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Abstract

This paper reports an investigation of 127 secondary school students’ ability to
recognise patterns and make generalised descriptions of them. Two spatial
patterning tasks were presented in either concrete or diagrammatic formats and
the students were able to use concrete, diagrammatic or verbal formats to represent
them. The SOLO Taxonomy (Biggs & Collis, 1982, 1991) was used to classify
the students' generalisations. Analysis identified a progression in the students’
ability to recognise generalisations from their representations of spatial patterns,
which fits the SOLO model. These were predominantly consistent with Biggs' and
Collis' (1982, 1991) description of the ikonic mode, with some concrete symbolic
support. Regardless of the SOLO level of their generalisations, the majority of the
students chose to use blocks to model at least the fifth step of the pattern before
they moved to working from an internal representation. Drawing diagrammatic
representations was not a very frequent choice.

Introduction

The purpose of this paper is to report the outcomes of an exploration of
types and levels of cognitive functioning underlying the conceptual development of
spatial patterns. It focuses specifically on pattern formation and generalisation
and links these to the SOLO Taxonomy (Biggs & Collis, 1982, 1991). The focus
on spatial patterns was chosen because of the acknowledged importance of spatial
thinking in its own right as well as its powerful contribution to mathematical
thinking in general (Australian Education Council, 1991; Bishop, 1983; Lean &
Clements, 1981; National Council of Teachers of Mathematics, 1989).

Expressing generality from patterns is a notion fundamental to the
development of mathematical concepts such as algebra. It is an important
component of the Curriculum and Evaluation Standards for School Mathematics
(National Council of Teachers of Mathematics, 1989) and is one of the three
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subheadings in the algebra section of the National Statement on Mathematics for
Australian Schools (Australian Education Council, 1991). The National
Statement on Mathematics for Australian Schools recommends that children
"work with a variety of numerical and spatial patterns, and find ways of
expressing the generality inherent in them....leading children to recognise that
different descriptions can fit the same spatial arrangements” (p.191). It is
important to explore the most effective ways of implementing these ideas in the
classroom at all levels.

Several writers (Bishop, 1983; Presmeg, 1992; Thomas and Mulligan,
1994) have acknowledged the importance of encouraging students to use visual
processing in order to succeed at mathematical tasks, and this is particularly true
of spatial patterning. However, there is evidence that some children have
difficulties with visual processing (Bishop, 1983) and that there is a need to
understand more about how it can be developed. Kosslyn (1983) contributes to
this understanding by defining four stages of image processing: generating an
image, inspecting an image to answer questions about it; transforming and
operating on an image; and maintaining an image in the service of other mental
operations. This is reflected in the National Statement on Mathematics for
Australian Schools, which claims that, to be able to represent a pattern internally.
children first need to be able to see it, then find ways to express it verbally.

In this study, we are concerned with finding out more about the first of
Kosslyn's stages, how students go about generating an image in order to be able to
see the pattern. This is a critical step. In fact, Resnick and Ford (1981) suggest
that “the important intellectual work is over once a representation has been
developed" (p.220). In particular, this part of the study is concerned with the
kinds of external representations students may need to create in order to be able to
transer (o a mental representation. First, however, it is important to understand
more about what previous research has offered regarding learners’ approaches to
processing mathematical information, and whether some of these approaches lead
to more successful outcomes than others.

There is evidence that successful mathematicians do not necessarily all
use the same modes for processing information (Krutetskii, 1976; Shama &
Dreyfus, 1994). The modes they use can include verbal-logical and visual-
pictorial (Krutetskii, 1976), physical/kinaesthetic, ikonic or notational forms, or
various combinations of these (Gardner, 1983; Thomas & Mulligan, 1994).
While Mayer and Sims (1994) found that some students do not need visual
prompts because they can generate their own representations, others have reported
the manipulation of materials (Owens, 1994), drawing diagrams (Resnick & Ford,
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1981), or a combination of these (Bishop, 1983) to be important in establishing
internal representations and extracting meanings. Krutetskii (1976) claimed that
students can be equally successful at mathematics with different correlations
between visual-pictorial and verbal-logical components.  Watson, Collis and
Campbell (1994) comment on the need for all of these forms to be used to support
instruction in the early high school years.

In spite of this knowledge, there is evidence of a mis-match between
students' preferred methods of processing information and the way in which the
information is presented to them (Resnick, 1992). Resnick suggests that this may
be due to failure to encourage children to build on to their already established,
intuitive ideas about mathematics. The contributions of Biggs and Collis (1991)
and others (for example, Campbell, Watson & Collis, 1992; Collis, Watson &
Campbell, 1993; Watson et al., 1994) explore this notion of multimodal
functioning, particularly in relation to the ikonic and concrete symbolic modes of
the SOLO Taxonomy (Biggs & Collis, 1982).

Earlier studies (Robertson & Taplin, 1994; Taplin & Robertson, 1995)
with Year 7 students suggested a progression in the sophistication of students'
expressions of generalisation which were consistent with those described by the
ikonic mode of the SOLO Taxonomy (Biggs & Collis, 1982, 1991; Campbell et
al,, 1992). In particular, there was a suggestion of a progression through
unistructural-multistructural-relational levels, with the relational level responses
showing some hint of concrete-symbolic thinking. Furthermore, Robertson and
Taplin (1994) found that when students were asked to describe the 5th, 10th,
100th and nth terms of patterns, the majority of students chose to make concrete or
diagrammatic representations of at least the fifth and tenth terms before they
began to work from an internal representation of the pattern. While the studies
did not distinguish between the functional levels at which students chose to
operate, and the optimum levels at which they were capable of operating, they
posed the question of whether students eventually reached a stage in the
development of their thinking where they transcended the need for concreteness
(Collis et al., 1993, p.119). Consequently, two major questions arose from the
earlier studies:

j I Is the suggestion of a unistructural-multistructural-relational cycle in the
ikonic mode supported by similar styles in subsequent modes of the
SOLO taxonomy? '



151 Secondary School Students’ Generalisations Of Patterns

p At what stage in the development of expression of generalisations about
patterns, are students able to internalise and generate the pattern without
needing to make an external concrete or diagrammatic representation?

In attempting to answer these questions, data were collected from students in the
first and last years of secondary schooling at three schools.

The Sample

Three schools were used for data collection. One was located in a low-
income urban fringe neighbourhood with high levels of public housing,
unemployment and complex family structures. The second school was located in a
middle income urban neighbourhood where employment and family structure
appeared to be much more stable. The third was in a rural community. In each
school, random samples of gender balanced groups were selected from each of
Grades 7, aged 12-13 years (N=65), and 10, aged 15-16 (N=62), from populations
described by their teachers as being of average ability.

Tasks

Two formal mathematical tasks were selected in which students were
asked to express generalisations from patterns. These tasks were chosen for the
following reasons: they are spatial in nature, they are suitable for representation
in different formats, namely physical/kinaesthetic, visual-pictorial, and verbal-
logical representation, and they are typical of patterning tasks recommended in
documents such as the Curriculum and Evaluation Standards for School
Mathematics (National Council of Teachers of Mathematics,1989) and National
Statement on Mathematics for Australian Schools (Australian Education Council,
1991) . The two patterns are represented, in pictorial form, in Figure 1.

In order to ensure that the format in which the Experimenter presented
the task was not likely to influence the student's form of representing it, the tasks
were presented in alternating formats: concrete modelling, in which a
representation of the pattern was made from blocks or other materials, and
diagram, in which a two-dimensional representation was given.
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Procedure

Data were collected in individual clinical interviews, each of
approximately twenty to thirty minutes duration. Observation and Teachback
(Pask 1976) strategies were used to monitor the students' responses and interviews
were tape-recorded for later analysis. The students were given the tasks
individually and one at a time. Students were shown the patterns and asked to
identify the 5", 10™ and 100™ terms in the sequence (Orton & Orton,1994), They
were given a selection of materials, including blocks, squared paper and blank
paper, and told that they could represent any steps of the patterns in whatever way
they chose. They were then asked to describe the pattern and a generalisation for
"any term". It has been reported elsewhere (Robertson & Taplin, 1994) that the
most frequently chosen format of representation was concrete modelling. This was
irrespective of the format in which the task was presented. Robertson and Taplin
(1994) also reported that the main reason given by the students for this preference
was that it gave a physical picture of the pattern which was quick and easy to
construct.

Results

Format of Presentation

Table 1 shows the numbers of students who used, respectively, concrete,
diagrammatic and verbal representations, or a mixture of these (that is, started
with one and switched to another) for each of the two tasks.

Table 1 : Forms of Representation of the Tasks by Number of Students

Year 7 (N=65) Year 10 (N=62)
Path Step Path Step
Concrete 33 (51%) 50 (77%) 23 (37%) 31 (50%)
Diagram 5 (8%) 5 (8%) 4 (6%) 3 (5%)
Verbal 17 (26%) 6 (9%) 29 (47%) 24 (39%)
Mixture 10 (15%) 4 (6%) 6 (10%) 4 (6%)

In the Year 7 group, there was a clear tendency for the majority of
students to represent the pattern concretely. This was also the preferred format for
the Year 10 students on the Step task although on the Path task there were more
students who went straight to a verbal representation of the task. On both tasks.
there were more Year 10s than Year 7s who represented the task verbally from the
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start. In both year groups, only small numbers of students chose to represent the
problem in diagram format. This is particularly interesting, considering that most
secondary teaching which focuses on giving visual representations is presented
diagrammatically.

Table 2 : Numbers of Students using Same Format of Representation on Both

Tasks
No. using same No. using different
format on both tasks formats
Year 7 37 28
Year 10 48 14

Table 2 shows the numbers of students in each year group who were
consistent in using the same format on both tasks. A chi-square test indicated a
significant difference in proportions (x’=6.023, p<0.05).

Table 3 : Students’ Representation Formats by Presentation Format of Task

Presentation Format

Year 7
Path Step
Concrete Diagram Concrete Diagram
Concrete 18 15 28 22
Diagram 3 2 0 5
Verbal 5 9 2 4
Mixed 5 > 1 3
Presentation Format
Year 10
Path Step
Concrete Diagram Concrete Diagram
Concrete 11 12 20 11
Diagram 1 3 0 3
Verbal 17 12 7 17
Mixed 3 3 3 1
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As Table 3 indicates, for the Year 7 subjects this preference for
representing in concrete form was independent of the format in which the task was
presented. For the Year 10 group, on the Path task the chosen form of
representation appeared to be independent of the presentation format. On the Step
task, however, there was a tendency for the students to give concrete
representations of the tasks which were presented in concrete form, and verbal
represenations of those presented as diagrams. A small number of students was
categorised as having given "mixed" representations because they began a task
with, for example, a concrete representation, and switched to another form, such
as diagram, before finally moving into verbal format.

SOLQ Levels

In the preliminary study, Taplin and Robertson (1995) classified students'
expressions of generalisations into four categories consistent with the SOLO
Taxonomy. These categories were used to classify the responses of the Year 7 and
Year 10 students in this study. It was interesting to note that there were no new
categories added at all from the data of the Year 10 students. These categories are
shown in Table 4.

Table 4 : Classification of Students’ Responses by SOLO Taxonomy

SOLO
Classification

Type of Response
(Path Task)

Type of Response
(Step Task)

pre-structural

no particular system:
unable to give explanation

“probably have 50 more blocks
- about 60-70”

“huge, bigger than all the
others”

“in lower numbers, like 10,
take away 1 from the step
number; in higher numbers,
like 60, take away 10”

no particular system:
unable to give explanation

“have to fill up the gaps to
make a square or whatever
shape it was”

“putting on all the layers till it
gets to the top”

“as big as the wall of a room-
half height of wall by about 1
metre”
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Table 4 (cont’d)
SOLO Type of Response Type of Response
Classification (Path Task) (Step Task)
unistructural visual description: visual description:

“all squares with a span in the
middle of them (pretty big,
huge, really big)”

counting on:
counting total number of
squares - counting on in

square numbers until required
step reached

1-1 matching (e.g. 100™ has
100 along each side) - ignored
squares in middle

1-1 matching as above, but
acknowledged 2 squares less
in middle

counting on in 4s

“like steps going up every
time”

“equal amount on each side
then going uphill”

“keep multiplying like a half-
built wall”

counting on:

counting blocks along bottom
and end, ignoring those in
middle (5" has 5, 10™ has 10
eic.)

counting from representation
counting back (start with step

number and subtract one for
each row)
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Table 4 (cont’d)

Secondary School Students' Generalisations Of Patterns

SOLO Type of Response Type of Response
Classification (Path Task) (Step Task)
multistructural | looking for patterns which are | looking for patterns which are
logical to Ss, possibly based on | logical to Ss, possibly based on
previous experiences: previous experiences:
multiplied step number by 4 & | multiples of previous terms
subtracted 1 for middle (10™=5thx2, 100™=10thx10)
Nx3 in middle (ie. 10™ is| 2" adds on 2, 3 adds on 3,
10x3) and 1 around edge 100" adds on 100 to 99" etc.,
but adding from start each
recognised N+2 along each | time (1+2+3...)
side but ignored number of
squares in middle
recognised NxN in middle but
ignored number of squares on
outside
relational recognition of a generalisation | recognition of a generalisation

(not expressed algebraically):

recognised NxN in middle and
2(N+2)+2N around outside

(not expressed algebraically):

numerical pattern - 3 6 10 15
(but unable to generalise a
formula)

times middle one by length
along bottom (recognised that
it would not work for even
numbers)

The summary of responses to the Path Task, shown in Table 4, indicates a
clear progression in the sophistication of responses, even within categories. The
least sophisticated of the unistructural responses were consistent with the ikonic

mode of the SOLO taxonomy, and were based on visual descriptions.

The
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counting on strategies started with the simple incorrect notion of one-to-one
matching between the step number and the number of numbers along each side of
the square. A more sophisticated response in this category was to count on in
fours, each successive four representing the four new corner squares added for the
subsequent term. The responses to this task also reflect the trend for most students
to offer strategies employing counting on or looking for patterns. On the Step
task there were, again, four distinct types of response: those which reflected no
particular system, those which involved counting on, looking for patterns and
correct recognition of a generalisation. The counting on and counting back
strategies progressed from partial counting of the steps, omitting some, to directly
counting all steps, and to counting back from the given step number. As with the
previous task, several pupils applied the strategy of working from multiples of the
fifth term. A more sophisticated approach, again similar to that used on the Path
Task, was to recognise the arithmetic progression, but to need to start adding on
from the first term. As with the previous task, the majority of students gave
responses which involved counting on or looking for patterns - and the majority of
these strategies did not lead to success.

Figure 2 shows the numbers of students whose responses were consistent
with each of these categories.

30 -

& D Year 7
i (Path)
o
2
Z:',' Year 7
E (Step)
E
= Year 10
(Path)
. Year 10
(Step)

SOLO Level

Figure 2. Frequency of Responses by SOLO Level and Grade
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From Figure 2, it can be seen that the majority of Year 7 students had
unistructural (U) and multistructural (M) responses to the Path task. The Year 10
students gave predominantly multistructural responses, although there were quite
high numbers of prestructural (P) and unistructural responses from this group as
well. On the Step task, 25 Year 7 students gave unistructural responses. A further
25 gave responses which reflected relational level thinking, although they were not
able to give correct solutions (R1). There were very small numbers of students
who could give correct, relational level responses which were hinting at the
concrete symbolic mode (R2): 2 Year 7 students on the Path task and 2 Year 10s
on the Step task. The Year 7 responses seem to be more sophisticated than the
Year 10 students, a large number of whom responded at the prestructural,
unistructural and multistructural levels. These responses were nearly all
consistent with the ikonic mode of the SOLO Taxonomy (Biggs & Collis, 1982).
While the students made some use of concrete symbolic counting and patterning
strategies, they relied primarily on intuitive strategies to describe the patterns. It
was interesting to note that this reliance on intuitive strategies was as evident with
the older, Year 10, pupils as it was with the younger ones.

Interaction Between SOLO Level of Representation and Preferred Format of
Representation.

One of the questions raised by the earlier studies was whether there was
any decline in students' choice to represent tasks in concrete form as they became
increasingly sophisticated in their ability to describe the patterns. -

The data in Table 5 suggest that, amongst the students who responded at
unistructural and multistructural levels, there was a strong tendency to represent
the pattern concretely. This tendency was less pronounced with the Year 10
students, where there was some evidence, at multistructural level and more so at
prestructural and unistructural levels of students going straight to verbal
representations. At both grade levels, it can be seen that at least half of those
students who were able to respond at the relational level (whether or not they
generated a correct rule) showed a preference for concrete representation.
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Table 5 : SOLO Taxonomy Level of Responses by Format of Representation of

Task
Year 7
Path Step
SOLO LEVEL SOLO LEVEL

Pre- Uni- Multi- Relational || Pre- Uni- Multi- Relational

struct- struct- stract- struct- struct- struct-

ural ural ural ural ural ural
Concrete 1 16 11 5 7 19 6 18
Diagram 0 2 3 0 1 2 0 2
Verbal 3 6 6 2 0 3 1 2
Mixed 1 2 4 3 0 1 0 3

Year 10
Path Step
SOLO LEVEL SOLO LEVEL

Pre- Uni- Multi- Relational § Pre- Uni- Multi- Relational

struct- struct- struct- struct- struct- struct-

ural ural ural ural ural ural
Concrete - 3 14 2 8 14 6 2
Diagram 0 3 1 0 1 1 1 0
Verbal 12 9 7 1 7 10 7 0
Mixed 0 0 4 2 0 4 0 0
Discussion

In response to the research questions outlined earlier in this paper, the
following observations can be made. For the two grade levels and the two spatial
patterning tasks used in this study, there does seem to be an observable
progression in the students' ability to recognise generalisations from their
representations of spatial patterns, which fits the SOLO model. This sequence can
be summarised as follows: '

Unistructural: counting on, mostly from external representations of the pattern;
counting in either ones or a multiple of some number suggested by the pattern.

Multistructural: rtecognition of patterns and use of these as a basis for finding
specific terms in the pattern; starting from first term of pattern each time in order
to calculate a given term.
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Relational: recognition of patterns and use of these to predict any given term
directly, without needing to start from first term; articulation of generalisation, but
not in algebraic terms.

The unistructural type of response was efficient for calculating the fifth
and tenth terms of the patterns, but students either lost patience or made
arithmetical errors when trying to calculate bigger terms, such as the hundredth.
It was not possible for the students operating at this level to make generalisations
about the patterns. Responses at the multistructural level offered more efficient
systems for calculating bigger terms, but most students were still unable to
generalise using these approaches. The relational level responses allowed a more
efficient system for generalising. However, several of the students responding at
this level gave incorrect formulae and did not seem to have systems for checking
the validity of these formulae.

The above suggested a unistructural-multistructural-relational cycle
(Campbell et al., 1992). Responses at the unistructural and multistructural levels
were consistent with Biggs' and Collis' (1982, 1991) description of the ikonic
mode, with some concrete symbolic support. The students drew on some concrete
symbolic experiences with counting and patterning, but used intuitive strategies to
try to make this previous knowledge fit the patterning tasks they were given. At
the relational level there was some suggestion of transition to concrete symbolic
mode. It is somewhat alarming that there was no suggestion of further
development beyond the Year 7 level with this particular type of task - and
perhaps even that some Year 10 students performed at lower levels than the
younger group.

Regardless of the unistructural-multistructural-relational cycle, the
majority of the students chose to use blocks to model at least the fifth step of the
pattern before they moved to working from an internal representation. Drawing
diagrammatic representations was not a very frequent choice. Furthermore, with
the exception of the Year 10 group on the Step task, this generally occured
regardless of the format in which the task was presented to them. This could
support the idea proposed by Campbell et al. (1992), that teachers should be
encouraging modelling and drawing as an important step towards efficient mental
processing of the information, and in fact indicate that modelling should be
encouraged to a greater extent than drawing. This question warrants further
investigation. It also suggests that older students do not necessarily "transcend the
need for concreteness” (Collis et al., 1993, p.119), as we might expect them to do.



Margaret Taplin, Margaret Robertson 162

Implications for Teaching and Further Research

Several teaching implications and further research questions have arisen
from the findings of this study. One of these is why there were so many students,
even at Year 10 level, who gave prestructural and unistructural responses. We
need to find out more about why the students did not seem to have progressed in
their ability to form generalisations from patterns, so that we can find strategies to
move from ikonic to concrete-symbolic modes of thinking. One explanation could
be that the design of this study did not allow for distinguishing between the
functional level at which they chose to represent the task and the optimum level at
which they were capable of representing it (Lamborn and Fischer, 1988; Watson,
et al., 1994). However, another possible explanation that warrants further
investigation could be that students receive some exposure to this type of activity
in the lower secondary school, but it is assumed that they do not need it any more
in the later years. If this is the case, then the results of this study suggest there
may be a need to expose pupils to this type of task throughout their secondary
schooling. A further research question would be to explore the extent to which the
ability to generalise from patterns at a relational level contributes to later
understanding of other algebraic principles.

Another implication for teachers arises from the need, indicated by this
study, for students to use concrete materials to model tasks, even when they are
older or capable of higher (relational) level thinking. This suggests that teachers
should be encouraged to make greater use of concrete modelling throughout
secondary school, not just in the lower grades. The infrequency of use of diagrams
also has implications, since this is probably the form of representation used more
commonly by teachers in the upper secondary school.

In addition, the findings of this study suggest some further implications
for future research. One of these is the need to investigate the link between
students' representations of spatial patterning in these structured algebraic tasks
and problem solving in "real" space, such as the interpretation of maps, graphs
and charts (Bishop, 1983). Another question which arises is the need to consider
"non-mathematical variables, such as student motivation, work habits, teaching,
and language performance which could contribute significantly to mathematical
performance” (Lean & Clements, 1981, p.296).
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