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Abstract: Prevalent in everyday non-technical use, probability is highly prone to 
misconceptions which have been the object of much research.  One way to deal 
with these misconceptions is through anchoring situations, as advocated by 
Clement (1987) and Fast (1997).  This paper uses a similar framework, with two 
versions of a questionnaire and interviews conducted with college science majors.  
Misconception-prone situations were given in Version A of the questionnaire, and 
possible anchors in Version B.  Results showed that although erroneous notions 
existed, anchors could be effectively used to overcome them. 

 
Introduction 

Probability is double-edged.  On one hand, it is undeniably close to everyday 
experience, where terms such as “randomness” and “chance” are used by lay people 
to justify one action over another.  Elementary probability ideas appear in 
economic forecasts, weather prediction, sports analysis, media commentary, among 
others.  On the other hand, everyday probability concepts are used loosely, and in 
the process, lend themselves to fallacies (Tversky & Kahneman, 1973) and errors 
(Konold, 1989). These fallacies have been well-documented in cognitive 
psychology and mathematics education.   
  
Theoretical (mathematical) probability is a different case altogether - a “scientific, 
rigorous concept in contrast to the fuzzy idea of chance which pervades everyday 
settings” (Pratt, 1998, p. 2).  The rigorous foundations of probability have been 
built through the years, with well-defined terms and logically proven rules.  
However, since well-founded concepts frequently go against ordinary intuition and 
gut feeling (such as the so-called “gambler’s fallacy”), students (even science 
students) often find the topic complex.  “Thinking mathematically demands more.  
It presupposes that learners have a more or less rich pool of intellectual tools at 
their disposal [which are] available to a mathematician - and precisely those lacking 
in the naïve learners” (p. 2).   
 
Here lies the challenge.  Given that probability misconceptions are so pervasive, 
what methods can be utilized to counter these false beliefs and replace them with 
mathematically appropriate ones?   Researchers have long focused on the specific 
reasons for such misconceptions (the most celebrated ones are those of Daniel 
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Kahneman and Amos Tversky, whose work in this area was awarded the 2002 
Nobel Prize in Economics).   
 
But only recently have efforts to overcome misconceptions been made, efforts such 
as utilizing appropriate mental models (Hong & O’ Neil, 1992) and rewording of 
anomalous information (Graesser & McMahen, 1993; Lee-Chua, 2001a).  Another 
promising strategy to deal with misconceptions is the use of anchors. Pioneered by 
Clement in the mid-1980s (Brown & Clement, 1987; Clement, 1987) to study 
physics misconceptions, the use of anchoring situations in other areas has attracted 
interest in the last decade.  The efficacy of anchors has been studied vis-à-vis 
cognitive science (Perkins & Salomon, 1989; Glaser, 1991), the representativeness 
fallacy (Cox & Mouw, 1992), artificial intelligence (Crews, Biswas, Goldman, &  
Bransford, 1997), basic stochastic misconceptions (Fast, 1997), elementary 
statistics misconceptions (Lee-Chua., 2002), and most recently, interactive learning 
environments (Cognition & Technology Group at Vanderbilt, CTGV, 2002).  
 
However, using anchors to study more advanced probability concepts has still not 
been explored.  The most recent research along these lines has been done by Fast 
(1997) on secondary mathematics’ teachers’ views on elementary probability, 
where anchors indeed have proven to be effective in revising false beliefs.  Fast 
indicated that “[b]ecause of Clement’s success in using analogies in physics, it 
seemed worthwhile to attempt his approach in the area of probability” (p.326).   
 
Hence, and because of Fast’s success in using anchors in basic probability, it 
seemed worthwhile to examine if this approach also works for more advanced 
mathematics concepts such as the Monty Hall paradox.  Moreover, as far as it can 
be ascertained, anchoring research so far has only been done in the United States 
and Europe.  In this study then, the replication occurs in a Southeast Asian context, 
where often drill and routine are emphasized over conceptual understanding  
 
Schema Revision and Anchoring Situations 
Why is dealing with (and revising) misconceptions difficult?  Many cognitive 
psychologists believe that acquiring these concepts in the first place requires much 
effort, thus changing the concepts in the face of contradictory evidence is therefore 
resisted by the learner (e.g., Brown & Clement, 1987).  Revision requires change of 
concept construction - in cognitive psychological terms, a change of schema 
(Davis, 1984).  
 
Anchors can prove useful in changing schemas.  Echoing Clement (1987), Fast 
(1997) defined anchoring situations as “problems which are designed to draw out 
beliefs held by individuals which are in agreement with accepted theory and which 
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are therefore expected to receive correct responses” (p. 326).  Just as a metal anchor 
holds the ship steady and prevents it from running aground, psychological anchors 
help individuals construct correct schemas and either revise false beliefs or prevent 
them from committing the errors in the first place. 
 
Specifically, according to constructivist theory, when new topics are introduced, a 
scaffolding or framework is helpful.  Anchors serve as scaffolds where learners can 
elaborate and correctly draw upon their existing knowledge (Glaser, 1991).  Well-
chosen or well-prepared anchors can bridge the gap between what learners already 
know and what they still have to learn.  “Bridging examples which have some of 
the characteristics of the anchor… and some characteristics of the target are used as 
supports in conceptually bringing the two analogous [situations] closer together” 
(Fast, 1997, p. 328). 
 
For instance, Clement (1987) detailed a popular physics misconception which 
concerns Newton’s Third Law (action and reaction).  Consider a book lying on a 
table.  Many students believe that the book exerts a downward force on the table, 
but (mistakenly) do not believe that the table exerts a corresponding force upward 
on the book.  To revise this false belief, Clement used as anchor the situation of 
using a hand to push down on a spring.  Practically all students believe that the 
hand exerts a downward force on the spring, and at the same time the spring exerts 
an upward force on the hand.  This situation served as an effective anchoring bridge 
- from the readily-seen concrete example of the spring, to the less visible forces of 
the book and table, and finally to the abstraction of Newton’s Law. 
 
Aside from acting as scaffolds and bridges, anchors also help in activating the 
correct schema.  Sometimes students may hold “parallel but different schemas, one 
which is appropriate for solving the problem, and the other which is not” (Fast, 
1997, p. 328).  Which schema is finally chosen by the student depends on several 
factors, such as problem representation (wording the problem differently, for 
instance), the familiarity of the context, and the degree of concreteness (Perkins & 
Salomon, 1989).   
 
How then were the anchors in this study generated?  The process was two-fold.  
First, the misconception-prone situations were examined to discover possible 
reasons for such false beliefs.  Previous literature (Tversky & Kahneman, 1977; 
Piattelli-Palmarini, 1994) was heavily considered.  Do the misconceptions occur 
because of too much abstraction, a failure to use multiple perspectives, or other 
factors?  Second, anchors were constructed to attack the specific reasons for the 
misconceptions.  For instance, in Question 1, the framing fallacy has been found to 
occur among learners who fail to view problems from various perspectives.  Thus, 
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the appropriate anchor is one which spells out different perspectives in a clear 
manner. 
 
Fast suggested three techniques he has found useful for constructing anchors: 
“presenting the problem from a different perspective, utilizing concrete situations, 
and changing the numerical quantities in order to present an extreme case” (Fast, 
1997, p. 329).  These three techniques are illustrated in the examples that follow.  
 
For this research then, possible anchors, conceptually isomorphic to misconception-
prone situations, were generated.  As discussed previously, these anchors serve to 
draw out beliefs held by students which agree with formal probability theory, and 
which therefore are expected to generate correct responses (Clement, 1987).  The 
misconception-prone situations in this study have been deemed by researchers (e.g., 
Tversky & Kahneman, 1977; Piattelli-Palmarini, 1994) as often receiving wrong 
answers, which indicate mathematically incorrect concepts.  Specifically, it was 
asked whether or not the generated analogous situations act as anchors and help 
students overcome previous misconceptions?   
The tested hypotheses are as follows: 

• Possible anchoring situations are more likely to result in more correct 
answers (thus, more correct concepts and schemas) rather than 
misconception-prone situations. 

• Anchoring situations can be used to help students overcome previously held 
probability misconceptions. 

 
Methodology 

Instruments 
     Ten misconception-prone situations (mostly adapted from Piattelli-Palmarini’s 
1994 text on Tversky and Kahneman’s work) were matched with conceptually 
isomorphic researcher-generated possible anchoring situations. The former were 
compiled as Version A, and their analogous counterparts as Version B.  Problems 
were given in multiple-choice format.  Justifications for student answers were also 
requested.  
 
Two sample questions (both versions) are stated below. The first concerns the 
framing fallacy, modified from one of Tversky and Kahneman’s (1977) 
experiments. 
 
Question 1 (Version A, no anchor):  Imagine that our country is preparing for the 
outbreak of a disease that is expected to kill 500 people.  Two alternatives to 
combat the disease have been proposed.  Assume that the consequences of the 
program are as follows: 
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a. If Program A is adopted, 250 people will be saved. 
b. If Program B is adopted, there is 1/2 chance that 500 people will be saved 

and 1/2 chance that no one will be saved. 
c. It does not matter if you choose a or b. 

 
Which will you choose and why? 

 
Research has shown that most people are conservative and will choose the first 
scenario of making sure that at least half the people will be saved (Piattelli-
Palmarini, 1994).  In short, they fall prey to the so-called “framing fallacy”, which 
means that when faced with a problem concerning choice, they “frame their 
decision”; that is, they (emotionally and rationally) accept it in the terms in which it 
is presented and neglect to look for another alternative formulation.  Piattelli-
Palmarini described it thus:   
 

Thanks to our cognitive sloth we become prisoners of the frame we are offered.  We 
isolate the problem from its global context; the problem itself becomes the 
immediate and exclusive center of our attention. We do not take into account all the 
pros and cons of our choice and its consequences (p. 57). 

 
The mathematically correct answer utilizes the concept of mathematical 
expectation.  Using the definition, there is no difference between the first and 
second scenarios.  In the long run, the number of people expected to be saved is 
250.  ½ (500) + ½ (0) = 250. 
 
Let us now look at the analogous (anchoring) counterpart in Version B. 
 
Question 1 (Version B, anchor) Imagine that our country is preparing for the 
outbreak of a unusual disease that is expected to kill 500 people.  Two alternatives 
to combat the disease have been proposed.  Assume that the consequences of the 
program are as follows: 

a. If Program A is adopted, 250 people will be saved. 
b. If Program B is adopted, the number of people who will be saved is the 

average of 500 and 0. 
c. It does not matter if you choose a or b. 
 

Which will you choose and why? 
 
Put this way, the identical scenarios posed by both “a” and “b” are readily apparent.  
The second statement is a direct (identical) alternative formulation of the first one, 
and the framing fallacy should not occur. It does not require much mental shift 
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work, so people should be more readily capable of shifting from one scenario to the 
other. 
 
How was this situation developed as an anchor?  Recall that one function of an 
anchor is to enable the learner to choose the correct schema from several 
possibilities, and that a useful technique to build an anchor is to present the 
problem from a different perspective.  Because the false belief inherent in the 
framing fallacy is precisely the failure to use various perspectives, it seemed logical 
to investigate whether this technique (presenting the problem in a different way), 
attacking this fallacy head-on, so to speak, works.       
 
The second question is perhaps the most famous conundrum of all - the Monty Hall 
paradox, first discussed by Gardner (1961).  The paradox stemmed from the game 
show “Let’s Make a Deal” hosted by Monty Hall in mid-1900s America.   
 
Question 2 (Version A, no anchor):  As a contestant in a game show, you are 
asked to choose one door among three closed doors.  Behind two of the doors are 
goats, and behind the third is a car.  The host knows which doors contain which 
prizes.  You choose a door, say A.  The host then opens one of the other two doors 
(say B), revealing a goat.  The host then asks, “Do you want to stick with your 
choice, A?  Or do you want to switch to C?”  What will your strategy be?  Why? 

a. You stick with (and finally open) A. 
b. You switch to (and finally open) C. 
c. You don’t think it matters—half of the time you stick with A, half of 

the time you switch to C. 
 
Much research has shown that most people would choose “c,” that is, they don’t 
believe that the host’s opening of a door with a goat has any effect on the final 
outcome.  Another erroneous supposition would be to believe that after a door has 
been opened by the host, the probability of your choosing the right door (among the 
two remaining doors) must be 50%.  Thus it doesn’t really matter if you stay or 
switch. 
 
But there is a mistake in the addition of probabilities.  The sum of the probabilities 
of the two closed doors is indeed 1, but the two probabilities are not equal.  The 
door you choose first always has a 1/3 chance of being the right one.  The other two 
doors combined have a 2/3 chance of containing the car.  But at the moment Monty 
Hall opens the door B (with the goat), the other one C alone has a 2/3 chance of 
containing the car.  Therefore, contrary to intuition, switching increases the 
probability from 1/3 to 2/3.  1/3 added to 2/3 equal 1, just as ½ and ½ do, but in this 
game, the probabilities are not equal.   



86  Using Anchors for Probability Misconceptions  

The above explanation is usually given to explain the strategy, but again research 
has shown that many people still reject it (the columnist Marilyn vos Savant, for 
instance, received many angry letters from mathematicians when she correctly 
explained the preceding strategy). 
 
How should an anchor be constructed in this case?  Recall that one of Fast’s (1997) 
techniques was to change the numerical quantities to exaggerate the situation and to 
present an extreme case.  Hopefully, the extreme obviousness of the situation will 
trigger the correct schema, making the solution readily apparent.  For instance, Fast 
used this strategy to counter a statistics misconception concerning sample sizes.  
Consider two teams competing for the championship.  Would a 5- or 9-game series 
be more likely to show which team is better?  Or is there no difference?  Fast 
discovered that most students fall prey to Tversky and Kahneman’s (1977) 
representativeness heuristic; that is, they believe that the two sample sizes work 
equally well, that there is no difference between 5 or 9 games.  However, 
statistically speaking, the 9-game series would be more likely to show which team 
is actually better. 
 
To counter the misconception, Fast constructed the following anchoring situation:  
Instead of comparing 5- and 9-game series, Fast (1997) asked the students to 
choose between a sudden-death one-game and a 5-game series.  Which is more 
likely to show which team is better?  Practically everyone answered that a 5-game 
series is better.  Fast explains, “Experience tells you that you do not win every 
game; therefore, a sudden death 1-game playoff is very risky whereas a 5-game 
series gives you a better chance to show your talent.  It is the extremity of the 
numerical quantity ‘1’ in the one-game series which makes the correct choice more 
obvious.  Consequently, this situation provides an appropriate anchor” (p. 430).  
 
In the Monty Hall paradox, a possible anchor utilizes a similar strategy. Fr. 
Bienvenido Nebres (Lee-Chua, 2001b) proposed the following situation, using 
extreme numerical quantities to make the correct answer more obvious - and 
convincing.  Consider the anchoring counterpart of the Monty Hall paradox: 
 
Question 2 (Version B, anchor):  As a contestant in a game show, you are asked to 
choose one door among 10 closed doors.  Behind 9 of the doors are goats, and 
behind one door is a car.  The host knows all which doors contain which prizes.  
You choose a door, say A.  The host then opens one of the other 9 closed doors (say 
B), revealing a goat.  The host then asks, “Do you want to stick with your choice, 
A?  Or do you want to switch to another door?”  What will your strategy be?  Why? 

a. You stick with (and finally open) A. 
b. You switch and finally open another door. 
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c. You don’t think it matters—half of the time you stick with A, half of 
the time you switch to another door. 

 
Just as in Fast’s sudden-death playoff example, in this exaggerated version of the 
original paradox, most of the subjects felt that the correct choice was quite obvious.  
They often decided (correctly) to switch.  Why?  Changing the situation from 3 to 
10 doors often activated the correct schema, as described by many of the subjects in 
the following manner:  Suppose for instance, that your original choice was the right 
one, when Monty Hall opens a goat-door, then for you to switch will definitely 
penalize you.   But if your original choice was a goat-door anyway, you will 
certainly gain by switching.  How often is your original choice correct (and thus 
penalized if you switch)?  One out of 10 times.  How often will your original 
choice be wrong (and thus you will be rewarded if you switch)?  Nine out of 10 
times.   
 
The above explanation, triggered by the extreme case is more convincing than the 
traditional one (by Marilyn vos Savant and others).  Nevertheless, viewing the 
problem in this way sheds light on this solution: The door that you choose first 
always has the probability 1/10 of being the right one.  The other doors combined 
have a 9/10 chance of containing the car.  At the moment Monty Hall opens a door 
containing a goat, the other remaining 8 doors will have a 9/10 chance, thus 
switching is advisable.  Moreover, because there are more doors in this version, the 
possibility of a 50-50 chance does not arise, and does not mislead the subjects into 
thinking that neither strategy matters.  
 
Sample 
The subjects for this study were 30 junior science majors from a university in the 
Philippines.  All have taken an introductory probability and statistics class one 
semester before this research was conducted. 
 
Procedure 
The subjects were first given the ten questions of Version A to complete.  Their 
answers were then collected - to prevent the possibility of returning to Version A 
after answering B.  They were then immediately given Version B.  No time limit 
was given, but all the subjects completed both versions of the questionnaire 
(including written justifications for their choices) within one hour.   
 
When the subjects submitted Version B, they were asked whether they could be 
interviewed.  The purpose of the interview was to determine whether the anchors in 
Version B could be used to help overcome misconceptions in A.  All subjects 
agreed, but it was found later that six got perfect scores (on both versions) with 
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appropriate justifications for each question, thus they were excused from the 
interviews.   
 
For the remaining 24 subjects, each was individually interviewed by the researcher 
the day after completing the questionnaire.  They were presented with situations in 
Version A in which they had wrong answers (misconceptions) and the analogous 
counterparts (possible anchors) in B wherein they had right answers.  In the 
interview, the researcher guided the subjects in a reasoning process where 
hopefully they would be led to correct their incorrect answers in A.  Following Fast 
(1997), this change from a wrong to a right response would be interpreted as 
evidence of overcoming that particular misconception. 
 
The results were categorized as either “Success,” “Partial Success,” or “Failure,” 
coded 1, 0.5, or 0, respectively.  “Success” means that during or after the interview, 
the subject changed his or her wrong response in Version A to the correct one, with 
the help of the anchor in Version B.  “Partial Success” means that the subject 
changed his or her wrong response in Version A to the correct one, but without the 
help of the counterpart in Version B (e.g., the change was due to other factors).  It 
can also mean that the subject changed his or her wrong response in Version A to 
the correct one, but he or she was not convinced about the reasons for the change.  
“Failure” means that the subject did not change his or her incorrect response, or 
changed it to still another wrong one.  

 
Results and Discussion 

Responses in Both Versions 
In Version A, 30 subjects answered 10 questions each, for a total of 300 answers. 
However, six subjects obtained perfect scores with appropriate justifications for 
both versions, thus were excused from the interviews and deleted from further 
analysis.  Of the remaining 240 responses, 108 were mathematically correct, thus, 
there were 132 wrong answers.  In Version B, out of 240 answers, 198 were 
correct, leaving 42 wrong responses. Based on the proportion of correct answers, 
therefore, correct schemas were used 108/240 or 45% of the time in Version A 
compared to 198/240 or 82.5% of the time in B.  This difference is highly 
significant (Z = 16.3, p < 0.01). Moreover, each question in Version B resulted in 
more correct responses than its counterpart in A, and no subject had a correct 
answer in Version A but a wrong one in B.  For instance, Table 2 shows the number 
of correct responses for the three previous questions and possible anchors. (The 
Version B situations were constructed by the researcher to function as possible 
anchors, but their actual effectiveness still has to be investigated, hence the use of 
the word “possible.”  Actual success rates of the possible anchors appear in Table 
1.) 
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Table 1. 
Number of Correct Responses for Sample Questions in Both Versions 

 

Question 
Number  

Version A  
 (24 subjects) 

Version B 
 (24 subjects) 

Possible Anchors 

1 15 22 7 
2 9 19 10 

These results indicate that the situations in B rightfully served their purpose to 
encourage students to use correct schemas in understanding hypothesis of the study, 
that possible anchors are more likely to result in more correct answers rather than 
misconception-prone situations, has thus been supported.  
 
 
Anchoring Situations 
The subjects who did not get perfect scores for both versions were interviewed, 
focusing on situations where possible anchors in Version B appeared for the 
misconceptions in A.  For instance, from Table 1, there are seven possible anchors 
for the first question, and 10 for the second. 
 
Based on the coding method presented previously, the points that best describe the 
subjects’ subsequent decision were computed.  The proportion of these points to the 
total possible number of anchors was defined as the Success Rate.  These results 
are shown in Table 2.  In general, the situations in Version B successfully anchored 
students to overcome their misconceptions in A.  Success rates ranged from 0.75 to 
1.00. The hypothesis that anchors can be used to help students overcome previously 
held misconceptions has also been supported. 
 
Table 2.   
Results of Interviews with 24 Students 

Question Possible Anchors Resulting Points 
after Interview 

Success Rate 

1 7 5.5 0.78 
2 10 7.5 0.75 

 
 
Successful Anchors 
To elaborate on the coding process, transcripts from interview sessions follow. (R 
stands for researcher, S for subject).  These sessions were done one day after the 
questionnaires were answered.  
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The following interview was coded “Success” and given a score of 1. 
R:  Here is Version A of Question 1.  Your answer was “a.” Will you stick 

with this?  
S:  I think so. 
R:  Why? 
S:  Because the other option is too risky.  The chance that everyone might 

die is too high.  It is not worth taking. 
R:  But so is the chance that everyone might be saved. 
S:  What are you trying to say? 
R:  Here is Version B.  Let’s look at Question No. 1.  You chose “c.”  Do 

you still agree?  
S:  I think so.  The results of “a” and “b” are the same.  Both are 250. 
R:  Now look at these two versions again carefully.  Can you see any 

similarities? 
S:  (studies for a while, then smiles) I think this is a good analogy (points to 

Version B) to this one (Version A). I get it.  The answer to the earlier 
one should also be “c.” 

R:  Can you explain why? 
S:  There is a 50% chance that everyone will die, but there is also a 50% 

chance that everyone will live.  In this case, when you add the two 
probabilities, which is the case with Version B, you will get 250 people 
saved or 250 people dead.  I should be using the formula in Version B 
for the problem in Version A.  I think we studied this last time.    

R:  Do you remember? 
S:  Yes.  Mathematical expectation.  

 
Clearly, in this situation, the anchor in Version B helped the subject change his 
wrong answer in Version A and justify it well.  Most of the interviews ended along 
the same lines, with most anchors becoming successful at helping students revise 
misconceptions. 
 
What accounts for the high success rates?  Let us return to the notion of changing 
knowledge construction (revising schemas). According to constructivist theory, 
students come to comprehend thoroughly concepts through personal construction of 
knowledge (Davis, 1984).  This “genuine” understanding is contrasted to mere 
“instrumental” knowledge, where the student knows how to go about particular 
routines but without thorough understanding of the concepts involved or how to 
apply them to new situations.   
 
Anchors become useful in revising schemas.  Fast (1997, p. 327) explained, “Since 
misconceptions have been acquired through constructivist activity, it is reasonable 
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to apply the constructivist approach in the concept reconstruction process to acquire 
mathematically correct concepts, or schemata.”  When situations where students are 
encouraged to answer correctly are generated, then anchors are established, and 
revision of schemas can proceed.   
 
Partially Successful and Unsuccessful Anchors 
The majority of the anchors in this study have been successful, as we have noted.  
However, some interviews were coded only “Partial Success,” like the following: 

R:  Here is Version A of Question 1. You chose “a” yesterday.  Will you 
stick with this?  

S: Of course. It is inhuman to choose something wherein there is a chance 
that the whole population will die. 

R:  Look at the question from the mathematical point of view.  Now look at 
Version B.   

R:  You chose “c” yesterday.  Do you stick with this answer? 
S:  Yes.  This is not like the first one. There is no uncertainty here, only 

averaging. 
R:  So you mean there are no probabilities in getting the average? 
S:  I don’t think so.  An average is just getting the mean of things, but 

probabilities are related to odds and things like that [sic], more 
complicated.  

R:  Look at these two questions again carefully.  Do you see any 
similarities? 

S:  Well, both have the same numbers there, and in some way seem to be 
alike. 

R:  In what way? 
S:  (after a few minutes) I don’t really know how to explain it, but they seem 

the same.  
R:  Do you recall the concept of mathematical expectation? 
S:   (after a few minutes):  Oh.  So the answer to Version A is also “c”? 
R:  What do you think? 
S:  I think so.  If we are going to use expectation, then it’s like a series of 

averages, isn’t it? 
R:  It’s actually the average in the long run. 

 
Unlike the preceding case, here the subject finally revised his misconception, but 
not wholly with the help of the anchor. Though helpful, the anchor was not 
convincing enough. The researcher had to point out and clarify the relationship 
between expectation, average, and probabilities.  But since the subject finally 
changed to the correct answer, his effort could not be considered a failure either, 
thus was coded “partial success” (0.5). 
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Let us now look at the third sample transcript, one of the few times when an anchor 
failed (coded “Failure” or 0):     

R:  Here is Version A. Your answer yesterday was “a.” Would you stick 
with this? 

S:  Yes. 
R:  Why? 
S:  At least if I choose “a,” then half of the people will survive. 
R:  Now here is Version B.  For Question No. 1, you chose “c.”  Do you 

stick to this? 
S:  Yes. 
R: Why? 
S:  There is no difference between “a” and “b”.  When you compute it 

right, the average in “b” is also 250.  
R:  Look at the two questions carefully.  Can you see any similarities?  
S:  Obviously they are all about people surviving a disease.  The numbers 

are also alike. 
R:  Anything else? 
S:  (shrugs) The difference between the two questions though is also a lot 

[sic].  In A, there are probabilities, so we can never be really sure how 
many people will survive.  In B, there are no probabilities, so we are 
sure 250 will live, the same for “a” and “b.” 

R:  Do you remember the concept of mathematical expectation? 
S:  I think so.  Isn’t there a long formula for it? 
R:  What do you think of the formula in “b” for Version B? 
S:  Getting the average?   
R:  Yes. 
S:  You mean expectation is just getting the average?  I don’t think so.  At 

least that’s not how the teacher explained it to us. 
R:  What do you think expectation means then? 
S:  Well, it is a number or an event that you expect will happen.  I 

remember something about tossing dice and coins, but I don’t think 
they have anything to do with average. 

R:  Perhaps you should review mathematical expectation.  So you are not 
changing your answer for Version A? 

S:  Should I? 
 
Clearly, in this case, the anchor failed.  Not even when the researcher spelled out 
the concept to be utilized (expectation) did the subject overcome her 
misconception.  She was a victim not only of the framing fallacy, but also by a 
wrong understanding of expectation.  Again we turn to constructivism.  In 
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establishing schemas, students have to exert considerable time and effort, which 
make previously acquired concepts difficult to eradicate.  Indeed, erroneous ideas 
are difficult to erase, especially in personalized contexts (Myers, Hansen, Robson, 
& McCann, 1983). 

 
Conclusion 

This study investigated college science majors’ conceptual understanding of 
various probability situations, and whether anchors can help them deal with 
misconceptions. The researcher-generated counterpart situations served as anchors.  
As we have noted, these anchors drew out beliefs from students - beliefs which 
coincided with formal probability theory and which therefore resulted in a majority 
of correct responses.  They also succeeded in guiding students to overcome false 
ideas.  However, as shown by different success rates, not all anchors worked 
equally well for all students.  Students who still held onto their wrong beliefs even 
after encountering analogies might most likely need to hone other skills, such as 
basic understanding of fundamental concepts. 
 
Using anchors to overcome mathematical misconceptions is a fruitful field for 
research.  The causes for such misconceptions have already been analyzed (Tversky 
& Kahneman, 1977).  Now the burden shifts from understanding the reasons for 
these false beliefs to ways of dealing with them, and anchoring is one of the posited 
methods.  Recommendations for further research include: 

1. Focus on analyzing which probability situations serve as the most 
effective anchors, and the reasons behind their effectiveness. 

2. Hypothesize certain situations where anchors may fail, and test these 
hypotheses.  For instance, anchors may not succeed in situations where 
questions are presented ambiguously. 

3. Study the factors which make students more readily accept anchors in 
revising their former erroneous ideas.  Such factors may include an 
ability to see connections between different topics, openness of mind, 
and an interest in mathematics in general. 

 
Probability may indeed be double-edged, but correctly applying its concepts to 
academic and everyday situations is necessary.  With the use of anchors, 
misconceptions and errors will not only likely be minimized, but when introduced 
correctly, may also prevent them from happening in the first place. 
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