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Abstract: In mathematical problem solving, students may make various errors. In 

order to draw useful lessons from the errors, and then correct them, we surveyed 24 

eighth-grade students’ performances in geometrical problem solving according to 

Casey’s hierarchy of errors. The paper also discussed that (1) students’ motivations 

and beliefs can lead to errors at the stage of comprehension, strategy selection, and 

skills manipulation; and (2) students’ geometric schemas also influenced their 

strategy selection. 
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Background 

 

Many researchers have expressed interest in analyzing students’ errors from 

different perspectives (e. g., Cox, 1975; Dai, 1996; De Bock, Van Dooren, Janssens, 

& Verschaffel, 2002; Fiori & Zuccheri, 2005; Knifong & Holtan, 1976; Lannin, 

Barker, & Townsend, 2007; Newman, 1977). After literature review, we found 

many studies have used Newman procedure (Newman, 1977) for analyzing 

students’ errors in problem solving since 1977 (Casey, 1978; Clarkson, 1991; 

Clements, 1980, 1982; Pan & Wu, 2008; Watson, 1980). It seems that this analysis 

procedure attracted considerable attention from mathematics education researchers.  

 

Newman (1977) claimed that if a student wished to obtain a correct solution to a 

one-step word problem, he or she should ultimately proceed according to the 

following hierarchy: (1) read the problem (reading); (2) comprehend what is read 

(comprehension); (3) carry out a mental transformation from the words of the 

question to the selection of an appropriate mathematical strategy (transformation); 

(4) apply the process skills demanded by the selected strategy (process skills); and 

(5) encode the answer in an acceptable written form (encoding). Casey (1978), by 
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modifying and extending Newman's hierarchy of errors, produced a more general 

hierarchy which could be applied to the analysis of errors made on multiple-step 

word problems in mathematics: (1) question form，which is the first point of 

interaction between the written task and the person attempting it; (2) question 

reading; (3) question comprehension; (4) strategy selection; (5) skills selection; and 

(6) skills manipulation. In his hierarchy, Newman’s transformation category was 

redefined in terms of strategy selection and skills selection. This was necessitated 

by the fact that he was concerned with multiple-step problems but Newman was 

concerned with one-step problems only. Newman and Casey claimed that 

carelessness and motivation were the two error causes which could lead to various 

errors at any stage of the problem solving process (Clements, 1980). 

 

In the above-mentioned papers, the analysis technique founded on the Newman 

procedure was limited to probing students’ errors in arithmetical or algebraic word 

problems. There are very few empirical studies on this issue in Chinese context in 

literature (Gao & Xue, 2009). In this study, we used the analysis technique based on 

Casey’s hierarchy to explore secondary students’ errors in solving multiple-step 

geometrical problems. 

 

 

Methodology 

 

Participants 

The participants were 24 eight-grade students from a middle-class suburban junior 

school. The school is located in Nantong, a city near Shanghai, China. It has seven 

Grade 8 classes. The classes were ranked on the basis of their students’ performance 

(the total score of Chinese, mathematics, and English tests) in the final exam in the 

previous academic year. The 24 students were from the first author’s two classes (at 

that time, the first author was a mathematics teacher in this school.), which were the 

mid-ranked classes in this grade. They were selected to participate in the study. All 

the students had high geometric achievements in the midterm exam. This study was 

conducted in November 2002 after the midterm exam.  

 

Materials  

The mathematics subject at this school included two parts: algebra course and 

geometry course. Grade 8 students at this school learned algebra course during the 

previous Autumn term (the first term, from Sep. 2001 to Jan. 2002). Until the 

following Spring term (the second term, from Mar. 2002 to Jun. 2002), their 

mathematics subject didn’t include geometry course. The geometric series textbook 

used by students was Junior Geometry, which was published by the People’s 

Education Press in 2002. Before the midterm of Autumn 2002, Grade 8 students had 
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learned some geometric topics, such as parallel lines, construction with straightedge 

and compass, congruent triangles, and isosceles triangle. 

 

The purpose of the study was to investigate students’ errors in solving geometric 

problems. In order to reduce some influence on students’ errors (e.g. teacher’s 

instruction (Frank, etc., 2009), and student’ practice (Newell & Rosenbloom, 

1981)), we would rather choose a geometric topic which hadn’t been learned by 

these students, but also could be understood based on their prior knowledge. So that 

it will be propitious to help us explore students’ learning difficulty. Compared with 

the series textbook Junior Mathematics, published by Shanghai Education Press in 

2002, we found that a geometric topic on the theorem - “the median to the 

hypotenuse of a right-angled triangle equals to the half of the hypotenuse” (MHRT 

theorem) followed close behind “isosceles triangle” in Junior Mathematics. 

According to Junior Mathematics, the MHRT theorem would be taught in the 

autumn term of Grade 8 (the first term). However, in Junior Geometry, this theorem 

would be taught as a corollary of a property of rectangle in the spring term of Grade 

8 (the second term). It was assumed that the high-achieving participants had 

necessary knowledge and sufficient competence to understand the MHRT theorem, 

because in Junior Geometry they had learned contents of midpoint connector of 

triangle, congruent triangles, and isosceles triangle, which were used to prove the 

MHRT theorem in Junior Mathematics. Hence, it is reasonable that we selected the 

geometric topic on the MHRT theorem to investigate students’ errors made in 

solving problems on this particular topic. 

 

Instrument 

In fact, students usually don’t immediately know what to do when a novel problem 

is encountered for the first time. Therefore, they might attempt to recall a similar 

problem encountered in the past and try to use that to solve the current one. This 

means that students’ problem solving is based on their past experience in a problem 

solving episode (Robertson, 2001). Anderson (1993) argued that all skill learning 

occurs through analogical problem solving, in which examples have an important 

rule. He claimed that even if we have only instructions rather than a specific 

example to hand, then we interpret those instructions by means of an imagined 

example and attempt to solve the current problem by interpreting this example. 

Form this perspective, we designed the instrument to help students learn the MHRT 

theorem and apply it in variant contexts. To be specific, the instrument includes the 

theorem and its proof, an example, three exercises (close variant), and three test 

questions (distant variant). It is the example in the instrument that realizes how to 

apply the theorem in a novel context, because even if the theorem is well 

remembered students may not be able to apply it to the close variant problems. 

Furthermore, the exercises may consolidate what students had learned and improve  
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their competence in solving problems related to this specific topic. Finally, we 

employed the distant variant problems (test questions) to evaluate what students had 

learned and investigate which difficulties they faced. 

 

Procedure 

At the first stage, the purpose of the study was to assess the participants’ 

understanding and application of the MHRT theorem. On the first day, the twenty-

four students were interviewed individually. They were asked to read and explain 

the MHRT theorem, its proof, and an example (see appendix 1). One researcher (the 

second author) interviewed with the students individually, the other (the first author) 

wrote field notes during the interviews. If a student didn’t need help, the interviewer 

asked the student to explain what he or she had read. When a student needed help, 

the interviewer offered help. Instead of directly providing answer, the interviewer 

explained how the student could find the answer. If one explanation didn’t help, the 

interviewer should try another, and ask the student to repeat his explanation in order 

to find out if he or she really understood. Students were required to do exercises 

individually after they were interviewed (see appendix 1).  

 

At the second stage, we hoped to find out error causes of students when they solved 

geometric problems. The twenty-four students were examined within 45 minutes on 

the second day. They were required to finish three test questions (see appendix 2). 

Each student was interviewed (semi-structured interview) individually based on 

their performance when the examination was finished. All the interviews were audio 

recorded at the second stage. 

 

This study was conducted in Chinese. The instruments in the appendixes and the 

interviews were translated into English accordingly. 

 

 

Data Collection 

Students’ written work of the test questions were collected. The record of the semi-

construction interviews was translated into scripts as important references for 

encoding. Each of the authors independently used Casey’s hierarchy to encode 

students’ errors occurred in the solution to the test questions. The inter-rater 

reliability for each error of coding was 80% or more. Discrepancies were resolved 

through discussion. 
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Results 

 

In this study, students’ errors in solving geometrical problems can be classified into 

four categories of Casey’s hierarchy (see Table 1).  

 

 

Table 1 

The Students’ Errors in the Test Questions 

Hierarchy of errors TQ1 TQ2 TQ3 

Question form - - - 

Question reading - - - 

Question comprehension 2 - 4 

Strategy selection - 7 - 

Skills selection 4 - 2 

Skills manipulation 3 - - 

 

 

Question Comprehension (includes understanding geometrical figures) 

In general, if a student wants to prove a mathematical statement, he has to identify 

the hypothesis and the conclusion of the given statement. When proving a 

geometrical statement in word sentence, students are usually first asked to draw the 

corresponding geometrical diagrams and translate the sentence into the standard 

format
1
 . 

 

When Qian confronted TQ 3, he translated the statement into the standard format in 

which the statement is represented in mathematical symbols: Given that  

∠ACB=90°, ∠A=30°, and D is the midpoint of AB, prove CD=1/2AB.  

 

 

Episode 1: Interview with Qian 

1. Interviewer:   Can you read the question? 

2. Qian:        Yes. In a right-angled triangle, if an acute angle is thirty degrees, 

then the leg to the acute angle equals to the half of the 

hypotenuse.  

3. Interviewer:  Great! What do you want to prove? 

                                                 
1
 In a geometrical statement, the hypothesis is written as “given”, and the 

conclusion is written as “to prove”. The mathematical relations (spatial, numerical), 

and the geometrical elements in the statement are represented by mathematical 

symbols. 
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4. Qian:       to prove… the median to the hypotenuse, yes, equals to the half 

of the hypotenuse.  

5. Interviewer:  Can you read it again? 

6. Qian:      Oh, wrong! … I think this question is similar as the theorem 

which I learned yesterday. 

 

 

Although Qian read the question correctly (utterances 2), he intended to prove “the 

median to the hypotenuse equals to the half of the hypotenuse” (utterances 4). We 

think that the error was not caused by carelessness, but by his immoderate 

motivation - Qian considered intensively the theorem which was introduced by 

researchers on last day (utterances 6). His intention prevented him from receiving 

all of the information in the statement. 

 

When Sun confronted TQ 3, the translation errors occurred in her work (see Figure 

1). Her translation as following: Given that ∠C=90°, D is the midpoint of the 

hypotenuse, an acute angle is 30°, prove the median to the hypotenuse equals to the 

half of the hypotenuse. Sun replaced “the leg to the acute angle” by “the median to 

the hypotenuse” in her translation. In the interview with Sun, she explained: 

“because the sentence is too long, it is difficult to identify the hypothesis… I don’t 

know what to prove.” In addition, Sun remained most word representations in her 

written work, failed to translate them into mathematics symbols. Although Sun 

provided a different explanation, it is not so convincing that the cause of her error is 

different from Qian’s. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Sun’s Transformation on TQ 3. 
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In the process of solving TQ 1 (see Figure 2), Zhao directly employed the 

hypothesis “BM =BD”. This hypothesis was not provided in the given statement, 

also hadn’t been justified before she used it. In fact, “BM=BD” was unnecessary for 

solving TQ 1. In our interview with Zhao, She explained: “when I set N as midpoint 

of side AC, I want to prove two triangles MBD and NCD congruent. At that time, I 

paid more attention to identifying the two triangles congruent, and also the two 

segments BM and BD seemed equivalent, so …” From her explanation, it seems 

that the visual geometrical figure influenced Zhao’s solving process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Zhao’s Solution to TQ 1. 

 

Strategy Selection 

When students confronted TQ 2, Three students of them connect point M and N, 

then try to prove that triangle PNM is an isosceles triangle where ∠NMP=∠MNP. 
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For example, in episode 2, Li failed to prove ∠NMP=∠MNP in triangle PNM. In 

fact, it is impossible to selecting this strategy to prove MP=NP in TQ 2. 

 

Episode 2: Interview with Li 

1. Interviewer:   Can you explain your solution? 

2. Li:        I connect point M and N... If triangle PNM is an isosceles 

triangle, then PM=PN. So I want to prove ∠NMP=∠MNP… I 

just know ∠BAC=120°, ∠BAD=∠CEA=60° (see Figure 3). 

How to prove ∠NMP=∠MNP... I don’t know… 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The Drawing in Li’s Solution to TQ 2. 

 

Four students employed another impossible strategy. They wanted to prove that 

triangle MPB and triangle NPC are congruent. Zhou constructed segment BM and 

NC, and had confidence to prove the two triangles congruent (utterance 1, utterance 

4). It was unfortunate that triangle MPB and triangle NPC are incongruent when 

side AB is unequal to side AC in triangle ABC. 

 

Episode 3: Interview with Zhou 

1. Interviewer:  Can you tell me what are you thinking? 

2. Zhou:      Ok. From my drawing (see Figure 4), you see… triangle BMP and 

triangle NCP  seem congruent…               

3. Interviewer:  Can you prove your argument? 

4. Zhou:      You know, I tried again and again, but I think so… I know 

BP=CP, BM is perpendicular to AD, and CN is also perpendicular 

to AE (see Figure 4)… Let me try again! 
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Figure 4. The Drawing in Zhou’s Solution to TQ 2. 

 

Wu constructed a segment between B and M firstly, then tried to prove triangle 

BMC is a righted-angle triangle where ∠BMC=90° (see Figure 5). But he gave up 

this strategy at last. Wu told us: “if I can justify ∠BMC=90°, then MP equals to the 

half of the BC. But how to prove ∠BMC=90°, I have not any good idea. … Now, I 

try to prove that triangle MNP is an isosceles triangle.” In fact, Wu turned to 

another strategy because he failed to use priority knowledge to prove that BM is 

perpendicular to side AD in equilateral triangle ABD. 

 

                                          
 

Figure 5.The Drawing in Wang’s Solution to TQ 2. 

 

Skills Selection 

At the secondary level, the mathematics syllabus required that students should 

master the skills of five basic constructions (Ministry of Education, China, 2000). In 

the textbook Junior Geometry1, the construction “to construct a segment equal to a 

given segment” was introduced firstly. The unit of “construction with compass and 
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straightedge” in textbook Junior Geometry2, introduced the other four basic 

constructions: (1) to construct an angle equal to a given angle; (2) to construct a 

bisector of a given angle; (3) from a given point, to construct a perpendicular to a 

given line; (4) to construct a perpendicular bisector of a given segment. Students 

can apply the five basic constructions to construct complex figures. 

 

However, students may sometimes confuse proofs with constructions. They usually 

employ improper constructions in place of the necessary reasoning. For instance, 

Zhen wrote “construct AD BC ” (see Figure 6), then he completed his proof 

based on the perpendicular relation of AD and BC. But he failed to distinguish 

connecting a segment between two given points from constructing a perpendicular 

from a given point. Actually, it is impossible to construct a perpendicular to a given 

line from two different given points except that some particular conditions are 

confined. Wang’s solution to TQ 3 is an extremely example of the confusion. Wang 

wrote “construct AD=BC=BD” (D is the midpoint of the hypotenuse BC in righted-

triangle ABC). In the interview, Zhen explained: “If you connect point A and D, 

you see…AD is perpendicular to BC. Yes, it’s correct! ” It seems that the visual 

feature of the figure cause - negative effect to his geometrical reasoning. 

 

                                          
Figure 6. Zhen’s Solution to TQ 1. 
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Skills Manipulation  

When Feng solved TQ 1, she justified triangle BMD and triangle CND congruent, 

then produced an outcome of “∠1=∠C” (see Figure 7). In episode 4, we find that 

Feng confused the corresponding angles in the two congruent triangles (utterance 

2). According to her solution, ∠1 in triangle BMD is corresponding to ∠NDC in 

triangle CND. In fact, “∠1=∠C” is correct, but can’t be deduced directly from 

triangle BMD and triangle CND congruent. Eight students had the errors similar to 

Feng’s. 

 

                                     
 

Figure 7. Feng’s Solution to TQ 1. 

 

Episode 4: Interview with Feng 

1. Interviewer:  Can you tell me why∠1=∠C ? 

2. Feng:     Ok. I have proved triangle BMD and triangle CND congruent (see 

Figure 7). Because the two triangles are congruent, each pair 

corresponding angles are equal. So, ∠1=∠C.           

3. Interviewer:  Do you think ∠1 is corresponding to ∠C? 

4. Feng:       Yes. You see…they look like. 
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In Chen’s solution to TQ 1 (see figure 8), he forgot to connect point D and A, and 

directly applied the MHRT theorem in the question situation. In the interview, Chen 

explained: “I tried again and again. I had a good idea when just three minutes left. I 

worried no time, so I wrote down the solution too quickly…” Chen seems too tense 

when he wrote down the solution to TQ 1. 

 

 

                         
Figure 8. Chen’s Solution to TQ 1. 

 

 

 

Discussion 

 

In this study, we used the analysis technique based on Casey’s hierarchy to explore 

secondary students’ errors in solving many-step geometrical problems. Although, 

the technique was developed on probing students’ errors in arithmetical or algebraic 

word problems, it led to an interesting findings when applied to geometrical 

problems. On the one hand, any errors at the first two stages (question form, and 

question reading) did not occur in solving the many-step geometrical problems. On 
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the other hand, we could use the hierarchy involving the last four categories to 

analyze students’ errors in solving geometrical problems.  

 

Many studies found that non-cognitive factors such as motivations and beliefs 

critically influence solvers’ higher-order thinking (Buchanan, 1987; Cobb, 1985; 

Lesh & zawojewski, 2007). To be specific, Motivation was believed to maintain 

students’ information process from their environment in terms of salient goals or 

values (Ames & Ames, 1984). According to the Yerkes-Dodson law (Yerkes & 

Dodson, 1908), the relationship between motivational level and behavioral 

efficiency is an inverted U function (Bregman & Mcallister, 1982). It means that the 

top performance is achieved at some intermediate level of motivations, but low and 

extreme motivations negatively will influence solvers’ performance (Berlyne, 

1966). This study supported the argument that extreme motivations have negative 

influence in solvers’ cognitive behaviors. For example, when Qian intensively 

attempted to apply the theorem (the median to the hypotenuse of a right-angled 

triangle equals to the half of the hypotenuse) to solve TQ3, his strong intention 

replaced the external information in the comprehension stage. Zhao paid more 

attention to identifying the two triangles congruent in TQ 1. Hence, she used visual 

evidence to prove it. Zhen’s intention for success led to his tension, so that he forgot 

to connect point A and D at the stage of skills manipulation. 

 

Schoenfeld (1985) claimed that students’ particular belief - naive empiricism can 

affect their behaviors in mathematical situations. He described an understanding of 

separation proofs and constructions when students solved a construction problem 

using straightedge and compass. They accepted or rejected a potential solution to 

the problem just according to the accuracy of the construction. As a result, 

constructions were graded by how good they looked; proofs were seen as the formal 

confirmation of results that are already known. In this study, at the stage of “skills 

selection”, students used constructions in place of proofs. Another example is 

Feng’s solution to TQ 1. Although he had proved two triangles congruent, Feng 

identified two corresponding angles in the congruent triangles according to the 

construction (looks like). These pieces of evidence supported the claim that 

students’ naive empiricism can affect their mathematical behaviors. Schoenfeld 

(1988, 1989) found that this belief can be as a direct consequence of their 

instruction, such as emphasizing repetitive practice and focusing on the mastery of 

mechanical procedures as isolated skills. 

 

From the above discussion, it can be inferred that students’ motivations and beliefs 

can lead to errors at the stage of comprehension, strategy selection, and skills 

manipulation. 
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Literatures review in the expert vs. novice problem-solver studies found that good 

problem solvers know more than poor problem solvers what they know, and they 

know differently - their knowledge is well connected and composed of rich schemas 

(Lester & Kehle, 2003). Schema which is one way to organize existing knowledge 

through relatively stable, internal networks provides a framework for interpreting 

students’ difficulties in problem solving (Chinnappan, 1998; Nesher & Hershkovitz, 

1994; Sweller, 1989). Within the field of Euclidean geometry, diagrams play a 

central role. Therefore, Chinnappan (1998) used the term “geometrical schema” to 

describe the knowledge around a particular shape (e.g. righted-angle triangle) 

connecting other concepts and knowledge about how and when use these concepts. 

It was claimed that the inside organization of a geometric schema, and an extent of 

those connections between geometric schemas are important for problem solving 

(Chinnappan, 1998). The evidence from this study confirmed Chinnappan’s claim. 

When Wu confronted TQ 3, he turned to another strategy as he failed to activate the 

connections (among “the median to a side”, “a perpendicular to the side”, and “the 

bisector of the angle to the side”) inside of the equilateral triangle schema. When Li 

and Zhou solved TQ 3, they activated the isosceles triangle schema and the 

congruent triangles schema respectively. However, they failed to connect their 

activated schemas with the righted-angle triangles BMC and BNC (see Figure 4 and 

Figure 5). It seems that the students’ strategy selection was influenced by the quality 

of schemas. 
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Appendix 1 

 
Theorem:  

The median to the hypotenuse of a right-angled triangle equals to the half of the 

hypotenuse. 

Given that in ABC , 90ACB  , CD is the median of AB, prove 

1

2
CD AB . 

Proof (Here, the proof is omitted). 

 

Example: Given that in ABC , B C  , AD is the bisector of BAC , E, F 

are the midpoints of side AB and AC respectively, prove DE=DF.  

Proof (Here, the proof is omitted). 

 

 

Exercises: 

1. Given that in ABC , AD BC , M, N are the midpoints of side AB and AC 

respectively, DM=DN, prove AB=AC. 

 

2. Given that in ABC , BD is a perpendicular to side AC, D on the side AC, CE 

is a perpendicular to side AB, E on the side AB, M is the midpoint of BC, 

prove MD=ME. 

 

 

3. Given that 90ABC ADC   , E is the midpoint of AC, 

prove EBD EDB  . 
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Appendix 2 

 

 

Test Questions 

TQ1. Given that in ABC , AB=AC, M is the midpoint of side AB, D is the 

midpoint of side BC, prove MD AC . 

TQ2. Given that in ABC , 120BAC  , construct equilateral ABD and 

ACE adjunct to and outside the given ABC , M is the midpoint of side 

AD, N is the midpoint of side AE, P is the midpoint of side BC, prove 

MP=NP. 

 

TQ3. In a right-angled triangle, if an acute angle is 30°, then the leg to the acute 

angle equals to the half of the hypotenuse. 

 

 

 

 


