit is an inventive set of activities that introduces students to 
some profound aspects of the graphical representations of change. Students devise 
their own ways to represent elevator trips graphically.  By trying to interpret one 
another’s graphs, they learn how to represent changes in direction on a graph, how 
to determine net change from a graph in two different ways, and how to interpret 
different overall shapes of graphs. 

The way that these and other topics are developed in this unit provides instructive 
examples of Investigations’ focus on formalizing the big idea of change while 
simultaneously laying an informal foundation for future formal work on a different 
big idea or concept.  We discuss four such examples next.  

The first example concerns connections between addition of integers and change. 
Throughout this unit students consistently use positive and negative numbers to 
represent the answers to net change problems. Students are encouraged to check one 
another’s answers. Some students recognize they can check an answer by adding the 
net change number to the starting floor number. Other students begin at the starting 
floor on the skyscrapers and count out the net change to see if they finish at the 
ending floor. The materials instruct the teacher to encourage (but not require) 
students to check their answers using both methods. This approach focuses students’ 
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attention on formalizing their intuitive concept of change, while at the same time 
establishing intuitive notions about the addition of integers. It must have been 
tempting for the authors to include at this point in the curriculum activities designed 
to establish proficiency with addition and subtraction of integers. Nonetheless, the 
authors resisted this temptation. Undoubtedly they did so because they believe that 
the concept of net change both enhances and is enhanced by an informal 
understanding of integer addition. However, a formal treatment of integer addition 
in the unit would serve to distract from the main goal, namely to develop the 
concept of net change.  

The second example concerns connections between algebraic properties of integers 
and change. Students are given starting and ending floors and asked to enter the net 
changes in a table designed to show special properties of net change (see Figure 4). 
In the table, students see that each trip starts on either the second floor above ground 
or the second floor below ground. Also, they see that each trip ends on either the 
fifth floor above ground or the fifth floor below ground. By examining the table 
they notice that although the net changes are different, they all have an absolute 
value of 3 (the difference between 5 and 2) or 7 (the sum of 5 and 2). Students are 
asked: “What patterns do you see?” “Why do you think some of the trips have the 
same net change?” Students also are asked to construct different pairs of starting 
and ending floor numbers that produce the same net change of, for example, +7. As 
in the first example, the purpose is to teach formal ideas about net change, not 
formal ideas about integer subtraction.  In fact, the use of B5 rather than –5 in the 
table actually discourages a formal treatment of integer subtraction. Instead, 
students are expected to develop some informal intuitions about subtraction of 
integers that can form the basis for formal learning of the concept in middle school. 

 
Trips Start- 

Floor 
End 
Floor 

Net 
Change 

 Trips Start 
Floor 

End 
Floor 

Net 
Change 

A B2 5 +7  E 5 B2 -7 
B B2 B5 -3  F B5 B2 +3 
C 2 B5 -7  G B5 2 +7 
D 2 5 +3  H 5 2 -3 

Figure 4. Net Change Tables 
 

The third example concerns connections between equation solving and change. 
Students are asked to solve problems like the following:  

I got into my elevator and pushed the +2 button.  After this I pushed the –3 
button.  When I got out of my elevator, I was on floor 1 at the library.  What 
floor did I start on?” (ibid., p. 24) 
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An accompanying commentary provides guidance for the teacher. It states that on 
this type of problem, which gives various changes and the ending floor but no 
starting floor, students with strong understanding generally use one of three 
approaches: (1) Some students use an undoing strategy by working backwards 
starting at the ending floor, then adding (or counting forward) what was subtracted 
and subtracting (or counting backward) what was added. (2) Other students use 
another type of undoing strategy by finding the net change and adding its opposite. 
(3) Still others use trial, error, and adjust. The commentary also cites common 
incorrect strategies, indicating that missing start problems can be quite challenging 
for students. Nonetheless, teachers are advised to allow students to come up with 
their own strategies for solving them and not to be concerned if the students are not 
successful. This is presumably because the purpose of these problems is to formally 
teach students about inherent properties of net change, and to introduce informal 
notions of equation solving. The purpose clearly is not to teach students how to 
solve equations. 

The fourth example concerns connections between graphs and change. In a session 
called “Plus and Minus Graphs,” students make graphs of changes that follow one 
of several sequences of positive and negative changes. For example, the teacher 
begins by putting the sequence of symbols + + – – 0 on the board, and says “Let’s 
say this is all the information we have about where the elevator goes.  We don’t 
know the exact floors the elevator stops on, but this sequence of pluses, minuses, 
and zeroes gives us important information.”  By considering a variety of possible 
graphs corresponding to the sequence (see Figure 5), students discover that all the 
graphs have a similar shape even though the net change can be positive, negative, or 
zero. They also learn that anytime there is a change from + to – the graph reaches a 
peak. However, when there are two peaks (e.g., + + – + + – – ) they cannot know if 
the highest point is after the second or the fourth plus. 

 

 
Figure 5. Graphs of a Plus and Minus Sequence 
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Our intent in offering these four examples is to demonstrate how the activities in 
Investigations consistently establish connections between the big idea of change and 
other important big ideas. Clearly, the primary reason these activities are in this 
third-grade unit is to establish a formal concept of net change. However, a 
secondary aim is to establish connections to informally-developed mathematical 
ideas that can eventually serve as the foundation for the formal development of 
advanced concepts such as integers, rates, slope, limits, derivatives, extrema, etc. 

Changes Over Time 
In the fourth-grade unit, Changes Over Time (Tierney, Nemirovsky, & Weinberg, 
1998), students learn to coordinate the concepts of time and change. This 
coordination is accomplished principally by activities in which students learn to 
graph a variety of changes over time. In previous units, students’ graphs focused on 
comparing things that take place at the same time. Even the third-grade graphs of 
elevator trips up and down the fantasy skyscraper largely ignored time. Successive 
heights of the elevator were shown on most graphs from left to right as if the 
elevator was simultaneously in different elevator shafts. In this way, the students’ 
attention was focused on the change dimension of the graphs, i.e. the vertical axis. 
Thus, students didn’t have to explicitly consider the complicating dimension of 
time, despite its implicit presence along the horizontal axis of their graphs. These 
activities nonetheless laid an intuitive foundation for the explicit coordination of 
change and time, a difficult task that is tackled in the fourth grade unit. 

 
Figure 6. Graphs of Student Representations Showing Change Over Time 
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In the first activity of the fourth-grade unit students devise their own ways to 
represent changes over time for different situations such as people going in or out of 
their houses. Students first collect data on the number of people in their homes over 
the course of a typical day and then create a graphical representation of the changes 
in population. Once they have completed their graphs, students are paired and put 
into groups of four. Students in each pair exchange their graphs with the students in 
the other pair in their group. The pairs are asked to interpret each other's graphs and 
to plan how to revise them to make them clearer. Figure 6, found on page 15 of the 
unit, shows examples of graphs teachers can expect to receive from their students. 

One purpose of discussing how to make graphs clearer is for the students to 
appreciate conventional graphs when they are introduced later in the unit. For 
example, the top graph in Figure 6 explicitly shows the relationship between time, 
changes in the number of people, and the total population. The bottom graph clearly 
shows the relationship between time and total population, but it does not explicitly 
show the changes in population. Discussion of this difference highlights not only 
important distinctions between change quantities and total quantities, but also how 
to find change from graphs of total population vs. time. Another fruitful discussion 
of these two graphs might center on the different ways they represent time. The 
bottom graph enumerates every hour between midnight and 10 p.m. The top graph 
shows only the times when people go in or out. Appropriately guided discussions 
can help students realize that each method has advantages and drawbacks, for 
example, although showing exact times gives more accurate information, it does not 
show an overall pattern of population change over time. 

As was the case in the third-grade unit on net change, intuitive equation-solving 
activities are embedded in the study of changes over time. The fourth-grade 
“missing start” problems are structurally identical to the third-grade “missing start” 
problems, although they are semantically different. In third grade, the students are 
asked to find the start floor given an ending floor and a list of the elevator change 
buttons pushed. In fourth grade, students are asked to find the number of people at 
home in the beginning, given the number at home at the end and the numbers of 
people that went in and out. For example, students are asked: Three people go out 
and one person returns home. Then there are four people at home. How many were 
home at the beginning? The teacher commentary suggests that the students be 
alerted that this type of problem is a “backward problem,” that can be translated 
symbolically as ? – 3 + 1 = 4. As in third grade, however, students are not taught a 
method to find the answer. Instead students are expected to devise their own 
strategies to solve the problems. Examples of the three strategies students typically 
use (see the previous section on Net Change) are reiterated. In addition it is 
suggested that students can use their graphs to solve this problem. 
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The text also suggests that students themselves should make up a number of similar 
problems for the class to solve. The teacher is coached, however, on how to teach 
the students to write “missing start” problems: Pick a time on your graph to start. 
Mark the place, but don’t tell how many people are at home then. Just tell how 
many went in and out (ibid., p. 25).  

Clearly, the fourth-grade treatment of equations is only slightly more advanced than 
the third-grade treatment. The problems themselves are similar, and although there 
is an expectation that students learn to write equations that model the problems 
(without the use of a letter to represent a variable), there is no expectation that all 
students learn to solve them.  

It is much more difficult to find the beginning number than the end number. 
Don’t worry if many students can’t do these problems after this brief 
introduction.  Return to these problems from time to time after the unit is over. 
(ibid., p. 26) 

 
As before, this statement indicates that the purpose of these problems is to teach 
students about inherent properties of net change, not to teach them how to solve 
equations. It also indicates, however, that the authors feel it is important early on to 
informally introduce the process of undoing and to revisit it throughout the 
curriculum. In spite of the suggestion to return to these problems from time to time, 
formal equation solving is not covered in this curriculum. We believe that it is the 
curriculum’s good intention to have “undoing” introduced in this informal way to 
prepare students’ later formal equation-solving activities. However, full realization 
of this good intention in the Investigations curriculum would require some 
modifications to the algebra strand. See the postscript section for a discussion of the 
revisions planned for the algebra strand in the new edition of Investigations. It does 
not appear that formal equation solving will be a goal in the new edition of the 
curriculum. 
Arguably, Ways to Show Change Over Time is the most noteworthy investigation of 
the unit. During the first two days of the investigation, the teacher leads discussions 
about how to interpret line graphs that show change over time. Graphical 
representations of change are interpreted from two points of view: point-based and 
interval-based. For interval-based interpretations, students compare the shapes of 
graphs that show change over time. What does a line going high up mean? What 
does a line going down low mean? Students learn to distinguish between 
representations of something that can change and representations that show change. 
For example, students discuss the relation between the picture of a wheelchair racer 
going uphill and the speed vs. time graph of a wheelchair racer going up a hill. On 
the third day of the investigation, students learn to make conventional line graphs. 
The teacher leads a demonstration/discussion about how to draw line graphs using 
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the Cartesian coordinate system, as well as about the benefits of using this 
conventional approach.  

Next the students graph the height over time of plants they planted before the unit 
began. By this time, each pair of students has a week’s worth of height data to 
graph. Once the students finish their graphs and discuss them, they extend their 
graphs by drawing what they think the graph will look like in one more week. As 
the week unfolds, their predicted graph serves as a catalyst to help the students think 
about the subtle aspects of representing growth over time with a line graph. They 
learn to recognize the shape of the graph when their plants were growing fast or 
slow. They also learn to answer questions like “Is it going faster or slower than you 
predicted?” “Where does the graph show the fastest growth?” “Explain how the 
shape of the graph tells you where the plant was growing more slowly.” “How can 
you tell where the plant was speeding up?” Unlike the expectations for equation 
solving, students are expected to become proficient in interpreting graphs of 
changes over time. To help them achieve proficiency, the curriculum provides many 
activities where the students match graphs with tables and with stories. Students 
also write stories based on graphs or draw graphs that describe stories like: 

Your plant was growing quickly for a few days. Then you dropped it and the 
top of it broke off. It stopped growing for a while before it started growing 
again. (ibid., p.92) 

Growing Patterns and Rate of Change 
The fifth-grade algebra unit, Patterns of Change (Tierney, Nemirovsky, Noble, & 
Clements, 1998) is the capstone unit in the algebra strand, and speed is its 
culminating concept. The unit provides experiences describing, representing, and 
comparing rates of change. The activities build on concepts established during the 
previous five units’ work studying informal and formal change: i.e. on concepts of 
change and changelessness in patterns (Grades K-1), on strategies for modeling 
additive change (Grade 1), on concepts of time (Grade 2) and net change (Grade 3), 
and on graphical representations of change over time (Grade 4).  

The students begin the unit by exploring growing patterns of tiles and analyzing 
them. They examine, in turn, one linear pattern (2, 4, 6, 8, …), two quadratic 
patterns (1, 4, 9, 16, … and 1, 3, 6, 10, …), and one exponential pattern 
(2, 6, 14, 30, …). Their focus is on two important aspects of the patterns: “step size” 
and “total so far.” They compare geometric, graphical, and tabular representations 
of the patterns, noting how each version shows the number of new tiles added at 
each step (step size) and the number of tiles all together ("total so far”). The 
activities help students to recognize key qualitative relationships between rate of 
change (step size) and the resulting accumulation (“total so far”). For example, 
students learn to recognize that: 
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• In the linear tile pattern, the step sizes do not change, but the “total so far” 
increases at a constant rate. 

• In both quadratic tile patterns, the step sizes increase at a constant (additive) rate, 
but the “total so far” grows at an increasing (additive) rate.  

• In the exponential tile pattern, the step sizes increase by a constant 
(multiplicative) rate, and the “total so far” –2 grows at the same (multiplicative) 
rate. 

It should be emphasized that the concept of rate of change, including speed, is 
developed by equating it to step size, rather than by derived ratios. The level of 
generalization students are expected to exhibit differs depending on the individual, 
and is left to the professional judgement of the teacher. All students are expected to 
come up with a general rule, but not necessarily an algebraic equation, for both the 
step size and total of the linear pattern. A Teacher Note states, “Encourage 
[students] to write the general rules they find in any informal way that makes sense. 
Do not push them to use n at this time” (ibid., p. 12). Later, when the students 
compare all four patterns to one another, the teacher is discouraged from requiring 
students to figure out general rules for the “total so far” in the non-linear patterns. 
The teacher commentary suggests that the general rules for the “total so far” in the 
quadratic patterns are much more difficult to figure out than the general rules for the 
step size, and only the more advanced students should be expected to find them. 
Throughout the unit, students are encouraged to represent even simple general rules 
in a mostly informal way. Formal use of variables to represent rules occurs 
infrequently, if at all. 

The mathematical emphasis in the second investigation is on using graphs and 
tables (but not rules) to explore relationships among time, speed, and distance. The 
activities build on the first investigation’s work with growing patterns by applying 
the general ideas of step, step size, and “total so far” to notions of time, speed, and 
distance respectively. In this investigation, students plan and act out trips of 
changing speed along a straight path. Then the students invent and discuss their own 
methods of representing the trips (see Figure 7). The commentary warns that the 
students’ representations will likely be non-standard, and encourages teachers to 
analyze the students' work to determine which variables they explicitly represent as 
well as the way they represent them. For example, in Figure 7 the columns of the 
student’s table are labeled “steps” and “speed.” The student does not have columns 
for time, step size, or distance. However, the “4 sec.” entry in the steps column 
shows that the student has an intuitive notion that the number of steps is somehow 
related to time. Also, the width of the steps in the drawing shows step size, and their 
accumulation shows total distance. These last two are a rather direct reproduction of 
the physical situation, and are not particularly informative. However, the fact that 
the student shows speed by the height of the steps, implies that the student thinks 
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only vaguely of speed as a variable related to distance and time. From this, the 
teacher might infer that this student understands the basic building blocks of the 
concept of speed, and is ready to benefit from upcoming activities that integrate 
these difficult ideas of time, distance, and speed. 

 

 
Figure 7. A student’s representation of changing speeds during a trip 

Besides its obvious diagnostic purpose, a goal of the foregoing activity is to prepare 
students to appreciate the power and elegance of conventional graphs and number 
tables, which they use extensively in subsequent sessions. The students act out a 
variety of fast and slow trips along a track, dropping beanbags at equal time 
intervals. They make tables and diagrams showing where the beanbags land. The 
emphasis is on understanding the inverse relation between speed and the number of 
beanbags (a measure of time) dropped over a given distance. Importantly, the 
students learn to represent the trip with tables that show accumulated measures of 
time and distance, as opposed to non-cumulative measures, which is their wont. 
Eventually, the students are weaned away from the need to actually act out trips and 
drop beanbags. Now the activities are based upon motion stories that the students 
must envision in their heads. They are asked to imagine where beanbags might fall 
and to mark them on a number line representing the track. Then they make tables 
corresponding to the motion stories. Teachers are encouraged to use this activity as 
a checkpoint to see how well students understand using tables showing position at 
regular time intervals to show speed. The investigation ends with tasks that 
strengthen the connections among motion stories, tables, and graphs of distance 
versus time. They match the motion stories, graphs of distance versus time, and 
tables that describe the same trip. They also create tables, write motion stories, and 
draw distance versus time graphs of the same trip. 

In the third and final investigation in the fifth-grade unit, students use a computer 
software program called Trips, which is provided with the curriculum. Students 
investigate changes each second in the positions of computerized runners on a track 
over periods of ten or more seconds. The Trips software shows a boy and girl 
running a race along parallel tracks (number lines). The students can vary the 
starting points of the boy and girl, as well as their speeds and direction. To make the 
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boy or girl go faster or slower, students change the size of their steps. Students can 
stop the trips at any time. They can also observe the action one step at a time. After 
running a trip, students can click on the graph or table window to see a graph or 
table of the trip. After a preliminary orientation to the software, the students are 
given three motion stories (e.g., "The girl starts behind the boy, but she passes the 
boy and gets to the tree first"). Students act out the stories, either physically along 
meter sticks or virtually on the computer, by varying the starting positions and step 
sizes until the resulting trips match the stories. 

The investigation, and indeed the algebra strand itself, culminates with a set of tasks 
designed to crystallize the concepts of speed, time, and distance they have been 
developing. For these tasks, students compare and contrast graphs of step size 
versus time with graphs of position versus time. For example, one task describes a 
trip and presents a collection of position versus time graphs and step size versus 
time graphs. Students must choose the position graph and the step size graph that 
correspond to the trip, and then explain their reasoning (see Figure 8). By working 
on these tasks and discussing them, students construct a robust, though qualitative, 
concept of rate of change and its graphs. For example, some of the features that 
students learn by tasks like the one shown in Figure 8 are the following: 
• The steeper (less steeply sloped) the line on the position graph, the higher 

(shorter) the bar on the step-size graph and the faster (slower) the motion. 
• A horizontal line on the position graph corresponds to a bar of zero height on 

the step-size graph and a stop in the motion. 
• When the line on the position graph goes up (down), the step size bars are 

above (below) the horizontal axis, and the motion is forward (backward). 
 

 
Figure 8. A student’s response to one of the culminating tasks in Patterns of Change 

The development in this unit is in stark contrast to a quantitative development of 
distance, time and speed, which typically consists of students using the formula d=rt 
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to solve a myriad of word problems they only marginally understand. The 
qualitative approach in Investigations is aimed at helping students understand the 
relationships among these sophisticated concepts, and away from teaching them to 
use the formula d=rt. In fact, and somewhat surprisingly, the formula d=rt is not 
even formally presented in the unit. 

Analysis of the Development of Algebraic Processes: Habits of Thinking 
In this section, we address the following the question, what mental processes are 
fostered in the algebra strand to bring about the achievement of these goals and big 
ideas?  To answer the question, we analyzed how Investigations develops mental 
processes called algebraic habits of thinking. We relied on a framework developed 
by Driscoll (1999, 2001) which posits that people who use algebra to solve 
problems bring three habits of thinking into play: Doing-Undoing, Building Rules to 
Represent Functions, and Abstracting from Computation. In this section, we 
consider the development of each of these habits in turn. 

Building Rules to Represent Functions 
Critical to algebraic thinking is the capacity to recognize patterns, organize data, 
and represent situations by well-defined functional rules. In Driscoll’s framework, 
he identified this capacity as a habit of thinking called Building Rules to Represent 
Functions, which is characterized by seven features:  
• Organizing Information: In ways useful for uncovering patterns and the rules 

that define patterns. 
• Predicting Patterns: Noticing a rule at work and trying to predict how it works. 
• Chunking the Information: Looking for repeating chunks of information that 

reveal how a pattern works. 
• Describing a Rule: Describing the steps of a rule without using specific inputs. 
• Different Representations: Wondering what different information about a 

situation or problem may be given by different representations, then trying the 
different representations. 

• Describing Change: Describing change in a process or relationship. 
• Justifying a Rule: Justifying why a rule works for "any number." 

 
Essentially, these features are mental processes that students use to acquire a robust 
concept of function and to understand change. Since Investigations’ goals are 
closely aligned with Goal 1 (functions) and Goal 4 (change) of NCTM’s algebra 
standard, it is important that the curriculum foster these seven features of the 
Building Rules to Represent Functions habit of thinking.  

Let us briefly recall how the big ideas of the algebra strand are developed. The 
kindergarten unit of the algebra strand teaches very young students to recognize and 
represent simple repeating patterns. The activities in that unit begin a carefully 
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designed succession of K-5 activities that help students attain goals consistent with 
the two NCTM algebra standard goals identified above. As we have seen, these 
activities consistently require students to discover ideas, invent representations, and 
design procedures based upon their existing mathematical intuitions. In the process 
students organize information, predict patterns, chunk information, describe rules, 
compare representations, and describe change—all features of the "building rules" 
habit of mind described by Driscoll. 

We believe, therefore, that the algebra strand in Investigations is specifically 
designed to help students develop ways of thinking consistent with the habit of 
mind "Building Rules to Represent Functions." In this regard, the intent of the 
curriculum is primarily to help students establish a predisposition to qualitatively 
and informally look for, describe, use, and make sense of the underlying properties 
of patterns and functions, especially the property of change. Significantly, it is not 
the intent of the curriculum that students develop the ability to formally represent 
functions with algebraic symbols. That is, the primary goals of the curriculum are 
not aligned with the second goal of the NCTM algebra standard: Represent and 
analyze mathematical situations and structures using algebraic symbols. It is likely 
that this variance from NCTM is a deliberate attempt to forestall the predisposition 
of many teachers to introduce symbols before students are ready to understand 
them. The Investigations authors consistently postpone the use of the abstract 
symbolism of algebra, perhaps believing that the delay will help students to develop 
more flexible and robust mental habits. If successful, it is expected that in middle 
school and beyond these powerful habits of thinking will provide a foundation that 
facilitates the easy acquisition of formal algebraic capabilities. 

Abstracting from Computation 
Driscoll (2001) characterized abstracting from computation as the capacity to think 
about computations independently of particular numbers. Essentially, the 
Abstracting from Computation habit of mind affords students the ability to abstract 
regularities of the number system from the computations they perform. Since 
abstraction is one of the most evident characteristics of algebra, it is reasonable to 
conclude that algebraic thinking indispensably involves this ability to think about 
computations freed from the particular numbers being calculated.  
 
Unlike the Building Rules habit of thinking, Abstracting from Computation does not 
appear to be a major priority in Investigations’ algebra strand. Take, for example, 
the Grade 1 unit Building Number Sense. The unit belongs to the Number and 
Operations strand as well as to the Patterns, Functions, and Algebra strand. As we 
have seen, the activities in the unit are designed to develop addition, subtraction, 
and number sense. In light of recent research on the teaching of algebra, it is not 
surprising to see a unit cross-listed as both a number and operations unit and as an 
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algebra unit. Carpenter, Franke, and Levi (2003) argue that a goal of instruction in 
arithmetic should be to help students develop "…ways of thinking about arithmetic 
that are more consistent with the ways that students have to think to learn algebra 
successfully" (p. 2). These ways of thinking correspond to the features of the 
Abstracting from Computation habit of mind identified by Driscoll. 
 
One of the six features posited by Driscoll of Abstracting from Computation is 
Computational Shortcuts: Looking for shortcuts in computation based on an 
understanding of how operations work. Students can use this line of thinking to 
intuitively generalize underlying algebraic properties (e.g., equality, associativity, 
commutativity, distributivity) in arithmetic procedures, and implicitly use these 
properties to solve a variety of problems, including story problems. For example, 
most students who complete the first-grade unit realize that 9+4 and 10+3 give the 
same result. Some of them are able implicitly to use the properties of addition and 
subtraction to compute 9+4 by taking 1 away from 4 and adding it to 9. However, 
another of the features of Abstracting from Computation is Justifying Shortcuts: 
Using generalizations about operations to justify computational shortcuts. 
Therefore, if Abstracting from Computation were a goal of the curriculum, it would 
provide activities to help students reflect on the commutative and associative 
properties that justify this approach. However, none of the activities in the algebra 
strand seem to be designed specifically to do so. In fact, it seems likely that the first 
grade unit is considered part of the algebra strand primarily because it continues to 
build students' notions about pattern and change, not because it is intended to 
develop an Abstracting from Computation habit of thinking. 

Nonetheless, there are many activities in the unit that can help students develop the 
habit of mind abstracting from computation. Students play games and solve 
problems about how numbers can be combined and separated to yield other 
numbers. They represent numbers with dot patterns; they count sets of objects; they 
find the total of two or more numbers; they compare numbers; they learn to read, 
write, and sequence numbers up to 100. All of these activities help students 
intuitively develop the Abstracting from Computation habit of mind. The question 
is, however, “Is Abstracting from Computation a priority that helps shape the 
activities in the unit?” 

There are many reasons to believe that abstracting from computation is not 
explicitly intended. Here are three of them: (1) The Building Number Sense unit, 
which is part of both the number and the algebra strands, does not include activities 
explicitly designed to help students generalize the properties or operations of 
arithmetic. (2) Instead, the activities in the Building Number Sense unit are devoted 
to representing patterns and understanding change in addition and subtraction –
features of the Building Rules habit of thinking. (3) As we have seen, priority is not 
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given in any unit of the algebra strand to using variables to represent rules or 
procedures – an integral component of each of the following features of Abstracting 
from Computation: 
• Generalizing beyond examples: Going beyond a few examples to create 

generalized expressions, describe sets of numbers, or either state or conjecture 
the conditions under which particular mathematics statements are valid; 

• Equivalent Expressions: Recognizing equivalence between expressions; 
• Symbolic Expressions: Expressing generalizations about operations 

symbolically. 
 
As a consequence, we have concluded that abstracting from computation is not a 
true priority in the Investigations algebra strand, although the work with 
computation inevitably helps build an intuitive foundation for its development. It 
appears that the revisions being planned for the new edition of Investigations will be 
much more purposeful about establishing this habit of mind (see the Postscript 
section). Preliminary indications are that algebraic connections will be integrated at 
each grade level into the number and operations strand. 

Doing-Undoing 
Reversibility, that is, having the ability to undo mathematical processes as well as to 
do them, is an important component of effective algebraic thinking. In effect, it 
involves the capacity not only to use a process to achieve a goal, but also to 
understand the process well enough to work backward from the ending point. 
Possessing a Doing-Undoing habit of mind makes it natural to analyze 
mathematical tasks backwards and forwards. It forms the intellectual foundation for 
a large collection of mathematical activities, including equation solving, factoring, 
inverse functions, anti-derivatives, etc.  

Driscoll (2001) identified two features of the Doing-Undoing habit of thinking. 
They are: (1) Input from output: Finding input from output, or initial conditions 
from a solution, and (2) Working backward: Working the steps of a rule or 
procedure backward. We have seen that many activities in the Investigations 
algebra strand establish informal intuitions about how operations undo one another 
and about how to work backwards to solve problems. An intuitive foundation for 
doing-undoing begins in kindergarten when students learn about the repeating 
aspects of pattern, which can be traversed forwards or backwards. This foundation 
is strengthened in first grade. Students represent repeating patterns on the hundred 
chart and gain flexible intuitions about the reversibility of functional rules. Also in 
first grade students learn intuitively that combining and separating are opposite 
actions both involving a change quantity (ultimately to be modeled by the inverse 
operations of addition and subtraction).  
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In third grade, students investigate properties of addition and subtraction by 
considering the net change in position of an elevator in a fantasy skyscraper. This 
begins the explicit study of change as a mathematical entity and starts the process of 
formalizing students’ heretofore-intuitive notions of change. Important to the doing-
undoing habit of thinking, the third-grade development of net change entails serious 
consideration of the undoing effect of negative change on positive change. It 
introduces positive and negative numbers, and broaches the relationship between 
positive and negative change and addition and subtraction.  

Change is also the foundation for equation solving, an important undoing process in 
algebra. In third grade, students are encouraged to develop their own strategies to 
solve “equations,” which are presented as problematic situations involving stories of 
elevator trips that describe the ending floor and various floor changes, but no 
starting floor. Rather than teaching equation writing and equation-solving 
techniques, the students are asked to invent their own ways to solve these problems. 
This philosophy is carried over to fourth and fifth grades, but now the students are 
taught to represent equations (using question marks in lieu of variables). As before, 
however, they are challenged to solve the equations but are not taught how.  

These succession of activities in the algebra strand are clearly aimed at providing a 
way of thinking about doing-undoing, rather than establishing its more formal 
aspects, like rules for adding and subtracting integers or procedures for solving 
equations. The result (and intent) is a firm but informal foundation for qualitative 
understanding of important algebraic processes that involve doing-undoing.  

Conclusion 
In this case study, we have identified the goals, the big ideas, and the algebraic 
processes that determine the nature and scope of the algebra strand in the 
Investigations curriculum. We have found that mathematical change is the unifying 
big idea of the algebra strand, that its principle goals are aligned with the NCTM 
goals Understand Patterns, Relations, and Functions and Analyze Change In Its 
Various Contexts, and that its approach to achieving its goals is to foster mental 
processes that constitute the algebraic habit of thinking known as Building Rules to 
Represent Functions.  

Based on our analysis, three reform-oriented principles appear to undergird and 
direct the trajectory of the activities included in Investigations’ algebra strand: 
(1) Students must construct for themselves new knowledge and understandings 
based on what they already know and believe. (2) Understanding occurs as the 
result of actively constructing new knowledge that is connected to existing 
knowledge: the more numerous the connections to existing knowledge, the greater 
the understanding. (3) A rush to symbolism is counterproductive to the learning 
process. 
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As might be expected, these reform principles appear to have a profound effect on 
the choice of content and the development of activities in the curriculum. For 
example, we believe that the curriculum’s consistent use of a problem-solving 
approach to teach new concepts and procedures is an artifact of Principle (1). In 
fact, we have cited numerous instances in which the curriculum delays formal 
treatment of mathematical content until it can enrich and refine a foundation of 
basic mathematical intuitions that children have informally learned through their 
daily interactions. Students do extensive work combining and separating everyday 
items in first grade, but formal introduction to the operations of addition and 
subtraction is postponed until grade 2. Students develop their own strategies to 
solve missing start problems during extensive problem solving sessions in grades 3 
and 4, but formal equation solving is not taught anywhere in the curriculum. A 
variety of tasks in the third grade unit uses integers to model net change, but formal 
procedures for adding and subtracting integers are not taught in Investigations. In 
fifth grade, the entire series of activities is designed to characterize rate of change, 
including speed, as being the same thing as the step size (rather than a ratio) despite 
the obvious limitations it imposes.  

Similarly, principle (3) undoubtedly accounts for Investigations’ practice of 
postponing symbolic representation until the students have had significant 
experience using and discussing the informal representations they have developed 
on their own. For example, in first grade, students develop their own ways of 
representing numbers and of finding combinations, but writing formal addition 
equations (3+7=10) is postponed until grade 2. In second grade students design their 
own timelines before they are introduced to standard methods of representing time 
along a number line. In third grade students label the floors of the fantasy 
skyscraper, B2, B1, 0, 1, 2, (rather than –1, –2, –1, 0, 1, 2) even though they use 
negative numbers to represent change in the downward direction. Also in third 
grade, despite the fact that students invent their own methods to solve missing start 
problems, formally representing the problems with equations is postponed until 
grade 4. Even then, a question mark is used as a variable to represent the missing 
start in the equation. In fourth grade, students spend considerable time devising and 
analyzing their own ways to represent change over time, even though those methods 
are eventually abandoned in favor of more standard methods. In fifth grade students 
come up with rules that describe the generalized change in various growing 
patterns, but they do not use variables to express their rules. Also in fifth grade, 
students work extensively to analyze the relation between distance, speed, and time, 
but they are not introduced to the formula d=rt, nor is speed represented as a ratio. 

Even major characteristics of the overall structure of the algebra strand can be 
explained by the three reform principles. For example, we have made the case that 
the concept of change is the central big idea in the algebra strand, and that it is also 
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the foundation for establishing formal conceptions and connections to the other big 
ideas of the algebra strand, namely patterns and relationships, representation, and 
modeling. Structuring the strand in this way is arguably a consequence of the 
authors’ adherence to principle (2) above. 

What may not be as obvious are the reasons for choosing not to develop the other 
commonly accepted big ideas of algebra, namely, variables, proportional reasoning, 
structure, and equation solving. Once again, we believe the answer can be found in 
principles (1) and (3). The argument can be made that it is because of principle (3) 
that the curriculum does not progress to the use of variables and to formal symbolic 
work in algebra, like equation solving. Postponing the development of proportional 
reasoning, on the other hand, is more a consequence of principle (2). Since students’ 
intuitions of relative change are generally poorly developed, even by fifth grade, it 
appears the curriculum developers have decided that it is wiser to postpone the 
development of proportional reasoning until the students are intellectually more 
mature. As we have noted in the algebra strand, which is built on the concept of 
change, the concept of rate of change, including speed, is not developed through the 
use of ratios. Finally, the reasons for not developing the big idea of algebraic 
structure are probably related to the reasons for the curriculum’s neglect of the 
Abstracting from Computation habit of mind. As we have noted, this seems to be an 
oversight by the curriculum developers since the revisions being planned for the 
new edition of Investigations will be much more purposeful about establishing an 
Abstracting from Computation habit of mind. 

The principles we have discussed, which shape the goals and development of the 
Investigations algebra strand, are grounded in the epistemological foundations of 
the reform movement in school mathematics, of which Investigations is a case. 
Because of this, we expect that many of the characteristics of the algebra strand of 
Investigations that we have discussed are illustrative of other reform curricula. 

Postscript: Revision of the Investigations Curriculum 
A revision of the algebra strand in the Investigations in Number, Data and Space 
curriculum began in 2001 with funding from the National Science Foundation. One 
of the intents of the revision is to strengthen the integration of algebraic thinking 
throughout the curriculum. This is being accomplished in two ways. First, the plan 
is to include separate curriculum units at each grade level for the patterns and 
functions strand. The current algebra units are being redesigned to include a more 
cohesive and coherent scope and sequence across the grades. This will include the 
development of new units on pattern and function at grades 1, 2, and 3 and 
significant revisions at each of the other grade levels. Second, algebraic connections 
will be integrated at each grade level into the number and operations strand building 
on the work of Carpenter, Franke, and Levi (2003) and Schifter (1999). An algebra 
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essay is planned for inclusion in each of the number and operation units that will 
highlight the specific algebraic connections in the unit and a graphic marker will 
identify specific activities throughout the curriculum where a teacher might expect 
an opportunity for discussion of early algebraic ideas. For example, a draft essay 
discusses how students use computational short cuts based on regularities they have 
noticed in the number system. This is an opportunity for students to verbalize their 
reasoning with an eye toward formulation of generalizations, and teachers are 
provided with background information on how the ideas are related to future work 
with algebra and algebraic notation. Although the planned revision will include 
increased attention to students’ ability to write equations, methods of solving the 
resulting equations will not be a priority. 
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